A smoothed-particle hydrodynamics model for ice-sheet and ice-shelf dynamics
Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing equations and boundary conditions. Standard grid-based methods require complex front-tracking techniques and have a limited capability to handle large material deformations and abrupt changes in bottom topography...
Saved in:
Published in | Journal of glaciology Vol. 58; no. 208; pp. 216 - 222 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.01.2012
International Glaciological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing equations and boundary conditions. Standard grid-based methods require complex front-tracking techniques and have a limited capability to handle large material deformations and abrupt changes in bottom topography. Consequently, numerical methods are usually restricted to shallow ice-sheet and ice-shelf approximations. We propose a new smoothed-particle hydrodynamics (SPH) model for coupled ice-sheet and ice-shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation and material fragmentation. In this paper, we use the SPH model to study ice-sheet/ice-shelf behavior, and the dynamics of the grounding line. The steady-state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verified by simulating the plane-shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous Newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous Newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of the ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research. |
---|---|
AbstractList | Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing equations and boundary conditions. Standard grid-based methods require complex front-tracking techniques and have a limited capability to handle large material deformations and abrupt changes in bottom topography. Consequently, numerical methods are usually restricted to shallow ice-sheet and ice-shelf approximations. We propose a new smoothed-particle hydrodynamics (SPH) model for coupled ice-sheet and ice-shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation and material fragmentation. In this paper, we use the SPH model to study ice-sheet/ice-shelf behavior, and the dynamics of the grounding line. The steady-state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verified by simulating the plane-shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous Newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous Newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of the ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research. Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research. |
Author | Tartakovsky, Alexandre M. Monaghan, Joe J. Pan, Wenxiao |
Author_xml | – sequence: 1 givenname: Wenxiao surname: Pan fullname: Pan, Wenxiao email: alexandre.tartakovsky@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA, USA E-mail: alexandre.tartakovsky@pnnl.gov – sequence: 2 givenname: Alexandre M. surname: Tartakovsky fullname: Tartakovsky, Alexandre M. email: alexandre.tartakovsky@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA, USA E-mail: alexandre.tartakovsky@pnnl.gov – sequence: 3 givenname: Joe J. surname: Monaghan fullname: Monaghan, Joe J. organization: School of Mathematical Sciences, Monash University, Victoria, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25815204$$DView record in Pascal Francis https://www.osti.gov/biblio/1035415$$D View this record in Osti.gov |
BookMark | eNp1kEFLAzEQRoNUsK0evS-Cx7WZZNPtHkvRail40fOSTWbdlN2kJPHQf2-kraDgafjgvZnhm5CRdRYJuQX6wGFRzRgFtnFrgA1dFBdkDCUrczEXbETGlDKWQ8HpFZmEsEuxEgBjsl1mYXAudqjzvfTRqB6z7qC90wcrB6NCNjiNfdY6nxmFeegQYyatPqe-zc7oNblsZR_w5jSn5P3p8W31nG9f1y-r5TZXBa9irhvGASqmUc4F8qIpG01BCckLytK71bysQANDqVBhi6xUWIlCUtE2SVJ8Su6Oe12Ipg7KRFSdctaiijVQLgoQCbo_QnsZlOxbL60yod57M0h_qJlYgGC0SFx-5JR3IXhsfxCg9Xev9a9eE8__8Om-jMbZ6KXp_7VmJ0sOjTf6A-ud-_Q21fSP8QUgN4vu |
CODEN | JOGLAO |
CitedBy_id | crossref_primary_10_1016_j_coldregions_2023_103939 crossref_primary_10_1016_j_jcp_2013_12_014 crossref_primary_10_1016_j_jcp_2012_10_027 crossref_primary_10_1016_j_cma_2017_06_010 crossref_primary_10_1016_j_cma_2018_10_049 crossref_primary_10_1007_s11804_022_00259_w crossref_primary_10_2208_jscejj_24_18176 crossref_primary_10_1016_j_oceaneng_2020_108527 crossref_primary_10_1016_j_humov_2019_02_003 crossref_primary_10_1016_j_compfluid_2016_05_029 crossref_primary_10_1016_j_ijplas_2013_02_013 crossref_primary_10_23947_2687_1653_2024_24_2_170_177 crossref_primary_10_1007_s00366_022_01616_7 |
Cites_doi | 10.1029/2000JB900336 10.1088/0034-4885/68/8/R01 10.1073/pnas.1017313108 10.3189/172756409789624283 10.1108/09615530710777976 10.1029/2008JF001179 10.1007/s001610050102 10.1016/j.jcp.2006.08.013 10.1017/S0022112082001797 10.1137/070691097 10.1017/S0260305500013197 10.1038/nature07809 10.5194/tc-5-495-2011 10.1017/S0022112009993119 10.1016/S0309-1708(03)00030-7 10.2136/vzj2004.0178 10.1016/j.epsl.2005.08.016 10.1016/j.cpc.2009.05.008 10.1146/annurev.aa.30.090192.002551 10.1016/j.cpc.2009.06.002 10.1016/j.jcp.2004.11.039 10.1029/2011GL047338 10.1006/jcph.1994.1034 10.3189/002214307783258396 10.1006/jcph.1998.6118 10.1016/j.cpc.2010.08.022 10.1017/S0022143000010467 10.1016/S0021-9991(03)00324-3 |
ContentType | Journal Article |
Copyright | Copyright © International Glaciological Society 2012 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © International Glaciological Society 2012 – notice: 2014 INIST-CNRS |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION IQODW OTOTI |
DOI | 10.3189/2012JoG11J084 |
DatabaseName | CrossRef Pascal-Francis OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Environmental Sciences |
EISSN | 1727-5652 |
EndPage | 222 |
ExternalDocumentID | 1035415 25815204 10_3189_2012JoG11J084 |
GroupedDBID | -DZ -~X 09C 09E 29K 3V. 5GY 8FE 8FH 8G5 AABES AABWE AAEED AAGFV AAKTX AANRG AASVR ABBZL ABMWE ABMYL ABQTM ABROB ABTAH ABUWG ABXAU ACGFS ACUIJ ACUYZ ACWGA ACZWT ADBBV ADDNB ADKIL ADOVH ADOVT ADVJH AEBAK AEBPU AENCP AENEX AEYYC AFKQG AFKRA AFLVW AFMIJ AFRAH AGABE AGJUD AHQXX AHRGI AI. AIGNW AIHIV AIOIP AJCYY AJPFC AKZCZ ALMA_UNASSIGNED_HOLDINGS AQJOH ARZZG AUXHV AYIQA AZQEC BBLKV BCGOX BCNDV BENPR BESQT BHPHI BJBOZ BKSAR BLZWO BMAJL BPHCQ CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CJCSC CS3 D-I D1K DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ GROUPED_DOAJ GUQSH HCIFZ H~9 IKXGN IOEEP IOO IPYYG JHPGK JQKCU K6- KAFGG KCGVB KFECR LHUNA LW7 M2O NIKVX NZEOI OHT OK1 P2P PADUT PCBAR PIMPY PQQKQ PROAC RAMDC RCA RIG ROL S6U SAAAG SJN T9M TN5 ULY VH1 VOH WFFJZ Y6R ZDLDU ZJOSE ZKB ZMEZD ZY4 ZYDXJ ~02 0R~ AAFWJ AAYXX ABGDZ ABVKB ABXHF ACAJB ACDLN ADXHL AEHGV AEUYN AFZFC AKMAY CITATION H13 PHGZM PHGZT AAXMD IQODW 08R OTOTI |
ID | FETCH-LOGICAL-c439t-db231192dea65e34b7bd01c5a340265296791d12eacecefe27ce954a05fb2dec3 |
IEDL.DBID | IKXGN |
ISSN | 0022-1430 |
IngestDate | Thu May 18 18:39:15 EDT 2023 Mon Jul 21 09:16:28 EDT 2025 Tue Jul 01 02:19:48 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Mar 13 05:47:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 208 |
Keywords | ice sheets finite difference analysis mathematical models Glacier variation Hydrodynamic model Ice shelf Analytical solution Glacier dynamics |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-db231192dea65e34b7bd01c5a340265296791d12eacecefe27ce954a05fb2dec3 |
Notes | USDOE AC05-76RL01830 PNNL-SA-80307 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/9ECCACFC42E5DB54FA71F47FD57572EF/S0022143000211969a.pdf/div-class-title-a-smoothed-particle-hydrodynamics-model-for-ice-sheet-and-ice-shelf-dynamics-div.pdf |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1035415 pascalfrancis_primary_25815204 crossref_primary_10_3189_2012JoG11J084 crossref_citationtrail_10_3189_2012JoG11J084 cambridge_journals_10_3189_2012JoG11J084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge – name: United States |
PublicationTitle | Journal of glaciology |
PublicationTitleAlternate | J. Glaciol |
PublicationYear | 2012 |
Publisher | Cambridge University Press International Glaciological Society |
Publisher_xml | – name: Cambridge University Press – name: International Glaciological Society |
References | Price, Payne, Howat, Smith 2011; 108 Hosseini, Manzari, Hannani 2007; 17 Bueler, Brown 2009; 114 Monaghan, Huppert, Worster 2005; 206 Seroussi 2011; 38 Goldsby, Kohlsted 2001; 106 Cleary, Monaghan 1999; 148 Pollard, DeConto 2009; 458 Shao, Lo 2003; 26 Durand, Cagliardini, Zwinger, Le Meur, Hindmarsh 2009; 50 Bueler, Brown, Lingle 2007; 53 Tartakovsky, Meakin 2005; 4 Tartakovsky, Tartakovsky, Scheibe, Meakin 2008; 30 Monaghan 2005; 68 Tartakovsky, Meakin, Scheibe, Eichler West 2007; 222 Marshall 2005; 240 Monaghan 1992; 30 Huppert 1982; 121 Ryan, Tartakovsky, Amon 2010; 181 Monaghan, Kajtar 2009; 180 Tartakovsky, Ferris, Meakin 2009; 180 Weis, Greve, Hutter 1999; 11 Morland, Johnson 1980; 25 Robison, Huppert, Worster 2010; 648 Seddik, Greve, Zwinger, Placidi 2011; 5 Monaghan 1994; 110 Cagliardini, Cohen, Raback, Zwinger 2007; 112 Huybrechts, Payne 1996; 23 Colagrossi, Landrini 2003; 191 S0022143000211969_R9 S0022143000211969_R8 S0022143000211969_R19 S0022143000211969_R5 S0022143000211969_R18 S0022143000211969_R17 S0022143000211969_R4 S0022143000211969_R7 S0022143000211969_R16 S0022143000211969_R15 S0022143000211969_R1 S0022143000211969_R14 S0022143000211969_R13 S0022143000211969_R3 S0022143000211969_R12 S0022143000211969_R2 S0022143000211969_R11 S0022143000211969_R10 S0022143000211969_R29 S0022143000211969_R28 S0022143000211969_R27 S0022143000211969_R26 S0022143000211969_R25 S0022143000211969_R24 S0022143000211969_R23 S0022143000211969_R22 S0022143000211969_R21 S0022143000211969_R20 Cagliardini (S0022143000211969_R6) 2007; 112 |
References_xml | – volume: 114 start-page: F03008 issue: F3 year: 2009 article-title: Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model publication-title: J. Geophys. Res – volume: 25 start-page: 229 issue: 92 year: 1980 end-page: 246 article-title: Steady motion of ice sheets publication-title: J. Glaciol – volume: 17 start-page: 715 issue: 7 year: 2007 end-page: 735 article-title: A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow publication-title: Int. J. Num. Meth. Heat Fluid Flow – volume: 38 start-page: L09501 issue: 9 year: 2011 article-title: Ice flux divergence anomalies on 79north Glacier, Greenland publication-title: Geophys. Res. Lett – volume: 108 start-page: 8978 issue: 22 year: 2011 end-page: 8983 article-title: Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade publication-title: Proc. Natl Acad. Sci. USA (PNAS) – volume: 222 start-page: 654 issue: 2 year: 2007 end-page: 672 article-title: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics publication-title: J. Comput. Phys – volume: 148 start-page: 227 issue: 1 year: 1999 end-page: 264 article-title: Conduction modelling using smoothed particle hydrodynamics publication-title: J. Comput. Phys – volume: 240 start-page: 191 issue: 2 year: 2005 end-page: 204 article-title: Recent advances in understanding ice sheet dynamics publication-title: Earth Planet. Sci. Lett – volume: 181 start-page: 2008 issue: 12 year: 2010 end-page: 2023 article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics publication-title: Comput. Phys. Commun – volume: 30 start-page: 2799 issue: 6 year: 2008 end-page: 2816 article-title: Hybrid simulations of reaction-diffusion systems in porous media publication-title: SIAM J. Sci. Comput – volume: 106 start-page: 11 017 issue: B6 year: 2001 end-page: 11 030 article-title: Superplastic deformation of ice: experimental observations publication-title: J. Geophys. Res – volume: 53 start-page: 499 issue: 182 year: 2007 end-page: 516 article-title: Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification publication-title: J. Glaciol – volume: 180 start-page: 1874 issue: 10 year: 2009 end-page: 1881 article-title: Lagrangian particle model for multiphase flows publication-title: Comput. Phys. Commun – volume: 50 start-page: 109 issue: 52 year: 2009 end-page: 114 article-title: Full Stokes modeling of marine ice sheets: influence of the grid size publication-title: Ann. Glaciol – volume: 68 start-page: 1703 issue: 8 year: 2005 end-page: 1759 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys – volume: 11 start-page: 15 issue: 1 year: 1999 end-page: 50 article-title: Theory of shallow ice shelves publication-title: Contin. Mech. Thermodyn – volume: 648 start-page: 363 year: 2010 end-page: 380 article-title: Dynamics of viscous grounding lines publication-title: J. Fluid Mech – volume: 4 start-page: 848 issue: 3 year: 2005 end-page: 855 article-title: Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics publication-title: Vadose Zone J – volume: 23 start-page: 1 year: 1996 end-page: 12 article-title: The EISMINT benchmarks for testing ice-sheet models publication-title: Ann. Glaciol – volume: 206 start-page: 684 issue: 2 year: 2005 end-page: 705 article-title: Solidification using smoothed particle hydrodynamics publication-title: J. Comput. Phys – volume: 112 start-page: F02027 issue: F2 year: 2007 article-title: Finite- element modeling of subglacial cavities and related friction law publication-title: J. Geophys. Res – volume: 110 start-page: 399 issue: 2 year: 1994 end-page: 406 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys – volume: 5 start-page: 495 issue: 2 year: 2011 end-page: 508 article-title: A full Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution publication-title: Cryosphere – volume: 458 start-page: 329 issue: 7236 year: 2009 end-page: 332 article-title: Modelling West Antarctic ice sheet growth and collapse through the past five million years publication-title: Nature – volume: 180 start-page: 1811 issue: 10 year: 2009 end-page: 1820 article-title: SPH particle boundary forces for arbitrary boundaries publication-title: Comput. Phys. Commun – volume: 30 start-page: 543 year: 1992 end-page: 574 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys – volume: 191 start-page: 448 issue: 2 year: 2003 end-page: 475 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys – volume: 121 start-page: 43 year: 1982 end-page: 58 article-title: The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface publication-title: J. Fluid Mech – volume: 26 start-page: 787 issue: 7 year: 2003 end-page: 800 article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface publication-title: Adv. Water Resour – ident: S0022143000211969_R7 doi: 10.1029/2000JB900336 – ident: S0022143000211969_R14 doi: 10.1088/0034-4885/68/8/R01 – ident: S0022143000211969_R19 doi: 10.1073/pnas.1017313108 – ident: S0022143000211969_R5 doi: 10.3189/172756409789624283 – ident: S0022143000211969_R8 doi: 10.1108/09615530710777976 – ident: S0022143000211969_R1 doi: 10.1029/2008JF001179 – ident: S0022143000211969_R29 doi: 10.1007/s001610050102 – ident: S0022143000211969_R26 doi: 10.1016/j.jcp.2006.08.013 – ident: S0022143000211969_R9 doi: 10.1017/S0022112082001797 – ident: S0022143000211969_R27 doi: 10.1137/070691097 – ident: S0022143000211969_R10 doi: 10.1017/S0260305500013197 – ident: S0022143000211969_R18 doi: 10.1038/nature07809 – ident: S0022143000211969_R22 doi: 10.5194/tc-5-495-2011 – ident: S0022143000211969_R20 doi: 10.1017/S0022112009993119 – ident: S0022143000211969_R24 doi: 10.1016/S0309-1708(03)00030-7 – ident: S0022143000211969_R25 doi: 10.2136/vzj2004.0178 – ident: S0022143000211969_R11 doi: 10.1016/j.epsl.2005.08.016 – volume: 112 start-page: F02027 year: 2007 ident: S0022143000211969_R6 article-title: Finite- element modeling of subglacial cavities and related friction law publication-title: J. Geophys. Res – ident: S0022143000211969_R15 doi: 10.1016/j.cpc.2009.05.008 – ident: S0022143000211969_R12 doi: 10.1146/annurev.aa.30.090192.002551 – ident: S0022143000211969_R28 doi: 10.1016/j.cpc.2009.06.002 – ident: S0022143000211969_R16 doi: 10.1016/j.jcp.2004.11.039 – ident: S0022143000211969_R23 doi: 10.1029/2011GL047338 – ident: S0022143000211969_R13 doi: 10.1006/jcph.1994.1034 – ident: S0022143000211969_R2 doi: 10.3189/002214307783258396 – ident: S0022143000211969_R3 doi: 10.1006/jcph.1998.6118 – ident: S0022143000211969_R21 doi: 10.1016/j.cpc.2010.08.022 – ident: S0022143000211969_R17 doi: 10.1017/S0022143000010467 – ident: S0022143000211969_R4 doi: 10.1016/S0021-9991(03)00324-3 |
SSID | ssj0029511 |
Score | 2.043068 |
Snippet | Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing equations and boundary conditions. Standard grid-based methods require... Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require... |
SourceID | osti pascalfrancis crossref cambridge |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 216 |
SubjectTerms | ACCURACY ALGORITHMS APPROXIMATIONS BOUNDARY CONDITIONS DEFORMATION Earth, ocean, space ENVIRONMENTAL SCIENCES Exact sciences and technology External geophysics FRAGMENTATION HYDRODYNAMICS IMPLEMENTATION LAGRANGIAN FUNCTION MECHANICAL PROPERTIES RHEOLOGY SEAS SHEAR SIMULATION Snow. Ice. Glaciers SPH, ice sheet dynamics TOPOGRAPHY WATER |
Title | A smoothed-particle hydrodynamics model for ice-sheet and ice-shelf dynamics |
URI | https://www.cambridge.org/core/product/identifier/S0022143000211969/type/journal_article https://www.osti.gov/biblio/1035415 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWBBPEV5VB4QYsBKnHfGClGgICaQskXxS0WCpmrCwL_nnDiBDpUYrVws-872fbbP3wFcFn6otecq6uk4ooEUjPLElVS7utDo4DgTDdvnS_TwFkyzMNuArHsLY8Iqe46D5ia_yY-2aOlPnXfZxtCopXnj63no7c2cZobkxTGHlo41QW4VvwlbiBlYMoCtx6fs_qXfjCGyYB2TuKml5d_EEZ466BO9aXnP2LQhPf3lXFjxXYMS56AJpSwq1KZu02D88U2TPdi1oJKM28bsw4aaH8C2zW8--z6E5zGpPkvz2ErShW0zmX1L7G-bkb4iTUocghCW4NJBq5lSNSnmsit9aNKJHsHb5O719oHaPApUINyoqeQI4hDJSVVEofIDHnPpMhEWPm4eI3PxGqdMMg_XYCWUVl4sVBoGhRtqjj8J_xgG83KuToAkWieiYJFKNA_wM09lgCaNmQgSkQo1hOteW7k1RZXjRsMoNl9R7BBuOmXmwvKRm7QYH-vEr3rxRUvEsU7wzFgmRwRhaHCFiRcSNcr6IYKVIYxWDNbX5YUJQhk3OP1_D85gx5TbA5lzGNTLL3WBEKXmIzvafgDqK-OK |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcUHmJpbT4AIgD1sZOnMehhwpo98WeWmlvwfFDW6nNrpogtP-Qn9Vx4gT2UIlLj5EnVjLj8Xy2x98AfJChsJYHhnKbxDTSitEiDTS1gZUWA1zBVMP2uYjHV9F0KZZ78Ke7C-PSKnuOg-Ykv6mPtmnpT0fXus2hMXfuji_nGO2dTzNH8jJym5Yjb4LcK96nW87M9jcu5qrTyTe0_EfOz79ffh1TX2-AKgzLNdUFgh1EPNrIWJgwKpJCB0wJGeIiK3YHlEnGNOM4VxllrOGJMpmIZCBsgS-pEPt9AvsCQTp63P5ktrxY9Is_RDKsYy53X93yfaJHZSOMwXy6vmBs2pCs_uV42ImVgzX6vEvdlBVaz7ZlN_6JheeH8MyDWHLW_vxz2DPlCzjw9dRX25cwPyPV7dpd7tJ043VEVluN-t2W8vZaVaQpwUMQMhOcqmi1MqYmstTd040lnegruHoUPb6GQbkuzRsgqbWpkiw2qS0ibC4yHeEQSpiKUpUpM4TPvbZyb_oqx4WNU2y-o9ghfOmUmSvPf-7KcNw8JP6pF9-0xB8PCR45y-SIWBztrnL5SapG2VAgOBrCyY7B-r64SBE6BdHb__-D93Awvvwxz-eTxewInrq2djPoHQzqu1_mGOFRXZz4kUfg52MP9nu1TyHC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+smoothed-particle+hydrodynamics+model+for+ice-sheet+and+ice-shelf+dynamics&rft.jtitle=Journal+of+glaciology&rft.au=Pan%2C+Wenxiao&rft.au=Tartakovsky%2C+Alexandre+M.&rft.au=Monaghan%2C+Joe+J.&rft.date=2012-01-01&rft.pub=Cambridge+University+Press&rft.issn=0022-1430&rft.eissn=1727-5652&rft.volume=58&rft.issue=208&rft.spage=216&rft.epage=222&rft_id=info:doi/10.3189%2F2012JoG11J084&rft.externalDocID=10_3189_2012JoG11J084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1430&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1430&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1430&client=summon |