Adaptive Tracking for Periodically Time-Varying and Nonlinearly Parameterized Systems Using Multilayer Neural Networks

This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 21; no. 2; pp. 345 - 351
Main Authors Chen, Weisheng, Jiao, Licheng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2010
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are combined into a novel approximator to model each uncertainty in systems. Dynamic surface control (DSC) approach and integral-type Lyapunov function (ILF) technique are combined to design the control algorithm. The ultimate uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to illustrate the feasibility of control scheme proposed in this brief.
AbstractList This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are combined into a novel approximator to model each uncertainty in systems. Dynamic surface control (DSC) approach and integral-type Lyapunov function (ILF) technique are combined to design the control algorithm. The ultimate uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to illustrate the feasibility of control scheme proposed in this brief.
This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are combined into a novel approximator to model each uncertainty in systems. Dynamic surface control (DSC) approach and integral-type Lyapunov function (ILF) technique are combined to design the control algorithm. The ultimate uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to illustrate the feasibility of control scheme proposed in this brief.This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are combined into a novel approximator to model each uncertainty in systems. Dynamic surface control (DSC) approach and integral-type Lyapunov function (ILF) technique are combined to design the control algorithm. The ultimate uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to illustrate the feasibility of control scheme proposed in this brief.
Author Licheng Jiao
Weisheng Chen
Author_xml – sequence: 1
  givenname: Weisheng
  surname: Chen
  fullname: Chen, Weisheng
  email: wshchen@126.com
  organization: Department of Applied Mathematics, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China. wshchen@126.com
– sequence: 2
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22423209$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20071256$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS3UirYLdyQklAvilOKvxPGxqqAgtdtKbLlGs84EmTrOYjtF278eR7sFiUN78Vj2773Dm3dCDvzokZA3jJ4yRvXH1XJ5yinV-RCN1voFOWZasjI_iYN8p7IqNefqiJzE-JNSJitavyRHWaMYr-pjcn_WwSbZeyxWAcyd9T-KfgzFDQY7dtaAc9tiZQcsv0PYzr_gu2I5emc9QsifNxBgwJT5B-yKb9uYcIjFbZzZq8kl62CLoVjiFMDlkX6P4S6-Ioc9uIiv93NBbj9_Wp1_KS-vL76en12WRgqdSrMWKCkoLUA3quoUX2vDhWZr2XAhtaEVKIa9ZIrpirNey57yhjIExKYHsSAfdr6bMP6aMKZ2sNGgc-BxnGKbTSlTum6eJZUUdZ3zpM-TYt6F5LPnuz05rQfs2k2wQ46xfYw_A-_3AMScdR_AGxv_cVxywfMuF6TecSaMMQbsW2MTJDv6FMC6ltF27kOb-zCb63bfhyyk_wkfvZ-QvN1JLCL-xSuhmtwd8QdOsb-w
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TFUZZ_2010_2046329
crossref_primary_10_1109_TFUZZ_2015_2396075
crossref_primary_10_1007_s11432_012_4695_3
crossref_primary_10_1007_s11071_012_0701_y
crossref_primary_10_3390_jmse10111775
crossref_primary_10_1109_TNNLS_2015_2506267
crossref_primary_10_1002_acs_3004
crossref_primary_10_1109_TFUZZ_2012_2204065
crossref_primary_10_1109_TASE_2024_3370168
crossref_primary_10_1016_j_neucom_2021_01_017
crossref_primary_10_1007_s11071_016_3327_7
crossref_primary_10_1002_acs_1182
crossref_primary_10_1016_j_jfranklin_2015_12_004
crossref_primary_10_1016_j_neucom_2012_09_038
crossref_primary_10_1109_TCYB_2018_2869335
crossref_primary_10_1016_j_asoc_2019_105878
crossref_primary_10_1080_00207179_2013_765039
crossref_primary_10_1109_TFUZZ_2012_2183604
crossref_primary_10_1016_j_oceaneng_2015_05_013
crossref_primary_10_1007_s11071_012_0698_2
crossref_primary_10_1002_rnc_1609
crossref_primary_10_1080_00207721_2013_843214
crossref_primary_10_1016_j_neucom_2012_10_025
crossref_primary_10_1109_TNN_2011_2146788
crossref_primary_10_1155_2018_5082401
crossref_primary_10_1002_asjc_275
crossref_primary_10_1109_TCYB_2015_2494007
crossref_primary_10_1002_acs_2322
crossref_primary_10_1109_TSMC_2017_2697443
crossref_primary_10_1007_s00521_011_0596_4
crossref_primary_10_1109_TNNLS_2015_2406812
crossref_primary_10_1016_j_jfranklin_2018_05_066
crossref_primary_10_1016_j_neucom_2011_09_028
crossref_primary_10_1007_s00521_021_06387_8
crossref_primary_10_1049_iet_cta_2009_0548
crossref_primary_10_1080_00207179_2019_1630758
crossref_primary_10_1007_s00521_013_1455_2
crossref_primary_10_1109_TAC_2011_2173409
crossref_primary_10_1016_j_apor_2025_104444
crossref_primary_10_1142_S0218488513500256
crossref_primary_10_1155_2019_8602719
crossref_primary_10_1007_s00521_012_1325_3
crossref_primary_10_1109_TNNLS_2015_2420661
crossref_primary_10_1109_TSMCB_2012_2198813
crossref_primary_10_1016_j_neucom_2015_10_059
crossref_primary_10_1016_j_neucom_2012_10_013
crossref_primary_10_1049_cth2_12517
crossref_primary_10_1007_s00521_012_0815_7
crossref_primary_10_1109_TNNLS_2017_2698507
crossref_primary_10_1002_rnc_3144
crossref_primary_10_1002_asjc_708
crossref_primary_10_1109_TCYB_2014_2329495
crossref_primary_10_1016_j_jfranklin_2019_10_034
crossref_primary_10_1109_TNNLS_2014_2360724
crossref_primary_10_1109_ACCESS_2024_3514891
crossref_primary_10_1016_j_oceaneng_2019_02_031
crossref_primary_10_1109_TFUZZ_2017_2765627
crossref_primary_10_1007_s00521_012_0993_3
crossref_primary_10_1109_TNN_2011_2140381
crossref_primary_10_1007_s11047_014_9415_z
crossref_primary_10_1109_TNN_2011_2172628
crossref_primary_10_1109_TFUZZ_2023_3252601
crossref_primary_10_1007_s11071_012_0630_9
crossref_primary_10_1007_s11071_010_9874_4
crossref_primary_10_1109_TNNLS_2018_2873760
crossref_primary_10_1115_1_4038488
crossref_primary_10_1007_s11071_015_1958_8
crossref_primary_10_1016_j_neucom_2018_09_072
crossref_primary_10_1016_j_jprocont_2014_02_008
crossref_primary_10_1109_TGRS_2021_3135084
crossref_primary_10_1002_asjc_921
crossref_primary_10_1155_2016_4085929
crossref_primary_10_1002_rnc_7118
crossref_primary_10_1007_s11071_013_1009_2
crossref_primary_10_1109_TSMC_2016_2628859
crossref_primary_10_1109_TFUZZ_2019_2915192
crossref_primary_10_1109_TIE_2018_2889634
crossref_primary_10_1002_oca_2567
crossref_primary_10_1080_00207179_2021_1918350
crossref_primary_10_1109_TSMC_2016_2606159
crossref_primary_10_1080_00207179_2016_1153152
crossref_primary_10_1109_TFUZZ_2012_2213259
crossref_primary_10_1007_s12555_015_0054_7
crossref_primary_10_1109_TNNLS_2014_2302475
crossref_primary_10_1016_j_automatica_2012_05_065
crossref_primary_10_1016_j_fss_2018_10_006
crossref_primary_10_1109_TSMC_2018_2791575
crossref_primary_10_1109_TNNLS_2012_2213305
crossref_primary_10_1109_TNNLS_2014_2357451
crossref_primary_10_1007_s00521_010_0455_8
crossref_primary_10_1109_TNNLS_2013_2292704
crossref_primary_10_1007_s11071_010_9836_x
crossref_primary_10_1109_TCSII_2021_3116872
crossref_primary_10_1186_1687_1847_2014_146
crossref_primary_10_1109_TFUZZ_2015_2505088
crossref_primary_10_1109_TCST_2015_2467205
crossref_primary_10_1109_TNNLS_2017_2660070
crossref_primary_10_3182_20130902_3_CN_3020_00072
crossref_primary_10_1016_j_neucom_2013_05_042
crossref_primary_10_1162_neco_a_01079
crossref_primary_10_1002_acs_2418
crossref_primary_10_1016_j_automatica_2019_02_028
crossref_primary_10_1016_j_neucom_2014_05_039
crossref_primary_10_1109_TNNLS_2014_2314718
crossref_primary_10_1016_j_neucom_2011_10_019
crossref_primary_10_1016_j_neucom_2019_08_011
crossref_primary_10_1016_j_isatra_2023_03_001
crossref_primary_10_1007_s00521_012_1080_5
crossref_primary_10_1016_j_amc_2012_12_034
crossref_primary_10_1109_TNNLS_2015_2471262
crossref_primary_10_1049_iet_cta_2013_0903
crossref_primary_10_1109_TCYB_2015_2443877
crossref_primary_10_1109_TNNLS_2019_2919641
crossref_primary_10_1109_TSMC_2017_2748964
crossref_primary_10_1049_iet_cta_2018_5036
crossref_primary_10_1109_TCYB_2018_2864166
crossref_primary_10_4018_jssci_2010100104
crossref_primary_10_1002_acs_3350
crossref_primary_10_1109_TNNLS_2015_2461001
crossref_primary_10_1080_00207721_2014_886744
crossref_primary_10_1109_TCYB_2015_2411285
crossref_primary_10_1109_TNNLS_2014_2330336
crossref_primary_10_1109_TNNLS_2014_2305717
crossref_primary_10_1016_j_fss_2014_04_024
crossref_primary_10_1109_ACCESS_2019_2926264
crossref_primary_10_1109_TFUZZ_2013_2286837
crossref_primary_10_1109_ACCESS_2019_2905102
crossref_primary_10_1109_TNN_2011_2159865
Cites_doi 10.1016/j.isatra.2009.04.002
10.1049/ip-cta:20045283
10.1109/TNN.2004.839354
10.1016/S0005-1098(00)00116-3
10.1109/TSMCB.2003.817055
10.1016/S0005-1098(03)00205-X
10.1109/TAC.2007.900827
10.1109/TAC.2004.825612
10.1109/TSMCB.2002.1018772
10.1109/TNN.2006.878122
10.1109/3468.895898
10.1109/9.486648
10.1109/72.485674
10.1109/TSMCB.2007.904544
10.1109/9.1274
10.1109/3477.891149
10.1016/j.arcontrol.2008.07.002
10.1109/TNN.2005.863403
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2009.2038999
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

MEDLINE - Academic
MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 351
ExternalDocumentID 20071256
22423209
10_1109_TNN_2009_2038999
5378506
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c439t-cb3e40a793a9875d72b9c2391b482349c05a71ef41719521f94f02801eaee8fa3
IEDL.DBID RIE
ISSN 1045-9227
1941-0093
IngestDate Thu Jul 10 22:59:14 EDT 2025
Fri Jul 11 02:10:55 EDT 2025
Fri Jul 11 14:42:14 EDT 2025
Mon Jul 21 05:57:57 EDT 2025
Mon Jul 21 09:14:15 EDT 2025
Tue Jul 01 02:44:37 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Tue Aug 26 17:14:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Closed loop
Backstepping
Tracking
Control synthesis
integral-type Lyapunov function (ILF)
multilayer neural network (MNN)
periodically time-varying disturbances
Neural network
Fourier series
Adaptive control
Modeling
Adaptive method
Time varying system
dynamic surface control (DSC)
nonlinearly parameterized systems
Fourier series expansion (FSE)
Distributed control
Series expansion
Tracking error
Feasibility
Lyapunov function
Multilayer network
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-cb3e40a793a9875d72b9c2391b482349c05a71ef41719521f94f02801eaee8fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20071256
PQID 733899428
PQPubID 23500
PageCount 7
ParticipantIDs crossref_primary_10_1109_TNN_2009_2038999
proquest_miscellaneous_733899428
pascalfrancis_primary_22423209
crossref_citationtrail_10_1109_TNN_2009_2038999
proquest_miscellaneous_875017968
proquest_miscellaneous_743660450
pubmed_primary_20071256
ieee_primary_5378506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
lewis (ref20) 1999
ref19
ref18
ref8
ref7
ref9
ref4
ref6
zhang (ref3) 2000; 36
ge (ref5) 2001
References_xml – ident: ref10
  doi: 10.1016/j.isatra.2009.04.002
– ident: ref15
  doi: 10.1049/ip-cta:20045283
– ident: ref7
  doi: 10.1109/TNN.2004.839354
– volume: 36
  start-page: 1835
  year: 2000
  ident: ref3
  article-title: adaptive neural network control for strict-feedback nonlinear systems using backstepping design
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00116-3
– ident: ref9
  doi: 10.1109/TSMCB.2003.817055
– ident: ref13
  doi: 10.1016/S0005-1098(03)00205-X
– ident: ref18
  doi: 10.1109/TAC.2007.900827
– ident: ref14
  doi: 10.1109/TAC.2004.825612
– ident: ref17
  doi: 10.1109/TSMCB.2002.1018772
– year: 1999
  ident: ref20
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– ident: ref6
  doi: 10.1109/TNN.2006.878122
– ident: ref2
  doi: 10.1109/3468.895898
– ident: ref1
  doi: 10.1109/9.486648
– ident: ref19
  doi: 10.1109/72.485674
– ident: ref11
  doi: 10.1109/TSMCB.2007.904544
– ident: ref12
  doi: 10.1109/9.1274
– ident: ref4
  doi: 10.1109/3477.891149
– ident: ref16
  doi: 10.1016/j.arcontrol.2008.07.002
– ident: ref8
  doi: 10.1109/TNN.2005.863403
– year: 2001
  ident: ref5
  publication-title: Stable Adaptive Neural Network Control
SSID ssj0014506
Score 2.3863802
Snippet This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Adaptive control
Adaptive systems
Algorithms
Applied sciences
Artificial intelligence
Backstepping
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Control systems
dynamic surface control (DSC)
Dynamical systems
Exact sciences and technology
Feasibility Studies
Fourier Analysis
Fourier series
Fourier series expansion (FSE)
integral-type Lyapunov function (ILF)
Multi-layer neural network
multilayer neural network (MNN)
Multilayers
Neural networks
Neural Networks (Computer)
Nonlinear control systems
Nonlinear Dynamics
nonlinearly parameterized systems
periodically time-varying disturbances
Programmable control
Time Factors
Time varying systems
Tracking errors
Uncertainty
Title Adaptive Tracking for Periodically Time-Varying and Nonlinearly Parameterized Systems Using Multilayer Neural Networks
URI https://ieeexplore.ieee.org/document/5378506
https://www.ncbi.nlm.nih.gov/pubmed/20071256
https://www.proquest.com/docview/733899428
https://www.proquest.com/docview/743660450
https://www.proquest.com/docview/875017968
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SnNpD0-72Y_sRdCiFQr1rS7JlHZfSEAoxOSQlNyPJ8qVbb8juFpJf3xnJdpvShN4Mlo0sjaU3mjdvAN57YXOJsD5RpW0SyVuZWNemSUml3W3mZWQTnlbFyYX8eplf7sGnMRfGex_IZ35OlyGW36zdjo7KFrlQJLC2D_vouMVcrTFiIPNQRxO9izzRnKshJJnqxXlVRWFKHtTkSCiUTuhway_u7EahvAqRI80Gx6eNhS3uR55hBzo-hNOh75F48n2-29q5u_1L1vF_P-4pPOmhKFtG23kGe76bwHTZoRv-44Z9YIEcGk7dJ3A4VH9g_WIwgcd_SBlO4eeyMVe0dDLc_RydvzOEw-wMb69DKGh1wyjdJPlmrimzipmuYVXU6SCNZXZmiCZGytG3vmG9kDoLjAYWsoRXBr0DRmIi2Okqstc3z-Hi-Mv555Okr-mQOIQ-28RZ4WVqcFUwGl2lRnGrHRc6s7LkQmqX5kZlvpWZyjRCi1bLlqK_mTfel60RL-CgW3f-FTCqRSgQXSCC9DLTskydt6pprbJNLjM3g8Uwt7XrBc-p7saqDo5Pqms0DCrDqeveMGbwcXziKop9PNB2SnM4tuunbwZHd8xnvM8JuPIUn2ODPdX4J1N4xnR-vdvUStCL0R18oIkURYEWnt7fBAeVFtkC3_IyWuvvLvRG__rfXX8DjyI1grg6b-Fge73z7xBxbe1R-NV-ATxbJbo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8sNHyo4MNPyAkJNImjvPDjxViKrBGe-jQ3iLbcV4o6bS2SNtfvzs7CQyxibdKcSI3vvi-8333HcA7G-tEIKwPslxXgeC1CLSpwyCn1u46ssKzCedFOjsTX8-T8x342NfCWGsd-cyO6afL5Vcrs6WjskkSZySw9gAeot9PIl-t1ecMROI6aWJ8kQSS86xLSoZysigKL03JnZ4cSYXSGR069_SWP3INVogeqdb4hmrf2uJu7Ol80PEezLvZe-rJj_F2o8fm-i9hx__9e_vwtAWjbOqt5xns2GYAw2mDgfjPK_aeOXqoO3cfwF7X_4G128EAnvwhZjiEX9NKXdDmydD_GTqBZwiI2SleXrlk0PKKUcFJ8F1dUm0VU03FCq_UQSrL7FQRUYy0o69txVopdeY4DczVCS8VxgeM5ERw0oXnr6-fw9nx58WnWdB2dQgMgp9NYHRsRahwX1ASg6Uq41oaHstIi5zHQpowUVlkaxFlkURwUUtRU_43ssravFbxC9htVo19BYy6EcaILxBDWhFJkYfG6qyqdaarRERmBJNubUvTSp5T541l6UKfUJZoGNSIU5atYYzgQ3_HhZf7uGfskNawH9cu3wiObplPf50TdOUh3sc6eyrxW6YEjWrsarsus5gejAHhPUNEnKZo4eHdQ_Cl0jab4lNeemv9PYXW6A_-PfW38Gi2mJ-UJ1-Kb6_hsSdKEHPnDexuLrf2EPHXRh-5z-4Gpv8pAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Tracking+for+Periodically+Time-Varying+and+Nonlinearly+Parameterized+Systems+Using+Multilayer+Neural+Networks&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Weisheng+Chen&rft.au=Licheng+Jiao&rft.date=2010-02-01&rft.pub=IEEE&rft.issn=1045-9227&rft.volume=21&rft.issue=2&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1109%2FTNN.2009.2038999&rft_id=info%3Apmid%2F20071256&rft.externalDocID=5378506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon