Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent

The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylin...

Full description

Saved in:
Bibliographic Details
Published inCellulose (London) Vol. 19; no. 3; pp. 713 - 727
Main Authors Suzuki, Shinji, Suzuki, Furitsu, Kanie, Yasumasa, Tsujitani, Koji, Hirai, Asako, Kaji, Hironori, Horii, Fumitaka
Format Journal Article
LanguageEnglish
Published Dordrecht Springer-Verlag 01.06.2012
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I β crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I β when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I β forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose.
AbstractList The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13 C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13 C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH 2 OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I β crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I β when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I β forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose.
The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose Iα and Iβ crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose Iβ when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the Iα and Iβ forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose.
The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state ¹³C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state ¹³C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH₂OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I ᵦ crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I ᵦ when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I ᵦ forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose.
The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I β crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I β when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I β forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose.
Author Suzuki, Furitsu
Horii, Fumitaka
Tsujitani, Koji
Suzuki, Shinji
Kaji, Hironori
Kanie, Yasumasa
Hirai, Asako
Author_xml – sequence: 1
  fullname: Suzuki, Shinji
– sequence: 2
  fullname: Suzuki, Furitsu
– sequence: 3
  fullname: Kanie, Yasumasa
– sequence: 4
  fullname: Tsujitani, Koji
– sequence: 5
  fullname: Hirai, Asako
– sequence: 6
  fullname: Kaji, Hironori
– sequence: 7
  fullname: Horii, Fumitaka
BookMark eNp9kU9vVSEQxYmpia_VD-BKEjdurjJw_7E0jVWTJi5qE3cEeMOThgcVuIvnyo8ut9fEpIuuCMz5zRzmnJOzmCIS8hrYe2Bs-lCADRPrGPBOjtPc9c_IDoaJd_PMf5yRHZOj7BgX8gU5L-WOMSYnDjvy56bmxdYlI9VxT20-lapD8L919SnS5GhZTIcBjxirzifqvMk-lLVitK2YvQ7UYghLSAWpLynointqTnQpPh6opi4sKWOxrQNt8OFnxfhQObSXl-S506Hgq3_nBbm9-vT98kt3_e3z18uP153thayd1c7xYTSjABzBwaSFmwcL2u7N3LtpNnzP5TBqy6wxMw4AKKwdesNsu2lxQd5tfe9z-rVgqeroy-pbR0xLUSBgnHsxMtmkbx9J79KSY3OnOB_kBHIUqwo2lc2plIxO3Wd_bCtSwNSaidoyUS0TtWai-sZMjxjr68Oma9Y-PEnyjSxtSjxg_u_pKejNBjmdlD5kX9TtDWcgWPsCCD6Lv3l5ry8
CitedBy_id crossref_primary_10_3139_113_110469
crossref_primary_10_1007_s11743_016_1831_x
crossref_primary_10_1515_polyeng_2017_0040
crossref_primary_10_3390_ma7127907
crossref_primary_10_1007_s10570_019_02651_2
crossref_primary_10_1016_j_eurpolymj_2018_05_015
crossref_primary_10_1016_j_ijbiomac_2017_04_010
crossref_primary_10_1007_s10570_015_0802_0
crossref_primary_10_1007_s00253_013_4752_x
crossref_primary_10_1021_acs_biomac_7b01173
crossref_primary_10_1007_s10570_014_0443_8
crossref_primary_10_1371_journal_pone_0066919
crossref_primary_10_1007_s10570_012_9756_7
crossref_primary_10_1016_j_ijbiomac_2018_03_089
Cites_doi 10.1295/koron.48.449
10.1002/marc.1984.030051008
10.1016/S0032-3861(96)00589-7
10.1021/ja00047a062
10.1002/marc.1984.030050601
10.1023/A:1009233323237
10.1016/0032-3861(94)90052-3
10.1021/ma0300342
10.1016/0926-2040(94)90039-6
10.1021/ja0257319
10.1016/j.carres.2005.09.028
10.1021/ma00138a009
10.1007/BF00818798
10.1126/science.223.4633.283
10.1021/ma60061a039
10.1021/ma9801265
10.1126/science.218.4577.1141
10.1103/PhysRev.99.559
10.1021/ja037055w
10.1021/ma00026a002
10.1002/pola.1991.080290113
10.1002/masy.19971200120
10.1016/j.molstruc.2009.01.002
10.1295/polymj.36.403
10.1126/science.7434003
10.1016/S0032-3861(96)00588-5
10.1007/BF02228804
10.1007/BF00281948
10.1016/0008-6215(87)80299-9
10.1016/S0889-1605(88)80922-4
10.1021/ma00058a020
10.1002/mrc.1260321308
10.1042/bj0580345
10.1007/978-1-4684-1116-4_14
10.1080/10601329608014912
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2012
Cellulose is a copyright of Springer, (2012). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V. 2012
– notice: Cellulose is a copyright of Springer, (2012). All Rights Reserved.
DBID FBQ
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.1007/s10570-012-9678-4
DatabaseName AGRIS
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Materials Science Collection
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-882X
EndPage 727
ExternalDocumentID 10_1007_s10570_012_9678_4
US201301961328
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
N~3
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TTC
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z87
Z8N
Z8P
Z8Q
ZMTXR
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
AIZAD
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c439t-caff256b631e61f17a3f85c1acdb84f78b2d2956ac0cbb8e511e3cc54b0c8e5a3
IEDL.DBID U2A
ISSN 0969-0239
IngestDate Fri Jul 11 16:01:59 EDT 2025
Fri Jul 25 11:18:07 EDT 2025
Tue Jul 01 02:10:32 EDT 2025
Thu Apr 24 23:02:04 EDT 2025
Fri Feb 21 02:44:25 EST 2025
Wed Dec 27 19:29:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bacterial cellulose
Sub-elementary fibrils
Structure formation
Crystallization
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-caff256b631e61f17a3f85c1acdb84f78b2d2956ac0cbb8e511e3cc54b0c8e5a3
Notes http://dx.doi.org/10.1007/s10570-012-9678-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2259719639
PQPubID 2043866
PageCount 15
ParticipantIDs proquest_miscellaneous_1316843609
proquest_journals_2259719639
crossref_primary_10_1007_s10570_012_9678_4
crossref_citationtrail_10_1007_s10570_012_9678_4
springer_journals_10_1007_s10570_012_9678_4
fao_agris_US201301961328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Cellulose (London)
PublicationTitleAbbrev Cellulose
PublicationYear 2012
Publisher Springer-Verlag
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Netherlands
– name: Springer Nature B.V
References Yamamoto, Horii (CR44) 1994; 1
Isogai, Atalla (CR24) 1991; 29
Horii, Hon, Shiraishi (CR17) 2001
Horii, Pfeffer, Gerasimowicz (CR16) 1989
Haigler, Chanzy (CR11) 1988; 98
Haigler, Brown, Benziman (CR12) 1980; 210
Yamamoto, Horii (CR43) 1993; 26
Horii, Yamamoto, Hirai, Kitamaru, Kennedy, Phillip, Williams (CR19) 1989
Brown (CR2) 1996; A33
Brown, Haigler, Cooper (CR3) 1982; 218
Hirai, Tsuji, Yamamoto, Horii (CR15) 1998; 5
CR10
Matthews, Skopec, Mason, Zuccato, Torget, Sugiyama, Himmel, Brady (CR32) 2005; 341
Kai, Xu (CR27) 1991; 48
Nishiyama, Kim, Kim, Katsumata, May, Langan (CR35) 2002; 24
Fischer, Herchenröder, Manley, Stamm (CR8) 1978; 11
Cousin, Brown (CR6) 1997; 38
Kai (CR25) 1984; 5
Kai, Xu, Horii, Hu (CR28) 1994; 35
Gan (CR9) 1992; 114
Horii, Hirai, Kitamaru (CR18) 1983; 10
Nishiyama, Sugiyama, Chanzy, Langan (CR36) 2003; 125
Torchia (CR40) 1978; 130
Chanzy, Henrissat, Vincendon, Tanner, Belton (CR4) 1987; 160
Masuda, Horii (CR31) 1998; 31
VanderHart, Atalla (CR41) 1984; 17
Hestrin, Schramm (CR13) 1954; 58
Hirai, Horii, Kitamaru (CR14) 1990; 24
Horii, Yamamoto, Hirai (CR21) 1997; 120
Schmidt-Rohr, Spiess (CR37) 1994
Solomon (CR38) 1955; 99
Nishiyama, Langan, Chanzy (CR34) 2002; 124
CR22
Murakami, Ishida, Kaji, Horii (CR33) 2004; 36
Suzuki, Horii, Kurosu (CR39) 2009; 921
Cousin, Brown (CR5) 1997; 38
CR42
Yamamoto, Horii, Hirai (CR45) 1996; 3
Debzi, Chanzy, Sugiyama, Tekely, Excoffier (CR7) 1991; 24
Hu, Orendt, Alderman, Pugmire, Ye, Grant (CR23) 1994; 3
Kitamaru (CR30) 1990
Kai (CR26) 1984; 5
Kaji, Fuke, Horii (CR29) 2003; 36
Horii, Beppu, Takaesu (CR20) 1994; 32
Atalla, VanderHart (CR1) 1984; 223
RH Atalla (9678_CR1) 1984; 223
F Horii (9678_CR20) 1994; 32
A Kai (9678_CR27) 1991; 48
Y Nishiyama (9678_CR36) 2003; 125
Z Gan (9678_CR9) 1992; 114
H Yamamoto (9678_CR45) 1996; 3
9678_CR22
EM Debzi (9678_CR7) 1991; 24
K Schmidt-Rohr (9678_CR37) 1994
A Kai (9678_CR26) 1984; 5
A Kai (9678_CR28) 1994; 35
9678_CR42
H Kaji (9678_CR29) 2003; 36
M Murakami (9678_CR33) 2004; 36
H Yamamoto (9678_CR43) 1993; 26
A Hirai (9678_CR14) 1990; 24
RM Brown Jr (9678_CR3) 1982; 218
CH Haigler (9678_CR11) 1988; 98
F Horii (9678_CR17) 2001
SK Cousin (9678_CR5) 1997; 38
F Horii (9678_CR16) 1989
F Horii (9678_CR18) 1983; 10
DA Torchia (9678_CR40) 1978; 130
A Hirai (9678_CR15) 1998; 5
Y Nishiyama (9678_CR35) 2002; 24
K Masuda (9678_CR31) 1998; 31
CH Haigler (9678_CR12) 1980; 210
S Suzuki (9678_CR39) 2009; 921
F Horii (9678_CR21) 1997; 120
DL VanderHart (9678_CR41) 1984; 17
F Horii (9678_CR19) 1989
9678_CR2
JF Matthews (9678_CR32) 2005; 341
9678_CR10
H Chanzy (9678_CR4) 1987; 160
SK Cousin (9678_CR6) 1997; 38
I Solomon (9678_CR38) 1955; 99
S Hestrin (9678_CR13) 1954; 58
EW Fischer (9678_CR8) 1978; 11
JZ Hu (9678_CR23) 1994; 3
H Yamamoto (9678_CR44) 1994; 1
A Kai (9678_CR25) 1984; 5
R Kitamaru (9678_CR30) 1990
Y Nishiyama (9678_CR34) 2002; 124
A Isogai (9678_CR24) 1991; 29
References_xml – volume: A33
  start-page: 1345
  year: 1996
  end-page: 1373
  ident: CR2
  article-title: The biosynthesis of cellulose
  publication-title: Macromol Sci Pure Appl Chem
– ident: CR22
– volume: 48
  start-page: 449
  year: 1991
  end-page: 452
  ident: CR27
  article-title: Orientation of crystallites in the bacterial cellulose—fluorescent brightener complex membrane
  publication-title: Kobunshi Ronbunshu
  doi: 10.1295/koron.48.449
– volume: 5
  start-page: 653
  year: 1984
  end-page: 655
  ident: CR26
  article-title: The structure of the nascent fibril produced by : the lattice spacing of cellulose produced in the presence of a fluorescent brightener
  publication-title: Makromol Chem Rapid Commun
  doi: 10.1002/marc.1984.030051008
– volume: 38
  start-page: 897
  year: 1997
  end-page: 902
  ident: CR5
  article-title: X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00589-7
– volume: 114
  start-page: 8307
  year: 1992
  end-page: 8309
  ident: CR9
  article-title: High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00047a062
– volume: 5
  start-page: 307
  year: 1984
  end-page: 310
  ident: CR25
  article-title: The structure of the nascent fibril produced by : the X-ray diffraction diagram of cellulose produced in the presence of a fluorescent brightener
  publication-title: Makromol Chem Rapid Commun
  doi: 10.1002/marc.1984.030050601
– start-page: 125
  year: 1989
  end-page: 130
  ident: CR19
  article-title: Structure and structural changes of native cellulose as revealed by CP/MAS C NMR spectroscopy
  publication-title: Cellulose: structural and functional aspects
– volume: 5
  start-page: 201
  year: 1998
  end-page: 213
  ident: CR15
  article-title: In situ crystallization of bacterial cellulose. III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy
  publication-title: Cellulose
  doi: 10.1023/A:1009233323237
– volume: 35
  start-page: 75
  year: 1994
  end-page: 79
  ident: CR28
  article-title: CP/MAS C NMR study on microbial cellulose-fluorescent brightener complexes
  publication-title: Polymer
  doi: 10.1016/0032-3861(94)90052-3
– volume: 36
  start-page: 4414
  year: 2003
  end-page: 4423
  ident: CR29
  article-title: Two-dimensional C magic angle turning NMR analyses of dynamics in poly(2-hydroxypropyl ether of bisphenol-A)
  publication-title: Macromolecules
  doi: 10.1021/ma0300342
– ident: CR10
– volume: 3
  start-page: 181
  year: 1994
  end-page: 197
  ident: CR23
  article-title: Measurement of C chemical shift tensor principal values with a magic-angle turning experiment
  publication-title: Solid State Nucl Magn Reson
  doi: 10.1016/0926-2040(94)90039-6
– volume: 124
  start-page: 9074
  year: 2002
  end-page: 9082
  ident: CR34
  article-title: Crystal structure and hydrogen-bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0257319
– volume: 341
  start-page: 138
  year: 2005
  end-page: 152
  ident: CR32
  article-title: Computer simulation studies of microcrystalline cellulose I
  publication-title: Carbohydr Res
  doi: 10.1016/j.carres.2005.09.028
– volume: 17
  start-page: 1465
  year: 1984
  end-page: 1472
  ident: CR41
  article-title: Studies of microstructure in native celluloses using solid-state carbon-13 NMR
  publication-title: Macromolecules
  doi: 10.1021/ma00138a009
– volume: 1
  start-page: 57
  year: 1994
  end-page: 66
  ident: CR44
  article-title: In situ crystallization of bacterial cellulose. I. Influences of polymeric additives, stirring and temperatures on the formation cellulose I and I as revealed by CP/MAS C NMR spectroscopy
  publication-title: Cellulose
  doi: 10.1007/BF00818798
– volume: 223
  start-page: 283
  year: 1984
  end-page: 285
  ident: CR1
  article-title: Native cellulose: a composite of two distinct crystalline forms
  publication-title: Science
  doi: 10.1126/science.223.4633.283
– volume: 11
  start-page: 213
  year: 1978
  end-page: 217
  ident: CR8
  article-title: Small-angle neutron scattering of selectively deuterated cellulose
  publication-title: Macromolecules
  doi: 10.1021/ma60061a039
– start-page: 83
  year: 2001
  end-page: 107
  ident: CR17
  article-title: Structure of cellulose: recent developments in its characterization
  publication-title: Wood and cellulosic chemistry
– volume: 31
  start-page: 5810
  year: 1998
  end-page: 5817
  ident: CR31
  article-title: CP/MAS C NMR analyses of the chain conformation and hydrogen bonding for frozen poly(vinyl alcohol) solutions
  publication-title: Macromolecules
  doi: 10.1021/ma9801265
– ident: CR42
– volume: 218
  start-page: 1141
  year: 1982
  end-page: 1142
  ident: CR3
  article-title: Experimental induction of altered nonmicrofibrillar cellulose
  publication-title: Science
  doi: 10.1126/science.218.4577.1141
– volume: 99
  start-page: 559
  year: 1955
  end-page: 565
  ident: CR38
  article-title: Relaxation processes in a system of two spins
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.99.559
– volume: 125
  start-page: 14300
  year: 2003
  end-page: 14306
  ident: CR36
  article-title: Crystal structure and hydrogen bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja037055w
– volume: 24
  start-page: 6816
  year: 1991
  end-page: 6822
  ident: CR7
  article-title: The I  → I transformation of highly crystalline cellulose by annealing in various mediums
  publication-title: Macromolecules
  doi: 10.1021/ma00026a002
– start-page: 311
  year: 1989
  end-page: 335
  ident: CR16
  article-title: The structure of cellulose as studied by CP/MAS C NMR spectroscopy
  publication-title: Nuclear magnetic resonance in agriculture
– volume: 29
  start-page: 113
  year: 1991
  end-page: 119
  ident: CR24
  article-title: Amorphous celluloses stable in aqueous media: regeneration from SO -amine solvent systems
  publication-title: J Polym Sci Part A Polym Chem
  doi: 10.1002/pola.1991.080290113
– volume: 120
  start-page: 197
  year: 1997
  end-page: 205
  ident: CR21
  article-title: Microstructural analysis of microfibrils of bacterial cellulose
  publication-title: Macromol Symp
  doi: 10.1002/masy.19971200120
– volume: 921
  start-page: 219
  year: 2009
  end-page: 226
  ident: CR39
  article-title: Theoretical investigations of C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2009.01.002
– volume: 36
  start-page: 403
  year: 2004
  end-page: 412
  ident: CR33
  article-title: Solid-state C NMR studies of the structure and chain conformation of thermotropic liquid crystalline polyether crystallized from the liquid crystalline glassy phase
  publication-title: Polym J
  doi: 10.1295/polymj.36.403
– volume: 130
  start-page: 613
  year: 1978
  end-page: 616
  ident: CR40
  article-title: The measurement of proton-enhanced carbon-13 T values by a method which suppresses artifacts
  publication-title: J Magn Reson
– volume: 24
  start-page: 703
  year: 1990
  end-page: 711
  ident: CR14
  article-title: Carbon-13 spin–lattice relaxation behaviour of the crystalline and noncrystalline components of native and regenerated celluloses
  publication-title: Cellul Chem Technol
– volume: 210
  start-page: 903
  year: 1980
  end-page: 905
  ident: CR12
  article-title: Calcofluor white ST alters the in vivo assembly of cellulose microfibrils
  publication-title: Science
  doi: 10.1126/science.7434003
– year: 1994
  ident: CR37
  publication-title: Multidimensional solid state NMR and polymers
– volume: 58
  start-page: 345
  year: 1954
  end-page: 352
  ident: CR13
  article-title: Synthesis of cellulose by
  publication-title: Biochem J
– volume: 38
  start-page: 903
  year: 1997
  end-page: 912
  ident: CR6
  article-title: Photoisomerization of a dye-altered -1,4 glucan sheet induces the crystallization of a cellulose-composite
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00588-5
– volume: 32
  start-page: S30
  year: 1994
  end-page: S35
  ident: CR20
  article-title: Selective excitation SASS C NMR study of the phenylene motion of glassy polymers
  publication-title: Magn Reson Chem
– volume: 3
  start-page: 229
  year: 1996
  end-page: 242
  ident: CR45
  article-title: In situ crystallization of bacterial cellulose. II. Influences of different polymeric additives on the formation of cellulose I and I at the early stage of incubation
  publication-title: Cellulose
  doi: 10.1007/BF02228804
– volume: 10
  start-page: 357
  year: 1983
  end-page: 361
  ident: CR18
  article-title: Solid-state C NMR study of conformations of oligosaccharides and cellulose—conformation of CH OH group about the exo-cyclic C–C bond
  publication-title: Polym Bull
  doi: 10.1007/BF00281948
– year: 1990
  ident: CR30
  publication-title: Nuclear magnetic resonance—principle and theory
– volume: 24
  start-page: 1013
  year: 2002
  end-page: 1017
  ident: CR35
  article-title: Periodic disorder along ramie cellulose microfibrils
  publication-title: Biomacromolecules
– volume: 160
  start-page: 1
  year: 1987
  end-page: 11
  ident: CR4
  article-title: Solid-state carbon-13 NMR and electron microscopy study on the reversible cellulose I → cellulose III transformation in Valonia
  publication-title: Carbohydr Res
  doi: 10.1016/0008-6215(87)80299-9
– volume: 98
  start-page: 299
  year: 1988
  end-page: 311
  ident: CR11
  article-title: Electron diffraction analysis of the altered cellulose synthesized by in the presence of fluorescent brightening agents and direct dyes
  publication-title: J Ultrastruct Mol Struct
  doi: 10.1016/S0889-1605(88)80922-4
– volume: 26
  start-page: 1313
  year: 1993
  end-page: 1317
  ident: CR43
  article-title: CP/MAS C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures
  publication-title: Macromolecules
  doi: 10.1021/ma00058a020
– volume: 36
  start-page: 4414
  year: 2003
  ident: 9678_CR29
  publication-title: Macromolecules
  doi: 10.1021/ma0300342
– volume: 36
  start-page: 403
  year: 2004
  ident: 9678_CR33
  publication-title: Polym J
  doi: 10.1295/polymj.36.403
– ident: 9678_CR22
– volume: 32
  start-page: S30
  year: 1994
  ident: 9678_CR20
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.1260321308
– volume: 99
  start-page: 559
  year: 1955
  ident: 9678_CR38
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.99.559
– volume: 11
  start-page: 213
  year: 1978
  ident: 9678_CR8
  publication-title: Macromolecules
  doi: 10.1021/ma60061a039
– volume-title: Nuclear magnetic resonance—principle and theory
  year: 1990
  ident: 9678_CR30
– volume: 1
  start-page: 57
  year: 1994
  ident: 9678_CR44
  publication-title: Cellulose
  doi: 10.1007/BF00818798
– volume: 160
  start-page: 1
  year: 1987
  ident: 9678_CR4
  publication-title: Carbohydr Res
  doi: 10.1016/0008-6215(87)80299-9
– volume: 210
  start-page: 903
  year: 1980
  ident: 9678_CR12
  publication-title: Science
  doi: 10.1126/science.7434003
– start-page: 311
  volume-title: Nuclear magnetic resonance in agriculture
  year: 1989
  ident: 9678_CR16
– volume: 120
  start-page: 197
  year: 1997
  ident: 9678_CR21
  publication-title: Macromol Symp
  doi: 10.1002/masy.19971200120
– volume: 124
  start-page: 9074
  year: 2002
  ident: 9678_CR34
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0257319
– volume: 130
  start-page: 613
  year: 1978
  ident: 9678_CR40
  publication-title: J Magn Reson
– volume: 31
  start-page: 5810
  year: 1998
  ident: 9678_CR31
  publication-title: Macromolecules
  doi: 10.1021/ma9801265
– volume: 58
  start-page: 345
  year: 1954
  ident: 9678_CR13
  publication-title: Biochem J
  doi: 10.1042/bj0580345
– volume: 5
  start-page: 653
  year: 1984
  ident: 9678_CR26
  publication-title: Makromol Chem Rapid Commun
  doi: 10.1002/marc.1984.030051008
– volume: 218
  start-page: 1141
  year: 1982
  ident: 9678_CR3
  publication-title: Science
  doi: 10.1126/science.218.4577.1141
– volume: 341
  start-page: 138
  year: 2005
  ident: 9678_CR32
  publication-title: Carbohydr Res
  doi: 10.1016/j.carres.2005.09.028
– volume: 98
  start-page: 299
  year: 1988
  ident: 9678_CR11
  publication-title: J Ultrastruct Mol Struct
  doi: 10.1016/S0889-1605(88)80922-4
– volume: 48
  start-page: 449
  year: 1991
  ident: 9678_CR27
  publication-title: Kobunshi Ronbunshu
  doi: 10.1295/koron.48.449
– ident: 9678_CR10
  doi: 10.1007/978-1-4684-1116-4_14
– start-page: 83
  volume-title: Wood and cellulosic chemistry
  year: 2001
  ident: 9678_CR17
– volume: 35
  start-page: 75
  year: 1994
  ident: 9678_CR28
  publication-title: Polymer
  doi: 10.1016/0032-3861(94)90052-3
– volume: 3
  start-page: 181
  year: 1994
  ident: 9678_CR23
  publication-title: Solid State Nucl Magn Reson
  doi: 10.1016/0926-2040(94)90039-6
– volume: 5
  start-page: 201
  year: 1998
  ident: 9678_CR15
  publication-title: Cellulose
  doi: 10.1023/A:1009233323237
– ident: 9678_CR42
– volume: 5
  start-page: 307
  year: 1984
  ident: 9678_CR25
  publication-title: Makromol Chem Rapid Commun
  doi: 10.1002/marc.1984.030050601
– volume: 223
  start-page: 283
  year: 1984
  ident: 9678_CR1
  publication-title: Science
  doi: 10.1126/science.223.4633.283
– volume: 24
  start-page: 703
  year: 1990
  ident: 9678_CR14
  publication-title: Cellul Chem Technol
– volume: 3
  start-page: 229
  year: 1996
  ident: 9678_CR45
  publication-title: Cellulose
  doi: 10.1007/BF02228804
– ident: 9678_CR2
  doi: 10.1080/10601329608014912
– volume: 38
  start-page: 897
  year: 1997
  ident: 9678_CR5
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00589-7
– volume-title: Multidimensional solid state NMR and polymers
  year: 1994
  ident: 9678_CR37
– volume: 921
  start-page: 219
  year: 2009
  ident: 9678_CR39
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2009.01.002
– volume: 29
  start-page: 113
  year: 1991
  ident: 9678_CR24
  publication-title: J Polym Sci Part A Polym Chem
  doi: 10.1002/pola.1991.080290113
– volume: 26
  start-page: 1313
  year: 1993
  ident: 9678_CR43
  publication-title: Macromolecules
  doi: 10.1021/ma00058a020
– volume: 10
  start-page: 357
  year: 1983
  ident: 9678_CR18
  publication-title: Polym Bull
  doi: 10.1007/BF00281948
– volume: 17
  start-page: 1465
  year: 1984
  ident: 9678_CR41
  publication-title: Macromolecules
  doi: 10.1021/ma00138a009
– volume: 114
  start-page: 8307
  year: 1992
  ident: 9678_CR9
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00047a062
– volume: 125
  start-page: 14300
  year: 2003
  ident: 9678_CR36
  publication-title: J Am Chem Soc
  doi: 10.1021/ja037055w
– start-page: 125
  volume-title: Cellulose: structural and functional aspects
  year: 1989
  ident: 9678_CR19
– volume: 38
  start-page: 903
  year: 1997
  ident: 9678_CR6
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00588-5
– volume: 24
  start-page: 6816
  year: 1991
  ident: 9678_CR7
  publication-title: Macromolecules
  doi: 10.1021/ma00026a002
– volume: 24
  start-page: 1013
  year: 2002
  ident: 9678_CR35
  publication-title: Biomacromolecules
SSID ssj0009721
Score 2.064254
Snippet The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms Aqueous solutions
Bioorganic Chemistry
Brightening
Brightening agents
Buffer solutions
buffers
Cellulose
Cellulose fibers
Ceramics
Chain dynamics
Chains
chemical structure
Chemistry
Chemistry and Materials Science
Composites
Crystal structure
Crystallization
crystals
Ethanol
Fluorescence
Glass
Gluconacetobacter xylinus
High resolution
Hydrogen bonding
Liquid crystals
Molecular motion
Molecular structure
Natural Materials
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Organic Chemistry
Original Paper
Periodic structures
Physical Chemistry
Polymer Sciences
Sodium dodecyl sulfate
Sodium hydroxide
Solid state
Sustainable Development
Variations
Washing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-DupBfLLriwielGDfTU-iooigiLrgLSRpIkJpdWsPe_OnO9Omrgp6a0nalMzXyTeTzAwhBxyWcekZyzKZxyyy1jBuQriSmQoS6wVZjn7Im9vkahRdP8VPzuFWu2OVvU5sFXVeafSRHwPushThkp28vjGsGoW7q66ExiyZBxXMwfiaP7u4vbufpt1N28gr4OkZwzDOfl-zC56LseiKH7AMNDaLfqxMs1ZWP0jnr33Sdvm5XCHLjjfS007Qq2TGlGtk4bwv17ZGlr5lFlwnHw9tXthmbKgsc6rHE2CBReGCLmllad0oZtzZ8fGEWjz6X9TYoroEzjAaevWboqoNfQGIAivNqZpQPCr_TCW1RVONu2xQVLVGvinbFozW2iCjy4vH8yvmii0wDZzknWlpLdAflYS-SXzrpzK0PNa-1LnikU25CvIAjCmpPa0UN0DUTKh1HClPw50MN8lcWZVmgGHgEZehDmyuLJiPRiVpqBLtZRbYhozlkHj9RAvtMpFjQYxCTHMoo2wEyEagbEQ0JIdfj7x2aTj-6zwA6Qn5DGpSjB4C3JwF5IDdzYdkpxepcD9rLabQGpL9r2YQH86yLE3V1MLHAl9RmHjQ56iHwvQVf37L1v8DbpPFABHYunV2yBxgw-wCy3lXew7Kn_Dj-ko
  priority: 102
  providerName: ProQuest
Title Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent
URI https://link.springer.com/article/10.1007/s10570-012-9678-4
https://www.proquest.com/docview/2259719639
https://www.proquest.com/docview/1316843609
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB66ySHtobRJSzZNFxV6ShDY8ks-bsNuQktDabKQnoQkSyFg7LCOD3vrT8-M184mJS30ZBvJDzTj0TfSzDcAnyVO4zpwnue6SHjsvePSRXimcyNSH4i8oHXI7-fp2SL-epVc9XnczRDtPmxJdpb6UbJbQkVSQsFztLA8HsF2Qq47KvFCTDdMu1mXbIXQPOeUuTlsZT73iCeT0cjr-gnO_GNrtJtx5m_gdQ8V2XQt27fwwlW7sHMyVGjbhVePyAT34PdFRwXbLh3TVcHscoXAryz7PEtWe9a0hrs-XHy5Yp6i_cuGWsyasxnfRgv5bVk3jt2gViIQLZhZMYqOv2aa-bKtl2sCKGY6v95VXQslaL2DxXx2eXLG-_oK3CIMueNWe4-Ix6RR6NLQh5mOvExsqG1hZOwzaUQh0H_SNrDGSIfYzEXWJrEJLF7p6D1sVXXl9inzO5Y6ssIXxqPH6EyaRSa1Qe4RYOhEjyEYBlrZnnycamCUakObTLJRKBtFslHxGI4ebrldM2_8q_M-Sk_pa7SManEhaD8WbQu62nIMh4NIVf9_NgqtWJ6R8cnH8OmhGcVHo6wrV7eNCqmmVxylAfY5HlRh84i_fsvBf_X-AC8FKWS3sHMIW6gq7iPinDszgZGcn05ge3r669sMj19m5z9-TjptvweJSvl1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615VA4ICigLhQwElxAFomd5wEhVFi29HFpV-rN2I5dVYqSsmmE9sYv4jcyk0eXItFbb4ns2JHns-flmQF4nSEb14HzPNdFzCPvHc-cxCedG5H4QOQF2SEPj5LZPPp2Gp-uwe8xFoauVY5nYndQF7UlG_l7xF2eElzyjxc_OFWNIu_qWEKjh8W-W_5Ela35sPcZ6ftGiOmXk90ZH6oKcIvM95Jb7T3yeZPI0CWhD1MtfRbbUNvCZJFPMyMKgVqDtoE1JnMokThpbRyZwOKbljjuOtyJpMxpR2XTr6skv2kX54VaQc4paHT0ovahejGVeAkFz5E_8OgaH1z3ur4m4v7jle2Y3fQB3B-kVPaph9VDWHPVFmzujsXhtuDeX3kMH8Gv4y4LbbtwTFcFs4slypxlOYR4stqzpjXcDTfVF0vmKdCgbKjF9OmicTbyIbRl3Th2jhsCZeCCmSWji_lnTDNftvWizz3FTGdScFXXQrFhj2F-K0R4AhtVXbltCjqPMi2t8IXxqKw6k6TSJDbIPco2OtYTCMaFVnbIe07lN0q1ythMtFFIG0W0UdEE3l59ctEn_bip8zZST-kzPJTV_FiQKxhxilp-NoGdkaRqOBoatQLyBF5dNSP5aJV15eq2USGVE4tkEmCfdyMUVkP891-e3jzhS9icnRweqIO9o_1ncFcQGjuD0g5sIE7cc5SvLs2LDtQMvt_2LvoDWYo3xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIkF7QFBAXVrASJxAVhPnfawKq_KqkMpKvVm246mQoqTabA57609nJo9uiwCJWyI7TuSZjL-xZ74BeJvTMm4Cj7IwZSJjRC9zH9GVKaxKMVBFyfuQ387S00X8-SK5GOuctlO0-3QkOeQ0MEtTvTq6KvHoVuJbwgVTQiULsrYy3oL7ZI1DVuuFOt6w7mZ94hXB9EJyFud0rPmnIe4sTFtomjuY87dj0n71mT-GRyNsFMeDnJ_APV_vwcOTqVrbHuzeIhZ8CtfnPS1st_TC1KVwyzWBwKoacy5Fg6LtrPRj6PhyLZAj_6uWW-zA30xv4039rmpaL36ShhIoLYVdC46UvxRGYNU1y4EMStjex_d138LJWs9gMf_44-RUjrUWpCNIspLOIBL6sWkU-jTEMDMR5okLjSttHmOWW1Uq8qWMC5y1uSec5iPnktgGju5M9By266b2-5wFHucmcgpLi-Q9eptmkU1dUCCBDZOYGQTTRGs3EpFzPYxKbyiUWTaaZKNZNjqewbubR64GFo5_dd4n6WlzSVZSL84Vn82SnSG3O5_B4SRSPf6rrSaLVmRsiIoZvLlpJvHxLJvaN12rQ67vFUdpQH3eT6qwGeKv3_Liv3q_hgffP8z1109nXw5gR7Fu9vs9h7BNWuNfEvxZ2Ve9iv8CLPb8kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+crystallization+of+sub-elementary+fibrils+of+bacterial+cellulose+isolated+by+using+a+fluorescent+brightening+agent&rft.jtitle=Cellulose+%28London%29&rft.au=Suzuki%2C+Mineji&rft.au=Suzuki%2C+Furitsu&rft.au=Kanie%2C+Yasumasa&rft.au=Tsujitani%2C+Koji&rft.date=2012-06-01&rft.issn=0969-0239&rft.volume=19&rft.issue=3+p.713-727&rft.spage=713&rft.epage=727&rft_id=info:doi/10.1007%2Fs10570-012-9678-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon