Predicting Cervical Cancer Outcomes: Statistics, Images, and Machine Learning

Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for ou...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in artificial intelligence Vol. 4; p. 627369
Main Author Luo, Wei
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 07.06.2021
Subjects
Online AccessGet full text
ISSN2624-8212
2624-8212
DOI10.3389/frai.2021.627369

Cover

Loading…
Abstract Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.
AbstractList Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.
Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.
Author Luo, Wei
AuthorAffiliation Department of Radiation Medicine, University of Kentucky, Lexington , KY , United States
AuthorAffiliation_xml – name: Department of Radiation Medicine, University of Kentucky, Lexington , KY , United States
Author_xml – sequence: 1
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
BookMark eNp1kdFrFDEQh4O02Fr77uM--uCdSTabZH0Q5NB6cKUF9TnMzU6uKbtJTfYK_vfu9orYQp8mJPP7Zsj3hh3FFImxd4Iv69q2H32GsJRciqWWptbtK3YqtVQLK4U8-u98ws5LueWcy4Y3QsjX7KRWQistmlN2eZ2pCziGuKtWlO8DQl-tICLl6mo_YhqofKp-jDCGMgYsH6r1ADuaKsSuugS8CZGqDUGOE-ItO_bQFzp_rGfs17evP1ffF5uri_Xqy2aBqm7HBUIL4DWA4R0HrVCQ3lqpvCAAiV3jdc07axorJYJXhNIateW8Jd4pkvUZWx-4XYJbd5fDAPmPSxDcw0XKOwd5Wrcnh9KAMhpk662iGi35xnpb24agNQYn1ucD626_HahDimOG_gn06UsMN26X7t30t80kYgK8fwTk9HtPZXRDKEh9D5HSvjjZKGWN4WZu5YdWzKmUTP7fGMHdLNXNUt0s1R2kThH9LIJhtpHmZUL_cvAvGFuodg
CitedBy_id crossref_primary_10_1016_j_zemedi_2022_10_005
crossref_primary_10_3389_fimmu_2024_1461894
crossref_primary_10_1007_s12026_024_09493_6
crossref_primary_10_1155_2022_4688327
crossref_primary_10_3390_diagnostics12112771
crossref_primary_10_3390_diagnostics13091563
crossref_primary_10_3389_fonc_2024_1346336
crossref_primary_10_1097_RCT_0000000000001358
crossref_primary_10_18038_estubtda_1384489
Cites_doi 10.1007/s00330-019-06265-x
10.1016/s0140-6736(97)02250-2
10.3322/caac.21590
10.1200/jco.2004.07.197
10.1038/s41598-018-30336-6
10.7150/jca.33945
10.1016/j.jclinepi.2019.02.004
10.1002/mp.13570
10.1088/1361-6560/aa8d09
10.1002/cncr.22974
10.1016/j.brachy.2019.04.004
10.1016/j.ajog.2018.12.030
10.1016/j.ajog.2017.08.012
10.1097/IGC.0b013e31822c2769
10.1007/s00259-017-3898-7
10.1111/igc.0b013e318197f185
10.1016/0360-3016(84)90231-1
10.1186/s12885-017-3806-3
10.1002/1097-0142(19900715)66:2<251::aid-cncr2820660210>3.0.co;2-e
10.1016/j.ijrobp.2015.07.2286
10.18632/oncotarget.21041
10.1002/ijc.31937
10.1186/s13014-018-1068-0
10.1016/s0167-8140(98)00143-1
10.1007/s101470200043
10.2214/ajr.102.1.147
10.1002/1097-0142(19901215)66:12<2451::aid-cncr2820661202>3.0.co;2-5
10.1259/bjro.20190021
ContentType Journal Article
Copyright Copyright © 2021 Luo.
Copyright © 2021 Luo. 2021 Luo
Copyright_xml – notice: Copyright © 2021 Luo.
– notice: Copyright © 2021 Luo. 2021 Luo
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/frai.2021.627369
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
WRHA-DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Luo
EISSN 2624-8212
ExternalDocumentID oai_doaj_org_article_c27a476a29f84e3c8ef58f8385ea977c
PMC8215338
10_3389_frai_2021_627369
GroupedDBID 53G
9T4
AAFWJ
AAYXX
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-ca9aaf6aa70d0a64c1e6b824f1eaa2cd5f630d875822caf4ec2874b009e0d4e23
IEDL.DBID DOA
ISSN 2624-8212
IngestDate Wed Aug 27 01:28:50 EDT 2025
Thu Aug 21 18:19:08 EDT 2025
Thu Jul 10 22:02:34 EDT 2025
Tue Jul 01 01:29:51 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-ca9aaf6aa70d0a64c1e6b824f1eaa2cd5f630d875822caf4ec2874b009e0d4e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Lanchun Lu, The Ohio State University, United States
Edited by: Bertram Müller-Myhsok, Max Planck Institute of Psychiatry (MPI), Germany
Reviewed by: Shivanand Sharanappa Gornale, Rani Channamma University, India
This article was submitted to Medicine and Public Health, a section of the journal Frontiers in Artificial Intelligence
OpenAccessLink https://doaj.org/article/c27a476a29f84e3c8ef58f8385ea977c
PMID 34164615
PQID 2544877078
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c27a476a29f84e3c8ef58f8385ea977c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8215338
proquest_miscellaneous_2544877078
crossref_primary_10_3389_frai_2021_627369
crossref_citationtrail_10_3389_frai_2021_627369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-07
PublicationDateYYYYMMDD 2021-06-07
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-07
  day: 07
PublicationDecade 2020
PublicationTitle Frontiers in artificial intelligence
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Coia (B6) 1990; 66
Small (B28) 2011; 21
Mazeron (B21) 1998; 49
Lucia (B16) 2018; 45
(B1) 2020
Ferlay (B10) 2019; 144
Christodoulou (B5) 2019; 110
Eifel (B8) 2004; 22
Luo (B18) 2019; 1
Chen (B4) 2018; 8
Brunschwig (B2) 1968; 102
Joslin (B11) 2001
Ochi (B24) 2002; 7
Landoni (B15) 1997; 350
Eifel (B7) 2009; 19
Utley (B30) 1984; 10
Chen (B3) 2018; 13
Shen (B27) 2019; 29
Zhen (B31) 2017; 62
Kang (B12) 2015; 93
Matsuo (B19) 2019; 220
Podczaski (B25) 1990; 66
Luo (B17) 2020; 47
Eoh (B9) 2017; 8
Kim (B14) 1988
Rebecca (B26) 2020; 70
Matsuo (B20) 2017; 217
Kidd (B13) 2007; 110
Obrzut (B23) 2019; 10
Tian (B29) 2019; 18
Obrzut (B22) 2017; 17
References_xml – volume: 29
  start-page: 6741
  year: 2019
  ident: B27
  article-title: Prediction of Local Relapse and Distant Metastasis in Patients with Definitive Chemoradiotherapy-Treated Cervical Cancer by Deep Learning from [18F]-Fluorodeoxyglucose Positron Emission Tomography/computed Tomography
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06265-x
– volume: 350
  start-page: 535
  year: 1997
  ident: B15
  article-title: Randomised Study of Radical Surgery versus Radiotherapy for Stage Ib-IIa Cervical Cancer
  publication-title: The Lancet
  doi: 10.1016/s0140-6736(97)02250-2
– volume: 70
  start-page: 1
  year: 2020
  ident: B26
  article-title: Siegel, Cancer Statistics
  publication-title: Ca Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 22
  start-page: 872
  year: 2004
  ident: B8
  article-title: Pelvic Irradiation with Concurrent Chemotherapy versus Pelvic and Para-Aortic Irradiation for High-Risk Cervical Cancer: An Update of Radiation Therapy Oncology Group Trial (RTOG) 90-01
  publication-title: Jco
  doi: 10.1200/jco.2004.07.197
– volume: 8
  start-page: 11859
  year: 2018
  ident: B4
  article-title: Textural Features of Cervical Cancers on FDG-PET/CT Associate with Survival and Local Relapse in Patients Treated with Definitive Chemoradiotherapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30336-6
– volume: 10
  start-page: 4189
  year: 2019
  ident: B23
  article-title: Prediction of 10-year Overall Survival in Patients with Operable Cervical Cancer Using a Probabilistic Neural Network
  publication-title: J. Cancer
  doi: 10.7150/jca.33945
– volume: 110
  start-page: 12
  year: 2019
  ident: B5
  article-title: A Systematic Review Shows No Performance Benefit of Machine Learning over Logistic Regression for Clinical Prediction Models
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2019.02.004
– start-page: 176
  volume-title: Radiological Society of North America 74th Scientific Assembly and Annual Meeting, Anon; 395
  year: 1988
  ident: B14
  article-title: Results of Radiation Therapy Alone in the Treatment of Carcinoma of the Uterine Cervix
– volume: 47
  start-page: e178
  year: 2020
  ident: B17
  article-title: Machine Learning for Radiation Outcome Modeling and Prediction
  publication-title: Med. Phys.
  doi: 10.1002/mp.13570
– volume: 62
  start-page: 8246
  year: 2017
  ident: B31
  article-title: Deep Convolutional Neural Network with Transfer Learning for Rectum Toxicity Prediction in Cervical Cancer Radiotherapy: a Feasibility Study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa8d09
– volume: 110
  start-page: 1738
  year: 2007
  ident: B13
  article-title: The Standardized Uptake Value for F-18 Fluorodeoxyglucose Is a Sensitive Predictive Biomarker for Cervical Cancer Treatment Response and Survival
  publication-title: Cancer
  doi: 10.1002/cncr.22974
– volume: 18
  start-page: 530
  year: 2019
  ident: B29
  article-title: A Machine-Learning-Based Prediction Model of Fistula Formation after Interstitial Brachytherapy for Locally Advanced Gynecological Malignancies
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2019.04.004
– volume: 220
  start-page: 381
  year: 2019
  ident: B19
  article-title: Survival Outcome Prediction in Cervical Cancer: Cox Models vs Deep-Learning Model
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2018.12.030
– volume: 217
  start-page: 703
  year: 2017
  ident: B20
  article-title: A Pilot Study in Using Deep Learning to Predict Limited Life Expectancy in Women with Recurrent Cervical Cancer
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2017.08.012
– volume: 21
  start-page: 1266
  year: 2011
  ident: B28
  article-title: Extended-field Irradiation and Intracavitary Brachytherapy Combined with Cisplatin and Amifostine for Cervical Cancer with Positive Para-Aortic or High Common Iliac Lymph Nodes: Results of Arm II of Radiation Therapy Oncology Group (RTOG) 0116
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1097/IGC.0b013e31822c2769
– volume-title: Cancer Facts and Figures
  year: 2020
  ident: B1
– volume: 45
  start-page: 768
  year: 2018
  ident: B16
  article-title: Prediction of Outcome Using Pretreatment 18F-FDG PET/CT and MRI Radiomics in Locally Advanced Cervical Cancer Treated with Chemoradiotherapy
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-017-3898-7
– volume: 19
  start-page: 2
  year: 2009
  ident: B7
  article-title: Predictive Value of a Proposed Subclassification of Stages I and II Cervical Cancer Based on Clinical Tumor Diameter
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1111/igc.0b013e318197f185
– volume: 10
  start-page: 2259
  year: 1984
  ident: B30
  article-title: High-dose-rate Afterloading Brachytherapy in Carcinoma of the Uterine Cervix
  publication-title: Int. J. Radiat. Oncology*Biology*Physics
  doi: 10.1016/0360-3016(84)90231-1
– volume: 17
  start-page: 840
  year: 2017
  ident: B22
  article-title: Prediction of 5–year Overall Survival in Cervical Cancer Patients Treated with Radical Hysterectomy Using Computational Intelligence Methods
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3806-3
– volume-title: Principles and Practice of Brachytherapy Using after Loading Systems
  year: 2001
  ident: B11
  article-title: High Dose Rate Brachytherapy for Treating Cervix Cancer
– volume: 66
  start-page: 251
  year: 1990
  ident: B25
  article-title: Extended-field Radiation Therapy for Carcinoma of the Cervix
  publication-title: Cancer
  doi: 10.1002/1097-0142(19900715)66:2<251::aid-cncr2820660210>3.0.co;2-e
– volume: 93
  start-page: 1127
  year: 2015
  ident: B12
  article-title: Machine Learning Approaches for Predicting Radiation Therapy Outcomes: a Clinician's Perspective
  publication-title: Int. J. Radiat. Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.07.2286
– volume: 8
  start-page: 84396
  year: 2017
  ident: B9
  article-title: Upregulation of Homeobox Gene Is Correlated with Poor Survival Outcomes in Cervical Cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21041
– volume: 144
  start-page: 1941
  year: 2019
  ident: B10
  article-title: Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31937
– volume: 13
  start-page: 125
  year: 2018
  ident: B3
  article-title: Investigating Rectal Toxicity Associated Dosimetric Features with Deformable Accumulated Rectal Surface Dose Maps for Cervical Cancer Radiotherapy
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-018-1068-0
– volume: 49
  start-page: 205
  year: 1998
  ident: B21
  article-title: The Centenary of Discovery of Radium
  publication-title: Radiother. Oncol.
  doi: 10.1016/s0167-8140(98)00143-1
– volume: 7
  start-page: 0294
  year: 2002
  ident: B24
  article-title: Survival Prediction Using Artificial Neural Networks in Patients with Uterine Cervical Cancer Treated by Radiation Therapy Alone
  publication-title: Int. J. Clin. Oncol.
  doi: 10.1007/s101470200043
– volume: 102
  start-page: 147
  year: 1968
  ident: B2
  article-title: The Surgical Treatment of Cancer of the Cervix: Stage I and II
  publication-title: Am. J. Roentgenology
  doi: 10.2214/ajr.102.1.147
– volume: 66
  start-page: 2451
  year: 1990
  ident: B6
  article-title: The Patterns of Care Outcome Study for Cancer of the Uterine Cervix. Results of the Second National Practice Survey
  publication-title: Cancer
  doi: 10.1002/1097-0142(19901215)66:12<2451::aid-cncr2820661202>3.0.co;2-5
– volume: 1
  start-page: 20190021
  year: 2019
  ident: B18
  article-title: Balancing Accuracy and Interpretability of Machine Learning Approaches for Radiation Treatment Outcomes Modeling
  publication-title: BJR Open
  doi: 10.1259/bjro.20190021
SSID ssj0002505112
Score 2.284788
SecondaryResourceType review_article
Snippet Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 627369
SubjectTerms Artificial Intelligence
cervical cancer
clinical outcome prediction
machine learning
medical image
radiomics
statistical model
Title Predicting Cervical Cancer Outcomes: Statistics, Images, and Machine Learning
URI https://www.proquest.com/docview/2544877078
https://pubmed.ncbi.nlm.nih.gov/PMC8215338
https://doaj.org/article/c27a476a29f84e3c8ef58f8385ea977c
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPCSkViQCE3iPBw2qKgKUoGBSt2si2NDJUhR2v5_7pK0ahZYmBIltuKc7_GdfP7M2KXM0izLM-v6eOMSO4orM4upihahFUKLJKX9zsPneDAKn8bReO2oL6oJq-mBa8F1dZBAmMQQpFaGRmhpbCStFDIygNhFk_fFmLeWTJEPpsCOSKJel8QsLO3aEiaYDgb-TYwRm-qb1-JQRdffwpjtCsm1kNPfYVsNVuR39Rh32YYp9tj28hwG3pjlPhu-lrTcQgXMvFfZPvbq0XSW_GUxR50ys1tOsLJmZb7mj1_oRvAKRc6HVTml4Q3T6vsBG_Uf3noDtzkmwdWIJuauhhTAxgCJl3sQh9o3cSaD0PoGINB5ZGPh5ZiXIBbQYEOjieMezS01Xh6aQByyTjEtzBHjtKFSS0uoiFZwfQxffm4iiEEE6KGtw7pLoSndcIjTURafCnMJErMiMSsSs6rF7LCrVY_vmj_jl7b3NA-rdsR8XT1AfVCNPqi_9MFhF8tZVGgptPwBhZkuZorI2GRC7EYOS1rT2_pi-00x-ag4t2VAwFge_8cQT9gm_XVVcJacss68XJgzhDbz7LzS4h8Brvkp
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Cervical+Cancer+Outcomes%3A+Statistics%2C+Images%2C+and+Machine+Learning&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Wei+Luo&rft.date=2021-06-07&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-8212&rft.volume=4&rft_id=info:doi/10.3389%2Ffrai.2021.627369&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c27a476a29f84e3c8ef58f8385ea977c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon