SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery

•A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduce...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 103; p. 102465
Main Authors Peng, Daifeng, Bruzzone, Lorenzo, Zhang, Yongjun, Guan, Haiyan, He, Pengfei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduced to improve network performance. With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method.
AbstractList •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to capture multi-scale change information.•A novel attention unit is employed for effective feature fusion.•Deep supervision strategy is introduced to improve network performance. With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method.
With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying “from-to” change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method.
ArticleNumber 102465
Author Bruzzone, Lorenzo
Guan, Haiyan
Zhang, Yongjun
He, Pengfei
Peng, Daifeng
Author_xml – sequence: 1
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
  email: daifeng@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Lorenzo
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy
– sequence: 3
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 4
  givenname: Haiyan
  surname: Guan
  fullname: Guan, Haiyan
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 5
  givenname: Pengfei
  surname: He
  fullname: He, Pengfei
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
BookMark eNp9kUtv1DAUhS1UJNrCD2DnJZsMsWM7MayqobSVKlhQJHbWHecm45CxB9szqP8eDykbFl35ofOd-zgX5MwHj4S8ZfWK1Uy9n1YTjCtec1beXCj5gpyzruVVx9WPs3KXSledaPgrcpHSVNesbVV3Tg7f1p--XD98oFfUhyPO1AZ_DPMhu-Bhph7z7xB_0iFEmnAHPjtL7Rb8iLTHjPako87TrRu3NGJ6QmnYF2UxiLgLGQvrk_MjdTsYMT6-Ji8HmBO-eTovyffP1w_r2-r-683d-uq-sqLRuepFrVkPthvEoBRHKYZe2lYPoPlmw1mvmYTGci1kV4bVYEEz6BrOOUNbPC7J3eLbB5jMPpby8dEEcObvR4ijgVgandFwrK2CVuCmFkI3coNSqUYLGIaWlSUWr3eL1z6GXwdM2excsjjP4DEckuGqlbLjjWBF2i5SG0NKEQdjXYbTXnIENxtWm1NoZjIlNHMKzSyhFZL9R_5r-jnm48Jg2eTRYTTJOvQWexdLQGVU9wz9BydIsf0
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_1109_TGRS_2025_3546808
crossref_primary_10_1109_TGRS_2024_3484178
crossref_primary_10_1109_TGRS_2024_3368168
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_32604_jai_2022_034931
crossref_primary_10_36906_2311_4444_24_2_11
crossref_primary_10_1109_TGRS_2024_3500790
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_1109_TGRS_2024_3421654
crossref_primary_10_1109_TGRS_2024_3497983
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_1109_LGRS_2024_3507292
crossref_primary_10_1117_1_JRS_18_048502
crossref_primary_10_1109_JSTARS_2024_3402431
crossref_primary_10_1109_TGRS_2024_3365825
crossref_primary_10_1109_TGRS_2024_3523097
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_1109_JSTARS_2024_3422901
crossref_primary_10_1109_TGRS_2024_3407884
crossref_primary_10_1007_s10661_024_12598_y
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_TGRS_2024_3395135
crossref_primary_10_1109_JSTARS_2024_3360431
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1080_01431161_2023_2173033
crossref_primary_10_1111_exsy_13665
crossref_primary_10_1016_j_jag_2023_103294
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_1109_JSTARS_2024_3493945
crossref_primary_10_1109_TGRS_2024_3486787
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_1109_TIM_2023_3243680
crossref_primary_10_1109_JSTARS_2022_3184298
crossref_primary_10_3390_app13021037
crossref_primary_10_1155_2022_8051876
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1080_17538947_2022_2111470
crossref_primary_10_1109_TGRS_2024_3376384
crossref_primary_10_1080_17538947_2024_2398070
crossref_primary_10_1109_TGRS_2024_3362728
crossref_primary_10_1109_TGRS_2024_3434451
Cites_doi 10.1007/978-3-030-11012-3_10
10.1080/014311600210614
10.1109/TIP.2020.3039328
10.3390/rs12101662
10.1016/j.jag.2018.05.023
10.1016/j.cviu.2019.07.003
10.1016/j.sigpro.2015.09.020
10.1016/j.jag.2016.12.004
10.3390/rs11111382
10.1109/LGRS.2017.2766840
10.1109/MGRS.2015.2443494
10.1109/JPROC.2012.2197169
10.3390/rs12101688
10.1007/s10514-018-9734-5
10.1109/TIP.2020.3031173
10.1109/ICCV.2017.324
10.1109/TGRS.2016.2642125
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2021.102465
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_2e0c6a74eb044935be566394aff71826
10_1016_j_jag_2021_102465
S0303243421001720
GroupedDBID 4.4
5GY
6I.
AAFTH
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
BKOJK
BLECG
EBS
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
29J
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFJIC
EJD
R2-
RIG
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-d4091dac8f4f662e54fd5c79fa92bb21d915a3c294581879aca91a832221ecc43
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:23:13 EDT 2025
Mon Jul 21 10:22:24 EDT 2025
Thu Apr 24 23:11:39 EDT 2025
Tue Jul 01 02:15:18 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Deep supervision
Semantic change detection
Remote sensing
Siamese UNet
Multi-scale atrous convolution
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-d4091dac8f4f662e54fd5c79fa92bb21d915a3c294581879aca91a832221ecc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0303243421001720
PQID 2675582341
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_2e0c6a74eb044935be566394aff71826
proquest_miscellaneous_2675582341
crossref_citationtrail_10_1016_j_jag_2021_102465
crossref_primary_10_1016_j_jag_2021_102465
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cheng, W., Zhang, Y., Lei, X., Yang, W., Xia, G., 2020. Semantic change pattern analysis. arXiv preprint arXiv: 2003.03492.
Bruzzone, Prieto (b0020) 2000; 21
Hou, Wang, Liu (b0085) 2017; 14
Ru, L., Du, B., Wu, C., 2020. Multi-temporal scene classification and scene change detection with correlation based fusion. arXiv preprint arXiv:2006.02176.
Ghiasi, Lin, Le (b0070) 2018; 31
Doxani, Karantzalos, Tsakiri-Strati (b0055) 2012; 15
Leichtle, Geiß, Wurm, Lakes, Taubenböck (b0105) 2017; 54
Kataoka, H., Shirakabe, S., Miyashita, Y., Nakamura, A., Iwata, K., Satoh, Y., 2016. Semantic change detection with hypermaps. arXiv preprint arXiv: 1604.07513 2.
Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101.
Volpi, Tuia, Bovolo, Kanevski, Bruzzone (b0180) 2013; 20
Liu, Pang, Zhan, Zhang, Yang (b0120) 2020
De Alwis Pitts, So (b0050) 2017; 57
Ru, Wu, Du, Zhang (b0155) 2019
Yang, K., Xia, G.S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection. arXiv preprint arXiv: 2010.05687.
He, Zhang, Ren, Sun (b0080) 2016
Bruzzone, Bovolo (b0015) 2012; 101
Rokni, Ahmad, Solaimani, Hazini (b0145) 2015; 34
Varghese, A., Gubbi, J., Ramaswamy, A., Balamuralidhar, P., 2018. Changenet: A deep learning architecture for visual change detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0.
Lei, Peng, Zhang, Ke, Li (b0100) 2020; 30
Bovolo, Bruzzone (b0010) 2015; 3
Peng, Bruzzone, Zhang, Guan, Ding, Huang (b0135) 2020
Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587.
Li, Martinis, Plank, Ludwig (b0110) 2018; 73
Tian, S., Ma, A., Zheng, Z., Zhong, Y., 2020. Hi-ucd: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv preprint arXiv:2011.03247.
Gao, Liu (b0065) 2010; 12
Sakurada, Shibuya, Wang (b0160) 2020
Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to measure change: Fully convolutional siamese metric networks for scene change detection. arXiv preprint arXiv: 1810.09111.
Milletari, Navab, Ahmadi (b0130) 2016
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
Alcantarilla, Stent, Ros, Arroyo, Gherardi (b0005) 2018; 42
Wu, Zhang, Zhang (b0195) 2016; 124
Chen, Shi (b0030) 2020; 12
Lee, Xie, Gallagher, Zhang, Tu (b0095) 2015
Peng, Zhang, Guan (b0140) 2019; 11
Wu, Zhang, Du (b0190) 2017; 55
Shi, Zhang, Zhang, Chen, Zhan (b0165) 2020; 12
Chen, Li, Shi (b0025) 2021
Daudt, Le Saux, Boulch, Gousseau (b0045) 2019; 187
Fu, Liu, Tian, Li, Bao, Fang, Lu (b0060) 2019
Wang, Du, Ru, Wu, Luo (b0185) 2019
Bruzzone (10.1016/j.jag.2021.102465_b0015) 2012; 101
10.1016/j.jag.2021.102465_b0040
Volpi (10.1016/j.jag.2021.102465_b0180) 2013; 20
Ghiasi (10.1016/j.jag.2021.102465_b0070) 2018; 31
Ru (10.1016/j.jag.2021.102465_b0155) 2019
Sakurada (10.1016/j.jag.2021.102465_b0160) 2020
Lee (10.1016/j.jag.2021.102465_b0095) 2015
Wu (10.1016/j.jag.2021.102465_b0195) 2016; 124
10.1016/j.jag.2021.102465_b0200
Shi (10.1016/j.jag.2021.102465_b0165) 2020; 12
10.1016/j.jag.2021.102465_b0125
Wang (10.1016/j.jag.2021.102465_b0185) 2019
Bruzzone (10.1016/j.jag.2021.102465_b0020) 2000; 21
Liu (10.1016/j.jag.2021.102465_b0120) 2020
Gao (10.1016/j.jag.2021.102465_b0065) 2010; 12
Peng (10.1016/j.jag.2021.102465_b0135) 2020
Rokni (10.1016/j.jag.2021.102465_b0145) 2015; 34
Chen (10.1016/j.jag.2021.102465_b0030) 2020; 12
De Alwis Pitts (10.1016/j.jag.2021.102465_b0050) 2017; 57
Daudt (10.1016/j.jag.2021.102465_b0045) 2019; 187
Hou (10.1016/j.jag.2021.102465_b0085) 2017; 14
Chen (10.1016/j.jag.2021.102465_b0025) 2021
10.1016/j.jag.2021.102465_b0170
Wu (10.1016/j.jag.2021.102465_b0190) 2017; 55
Li (10.1016/j.jag.2021.102465_b0110) 2018; 73
10.1016/j.jag.2021.102465_b0150
Lei (10.1016/j.jag.2021.102465_b0100) 2020; 30
Leichtle (10.1016/j.jag.2021.102465_b0105) 2017; 54
10.1016/j.jag.2021.102465_b0175
10.1016/j.jag.2021.102465_b0075
Alcantarilla (10.1016/j.jag.2021.102465_b0005) 2018; 42
Milletari (10.1016/j.jag.2021.102465_b0130) 2016
10.1016/j.jag.2021.102465_b0035
10.1016/j.jag.2021.102465_b0115
Bovolo (10.1016/j.jag.2021.102465_b0010) 2015; 3
He (10.1016/j.jag.2021.102465_b0080) 2016
Peng (10.1016/j.jag.2021.102465_b0140) 2019; 11
Doxani (10.1016/j.jag.2021.102465_b0055) 2012; 15
10.1016/j.jag.2021.102465_b0090
Fu (10.1016/j.jag.2021.102465_b0060) 2019
References_xml – volume: 12
  start-page: 9
  year: 2010
  end-page: 16
  ident: b0065
  article-title: Determination of land degradation causes in tongyu county, northeast china via land cover change detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  start-page: 2418
  year: 2017
  end-page: 2422
  ident: b0085
  article-title: Change detection based on deep features and low rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 42
  start-page: 1301
  year: 2018
  end-page: 1322
  ident: b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Autonom. Robots
– start-page: 562
  year: 2015
  end-page: 570
  ident: b0095
  article-title: Deeply-supervised nets
  publication-title: Artificial intelligence and statistics
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
– year: 2020
  ident: b0120
  article-title: Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101.
– year: 2021
  ident: b0025
  article-title: Adversarial instance augmentation for building change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 15
  year: 2017
  end-page: 27
  ident: b0105
  article-title: Unsupervised change detection in vhr remote sensing imagery–an object-based clustering approach in a dynamic urban environment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b0155
  article-title: Deep canonical correlation analysis network for scene change detection of multi-temporal vhr imagery
  publication-title: 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)
– reference: Varghese, A., Gubbi, J., Ramaswamy, A., Balamuralidhar, P., 2018. Changenet: A deep learning architecture for visual change detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0.
– volume: 12
  start-page: 1662
  year: 2020
  ident: b0030
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sens.
– volume: 21
  start-page: 817
  year: 2000
  end-page: 822
  ident: b0020
  article-title: An adaptive parcel-based technique for unsupervised change detection
  publication-title: Int. J. Remote Sens.
– reference: Cheng, W., Zhang, Y., Lei, X., Yang, W., Xia, G., 2020. Semantic change pattern analysis. arXiv preprint arXiv: 2003.03492.
– volume: 11
  start-page: 1382
  year: 2019
  ident: b0140
  article-title: End-to-end change detection for high resolution satellite images using improved unet++
  publication-title: Remote Sens.
– volume: 3
  start-page: 8
  year: 2015
  end-page: 26
  ident: b0010
  article-title: The time variable in data fusion: A change detection perspective
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 55
  start-page: 2367
  year: 2017
  end-page: 2384
  ident: b0190
  article-title: Kernel slow feature analysis for scene change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Yang, K., Xia, G.S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection. arXiv preprint arXiv: 2010.05687.
– reference: Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to measure change: Fully convolutional siamese metric networks for scene change detection. arXiv preprint arXiv: 1810.09111.
– volume: 30
  start-page: 55
  year: 2020
  end-page: 67
  ident: b0100
  article-title: Hierarchical paired channel fusion network for street scene change detection
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 38
  year: 2012
  end-page: 48
  ident: b0055
  article-title: Monitoring urban changes based on scale-space filtering and object-oriented classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 198
  year: 2019
  end-page: 201
  ident: b0185
  article-title: Scene change detection via deep convolution canonical correlation analysis neural network
  publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 31
  start-page: 10727
  year: 2018
  end-page: 10737
  ident: b0070
  article-title: Dropblock: A regularization method for convolutional networks
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 6861
  year: 2020
  end-page: 6867
  ident: b0160
  article-title: Weakly supervised silhouette-based semantic scene change detection
  publication-title: 2020 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 73
  start-page: 123
  year: 2018
  end-page: 135
  ident: b0110
  article-title: An automatic change detection approach for rapid flood mapping in sentinel-1 sar data
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– volume: 187
  start-page: 102783
  year: 2019
  ident: b0045
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
– volume: 57
  start-page: 49
  year: 2017
  end-page: 60
  ident: b0050
  article-title: Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites)
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– start-page: 565
  year: 2016
  end-page: 571
  ident: b0130
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 fourth international conference on 3D vision (3DV)
– volume: 124
  start-page: 184
  year: 2016
  end-page: 197
  ident: b0195
  article-title: A scene change detection framework for multi-temporal very high resolution remote sensing images
  publication-title: Signal Process.
– reference: Kataoka, H., Shirakabe, S., Miyashita, Y., Nakamura, A., Iwata, K., Satoh, Y., 2016. Semantic change detection with hypermaps. arXiv preprint arXiv: 1604.07513 2.
– volume: 12
  start-page: 1688
  year: 2020
  ident: b0165
  article-title: Change detection based on artificial intelligence: State-of-the-art and challenges
  publication-title: Remote Sens.
– reference: Ru, L., Du, B., Wu, C., 2020. Multi-temporal scene classification and scene change detection with correlation based fusion. arXiv preprint arXiv:2006.02176.
– year: 2020
  ident: b0135
  article-title: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0080
  article-title: Deep residual learning for image recognition, in
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 20
  start-page: 77
  year: 2013
  end-page: 85
  ident: b0180
  article-title: Supervised change detection in vhr images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 34
  start-page: 226
  year: 2015
  end-page: 234
  ident: b0145
  article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587.
– reference: Tian, S., Ma, A., Zheng, Z., Zhong, Y., 2020. Hi-ucd: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv preprint arXiv:2011.03247.
– volume: 101
  start-page: 609
  year: 2012
  end-page: 630
  ident: b0015
  article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
  publication-title: Proc. IEEE
– start-page: 3146
  year: 2019
  end-page: 3154
  ident: b0060
  article-title: Dual attention network for scene segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.jag.2021.102465_b0125
– volume: 31
  start-page: 10727
  year: 2018
  ident: 10.1016/j.jag.2021.102465_b0070
  article-title: Dropblock: A regularization method for convolutional networks
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 770
  year: 2016
  ident: 10.1016/j.jag.2021.102465_b0080
  article-title: Deep residual learning for image recognition, in
– year: 2021
  ident: 10.1016/j.jag.2021.102465_b0025
  article-title: Adversarial instance augmentation for building change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 226
  year: 2015
  ident: 10.1016/j.jag.2021.102465_b0145
  article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2021.102465_b0175
  doi: 10.1007/978-3-030-11012-3_10
– volume: 21
  start-page: 817
  year: 2000
  ident: 10.1016/j.jag.2021.102465_b0020
  article-title: An adaptive parcel-based technique for unsupervised change detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210614
– ident: 10.1016/j.jag.2021.102465_b0150
  doi: 10.1109/TIP.2020.3039328
– ident: 10.1016/j.jag.2021.102465_b0035
– volume: 12
  start-page: 1662
  year: 2020
  ident: 10.1016/j.jag.2021.102465_b0030
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sens.
  doi: 10.3390/rs12101662
– volume: 54
  start-page: 15
  year: 2017
  ident: 10.1016/j.jag.2021.102465_b0105
  article-title: Unsupervised change detection in vhr remote sensing imagery–an object-based clustering approach in a dynamic urban environment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 6861
  year: 2020
  ident: 10.1016/j.jag.2021.102465_b0160
  article-title: Weakly supervised silhouette-based semantic scene change detection
– start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2021.102465_b0155
  article-title: Deep canonical correlation analysis network for scene change detection of multi-temporal vhr imagery
– volume: 73
  start-page: 123
  year: 2018
  ident: 10.1016/j.jag.2021.102465_b0110
  article-title: An automatic change detection approach for rapid flood mapping in sentinel-1 sar data
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2018.05.023
– volume: 12
  start-page: 9
  year: 2010
  ident: 10.1016/j.jag.2021.102465_b0065
  article-title: Determination of land degradation causes in tongyu county, northeast china via land cover change detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 187
  start-page: 102783
  year: 2019
  ident: 10.1016/j.jag.2021.102465_b0045
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.07.003
– volume: 124
  start-page: 184
  year: 2016
  ident: 10.1016/j.jag.2021.102465_b0195
  article-title: A scene change detection framework for multi-temporal very high resolution remote sensing images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.020
– volume: 57
  start-page: 49
  year: 2017
  ident: 10.1016/j.jag.2021.102465_b0050
  article-title: Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites)
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2016.12.004
– year: 2020
  ident: 10.1016/j.jag.2021.102465_b0120
  article-title: Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: 10.1016/j.jag.2021.102465_b0040
– ident: 10.1016/j.jag.2021.102465_b0170
– volume: 11
  start-page: 1382
  year: 2019
  ident: 10.1016/j.jag.2021.102465_b0140
  article-title: End-to-end change detection for high resolution satellite images using improved unet++
  publication-title: Remote Sens.
  doi: 10.3390/rs11111382
– start-page: 562
  year: 2015
  ident: 10.1016/j.jag.2021.102465_b0095
  article-title: Deeply-supervised nets
– ident: 10.1016/j.jag.2021.102465_b0075
– volume: 14
  start-page: 2418
  year: 2017
  ident: 10.1016/j.jag.2021.102465_b0085
  article-title: Change detection based on deep features and low rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766840
– ident: 10.1016/j.jag.2021.102465_b0090
– ident: 10.1016/j.jag.2021.102465_b0200
– volume: 3
  start-page: 8
  year: 2015
  ident: 10.1016/j.jag.2021.102465_b0010
  article-title: The time variable in data fusion: A change detection perspective
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2443494
– volume: 101
  start-page: 609
  year: 2012
  ident: 10.1016/j.jag.2021.102465_b0015
  article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197169
– volume: 12
  start-page: 1688
  year: 2020
  ident: 10.1016/j.jag.2021.102465_b0165
  article-title: Change detection based on artificial intelligence: State-of-the-art and challenges
  publication-title: Remote Sens.
  doi: 10.3390/rs12101688
– volume: 42
  start-page: 1301
  year: 2018
  ident: 10.1016/j.jag.2021.102465_b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Autonom. Robots
  doi: 10.1007/s10514-018-9734-5
– start-page: 565
  year: 2016
  ident: 10.1016/j.jag.2021.102465_b0130
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 15
  start-page: 38
  year: 2012
  ident: 10.1016/j.jag.2021.102465_b0055
  article-title: Monitoring urban changes based on scale-space filtering and object-oriented classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 20
  start-page: 77
  year: 2013
  ident: 10.1016/j.jag.2021.102465_b0180
  article-title: Supervised change detection in vhr images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 198
  year: 2019
  ident: 10.1016/j.jag.2021.102465_b0185
  article-title: Scene change detection via deep convolution canonical correlation analysis neural network
– start-page: 3146
  year: 2019
  ident: 10.1016/j.jag.2021.102465_b0060
  article-title: Dual attention network for scene segmentation
– volume: 30
  start-page: 55
  year: 2020
  ident: 10.1016/j.jag.2021.102465_b0100
  article-title: Hierarchical paired channel fusion network for street scene change detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3031173
– ident: 10.1016/j.jag.2021.102465_b0115
  doi: 10.1109/ICCV.2017.324
– volume: 55
  start-page: 2367
  year: 2017
  ident: 10.1016/j.jag.2021.102465_b0190
  article-title: Kernel slow feature analysis for scene change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2642125
– year: 2020
  ident: 10.1016/j.jag.2021.102465_b0135
  article-title: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
SSID ssj0017768
Score 2.5510046
Snippet •A novel end-to-end convolution network for large-scale semantic change detection (SCDNet) is proposed.•A multi-scale atrous convolution unit is proposed to...
With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus,...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102465
SubjectTerms Attention mechanism
data collection
Deep supervision
Multi-scale atrous convolution
Remote sensing
Semantic change detection
Siamese UNet
spatial data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkx6Mz7i-goknk8aWQlu8-VhjTPSiJt4IpWDWKLtxd038984UqqsHvXjpgUAhzMB8AzMfhBzUAKHB7DSJTLVIuLAi0bmVSeEcB3NQZKZNpL2-KS7v-dWDeJh56gtjwgI9cJi4I2ZTU-iS2zrlXOaitgBAcsm1cyViY9x9weZ1zlS8PyjLkAQnCplUPGfdfWYb2fWkH8ExZBnSFnC0KjMWqSXu_2aYfmzRrd25WCZLETDSkzDQFTJn_SpZnKERXCUb_a9sNagal-t4jUxvz85v-nfH9IT64Zt9phhjHnUNKvoQAk4Bt9KxfYE5HhgaMoFpYydtkJanA0-R05iCXx6b0uGoPQGHIhC0hbYeTxzo4AUJMd7Xyf1F_-7sMonvLCQG4MgkacDHyxptKscdSM4K7hphSum0ZHXNskZmQueGSS4qfJxcGy0zjVsBy0ADeL5B5v3Q201CXZY3DI-SeAWemnC1LYQGjAKfqi7SvEfSbq6ViSTk-BbGs-qizZ4UiEeheFQQT48cfjYZBQaO3yqfogA_KyJ5dlsAKqWiSqm_VKpHeCd-FXFIwBfwq8Fvfe93qqJgjeLFi_Z2OB0rBl6ZqBgAhq3_GN82WcBuQ1DNDpmfvE7tLkCjSb3XroIPyPgIyQ
  priority: 102
  providerName: Directory of Open Access Journals
Title SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery
URI https://dx.doi.org/10.1016/j.jag.2021.102465
https://www.proquest.com/docview/2675582341
https://doaj.org/article/2e0c6a74eb044935be566394aff71826
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUeEAwmOqAyEk9IUeOvJOatlE7lq0Jsk_ZmOY49Zdqcam2R-O85O07ZeNgDL5FinZ3Id777nX13RuhdDRAazE6TyVyLjAsrMs2szArnOJiDgpiYSPt9WSzO-ZcLcbGHZkMuTAirTLq_1-lRW6eWSZrNyaptJ6cgnoAGGKckOjLgtx9QJgsQ7YPp56-L5e4woSz7jDhRyKzijA6HmzHM60pfgpdISahhwIOJuWOeYhX_e1bqH30djdDJU_QkoUc87X_wGdqz_hA9vlNT8BAdzf-mrgFpWrvr52h7Ovu0nJ99wFPsu1_2GoeA8yR4QOj7eHAMIBav7Q1MeGtwnxaMG7uJEVsetx6HAscYnPTUFXeruB0OTcB1C3192H7A7U2ojvH7BTo_mZ_NFlm6dCEzgE02WQMOH2m0qRx3wEYruGuEKaXTktY1JY0kQjNDJRdVuKlcGy2JDnqBEhAHzo7Qvu-8fYmwI6yhYV-JV-C2CVfbQmgALPCo6iJnI5QPc61MqkgeLsa4VkPo2ZUC9qjAHtWzZ4Te77qs-nIcDxF_DAzcEYZK2rGhu71USZQUtbkpdMltnXMumagtAFwmuXauDL7XCPGB_eqeYMJQ7UPffjuIioIFG05htLfddq0ouGiiooAejv9v6FfoUXjrY2peo_3N7da-AWS0qccg-bOf336M0woYxx2GP96dDOQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQOWw7TIMNrfsAT9ppUtT4K4l367qiMqAXisTNchIbBYFT0XbS_vs9O06BHTjskoNjp5Xf83u_Z7_3M0JfS4DQ4HbqRKZaJFwYkWhmZJJZy8EdZKQKhbTn82x2yX9diasdNOlrYXxaZbT9nU0P1jq2jOJsjpZNM7oA9QQ0wDglIZCBuH3Xs1OJAdodn5zO5tvDhDzvKuJEJpOCM9ofboY0rxt9DVEiJZ7DgHsX88g9BRb_J17qH3sdnNDxG_Q6okc87v7gHtoxbh-9esQpuI8Opg-la9A1rt3VW7S5mPycTxff8Ri79re5xT7hPCoedHRdPjgGEItX5g4mvKlwVxaMa7MOGVsONw57gmMMQXocittl2A6HJpC6gbHObz_g5s6zY_x5hy6Pp4vJLImXLiQVYJN1UkPAR2pdFZZbEKMR3NaiyqXVkpYlJbUkQrOKSi4Kf1O5rrQk2tsFSkAdODtAA9c68x5hS1hN_b4SLyBsE7Y0mdAAWOBRlFnKhijt51pVkZHcX4xxq_rUsxsF4lFePKoTzxB92w5ZdnQcz3X-4QW47eiZtENDe3-toiopatIq0zk3Zcq5ZKI0AHCZ5Nra3MdeQ8R78asnigmfap777S-9qihYsP4URjvTblaKQogmCgro4cP_ffoIvZgtzs_U2cn89CN66d90-TWf0GB9vzGfASWty8O4Cv4CzIINQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCDNET%3A+A+novel+convolutional+network+for+semantic+change+detection+in+high+resolution+optical+remote+sensing+imagery&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Peng%2C+Daifeng&rft.au=Bruzzone%2C+Lorenzo&rft.au=Zhang%2C+Yongjun&rft.au=Guan%2C+Haiyan&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=103&rft_id=info:doi/10.1016%2Fj.jag.2021.102465&rft.externalDocID=S0303243421001720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon