SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery
•A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduce...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 103; p. 102465 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduced to improve network performance.
With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method. |
---|---|
AbstractList | •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduced to improve network performance.
With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method. With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method. |
ArticleNumber | 102465 |
Author | Bruzzone, Lorenzo Guan, Haiyan Zhang, Yongjun He, Pengfei Peng, Daifeng |
Author_xml | – sequence: 1 givenname: Daifeng surname: Peng fullname: Peng, Daifeng email: daifeng@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 2 givenname: Lorenzo surname: Bruzzone fullname: Bruzzone, Lorenzo organization: Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy – sequence: 3 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 4 givenname: Haiyan surname: Guan fullname: Guan, Haiyan organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 5 givenname: Pengfei surname: He fullname: He, Pengfei organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
BookMark | eNp9kUtv1DAUhS1UJNrCD2DnJZsMsWM7MayqobSVKlhQJHbWHecm45CxB9szqP8eDykbFl35ofOd-zgX5MwHj4S8ZfWK1Uy9n1YTjCtec1beXCj5gpyzruVVx9WPs3KXSledaPgrcpHSVNesbVV3Tg7f1p--XD98oFfUhyPO1AZ_DPMhu-Bhph7z7xB_0iFEmnAHPjtL7Rb8iLTHjPako87TrRu3NGJ6QmnYF2UxiLgLGQvrk_MjdTsYMT6-Ji8HmBO-eTovyffP1w_r2-r-683d-uq-sqLRuepFrVkPthvEoBRHKYZe2lYPoPlmw1mvmYTGci1kV4bVYEEz6BrOOUNbPC7J3eLbB5jMPpby8dEEcObvR4ijgVgandFwrK2CVuCmFkI3coNSqUYLGIaWlSUWr3eL1z6GXwdM2excsjjP4DEckuGqlbLjjWBF2i5SG0NKEQdjXYbTXnIENxtWm1NoZjIlNHMKzSyhFZL9R_5r-jnm48Jg2eTRYTTJOvQWexdLQGVU9wz9BydIsf0 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_1109_ACCESS_2024_3520428 crossref_primary_10_1109_TGRS_2025_3546808 crossref_primary_10_1109_TGRS_2024_3484178 crossref_primary_10_1109_TGRS_2024_3368168 crossref_primary_10_1109_JSTARS_2024_3487137 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_32604_jai_2022_034931 crossref_primary_10_36906_2311_4444_24_2_11 crossref_primary_10_1109_TGRS_2024_3500790 crossref_primary_10_1109_TGRS_2024_3362795 crossref_primary_10_1109_TGRS_2024_3421654 crossref_primary_10_1109_TGRS_2024_3497983 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_1109_LGRS_2024_3507292 crossref_primary_10_1117_1_JRS_18_048502 crossref_primary_10_1109_JSTARS_2024_3402431 crossref_primary_10_1109_TGRS_2024_3365825 crossref_primary_10_1109_TGRS_2024_3523097 crossref_primary_10_1109_TGRS_2023_3325220 crossref_primary_10_1109_JSTARS_2024_3422901 crossref_primary_10_1109_TGRS_2024_3407884 crossref_primary_10_1007_s10661_024_12598_y crossref_primary_10_1109_TGRS_2023_3332338 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_TGRS_2024_3395135 crossref_primary_10_1109_JSTARS_2024_3360431 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_1080_01431161_2023_2173033 crossref_primary_10_1111_exsy_13665 crossref_primary_10_1016_j_jag_2023_103294 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_1109_JSTARS_2024_3493945 crossref_primary_10_1109_TGRS_2024_3486787 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_1109_TIM_2023_3243680 crossref_primary_10_1109_JSTARS_2022_3184298 crossref_primary_10_3390_app13021037 crossref_primary_10_1155_2022_8051876 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1080_17538947_2022_2111470 crossref_primary_10_1109_TGRS_2024_3376384 crossref_primary_10_1080_17538947_2024_2398070 crossref_primary_10_1109_TGRS_2024_3362728 crossref_primary_10_1109_TGRS_2024_3434451 |
Cites_doi | 10.1007/978-3-030-11012-3_10 10.1080/014311600210614 10.1109/TIP.2020.3039328 10.3390/rs12101662 10.1016/j.jag.2018.05.023 10.1016/j.cviu.2019.07.003 10.1016/j.sigpro.2015.09.020 10.1016/j.jag.2016.12.004 10.3390/rs11111382 10.1109/LGRS.2017.2766840 10.1109/MGRS.2015.2443494 10.1109/JPROC.2012.2197169 10.3390/rs12101688 10.1007/s10514-018-9734-5 10.1109/TIP.2020.3031173 10.1109/ICCV.2017.324 10.1109/TGRS.2016.2642125 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2021.102465 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_2e0c6a74eb044935be566394aff71826 10_1016_j_jag_2021_102465 S0303243421001720 |
GroupedDBID | 4.4 5GY 6I. AAFTH AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT BKOJK BLECG EBS FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P ROL SDF SDG SES SPC SSE SSJ T5K ~02 29J AAHBH AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFJIC EJD R2- RIG SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-d4091dac8f4f662e54fd5c79fa92bb21d915a3c294581879aca91a832221ecc43 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:23:13 EDT 2025 Mon Jul 21 10:22:24 EDT 2025 Thu Apr 24 23:11:39 EDT 2025 Tue Jul 01 02:15:18 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Attention mechanism Deep supervision Semantic change detection Remote sensing Siamese UNet Multi-scale atrous convolution |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-d4091dac8f4f662e54fd5c79fa92bb21d915a3c294581879aca91a832221ecc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0303243421001720 |
PQID | 2675582341 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e0c6a74eb044935be566394aff71826 proquest_miscellaneous_2675582341 crossref_citationtrail_10_1016_j_jag_2021_102465 crossref_primary_10_1016_j_jag_2021_102465 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cheng, W., Zhang, Y., Lei, X., Yang, W., Xia, G., 2020. Semantic change pattern analysis. arXiv preprint arXiv: 2003.03492. Bruzzone, Prieto (b0020) 2000; 21 Hou, Wang, Liu (b0085) 2017; 14 Ru, L., Du, B., Wu, C., 2020. Multi-temporal scene classification and scene change detection with correlation based fusion. arXiv preprint arXiv:2006.02176. Ghiasi, Lin, Le (b0070) 2018; 31 Doxani, Karantzalos, Tsakiri-Strati (b0055) 2012; 15 Leichtle, Geiß, Wurm, Lakes, Taubenböck (b0105) 2017; 54 Kataoka, H., Shirakabe, S., Miyashita, Y., Nakamura, A., Iwata, K., Satoh, Y., 2016. Semantic change detection with hypermaps. arXiv preprint arXiv: 1604.07513 2. Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101. Volpi, Tuia, Bovolo, Kanevski, Bruzzone (b0180) 2013; 20 Liu, Pang, Zhan, Zhang, Yang (b0120) 2020 De Alwis Pitts, So (b0050) 2017; 57 Ru, Wu, Du, Zhang (b0155) 2019 Yang, K., Xia, G.S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection. arXiv preprint arXiv: 2010.05687. He, Zhang, Ren, Sun (b0080) 2016 Bruzzone, Bovolo (b0015) 2012; 101 Rokni, Ahmad, Solaimani, Hazini (b0145) 2015; 34 Varghese, A., Gubbi, J., Ramaswamy, A., Balamuralidhar, P., 2018. Changenet: A deep learning architecture for visual change detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0. Lei, Peng, Zhang, Ke, Li (b0100) 2020; 30 Bovolo, Bruzzone (b0010) 2015; 3 Peng, Bruzzone, Zhang, Guan, Ding, Huang (b0135) 2020 Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587. Li, Martinis, Plank, Ludwig (b0110) 2018; 73 Tian, S., Ma, A., Zheng, Z., Zhong, Y., 2020. Hi-ucd: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv preprint arXiv:2011.03247. Gao, Liu (b0065) 2010; 12 Sakurada, Shibuya, Wang (b0160) 2020 Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to measure change: Fully convolutional siamese metric networks for scene change detection. arXiv preprint arXiv: 1810.09111. Milletari, Navab, Ahmadi (b0130) 2016 Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988. Alcantarilla, Stent, Ros, Arroyo, Gherardi (b0005) 2018; 42 Wu, Zhang, Zhang (b0195) 2016; 124 Chen, Shi (b0030) 2020; 12 Lee, Xie, Gallagher, Zhang, Tu (b0095) 2015 Peng, Zhang, Guan (b0140) 2019; 11 Wu, Zhang, Du (b0190) 2017; 55 Shi, Zhang, Zhang, Chen, Zhan (b0165) 2020; 12 Chen, Li, Shi (b0025) 2021 Daudt, Le Saux, Boulch, Gousseau (b0045) 2019; 187 Fu, Liu, Tian, Li, Bao, Fang, Lu (b0060) 2019 Wang, Du, Ru, Wu, Luo (b0185) 2019 Bruzzone (10.1016/j.jag.2021.102465_b0015) 2012; 101 10.1016/j.jag.2021.102465_b0040 Volpi (10.1016/j.jag.2021.102465_b0180) 2013; 20 Ghiasi (10.1016/j.jag.2021.102465_b0070) 2018; 31 Ru (10.1016/j.jag.2021.102465_b0155) 2019 Sakurada (10.1016/j.jag.2021.102465_b0160) 2020 Lee (10.1016/j.jag.2021.102465_b0095) 2015 Wu (10.1016/j.jag.2021.102465_b0195) 2016; 124 10.1016/j.jag.2021.102465_b0200 Shi (10.1016/j.jag.2021.102465_b0165) 2020; 12 10.1016/j.jag.2021.102465_b0125 Wang (10.1016/j.jag.2021.102465_b0185) 2019 Bruzzone (10.1016/j.jag.2021.102465_b0020) 2000; 21 Liu (10.1016/j.jag.2021.102465_b0120) 2020 Gao (10.1016/j.jag.2021.102465_b0065) 2010; 12 Peng (10.1016/j.jag.2021.102465_b0135) 2020 Rokni (10.1016/j.jag.2021.102465_b0145) 2015; 34 Chen (10.1016/j.jag.2021.102465_b0030) 2020; 12 De Alwis Pitts (10.1016/j.jag.2021.102465_b0050) 2017; 57 Daudt (10.1016/j.jag.2021.102465_b0045) 2019; 187 Hou (10.1016/j.jag.2021.102465_b0085) 2017; 14 Chen (10.1016/j.jag.2021.102465_b0025) 2021 10.1016/j.jag.2021.102465_b0170 Wu (10.1016/j.jag.2021.102465_b0190) 2017; 55 Li (10.1016/j.jag.2021.102465_b0110) 2018; 73 10.1016/j.jag.2021.102465_b0150 Lei (10.1016/j.jag.2021.102465_b0100) 2020; 30 Leichtle (10.1016/j.jag.2021.102465_b0105) 2017; 54 10.1016/j.jag.2021.102465_b0175 10.1016/j.jag.2021.102465_b0075 Alcantarilla (10.1016/j.jag.2021.102465_b0005) 2018; 42 Milletari (10.1016/j.jag.2021.102465_b0130) 2016 10.1016/j.jag.2021.102465_b0035 10.1016/j.jag.2021.102465_b0115 Bovolo (10.1016/j.jag.2021.102465_b0010) 2015; 3 He (10.1016/j.jag.2021.102465_b0080) 2016 Peng (10.1016/j.jag.2021.102465_b0140) 2019; 11 Doxani (10.1016/j.jag.2021.102465_b0055) 2012; 15 10.1016/j.jag.2021.102465_b0090 Fu (10.1016/j.jag.2021.102465_b0060) 2019 |
References_xml | – volume: 12 start-page: 9 year: 2010 end-page: 16 ident: b0065 article-title: Determination of land degradation causes in tongyu county, northeast china via land cover change detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 14 start-page: 2418 year: 2017 end-page: 2422 ident: b0085 article-title: Change detection based on deep features and low rank publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 42 start-page: 1301 year: 2018 end-page: 1322 ident: b0005 article-title: Street-view change detection with deconvolutional networks publication-title: Autonom. Robots – start-page: 562 year: 2015 end-page: 570 ident: b0095 article-title: Deeply-supervised nets publication-title: Artificial intelligence and statistics – reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988. – year: 2020 ident: b0120 article-title: Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101. – year: 2021 ident: b0025 article-title: Adversarial instance augmentation for building change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 15 year: 2017 end-page: 27 ident: b0105 article-title: Unsupervised change detection in vhr remote sensing imagery–an object-based clustering approach in a dynamic urban environment publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 1 year: 2019 end-page: 4 ident: b0155 article-title: Deep canonical correlation analysis network for scene change detection of multi-temporal vhr imagery publication-title: 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp) – reference: Varghese, A., Gubbi, J., Ramaswamy, A., Balamuralidhar, P., 2018. Changenet: A deep learning architecture for visual change detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0. – volume: 12 start-page: 1662 year: 2020 ident: b0030 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sens. – volume: 21 start-page: 817 year: 2000 end-page: 822 ident: b0020 article-title: An adaptive parcel-based technique for unsupervised change detection publication-title: Int. J. Remote Sens. – reference: Cheng, W., Zhang, Y., Lei, X., Yang, W., Xia, G., 2020. Semantic change pattern analysis. arXiv preprint arXiv: 2003.03492. – volume: 11 start-page: 1382 year: 2019 ident: b0140 article-title: End-to-end change detection for high resolution satellite images using improved unet++ publication-title: Remote Sens. – volume: 3 start-page: 8 year: 2015 end-page: 26 ident: b0010 article-title: The time variable in data fusion: A change detection perspective publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 55 start-page: 2367 year: 2017 end-page: 2384 ident: b0190 article-title: Kernel slow feature analysis for scene change detection publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Yang, K., Xia, G.S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection. arXiv preprint arXiv: 2010.05687. – reference: Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to measure change: Fully convolutional siamese metric networks for scene change detection. arXiv preprint arXiv: 1810.09111. – volume: 30 start-page: 55 year: 2020 end-page: 67 ident: b0100 article-title: Hierarchical paired channel fusion network for street scene change detection publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 38 year: 2012 end-page: 48 ident: b0055 article-title: Monitoring urban changes based on scale-space filtering and object-oriented classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 198 year: 2019 end-page: 201 ident: b0185 article-title: Scene change detection via deep convolution canonical correlation analysis neural network publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium – volume: 31 start-page: 10727 year: 2018 end-page: 10737 ident: b0070 article-title: Dropblock: A regularization method for convolutional networks publication-title: Adv. Neural Inform. Process. Syst. – start-page: 6861 year: 2020 end-page: 6867 ident: b0160 article-title: Weakly supervised silhouette-based semantic scene change detection publication-title: 2020 IEEE International Conference on Robotics and Automation (ICRA) – volume: 73 start-page: 123 year: 2018 end-page: 135 ident: b0110 article-title: An automatic change detection approach for rapid flood mapping in sentinel-1 sar data publication-title: Int. J. Appl. Earth Observ. Geoinform. – volume: 187 start-page: 102783 year: 2019 ident: b0045 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. – volume: 57 start-page: 49 year: 2017 end-page: 60 ident: b0050 article-title: Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites) publication-title: Int. J. Appl. Earth Observ. Geoinform. – start-page: 565 year: 2016 end-page: 571 ident: b0130 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 fourth international conference on 3D vision (3DV) – volume: 124 start-page: 184 year: 2016 end-page: 197 ident: b0195 article-title: A scene change detection framework for multi-temporal very high resolution remote sensing images publication-title: Signal Process. – reference: Kataoka, H., Shirakabe, S., Miyashita, Y., Nakamura, A., Iwata, K., Satoh, Y., 2016. Semantic change detection with hypermaps. arXiv preprint arXiv: 1604.07513 2. – volume: 12 start-page: 1688 year: 2020 ident: b0165 article-title: Change detection based on artificial intelligence: State-of-the-art and challenges publication-title: Remote Sens. – reference: Ru, L., Du, B., Wu, C., 2020. Multi-temporal scene classification and scene change detection with correlation based fusion. arXiv preprint arXiv:2006.02176. – year: 2020 ident: b0135 article-title: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 770 year: 2016 end-page: 778 ident: b0080 article-title: Deep residual learning for image recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 20 start-page: 77 year: 2013 end-page: 85 ident: b0180 article-title: Supervised change detection in vhr images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 34 start-page: 226 year: 2015 end-page: 234 ident: b0145 article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587. – reference: Tian, S., Ma, A., Zheng, Z., Zhong, Y., 2020. Hi-ucd: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv preprint arXiv:2011.03247. – volume: 101 start-page: 609 year: 2012 end-page: 630 ident: b0015 article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images publication-title: Proc. IEEE – start-page: 3146 year: 2019 end-page: 3154 ident: b0060 article-title: Dual attention network for scene segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.jag.2021.102465_b0125 – volume: 31 start-page: 10727 year: 2018 ident: 10.1016/j.jag.2021.102465_b0070 article-title: Dropblock: A regularization method for convolutional networks publication-title: Adv. Neural Inform. Process. Syst. – start-page: 770 year: 2016 ident: 10.1016/j.jag.2021.102465_b0080 article-title: Deep residual learning for image recognition, in – year: 2021 ident: 10.1016/j.jag.2021.102465_b0025 article-title: Adversarial instance augmentation for building change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 226 year: 2015 ident: 10.1016/j.jag.2021.102465_b0145 article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2021.102465_b0175 doi: 10.1007/978-3-030-11012-3_10 – volume: 21 start-page: 817 year: 2000 ident: 10.1016/j.jag.2021.102465_b0020 article-title: An adaptive parcel-based technique for unsupervised change detection publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210614 – ident: 10.1016/j.jag.2021.102465_b0150 doi: 10.1109/TIP.2020.3039328 – ident: 10.1016/j.jag.2021.102465_b0035 – volume: 12 start-page: 1662 year: 2020 ident: 10.1016/j.jag.2021.102465_b0030 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sens. doi: 10.3390/rs12101662 – volume: 54 start-page: 15 year: 2017 ident: 10.1016/j.jag.2021.102465_b0105 article-title: Unsupervised change detection in vhr remote sensing imagery–an object-based clustering approach in a dynamic urban environment publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 6861 year: 2020 ident: 10.1016/j.jag.2021.102465_b0160 article-title: Weakly supervised silhouette-based semantic scene change detection – start-page: 1 year: 2019 ident: 10.1016/j.jag.2021.102465_b0155 article-title: Deep canonical correlation analysis network for scene change detection of multi-temporal vhr imagery – volume: 73 start-page: 123 year: 2018 ident: 10.1016/j.jag.2021.102465_b0110 article-title: An automatic change detection approach for rapid flood mapping in sentinel-1 sar data publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2018.05.023 – volume: 12 start-page: 9 year: 2010 ident: 10.1016/j.jag.2021.102465_b0065 article-title: Determination of land degradation causes in tongyu county, northeast china via land cover change detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 187 start-page: 102783 year: 2019 ident: 10.1016/j.jag.2021.102465_b0045 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.07.003 – volume: 124 start-page: 184 year: 2016 ident: 10.1016/j.jag.2021.102465_b0195 article-title: A scene change detection framework for multi-temporal very high resolution remote sensing images publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.09.020 – volume: 57 start-page: 49 year: 2017 ident: 10.1016/j.jag.2021.102465_b0050 article-title: Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites) publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2016.12.004 – year: 2020 ident: 10.1016/j.jag.2021.102465_b0120 article-title: Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model publication-title: IEEE Geosci. Remote Sens. Lett. – ident: 10.1016/j.jag.2021.102465_b0040 – ident: 10.1016/j.jag.2021.102465_b0170 – volume: 11 start-page: 1382 year: 2019 ident: 10.1016/j.jag.2021.102465_b0140 article-title: End-to-end change detection for high resolution satellite images using improved unet++ publication-title: Remote Sens. doi: 10.3390/rs11111382 – start-page: 562 year: 2015 ident: 10.1016/j.jag.2021.102465_b0095 article-title: Deeply-supervised nets – ident: 10.1016/j.jag.2021.102465_b0075 – volume: 14 start-page: 2418 year: 2017 ident: 10.1016/j.jag.2021.102465_b0085 article-title: Change detection based on deep features and low rank publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766840 – ident: 10.1016/j.jag.2021.102465_b0090 – ident: 10.1016/j.jag.2021.102465_b0200 – volume: 3 start-page: 8 year: 2015 ident: 10.1016/j.jag.2021.102465_b0010 article-title: The time variable in data fusion: A change detection perspective publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2443494 – volume: 101 start-page: 609 year: 2012 ident: 10.1016/j.jag.2021.102465_b0015 article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2197169 – volume: 12 start-page: 1688 year: 2020 ident: 10.1016/j.jag.2021.102465_b0165 article-title: Change detection based on artificial intelligence: State-of-the-art and challenges publication-title: Remote Sens. doi: 10.3390/rs12101688 – volume: 42 start-page: 1301 year: 2018 ident: 10.1016/j.jag.2021.102465_b0005 article-title: Street-view change detection with deconvolutional networks publication-title: Autonom. Robots doi: 10.1007/s10514-018-9734-5 – start-page: 565 year: 2016 ident: 10.1016/j.jag.2021.102465_b0130 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – volume: 15 start-page: 38 year: 2012 ident: 10.1016/j.jag.2021.102465_b0055 article-title: Monitoring urban changes based on scale-space filtering and object-oriented classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 20 start-page: 77 year: 2013 ident: 10.1016/j.jag.2021.102465_b0180 article-title: Supervised change detection in vhr images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 198 year: 2019 ident: 10.1016/j.jag.2021.102465_b0185 article-title: Scene change detection via deep convolution canonical correlation analysis neural network – start-page: 3146 year: 2019 ident: 10.1016/j.jag.2021.102465_b0060 article-title: Dual attention network for scene segmentation – volume: 30 start-page: 55 year: 2020 ident: 10.1016/j.jag.2021.102465_b0100 article-title: Hierarchical paired channel fusion network for street scene change detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3031173 – ident: 10.1016/j.jag.2021.102465_b0115 doi: 10.1109/ICCV.2017.324 – volume: 55 start-page: 2367 year: 2017 ident: 10.1016/j.jag.2021.102465_b0190 article-title: Kernel slow feature analysis for scene change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2642125 – year: 2020 ident: 10.1016/j.jag.2021.102465_b0135 article-title: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. |
SSID | ssj0017768 |
Score | 2.5510046 |
Snippet | •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to... With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus,... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102465 |
SubjectTerms | Attention mechanism data collection Deep supervision Multi-scale atrous convolution Remote sensing Semantic change detection Siamese UNet spatial data |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkx6Mz7i-goknk8aWQlu8-VhjTPSiJt4IpWDWKLtxd038984UqqsHvXjpgUAhzMB8AzMfhBzUAKHB7DSJTLVIuLAi0bmVSeEcB3NQZKZNpL2-KS7v-dWDeJh56gtjwgI9cJi4I2ZTU-iS2zrlXOaitgBAcsm1cyViY9x9weZ1zlS8PyjLkAQnCplUPGfdfWYb2fWkH8ExZBnSFnC0KjMWqSXu_2aYfmzRrd25WCZLETDSkzDQFTJn_SpZnKERXCUb_a9sNagal-t4jUxvz85v-nfH9IT64Zt9phhjHnUNKvoQAk4Bt9KxfYE5HhgaMoFpYydtkJanA0-R05iCXx6b0uGoPQGHIhC0hbYeTxzo4AUJMd7Xyf1F_-7sMonvLCQG4MgkacDHyxptKscdSM4K7hphSum0ZHXNskZmQueGSS4qfJxcGy0zjVsBy0ADeL5B5v3Q201CXZY3DI-SeAWemnC1LYQGjAKfqi7SvEfSbq6ViSTk-BbGs-qizZ4UiEeheFQQT48cfjYZBQaO3yqfogA_KyJ5dlsAKqWiSqm_VKpHeCd-FXFIwBfwq8Fvfe93qqJgjeLFi_Z2OB0rBl6ZqBgAhq3_GN82WcBuQ1DNDpmfvE7tLkCjSb3XroIPyPgIyQ priority: 102 providerName: Directory of Open Access Journals |
Title | SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery |
URI | https://dx.doi.org/10.1016/j.jag.2021.102465 https://www.proquest.com/docview/2675582341 https://doaj.org/article/2e0c6a74eb044935be566394aff71826 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUeEAwmOqAyEk9IUeOvJOatlE7lq0Jsk_ZmOY49Zdqcam2R-O85O07ZeNgDL5FinZ3Id777nX13RuhdDRAazE6TyVyLjAsrMs2szArnOJiDgpiYSPt9WSzO-ZcLcbGHZkMuTAirTLq_1-lRW6eWSZrNyaptJ6cgnoAGGKckOjLgtx9QJgsQ7YPp56-L5e4woSz7jDhRyKzijA6HmzHM60pfgpdISahhwIOJuWOeYhX_e1bqH30djdDJU_QkoUc87X_wGdqz_hA9vlNT8BAdzf-mrgFpWrvr52h7Ovu0nJ99wFPsu1_2GoeA8yR4QOj7eHAMIBav7Q1MeGtwnxaMG7uJEVsetx6HAscYnPTUFXeruB0OTcB1C3192H7A7U2ojvH7BTo_mZ_NFlm6dCEzgE02WQMOH2m0qRx3wEYruGuEKaXTktY1JY0kQjNDJRdVuKlcGy2JDnqBEhAHzo7Qvu-8fYmwI6yhYV-JV-C2CVfbQmgALPCo6iJnI5QPc61MqkgeLsa4VkPo2ZUC9qjAHtWzZ4Te77qs-nIcDxF_DAzcEYZK2rGhu71USZQUtbkpdMltnXMumagtAFwmuXauDL7XCPGB_eqeYMJQ7UPffjuIioIFG05htLfddq0ouGiiooAejv9v6FfoUXjrY2peo_3N7da-AWS0qccg-bOf336M0woYxx2GP96dDOQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQOWw7TIMNrfsAT9ppUtT4K4l367qiMqAXisTNchIbBYFT0XbS_vs9O06BHTjskoNjp5Xf83u_Z7_3M0JfS4DQ4HbqRKZaJFwYkWhmZJJZy8EdZKQKhbTn82x2yX9diasdNOlrYXxaZbT9nU0P1jq2jOJsjpZNM7oA9QQ0wDglIZCBuH3Xs1OJAdodn5zO5tvDhDzvKuJEJpOCM9ofboY0rxt9DVEiJZ7DgHsX88g9BRb_J17qH3sdnNDxG_Q6okc87v7gHtoxbh-9esQpuI8Opg-la9A1rt3VW7S5mPycTxff8Ri79re5xT7hPCoedHRdPjgGEItX5g4mvKlwVxaMa7MOGVsONw57gmMMQXocittl2A6HJpC6gbHObz_g5s6zY_x5hy6Pp4vJLImXLiQVYJN1UkPAR2pdFZZbEKMR3NaiyqXVkpYlJbUkQrOKSi4Kf1O5rrQk2tsFSkAdODtAA9c68x5hS1hN_b4SLyBsE7Y0mdAAWOBRlFnKhijt51pVkZHcX4xxq_rUsxsF4lFePKoTzxB92w5ZdnQcz3X-4QW47eiZtENDe3-toiopatIq0zk3Zcq5ZKI0AHCZ5Nra3MdeQ8R78asnigmfap777S-9qihYsP4URjvTblaKQogmCgro4cP_ffoIvZgtzs_U2cn89CN66d90-TWf0GB9vzGfASWty8O4Cv4CzIINQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCDNET%3A+A+novel+convolutional+network+for+semantic+change+detection+in+high+resolution+optical+remote+sensing+imagery&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Peng%2C+Daifeng&rft.au=Bruzzone%2C+Lorenzo&rft.au=Zhang%2C+Yongjun&rft.au=Guan%2C+Haiyan&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=103&rft_id=info:doi/10.1016%2Fj.jag.2021.102465&rft.externalDocID=S0303243421001720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |