Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent
The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylin...
Saved in:
Published in | Cellulose (London) Vol. 19; no. 3; pp. 713 - 727 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer-Verlag
01.06.2012
Springer Netherlands Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I β crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I β when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I β forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose. |
---|---|
AbstractList | The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state
13
C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of
Acetobacter xylinum
effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state
13
C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH
2
OH groups of the SEFs adopt the
gt
conformation instead of the
tg
conformation found in cellulose I
α
and I
β
crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I
β
when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I
α
and I
β
forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose. The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose Iα and Iβ crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose Iβ when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the Iα and Iβ forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose. The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state ¹³C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state ¹³C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH₂OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I ᵦ crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I ᵦ when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I ᵦ forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose. The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and high-resolution solid-state 13C NMR. The addition of a suitable amount of fluorescent brightener (FB) to the incubation medium of Acetobacter xylinum effectively suppressed the aggregation of the SEFs into the microfibrils, as previously reported. However, this study confirmed for the first time that serious structural change in the SEFs occurs during the removal of excess FB by washing with buffer solutions having pH values higher than 6 or with the alkaline aqueous solution that was frequently used in previous studies. In contrast, the isolation of unmodified SEFs was successfully performed by utilizing a washing protocol employing pH 7 citrate–phosphate buffer solution containing 1% sodium dodecyl sulfate. High-resolution solid-state 13C NMR and WAXD measurements revealed that the SEFs thus isolated are in the noncrystalline state in which the pyranose rings of the almost parallel cellulose chains appear to be stacked on each other. The respective CH2OH groups of the SEFs adopt the gt conformation instead of the tg conformation found in cellulose I α and I β crystals, and undergo significantly enhanced molecular motion in the absence of intermolecular hydrogen bonding associated with these groups. The main chains are also subject to rapid motional fluctuations while maintaining the parallel orientation of the respective chains, indicating that the SEFs have a liquid crystal-like structure with high molecular mobility. Moreover, the SEFs crystallize into cellulose I β when the FB molecules that may adhere to the surface of the SEFs are removed by extraction with boiling 70 v/v% ethanol and 0.1N NaOH aqueous solution. On the basis of these results, the crystallization of the SEFs into the I α and I β forms is discussed, including the possible formation of the crystalline-noncrystalline periodic structure in native cellulose. |
Author | Suzuki, Furitsu Horii, Fumitaka Tsujitani, Koji Suzuki, Shinji Kaji, Hironori Kanie, Yasumasa Hirai, Asako |
Author_xml | – sequence: 1 fullname: Suzuki, Shinji – sequence: 2 fullname: Suzuki, Furitsu – sequence: 3 fullname: Kanie, Yasumasa – sequence: 4 fullname: Tsujitani, Koji – sequence: 5 fullname: Hirai, Asako – sequence: 6 fullname: Kaji, Hironori – sequence: 7 fullname: Horii, Fumitaka |
BookMark | eNp9kU9vVSEQxYmpia_VD-BKEjdurjJw_7E0jVWTJi5qE3cEeMOThgcVuIvnyo8ut9fEpIuuCMz5zRzmnJOzmCIS8hrYe2Bs-lCADRPrGPBOjtPc9c_IDoaJd_PMf5yRHZOj7BgX8gU5L-WOMSYnDjvy56bmxdYlI9VxT20-lapD8L919SnS5GhZTIcBjxirzifqvMk-lLVitK2YvQ7UYghLSAWpLynointqTnQpPh6opi4sKWOxrQNt8OFnxfhQObSXl-S506Hgq3_nBbm9-vT98kt3_e3z18uP153thayd1c7xYTSjABzBwaSFmwcL2u7N3LtpNnzP5TBqy6wxMw4AKKwdesNsu2lxQd5tfe9z-rVgqeroy-pbR0xLUSBgnHsxMtmkbx9J79KSY3OnOB_kBHIUqwo2lc2plIxO3Wd_bCtSwNSaidoyUS0TtWai-sZMjxjr68Oma9Y-PEnyjSxtSjxg_u_pKejNBjmdlD5kX9TtDWcgWPsCCD6Lv3l5ry8 |
CitedBy_id | crossref_primary_10_3139_113_110469 crossref_primary_10_1007_s11743_016_1831_x crossref_primary_10_1515_polyeng_2017_0040 crossref_primary_10_3390_ma7127907 crossref_primary_10_1007_s10570_019_02651_2 crossref_primary_10_1016_j_eurpolymj_2018_05_015 crossref_primary_10_1016_j_ijbiomac_2017_04_010 crossref_primary_10_1007_s10570_015_0802_0 crossref_primary_10_1007_s00253_013_4752_x crossref_primary_10_1021_acs_biomac_7b01173 crossref_primary_10_1007_s10570_014_0443_8 crossref_primary_10_1371_journal_pone_0066919 crossref_primary_10_1007_s10570_012_9756_7 crossref_primary_10_1016_j_ijbiomac_2018_03_089 |
Cites_doi | 10.1295/koron.48.449 10.1002/marc.1984.030051008 10.1016/S0032-3861(96)00589-7 10.1021/ja00047a062 10.1002/marc.1984.030050601 10.1023/A:1009233323237 10.1016/0032-3861(94)90052-3 10.1021/ma0300342 10.1016/0926-2040(94)90039-6 10.1021/ja0257319 10.1016/j.carres.2005.09.028 10.1021/ma00138a009 10.1007/BF00818798 10.1126/science.223.4633.283 10.1021/ma60061a039 10.1021/ma9801265 10.1126/science.218.4577.1141 10.1103/PhysRev.99.559 10.1021/ja037055w 10.1021/ma00026a002 10.1002/pola.1991.080290113 10.1002/masy.19971200120 10.1016/j.molstruc.2009.01.002 10.1295/polymj.36.403 10.1126/science.7434003 10.1016/S0032-3861(96)00588-5 10.1007/BF02228804 10.1007/BF00281948 10.1016/0008-6215(87)80299-9 10.1016/S0889-1605(88)80922-4 10.1021/ma00058a020 10.1002/mrc.1260321308 10.1042/bj0580345 10.1007/978-1-4684-1116-4_14 10.1080/10601329608014912 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V. 2012 Cellulose is a copyright of Springer, (2012). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media B.V. 2012 – notice: Cellulose is a copyright of Springer, (2012). All Rights Reserved. |
DBID | FBQ AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.1007/s10570-012-9678-4 |
DatabaseName | AGRIS CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-882X |
EndPage | 727 |
ExternalDocumentID | 10_1007_s10570_012_9678_4 US201301961328 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 N~3 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TTC TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z87 Z8N Z8P Z8Q ZMTXR ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU AIZAD BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c439t-caff256b631e61f17a3f85c1acdb84f78b2d2956ac0cbb8e511e3cc54b0c8e5a3 |
IEDL.DBID | U2A |
ISSN | 0969-0239 |
IngestDate | Fri Jul 11 16:01:59 EDT 2025 Fri Jul 25 11:18:07 EDT 2025 Tue Jul 01 02:10:32 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Fri Feb 21 02:44:25 EST 2025 Wed Dec 27 19:29:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Bacterial cellulose Sub-elementary fibrils Structure formation Crystallization |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-caff256b631e61f17a3f85c1acdb84f78b2d2956ac0cbb8e511e3cc54b0c8e5a3 |
Notes | http://dx.doi.org/10.1007/s10570-012-9678-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2259719639 |
PQPubID | 2043866 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1316843609 proquest_journals_2259719639 crossref_primary_10_1007_s10570_012_9678_4 crossref_citationtrail_10_1007_s10570_012_9678_4 springer_journals_10_1007_s10570_012_9678_4 fao_agris_US201301961328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Cellulose (London) |
PublicationTitleAbbrev | Cellulose |
PublicationYear | 2012 |
Publisher | Springer-Verlag Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Netherlands – name: Springer Nature B.V |
References | Yamamoto, Horii (CR44) 1994; 1 Isogai, Atalla (CR24) 1991; 29 Horii, Hon, Shiraishi (CR17) 2001 Horii, Pfeffer, Gerasimowicz (CR16) 1989 Haigler, Chanzy (CR11) 1988; 98 Haigler, Brown, Benziman (CR12) 1980; 210 Yamamoto, Horii (CR43) 1993; 26 Horii, Yamamoto, Hirai, Kitamaru, Kennedy, Phillip, Williams (CR19) 1989 Brown (CR2) 1996; A33 Brown, Haigler, Cooper (CR3) 1982; 218 Hirai, Tsuji, Yamamoto, Horii (CR15) 1998; 5 CR10 Matthews, Skopec, Mason, Zuccato, Torget, Sugiyama, Himmel, Brady (CR32) 2005; 341 Kai, Xu (CR27) 1991; 48 Nishiyama, Kim, Kim, Katsumata, May, Langan (CR35) 2002; 24 Fischer, Herchenröder, Manley, Stamm (CR8) 1978; 11 Cousin, Brown (CR6) 1997; 38 Kai (CR25) 1984; 5 Kai, Xu, Horii, Hu (CR28) 1994; 35 Gan (CR9) 1992; 114 Horii, Hirai, Kitamaru (CR18) 1983; 10 Nishiyama, Sugiyama, Chanzy, Langan (CR36) 2003; 125 Torchia (CR40) 1978; 130 Chanzy, Henrissat, Vincendon, Tanner, Belton (CR4) 1987; 160 Masuda, Horii (CR31) 1998; 31 VanderHart, Atalla (CR41) 1984; 17 Hestrin, Schramm (CR13) 1954; 58 Hirai, Horii, Kitamaru (CR14) 1990; 24 Horii, Yamamoto, Hirai (CR21) 1997; 120 Schmidt-Rohr, Spiess (CR37) 1994 Solomon (CR38) 1955; 99 Nishiyama, Langan, Chanzy (CR34) 2002; 124 CR22 Murakami, Ishida, Kaji, Horii (CR33) 2004; 36 Suzuki, Horii, Kurosu (CR39) 2009; 921 Cousin, Brown (CR5) 1997; 38 CR42 Yamamoto, Horii, Hirai (CR45) 1996; 3 Debzi, Chanzy, Sugiyama, Tekely, Excoffier (CR7) 1991; 24 Hu, Orendt, Alderman, Pugmire, Ye, Grant (CR23) 1994; 3 Kitamaru (CR30) 1990 Kai (CR26) 1984; 5 Kaji, Fuke, Horii (CR29) 2003; 36 Horii, Beppu, Takaesu (CR20) 1994; 32 Atalla, VanderHart (CR1) 1984; 223 RH Atalla (9678_CR1) 1984; 223 F Horii (9678_CR20) 1994; 32 A Kai (9678_CR27) 1991; 48 Y Nishiyama (9678_CR36) 2003; 125 Z Gan (9678_CR9) 1992; 114 H Yamamoto (9678_CR45) 1996; 3 9678_CR22 EM Debzi (9678_CR7) 1991; 24 K Schmidt-Rohr (9678_CR37) 1994 A Kai (9678_CR26) 1984; 5 A Kai (9678_CR28) 1994; 35 9678_CR42 H Kaji (9678_CR29) 2003; 36 M Murakami (9678_CR33) 2004; 36 H Yamamoto (9678_CR43) 1993; 26 A Hirai (9678_CR14) 1990; 24 RM Brown Jr (9678_CR3) 1982; 218 CH Haigler (9678_CR11) 1988; 98 F Horii (9678_CR17) 2001 SK Cousin (9678_CR5) 1997; 38 F Horii (9678_CR16) 1989 F Horii (9678_CR18) 1983; 10 DA Torchia (9678_CR40) 1978; 130 A Hirai (9678_CR15) 1998; 5 Y Nishiyama (9678_CR35) 2002; 24 K Masuda (9678_CR31) 1998; 31 CH Haigler (9678_CR12) 1980; 210 S Suzuki (9678_CR39) 2009; 921 F Horii (9678_CR21) 1997; 120 DL VanderHart (9678_CR41) 1984; 17 F Horii (9678_CR19) 1989 9678_CR2 JF Matthews (9678_CR32) 2005; 341 9678_CR10 H Chanzy (9678_CR4) 1987; 160 SK Cousin (9678_CR6) 1997; 38 I Solomon (9678_CR38) 1955; 99 S Hestrin (9678_CR13) 1954; 58 EW Fischer (9678_CR8) 1978; 11 JZ Hu (9678_CR23) 1994; 3 H Yamamoto (9678_CR44) 1994; 1 A Kai (9678_CR25) 1984; 5 R Kitamaru (9678_CR30) 1990 Y Nishiyama (9678_CR34) 2002; 124 A Isogai (9678_CR24) 1991; 29 |
References_xml | – volume: A33 start-page: 1345 year: 1996 end-page: 1373 ident: CR2 article-title: The biosynthesis of cellulose publication-title: Macromol Sci Pure Appl Chem – ident: CR22 – volume: 48 start-page: 449 year: 1991 end-page: 452 ident: CR27 article-title: Orientation of crystallites in the bacterial cellulose—fluorescent brightener complex membrane publication-title: Kobunshi Ronbunshu doi: 10.1295/koron.48.449 – volume: 5 start-page: 653 year: 1984 end-page: 655 ident: CR26 article-title: The structure of the nascent fibril produced by : the lattice spacing of cellulose produced in the presence of a fluorescent brightener publication-title: Makromol Chem Rapid Commun doi: 10.1002/marc.1984.030051008 – volume: 38 start-page: 897 year: 1997 end-page: 902 ident: CR5 article-title: X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization publication-title: Polymer doi: 10.1016/S0032-3861(96)00589-7 – volume: 114 start-page: 8307 year: 1992 end-page: 8309 ident: CR9 article-title: High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning publication-title: J Am Chem Soc doi: 10.1021/ja00047a062 – volume: 5 start-page: 307 year: 1984 end-page: 310 ident: CR25 article-title: The structure of the nascent fibril produced by : the X-ray diffraction diagram of cellulose produced in the presence of a fluorescent brightener publication-title: Makromol Chem Rapid Commun doi: 10.1002/marc.1984.030050601 – start-page: 125 year: 1989 end-page: 130 ident: CR19 article-title: Structure and structural changes of native cellulose as revealed by CP/MAS C NMR spectroscopy publication-title: Cellulose: structural and functional aspects – volume: 5 start-page: 201 year: 1998 end-page: 213 ident: CR15 article-title: In situ crystallization of bacterial cellulose. III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy publication-title: Cellulose doi: 10.1023/A:1009233323237 – volume: 35 start-page: 75 year: 1994 end-page: 79 ident: CR28 article-title: CP/MAS C NMR study on microbial cellulose-fluorescent brightener complexes publication-title: Polymer doi: 10.1016/0032-3861(94)90052-3 – volume: 36 start-page: 4414 year: 2003 end-page: 4423 ident: CR29 article-title: Two-dimensional C magic angle turning NMR analyses of dynamics in poly(2-hydroxypropyl ether of bisphenol-A) publication-title: Macromolecules doi: 10.1021/ma0300342 – ident: CR10 – volume: 3 start-page: 181 year: 1994 end-page: 197 ident: CR23 article-title: Measurement of C chemical shift tensor principal values with a magic-angle turning experiment publication-title: Solid State Nucl Magn Reson doi: 10.1016/0926-2040(94)90039-6 – volume: 124 start-page: 9074 year: 2002 end-page: 9082 ident: CR34 article-title: Crystal structure and hydrogen-bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction publication-title: J Am Chem Soc doi: 10.1021/ja0257319 – volume: 341 start-page: 138 year: 2005 end-page: 152 ident: CR32 article-title: Computer simulation studies of microcrystalline cellulose I publication-title: Carbohydr Res doi: 10.1016/j.carres.2005.09.028 – volume: 17 start-page: 1465 year: 1984 end-page: 1472 ident: CR41 article-title: Studies of microstructure in native celluloses using solid-state carbon-13 NMR publication-title: Macromolecules doi: 10.1021/ma00138a009 – volume: 1 start-page: 57 year: 1994 end-page: 66 ident: CR44 article-title: In situ crystallization of bacterial cellulose. I. Influences of polymeric additives, stirring and temperatures on the formation cellulose I and I as revealed by CP/MAS C NMR spectroscopy publication-title: Cellulose doi: 10.1007/BF00818798 – volume: 223 start-page: 283 year: 1984 end-page: 285 ident: CR1 article-title: Native cellulose: a composite of two distinct crystalline forms publication-title: Science doi: 10.1126/science.223.4633.283 – volume: 11 start-page: 213 year: 1978 end-page: 217 ident: CR8 article-title: Small-angle neutron scattering of selectively deuterated cellulose publication-title: Macromolecules doi: 10.1021/ma60061a039 – start-page: 83 year: 2001 end-page: 107 ident: CR17 article-title: Structure of cellulose: recent developments in its characterization publication-title: Wood and cellulosic chemistry – volume: 31 start-page: 5810 year: 1998 end-page: 5817 ident: CR31 article-title: CP/MAS C NMR analyses of the chain conformation and hydrogen bonding for frozen poly(vinyl alcohol) solutions publication-title: Macromolecules doi: 10.1021/ma9801265 – ident: CR42 – volume: 218 start-page: 1141 year: 1982 end-page: 1142 ident: CR3 article-title: Experimental induction of altered nonmicrofibrillar cellulose publication-title: Science doi: 10.1126/science.218.4577.1141 – volume: 99 start-page: 559 year: 1955 end-page: 565 ident: CR38 article-title: Relaxation processes in a system of two spins publication-title: Phys Rev doi: 10.1103/PhysRev.99.559 – volume: 125 start-page: 14300 year: 2003 end-page: 14306 ident: CR36 article-title: Crystal structure and hydrogen bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction publication-title: J Am Chem Soc doi: 10.1021/ja037055w – volume: 24 start-page: 6816 year: 1991 end-page: 6822 ident: CR7 article-title: The I → I transformation of highly crystalline cellulose by annealing in various mediums publication-title: Macromolecules doi: 10.1021/ma00026a002 – start-page: 311 year: 1989 end-page: 335 ident: CR16 article-title: The structure of cellulose as studied by CP/MAS C NMR spectroscopy publication-title: Nuclear magnetic resonance in agriculture – volume: 29 start-page: 113 year: 1991 end-page: 119 ident: CR24 article-title: Amorphous celluloses stable in aqueous media: regeneration from SO -amine solvent systems publication-title: J Polym Sci Part A Polym Chem doi: 10.1002/pola.1991.080290113 – volume: 120 start-page: 197 year: 1997 end-page: 205 ident: CR21 article-title: Microstructural analysis of microfibrils of bacterial cellulose publication-title: Macromol Symp doi: 10.1002/masy.19971200120 – volume: 921 start-page: 219 year: 2009 end-page: 226 ident: CR39 article-title: Theoretical investigations of C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations publication-title: J Mol Struct doi: 10.1016/j.molstruc.2009.01.002 – volume: 36 start-page: 403 year: 2004 end-page: 412 ident: CR33 article-title: Solid-state C NMR studies of the structure and chain conformation of thermotropic liquid crystalline polyether crystallized from the liquid crystalline glassy phase publication-title: Polym J doi: 10.1295/polymj.36.403 – volume: 130 start-page: 613 year: 1978 end-page: 616 ident: CR40 article-title: The measurement of proton-enhanced carbon-13 T values by a method which suppresses artifacts publication-title: J Magn Reson – volume: 24 start-page: 703 year: 1990 end-page: 711 ident: CR14 article-title: Carbon-13 spin–lattice relaxation behaviour of the crystalline and noncrystalline components of native and regenerated celluloses publication-title: Cellul Chem Technol – volume: 210 start-page: 903 year: 1980 end-page: 905 ident: CR12 article-title: Calcofluor white ST alters the in vivo assembly of cellulose microfibrils publication-title: Science doi: 10.1126/science.7434003 – year: 1994 ident: CR37 publication-title: Multidimensional solid state NMR and polymers – volume: 58 start-page: 345 year: 1954 end-page: 352 ident: CR13 article-title: Synthesis of cellulose by publication-title: Biochem J – volume: 38 start-page: 903 year: 1997 end-page: 912 ident: CR6 article-title: Photoisomerization of a dye-altered -1,4 glucan sheet induces the crystallization of a cellulose-composite publication-title: Polymer doi: 10.1016/S0032-3861(96)00588-5 – volume: 32 start-page: S30 year: 1994 end-page: S35 ident: CR20 article-title: Selective excitation SASS C NMR study of the phenylene motion of glassy polymers publication-title: Magn Reson Chem – volume: 3 start-page: 229 year: 1996 end-page: 242 ident: CR45 article-title: In situ crystallization of bacterial cellulose. II. Influences of different polymeric additives on the formation of cellulose I and I at the early stage of incubation publication-title: Cellulose doi: 10.1007/BF02228804 – volume: 10 start-page: 357 year: 1983 end-page: 361 ident: CR18 article-title: Solid-state C NMR study of conformations of oligosaccharides and cellulose—conformation of CH OH group about the exo-cyclic C–C bond publication-title: Polym Bull doi: 10.1007/BF00281948 – year: 1990 ident: CR30 publication-title: Nuclear magnetic resonance—principle and theory – volume: 24 start-page: 1013 year: 2002 end-page: 1017 ident: CR35 article-title: Periodic disorder along ramie cellulose microfibrils publication-title: Biomacromolecules – volume: 160 start-page: 1 year: 1987 end-page: 11 ident: CR4 article-title: Solid-state carbon-13 NMR and electron microscopy study on the reversible cellulose I → cellulose III transformation in Valonia publication-title: Carbohydr Res doi: 10.1016/0008-6215(87)80299-9 – volume: 98 start-page: 299 year: 1988 end-page: 311 ident: CR11 article-title: Electron diffraction analysis of the altered cellulose synthesized by in the presence of fluorescent brightening agents and direct dyes publication-title: J Ultrastruct Mol Struct doi: 10.1016/S0889-1605(88)80922-4 – volume: 26 start-page: 1313 year: 1993 end-page: 1317 ident: CR43 article-title: CP/MAS C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures publication-title: Macromolecules doi: 10.1021/ma00058a020 – volume: 36 start-page: 4414 year: 2003 ident: 9678_CR29 publication-title: Macromolecules doi: 10.1021/ma0300342 – volume: 36 start-page: 403 year: 2004 ident: 9678_CR33 publication-title: Polym J doi: 10.1295/polymj.36.403 – ident: 9678_CR22 – volume: 32 start-page: S30 year: 1994 ident: 9678_CR20 publication-title: Magn Reson Chem doi: 10.1002/mrc.1260321308 – volume: 99 start-page: 559 year: 1955 ident: 9678_CR38 publication-title: Phys Rev doi: 10.1103/PhysRev.99.559 – volume: 11 start-page: 213 year: 1978 ident: 9678_CR8 publication-title: Macromolecules doi: 10.1021/ma60061a039 – volume-title: Nuclear magnetic resonance—principle and theory year: 1990 ident: 9678_CR30 – volume: 1 start-page: 57 year: 1994 ident: 9678_CR44 publication-title: Cellulose doi: 10.1007/BF00818798 – volume: 160 start-page: 1 year: 1987 ident: 9678_CR4 publication-title: Carbohydr Res doi: 10.1016/0008-6215(87)80299-9 – volume: 210 start-page: 903 year: 1980 ident: 9678_CR12 publication-title: Science doi: 10.1126/science.7434003 – start-page: 311 volume-title: Nuclear magnetic resonance in agriculture year: 1989 ident: 9678_CR16 – volume: 120 start-page: 197 year: 1997 ident: 9678_CR21 publication-title: Macromol Symp doi: 10.1002/masy.19971200120 – volume: 124 start-page: 9074 year: 2002 ident: 9678_CR34 publication-title: J Am Chem Soc doi: 10.1021/ja0257319 – volume: 130 start-page: 613 year: 1978 ident: 9678_CR40 publication-title: J Magn Reson – volume: 31 start-page: 5810 year: 1998 ident: 9678_CR31 publication-title: Macromolecules doi: 10.1021/ma9801265 – volume: 58 start-page: 345 year: 1954 ident: 9678_CR13 publication-title: Biochem J doi: 10.1042/bj0580345 – volume: 5 start-page: 653 year: 1984 ident: 9678_CR26 publication-title: Makromol Chem Rapid Commun doi: 10.1002/marc.1984.030051008 – volume: 218 start-page: 1141 year: 1982 ident: 9678_CR3 publication-title: Science doi: 10.1126/science.218.4577.1141 – volume: 341 start-page: 138 year: 2005 ident: 9678_CR32 publication-title: Carbohydr Res doi: 10.1016/j.carres.2005.09.028 – volume: 98 start-page: 299 year: 1988 ident: 9678_CR11 publication-title: J Ultrastruct Mol Struct doi: 10.1016/S0889-1605(88)80922-4 – volume: 48 start-page: 449 year: 1991 ident: 9678_CR27 publication-title: Kobunshi Ronbunshu doi: 10.1295/koron.48.449 – ident: 9678_CR10 doi: 10.1007/978-1-4684-1116-4_14 – start-page: 83 volume-title: Wood and cellulosic chemistry year: 2001 ident: 9678_CR17 – volume: 35 start-page: 75 year: 1994 ident: 9678_CR28 publication-title: Polymer doi: 10.1016/0032-3861(94)90052-3 – volume: 3 start-page: 181 year: 1994 ident: 9678_CR23 publication-title: Solid State Nucl Magn Reson doi: 10.1016/0926-2040(94)90039-6 – volume: 5 start-page: 201 year: 1998 ident: 9678_CR15 publication-title: Cellulose doi: 10.1023/A:1009233323237 – ident: 9678_CR42 – volume: 5 start-page: 307 year: 1984 ident: 9678_CR25 publication-title: Makromol Chem Rapid Commun doi: 10.1002/marc.1984.030050601 – volume: 223 start-page: 283 year: 1984 ident: 9678_CR1 publication-title: Science doi: 10.1126/science.223.4633.283 – volume: 24 start-page: 703 year: 1990 ident: 9678_CR14 publication-title: Cellul Chem Technol – volume: 3 start-page: 229 year: 1996 ident: 9678_CR45 publication-title: Cellulose doi: 10.1007/BF02228804 – ident: 9678_CR2 doi: 10.1080/10601329608014912 – volume: 38 start-page: 897 year: 1997 ident: 9678_CR5 publication-title: Polymer doi: 10.1016/S0032-3861(96)00589-7 – volume-title: Multidimensional solid state NMR and polymers year: 1994 ident: 9678_CR37 – volume: 921 start-page: 219 year: 2009 ident: 9678_CR39 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2009.01.002 – volume: 29 start-page: 113 year: 1991 ident: 9678_CR24 publication-title: J Polym Sci Part A Polym Chem doi: 10.1002/pola.1991.080290113 – volume: 26 start-page: 1313 year: 1993 ident: 9678_CR43 publication-title: Macromolecules doi: 10.1021/ma00058a020 – volume: 10 start-page: 357 year: 1983 ident: 9678_CR18 publication-title: Polym Bull doi: 10.1007/BF00281948 – volume: 17 start-page: 1465 year: 1984 ident: 9678_CR41 publication-title: Macromolecules doi: 10.1021/ma00138a009 – volume: 114 start-page: 8307 year: 1992 ident: 9678_CR9 publication-title: J Am Chem Soc doi: 10.1021/ja00047a062 – volume: 125 start-page: 14300 year: 2003 ident: 9678_CR36 publication-title: J Am Chem Soc doi: 10.1021/ja037055w – start-page: 125 volume-title: Cellulose: structural and functional aspects year: 1989 ident: 9678_CR19 – volume: 38 start-page: 903 year: 1997 ident: 9678_CR6 publication-title: Polymer doi: 10.1016/S0032-3861(96)00588-5 – volume: 24 start-page: 6816 year: 1991 ident: 9678_CR7 publication-title: Macromolecules doi: 10.1021/ma00026a002 – volume: 24 start-page: 1013 year: 2002 ident: 9678_CR35 publication-title: Biomacromolecules |
SSID | ssj0009721 |
Score | 2.064254 |
Snippet | The structure and crystallization of carefully isolated sub-elementary fibrils (SEFs) of bacterial cellulose have been investigated using TEM, WAXD, and... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 713 |
SubjectTerms | Aqueous solutions Bioorganic Chemistry Brightening Brightening agents Buffer solutions buffers Cellulose Cellulose fibers Ceramics Chain dynamics Chains chemical structure Chemistry Chemistry and Materials Science Composites Crystal structure Crystallization crystals Ethanol Fluorescence Glass Gluconacetobacter xylinus High resolution Hydrogen bonding Liquid crystals Molecular motion Molecular structure Natural Materials NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Organic Chemistry Original Paper Periodic structures Physical Chemistry Polymer Sciences Sodium dodecyl sulfate Sodium hydroxide Solid state Sustainable Development Variations Washing |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-DupBfLLriwielGDfTU-iooigiLrgLSRpIkJpdWsPe_OnO9Omrgp6a0nalMzXyTeTzAwhBxyWcekZyzKZxyyy1jBuQriSmQoS6wVZjn7Im9vkahRdP8VPzuFWu2OVvU5sFXVeafSRHwPushThkp28vjGsGoW7q66ExiyZBxXMwfiaP7u4vbufpt1N28gr4OkZwzDOfl-zC56LseiKH7AMNDaLfqxMs1ZWP0jnr33Sdvm5XCHLjjfS007Qq2TGlGtk4bwv17ZGlr5lFlwnHw9tXthmbKgsc6rHE2CBReGCLmllad0oZtzZ8fGEWjz6X9TYoroEzjAaevWboqoNfQGIAivNqZpQPCr_TCW1RVONu2xQVLVGvinbFozW2iCjy4vH8yvmii0wDZzknWlpLdAflYS-SXzrpzK0PNa-1LnikU25CvIAjCmpPa0UN0DUTKh1HClPw50MN8lcWZVmgGHgEZehDmyuLJiPRiVpqBLtZRbYhozlkHj9RAvtMpFjQYxCTHMoo2wEyEagbEQ0JIdfj7x2aTj-6zwA6Qn5DGpSjB4C3JwF5IDdzYdkpxepcD9rLabQGpL9r2YQH86yLE3V1MLHAl9RmHjQ56iHwvQVf37L1v8DbpPFABHYunV2yBxgw-wCy3lXew7Kn_Dj-ko priority: 102 providerName: ProQuest |
Title | Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent |
URI | https://link.springer.com/article/10.1007/s10570-012-9678-4 https://www.proquest.com/docview/2259719639 https://www.proquest.com/docview/1316843609 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB66ySHtobRJSzZNFxV6ShDY8ks-bsNuQktDabKQnoQkSyFg7LCOD3vrT8-M184mJS30ZBvJDzTj0TfSzDcAnyVO4zpwnue6SHjsvePSRXimcyNSH4i8oHXI7-fp2SL-epVc9XnczRDtPmxJdpb6UbJbQkVSQsFztLA8HsF2Qq47KvFCTDdMu1mXbIXQPOeUuTlsZT73iCeT0cjr-gnO_GNrtJtx5m_gdQ8V2XQt27fwwlW7sHMyVGjbhVePyAT34PdFRwXbLh3TVcHscoXAryz7PEtWe9a0hrs-XHy5Yp6i_cuGWsyasxnfRgv5bVk3jt2gViIQLZhZMYqOv2aa-bKtl2sCKGY6v95VXQslaL2DxXx2eXLG-_oK3CIMueNWe4-Ix6RR6NLQh5mOvExsqG1hZOwzaUQh0H_SNrDGSIfYzEXWJrEJLF7p6D1sVXXl9inzO5Y6ssIXxqPH6EyaRSa1Qe4RYOhEjyEYBlrZnnycamCUakObTLJRKBtFslHxGI4ebrldM2_8q_M-Sk_pa7SManEhaD8WbQu62nIMh4NIVf9_NgqtWJ6R8cnH8OmhGcVHo6wrV7eNCqmmVxylAfY5HlRh84i_fsvBf_X-AC8FKWS3sHMIW6gq7iPinDszgZGcn05ge3r669sMj19m5z9-TjptvweJSvl1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615VA4ICigLhQwElxAFomd5wEhVFi29HFpV-rN2I5dVYqSsmmE9sYv4jcyk0eXItFbb4ns2JHns-flmQF4nSEb14HzPNdFzCPvHc-cxCedG5H4QOQF2SEPj5LZPPp2Gp-uwe8xFoauVY5nYndQF7UlG_l7xF2eElzyjxc_OFWNIu_qWEKjh8W-W_5Ela35sPcZ6ftGiOmXk90ZH6oKcIvM95Jb7T3yeZPI0CWhD1MtfRbbUNvCZJFPMyMKgVqDtoE1JnMokThpbRyZwOKbljjuOtyJpMxpR2XTr6skv2kX54VaQc4paHT0ovahejGVeAkFz5E_8OgaH1z3ur4m4v7jle2Y3fQB3B-kVPaph9VDWHPVFmzujsXhtuDeX3kMH8Gv4y4LbbtwTFcFs4slypxlOYR4stqzpjXcDTfVF0vmKdCgbKjF9OmicTbyIbRl3Th2jhsCZeCCmSWji_lnTDNftvWizz3FTGdScFXXQrFhj2F-K0R4AhtVXbltCjqPMi2t8IXxqKw6k6TSJDbIPco2OtYTCMaFVnbIe07lN0q1ythMtFFIG0W0UdEE3l59ctEn_bip8zZST-kzPJTV_FiQKxhxilp-NoGdkaRqOBoatQLyBF5dNSP5aJV15eq2USGVE4tkEmCfdyMUVkP891-e3jzhS9icnRweqIO9o_1ncFcQGjuD0g5sIE7cc5SvLs2LDtQMvt_2LvoDWYo3xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIkF7QFBAXVrASJxAVhPnfawKq_KqkMpKvVm246mQoqTabA57609nJo9uiwCJWyI7TuSZjL-xZ74BeJvTMm4Cj7IwZSJjRC9zH9GVKaxKMVBFyfuQ387S00X8-SK5GOuctlO0-3QkOeQ0MEtTvTq6KvHoVuJbwgVTQiULsrYy3oL7ZI1DVuuFOt6w7mZ94hXB9EJyFud0rPmnIe4sTFtomjuY87dj0n71mT-GRyNsFMeDnJ_APV_vwcOTqVrbHuzeIhZ8CtfnPS1st_TC1KVwyzWBwKoacy5Fg6LtrPRj6PhyLZAj_6uWW-zA30xv4039rmpaL36ShhIoLYVdC46UvxRGYNU1y4EMStjex_d138LJWs9gMf_44-RUjrUWpCNIspLOIBL6sWkU-jTEMDMR5okLjSttHmOWW1Uq8qWMC5y1uSec5iPnktgGju5M9By266b2-5wFHucmcgpLi-Q9eptmkU1dUCCBDZOYGQTTRGs3EpFzPYxKbyiUWTaaZKNZNjqewbubR64GFo5_dd4n6WlzSVZSL84Vn82SnSG3O5_B4SRSPf6rrSaLVmRsiIoZvLlpJvHxLJvaN12rQ67vFUdpQH3eT6qwGeKv3_Liv3q_hgffP8z1109nXw5gR7Fu9vs9h7BNWuNfEvxZ2Ve9iv8CLPb8kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+crystallization+of+sub-elementary+fibrils+of+bacterial+cellulose+isolated+by+using+a+fluorescent+brightening+agent&rft.jtitle=Cellulose+%28London%29&rft.au=Suzuki%2C+Mineji&rft.au=Suzuki%2C+Furitsu&rft.au=Kanie%2C+Yasumasa&rft.au=Tsujitani%2C+Koji&rft.date=2012-06-01&rft.issn=0969-0239&rft.volume=19&rft.issue=3+p.713-727&rft.spage=713&rft.epage=727&rft_id=info:doi/10.1007%2Fs10570-012-9678-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon |