SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery

Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 116; p. 103098
Main Authors Li, Qingyu, Krapf, Sebastian, Shi, Yilei, Zhu, Xiao Xiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors. •We propose a novel framework, termed as SolarNet, for rooftop solar potential analysis.•We propose a novel representation for rooftop geometry.•We propose a novel multi-task learning network in the SolarNet to learn this novel representation of rooftop geometry, which outperforms state-of-the-art semantic segmentation networks.
AbstractList Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors. •We propose a novel framework, termed as SolarNet, for rooftop solar potential analysis.•We propose a novel representation for rooftop geometry.•We propose a novel multi-task learning network in the SolarNet to learn this novel representation of rooftop geometry, which outperforms state-of-the-art semantic segmentation networks.
Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors.
ArticleNumber 103098
Author Li, Qingyu
Zhu, Xiao Xiang
Shi, Yilei
Krapf, Sebastian
Author_xml – sequence: 1
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  email: qingyu.li@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany
– sequence: 2
  givenname: Sebastian
  orcidid: 0000-0002-7866-1998
  surname: Krapf
  fullname: Krapf, Sebastian
  email: sebastian.krapf@tum.de
  organization: Institute of Automotive Technology, Technical University of Munich, Garching, 85748, Germany
– sequence: 3
  givenname: Yilei
  surname: Shi
  fullname: Shi, Yilei
  email: yilei.shi@tum.de
  organization: Remote Sensing Technology, Technical University of Munich, Munich, 80333, Germany
– sequence: 4
  givenname: Xiao Xiang
  orcidid: 0000-0001-5530-3613
  surname: Zhu
  fullname: Zhu, Xiao Xiang
  email: xiaoxiang.zhu@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany
BookMark eNp9kctu3CAUhlGVSk3SPkB3LLvxlIsx0K6iqGkjRe0iidQdwvgwwvWYKTCJ8vbB43aTRVbnwvl-OPxn6GSOMyD0kZINJbT7PG5Gu90wwlitOdHqDTqlSrJGse73Sc1FpxvVcvYOneU8EkKl7NQpyrdxsuknlC_4Ars4P8TpUEKc7YRnOKRjKI8x_Wl6m2HAPtkdLDX2MeEUoy9xj_MigvexwFxCZSCXsLOLTgXiDltIS7v2tpCe3qO33k4ZPvyL5-j-6tvd5Y_m5tf368uLm8a1XJfGafDODYOk2lnXK8J9L5UQkjnVAgjw1HKhndQ1FW0P9YR5xemgLYHe83N0veoO0Y5mn-r16clEG8yxEdPW2FSCm8B0TPaEtV6RRakbVO8JcA6Maala2VetT6vWPsW_h7qf2YXsYJrsDPGQDaeCKyFFx-qoXEddijkn8MaFcvyMkmyYDCVmscyMplpmFsvMalkl6Qvy_6NfY76uDNSffAiQTHYBZgdDSOBKXTW8Qj8D5lizbg
CitedBy_id crossref_primary_10_1111_mice_13277
crossref_primary_10_1016_j_eswa_2023_122925
crossref_primary_10_1109_TGRS_2024_3369723
Cites_doi 10.1038/s41467-021-25720-2
10.1016/j.enbuild.2014.02.058
10.1016/j.apenergy.2021.118033
10.1016/j.rser.2020.110203
10.1016/j.apenergy.2019.04.113
10.1145/3292500.3330741
10.1016/j.apenergy.2017.08.045
10.1016/j.apenergy.2019.114404
10.1109/TPAMI.2017.2699184
10.1080/2150704X.2019.1649735
10.1016/j.solener.2008.03.007
10.1016/j.egyr.2021.06.031
10.1016/j.apenergy.2021.116817
10.1109/CVPR.2016.90
10.1016/j.apgeog.2015.11.011
10.3390/en14133800
10.1088/1748-9326/aa7225
10.3390/rs14081835
10.1007/978-3-030-01234-2_49
10.1016/j.renene.2017.04.025
10.1016/j.enpol.2013.03.002
10.1016/j.renene.2017.12.096
10.1016/j.rser.2010.01.001
10.1016/j.renene.2014.10.037
10.1016/j.solener.2016.11.045
10.1109/CVPRW50498.2020.00187
10.1016/j.solener.2012.03.006
10.1109/CVPRW.2017.156
10.1016/j.renene.2019.07.099
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2022.103098
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_627b024f80f54b6d8bf0e33e2297847b
10_1016_j_jag_2022_103098
S1569843222002862
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-c9efccdd719cacb803fb785572c84ee5ef1a359c795ef54be5722f831d9a0ebf3
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:29:41 EDT 2025
Fri Aug 22 20:20:13 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 02:15:22 EDT 2025
Fri Feb 23 02:37:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Roof segments and orientations
Solar potential
Renewable energy
Convolutional neural network
Remote sensing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-c9efccdd719cacb803fb785572c84ee5ef1a359c795ef54be5722f831d9a0ebf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5530-3613
0000-0002-7866-1998
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843222002862
PQID 3153857562
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_627b024f80f54b6d8bf0e33e2297847b
proquest_miscellaneous_3153857562
crossref_citationtrail_10_1016_j_jag_2022_103098
crossref_primary_10_1016_j_jag_2022_103098
elsevier_sciencedirect_doi_10_1016_j_jag_2022_103098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Huld, Müller, Gambardella (b12) 2012; 86
Sun, Hof, Wang, Liu, Lin, Yang (b35) 2013; 58
Suomalainen, Wang, Sharp (b36) 2017; 111
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
Lingfors, Bright, Engerer, Ahlberg, Killinger, Widén (b24) 2017; 205
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 11–19.
Ronneberger, Fischer, Brox (b32) 2015
Melin, Shapiro, Glover-Kapfer (b26) 2017
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Baheti, B., Innani, S., Gajre, S., Talbar, S., 2020. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359.
Fogl, Moudrỳ (b8) 2016; 66
Korfiati, Gkonos, Veronesi, Gaki, Grassi, Schenkel, Volkwein, Raubal, Hurni (b17) 2016; 9
Miranda, Szklo, Schaeffer (b27) 2015; 75
Joshi, Mittal, Holloway, Shukla, Ó Gallachóir, Glynn (b15) 2021; 12
Krapf, Bogenrieder, Netzler, Balke, Lienkamp (b18) 2022
Sharma, Kolhe, Sharma (b34) 2020; 145
Fakhraian, Forment, Dalmau, Nameni, Guerrero (b7) 2021; 7
Lee, S., Iyengar, S., Feng, M., Shenoy, P., Maji, S., 2019. Deeproof: A data-driven approach for solar potential estimation using rooftop imagery. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2105–2113.
Gassar, Cha (b9) 2021; 291
Li, Taubenböck, Shi, Auer, Roschlaub, Glock, Kruspe, Zhu (b22) 2022; 112
Izquierdo, Rodrigues, Fueyo (b13) 2008; 82
Li, Zorzi, Shi, Fraundorfer, Zhu (b23) 2022; 14
Ordóñez, Jadraque, Alegre, Martínez (b30) 2010; 14
Huang, Mendis, Xu (b11) 2019; 250
Krapf, Kemmerzell, Khawaja Haseeb Uddin, Hack Vázquez, Netzler, Lienkamp (b19) 2021; 14
Li, Shi, Zhu (b21) 2022
Moudrỳ, Beková, Lagner (b29) 2019; 10
Assouline, Mohajeri, Scartezzini (b2) 2017; 141
United Nations (b37) 2021
Bhola, Bhardwaj (b4) 2016
Margolis, Gagnon, Melius, Phillips, Elmore (b25) 2017; 12
Qi, Wang (b31) 2014; 76
Walch, Castello, Mohajeri, Scartezzini (b38) 2020; 262
Chen, Papandreou, Kokkinos, Murphy, Yuille (b5) 2017; 40
Mohajeri, Assouline, Guiboud, Bill, Gudmundsson, Scartezzini (b28) 2018; 121
Sánchez-Aparicio, Martín-Jiménez, Del Pozo, González-González, Lagüela (b33) 2021; 135
Kolbe (b16) 2009
Aslani, Seipel (b1) 2022; 306
Assouline (10.1016/j.jag.2022.103098_b2) 2017; 141
10.1016/j.jag.2022.103098_b14
Mohajeri (10.1016/j.jag.2022.103098_b28) 2018; 121
Ordóñez (10.1016/j.jag.2022.103098_b30) 2010; 14
Krapf (10.1016/j.jag.2022.103098_b18) 2022
Sánchez-Aparicio (10.1016/j.jag.2022.103098_b33) 2021; 135
Suomalainen (10.1016/j.jag.2022.103098_b36) 2017; 111
United Nations (10.1016/j.jag.2022.103098_b37) 2021
Kolbe (10.1016/j.jag.2022.103098_b16) 2009
Li (10.1016/j.jag.2022.103098_b22) 2022; 112
Margolis (10.1016/j.jag.2022.103098_b25) 2017; 12
Korfiati (10.1016/j.jag.2022.103098_b17) 2016; 9
Ronneberger (10.1016/j.jag.2022.103098_b32) 2015
Miranda (10.1016/j.jag.2022.103098_b27) 2015; 75
10.1016/j.jag.2022.103098_b6
Sun (10.1016/j.jag.2022.103098_b35) 2013; 58
Krapf (10.1016/j.jag.2022.103098_b19) 2021; 14
10.1016/j.jag.2022.103098_b3
Gassar (10.1016/j.jag.2022.103098_b9) 2021; 291
Li (10.1016/j.jag.2022.103098_b23) 2022; 14
10.1016/j.jag.2022.103098_b10
Huld (10.1016/j.jag.2022.103098_b12) 2012; 86
Moudrỳ (10.1016/j.jag.2022.103098_b29) 2019; 10
Qi (10.1016/j.jag.2022.103098_b31) 2014; 76
Fogl (10.1016/j.jag.2022.103098_b8) 2016; 66
Melin (10.1016/j.jag.2022.103098_b26) 2017
Lingfors (10.1016/j.jag.2022.103098_b24) 2017; 205
Joshi (10.1016/j.jag.2022.103098_b15) 2021; 12
Aslani (10.1016/j.jag.2022.103098_b1) 2022; 306
Li (10.1016/j.jag.2022.103098_b21) 2022
Walch (10.1016/j.jag.2022.103098_b38) 2020; 262
Huang (10.1016/j.jag.2022.103098_b11) 2019; 250
Chen (10.1016/j.jag.2022.103098_b5) 2017; 40
Sharma (10.1016/j.jag.2022.103098_b34) 2020; 145
Fakhraian (10.1016/j.jag.2022.103098_b7) 2021; 7
10.1016/j.jag.2022.103098_b20
Bhola (10.1016/j.jag.2022.103098_b4) 2016
Izquierdo (10.1016/j.jag.2022.103098_b13) 2008; 82
References_xml – volume: 141
  start-page: 278
  year: 2017
  end-page: 296
  ident: b2
  article-title: Quantifying rooftop photovoltaic solar energy potential: A machine learning approach
  publication-title: Sol. Energy
– year: 2022
  ident: b18
  article-title: RID – roof information dataset for computer vision-based photovoltaic potential assessment
– volume: 75
  start-page: 694
  year: 2015
  end-page: 713
  ident: b27
  article-title: Technical-economic potential of PV systems on Brazilian rooftops
  publication-title: Renew. Energy
– volume: 111
  start-page: 463
  year: 2017
  end-page: 475
  ident: b36
  article-title: Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level
  publication-title: Renew. Energy
– reference: Baheti, B., Innani, S., Gajre, S., Talbar, S., 2020. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359.
– volume: 66
  start-page: 73
  year: 2016
  end-page: 80
  ident: b8
  article-title: Influence of vegetation canopies on solar potential in urban environments
  publication-title: Appl. Geogr.
– volume: 76
  start-page: 72
  year: 2014
  end-page: 80
  ident: b31
  article-title: A new calculation method for shape coefficient of residential building using Google Earth
  publication-title: Energy Build.
– volume: 9
  start-page: 17
  year: 2016
  end-page: 30
  ident: b17
  article-title: Estimation of the global solar energy potential and photovoltaic cost with the use of open data
  publication-title: Int. J. Sustain. Energy Plan. Manag.
– volume: 291
  year: 2021
  ident: b9
  article-title: Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales
  publication-title: Appl. Energy
– volume: 121
  start-page: 81
  year: 2018
  end-page: 93
  ident: b28
  article-title: A city-scale roof shape classification using machine learning for solar energy applications
  publication-title: Renew. Energy
– volume: 58
  start-page: 248
  year: 2013
  end-page: 259
  ident: b35
  article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province
  publication-title: Energy Policy
– reference: Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 11–19.
– volume: 14
  start-page: 1835
  year: 2022
  ident: b23
  article-title: RegGAN: An end-to-end network for building footprint generation with boundary regularization
  publication-title: Remote Sens.
– year: 2021
  ident: b37
  article-title: Sustainable Development Goal 11: Make cities inclusive, safe, resilient and sustainable
– volume: 12
  year: 2017
  ident: b25
  article-title: Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities
  publication-title: Environ. Res. Lett.
– volume: 112
  year: 2022
  ident: b22
  article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 250
  start-page: 283
  year: 2019
  end-page: 291
  ident: b11
  article-title: Urban solar utilization potential mapping via deep learning technology: A case study of wuhan, China
  publication-title: Appl. Energy
– volume: 135
  year: 2021
  ident: b33
  article-title: Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential
  publication-title: Renew. Sustain. Energy Rev.
– reference: Lee, S., Iyengar, S., Feng, M., Shenoy, P., Maji, S., 2019. Deeproof: A data-driven approach for solar potential estimation using rooftop imagery. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2105–2113.
– volume: 205
  start-page: 1216
  year: 2017
  end-page: 1230
  ident: b24
  article-title: Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis
  publication-title: Appl. Energy
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: b5
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 2122
  year: 2010
  end-page: 2130
  ident: b30
  article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1
  year: 2016
  end-page: 5
  ident: b4
  article-title: Solar energy estimation techniques: A review
  publication-title: 2016 7th India International Conference on Power Electronics
– start-page: 15
  year: 2009
  end-page: 31
  ident: b16
  article-title: Representing and exchanging 3D city models with CityGML
  publication-title: 3D Geo-Information Sciences
– year: 2017
  ident: b26
  article-title: LiDAR for ecology and conservation - WWF conservation technology series (3)
– volume: 145
  start-page: 1901
  year: 2020
  end-page: 1909
  ident: b34
  article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
  publication-title: Renew. Energy
– volume: 10
  start-page: 1077
  year: 2019
  end-page: 1085
  ident: b29
  article-title: Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates
  publication-title: Remote Sens. Lett.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 15
  ident: b15
  article-title: High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation
  publication-title: Nature Commun.
– reference: Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– volume: 262
  year: 2020
  ident: b38
  article-title: Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty
  publication-title: Appl. Energy
– volume: 82
  start-page: 929
  year: 2008
  end-page: 939
  ident: b13
  article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations
  publication-title: Sol. Energy
– start-page: 234
  year: 2015
  end-page: 241
  ident: b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 306
  year: 2022
  ident: b1
  article-title: Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment
  publication-title: Appl. Energy
– volume: 86
  start-page: 1803
  year: 2012
  end-page: 1815
  ident: b12
  article-title: A new solar radiation database for estimating PV performance in Europe and Africa
  publication-title: Sol. Energy
– volume: 7
  start-page: 176
  year: 2021
  end-page: 185
  ident: b7
  article-title: Determination of the urban rooftop photovoltaic potential: A state of the art
  publication-title: Energy Rep.
– year: 2022
  ident: b21
  article-title: Semi-supervised building footprint generation with feature and output consistency training
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 3800
  year: 2021
  ident: b19
  article-title: Towards scalable economic photovoltaic potential analysis using aerial images and deep learning
  publication-title: Energies
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2022.103098_b15
  article-title: High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation
  publication-title: Nature Commun.
  doi: 10.1038/s41467-021-25720-2
– volume: 76
  start-page: 72
  year: 2014
  ident: 10.1016/j.jag.2022.103098_b31
  article-title: A new calculation method for shape coefficient of residential building using Google Earth
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.058
– start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2022.103098_b4
  article-title: Solar energy estimation techniques: A review
– volume: 306
  year: 2022
  ident: 10.1016/j.jag.2022.103098_b1
  article-title: Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118033
– volume: 9
  start-page: 17
  year: 2016
  ident: 10.1016/j.jag.2022.103098_b17
  article-title: Estimation of the global solar energy potential and photovoltaic cost with the use of open data
  publication-title: Int. J. Sustain. Energy Plan. Manag.
– volume: 135
  year: 2021
  ident: 10.1016/j.jag.2022.103098_b33
  article-title: Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110203
– year: 2017
  ident: 10.1016/j.jag.2022.103098_b26
– volume: 250
  start-page: 283
  year: 2019
  ident: 10.1016/j.jag.2022.103098_b11
  article-title: Urban solar utilization potential mapping via deep learning technology: A case study of wuhan, China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.113
– ident: 10.1016/j.jag.2022.103098_b20
  doi: 10.1145/3292500.3330741
– volume: 205
  start-page: 1216
  year: 2017
  ident: 10.1016/j.jag.2022.103098_b24
  article-title: Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.045
– volume: 262
  year: 2020
  ident: 10.1016/j.jag.2022.103098_b38
  article-title: Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114404
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.jag.2022.103098_b5
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 10
  start-page: 1077
  issue: 11
  year: 2019
  ident: 10.1016/j.jag.2022.103098_b29
  article-title: Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1649735
– volume: 82
  start-page: 929
  issue: 10
  year: 2008
  ident: 10.1016/j.jag.2022.103098_b13
  article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.03.007
– start-page: 15
  year: 2009
  ident: 10.1016/j.jag.2022.103098_b16
  article-title: Representing and exchanging 3D city models with CityGML
– volume: 7
  start-page: 176
  year: 2021
  ident: 10.1016/j.jag.2022.103098_b7
  article-title: Determination of the urban rooftop photovoltaic potential: A state of the art
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.06.031
– volume: 291
  year: 2021
  ident: 10.1016/j.jag.2022.103098_b9
  article-title: Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116817
– ident: 10.1016/j.jag.2022.103098_b10
  doi: 10.1109/CVPR.2016.90
– volume: 66
  start-page: 73
  year: 2016
  ident: 10.1016/j.jag.2022.103098_b8
  article-title: Influence of vegetation canopies on solar potential in urban environments
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2015.11.011
– year: 2022
  ident: 10.1016/j.jag.2022.103098_b21
  article-title: Semi-supervised building footprint generation with feature and output consistency training
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 3800
  issue: 13
  year: 2021
  ident: 10.1016/j.jag.2022.103098_b19
  article-title: Towards scalable economic photovoltaic potential analysis using aerial images and deep learning
  publication-title: Energies
  doi: 10.3390/en14133800
– start-page: 234
  year: 2015
  ident: 10.1016/j.jag.2022.103098_b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.jag.2022.103098_b25
  article-title: Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa7225
– volume: 112
  year: 2022
  ident: 10.1016/j.jag.2022.103098_b22
  article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2021
  ident: 10.1016/j.jag.2022.103098_b37
– year: 2022
  ident: 10.1016/j.jag.2022.103098_b18
– volume: 14
  start-page: 1835
  issue: 8
  year: 2022
  ident: 10.1016/j.jag.2022.103098_b23
  article-title: RegGAN: An end-to-end network for building footprint generation with boundary regularization
  publication-title: Remote Sens.
  doi: 10.3390/rs14081835
– ident: 10.1016/j.jag.2022.103098_b6
  doi: 10.1007/978-3-030-01234-2_49
– volume: 111
  start-page: 463
  year: 2017
  ident: 10.1016/j.jag.2022.103098_b36
  article-title: Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.04.025
– volume: 58
  start-page: 248
  year: 2013
  ident: 10.1016/j.jag.2022.103098_b35
  article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.03.002
– volume: 121
  start-page: 81
  year: 2018
  ident: 10.1016/j.jag.2022.103098_b28
  article-title: A city-scale roof shape classification using machine learning for solar energy applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.096
– volume: 14
  start-page: 2122
  issue: 7
  year: 2010
  ident: 10.1016/j.jag.2022.103098_b30
  article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.01.001
– volume: 75
  start-page: 694
  year: 2015
  ident: 10.1016/j.jag.2022.103098_b27
  article-title: Technical-economic potential of PV systems on Brazilian rooftops
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.037
– volume: 141
  start-page: 278
  year: 2017
  ident: 10.1016/j.jag.2022.103098_b2
  article-title: Quantifying rooftop photovoltaic solar energy potential: A machine learning approach
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.11.045
– ident: 10.1016/j.jag.2022.103098_b3
  doi: 10.1109/CVPRW50498.2020.00187
– volume: 86
  start-page: 1803
  issn: 0038092X
  issue: 6
  year: 2012
  ident: 10.1016/j.jag.2022.103098_b12
  article-title: A new solar radiation database for estimating PV performance in Europe and Africa
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.03.006
– ident: 10.1016/j.jag.2022.103098_b14
  doi: 10.1109/CVPRW.2017.156
– volume: 145
  start-page: 1901
  year: 2020
  ident: 10.1016/j.jag.2022.103098_b34
  article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.099
SSID ssj0017768
Score 2.4243925
Snippet Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103098
SubjectTerms Convolutional neural network
cost effectiveness
data collection
energy
geometry
people
prediction
Remote sensing
Renewable energy
Roof segments and orientations
solar energy
Solar potential
spatial data
sustainable development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nax0hEJeSU3sIbZqQ1y8M9BSQuH6t5paWhBBoTg3kJupqaCjvPfI2_39ndDcfPaSXnnbR0RVndH6u80HI184YZ0J2jAejmCrasgiolgUAHzEYUVRNB_Tj0pxfqYtrff0k1RfahLXwwG3ijozoI-iRYnnRKprBxsKzlFkIOP-oPuLuCzpvPkxN9wd935zgtHHMKinm-8xq2XUbbuBgKAQ6nHNnn2mkGrj_mWL6a4uueufsLdmeACM9aQN9R17l5Q558ySM4A7ZO330VgPSablu3hP86RXuLvN4TE8o2pdPcgZEGMeyPqoVOENlNtAyW2pRgLIUMHUZV2u6wU7oejWiYRG0wbgczeGRonMKDVWIKZShg_UuuTo7_fn9nE1ZFlgCMDKy5HJJaRj6zqWQouWyxN5q3YtkVc46ly5I7VLv4BVYkKFGFCu7wQWeY5F7ZGu5WuZ9QqG2hAAAVEuuhpQsT8allG1yqgtcLgifZ9qnKQQ5ZsL47Wdbs1sPzPHIHN-YsyCHD03WLf7GS8TfkH0PhBg6uxaAQPlJoPy_BGpB1Mx8P6GQhi6gq18vfftgFhQPKxSvXcIyr-43XqJSAVRsxIf_Mb6P5DWmvG-W45_I1nh3nz8DMBrjl7oG_gAKKwsq
  priority: 102
  providerName: Directory of Open Access Journals
Title SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery
URI https://dx.doi.org/10.1016/j.jag.2022.103098
https://www.proquest.com/docview/3153857562
https://doaj.org/article/627b024f80f54b6d8bf0e33e2297847b
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9sgEEdV-7I9TFu3atlHxKQ9TbJCMMbQtyxqlX1F07ZKfUOAoUo1xVHi_v-9wzhb9tCHPdmCA9vc-e4H3B2EvJ9KqaUNumBWikLEShUOUG1hAXw4K3kU6Tigb0u5uBKfr6vrIzIfYmHQrTLr_l6nJ22dSyZ5NCeb1WryE2YeWgncKcCJA-rhE15qCaJ9Mvv0ZbHcbybUdR8RB_QFNhg2N5Ob1629gVki5xh9zrQ6ME8pi_-BlfpHXycjdPmUPMnokc76F3xGjsL6lDz-K6fgKTm7-BO6BqT53909J7gCZrfL0J3TGUVn8yx0QIRJLdMluYQXaNkaGge3LQq4lgLAjl27oTvshG7aDr2MoA0m6eijHylGqlCbJJpCGUZbvyBXlxe_5osiH7lQeEAmXeF1iN43TT3V3nqnWBldraqq5l6JEKoQp7astK813FbCBajhUZXTRlsWXCzPyPG6XYeXhEJttBbQaFUy0XivmJfa-6C8FlPLyhFhw0gbn_OR47EYv83geHZrgDkGmWN65ozIh32TTZ-M4yHij8i-PSHm0U4F7fbGZEEyktcOUEpUDL9GNspFFsoycA6za1G7ERED882BWEJXq4ee_W4QFAO_K-7B2HVo73amRAsDEFnyV__X9WvyCE-87x3H35DjbnsX3gIu6twY5H7-4-v3cZb_cVpfuAd59Q9l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9sgEEZV-rDtoeq6VcvWbUza0yQr2GAMe8uqVuna5mWt1DcEGKpUUxwl7v_vnY2zZQ992JMtOLDNHXcf5u4g5GsupZY26IxZKTIRS5U5QLWZBfDhrCyi6I4Dup7L2a34eVfe7ZHTIRYG3SqT7u91eqetU8kkjeZktVhMfsHKQyuBOwW4cEA9vI_ZqcoR2Z9eXM7m282Equoj4oA-wwbD5mbn5vVg72GVWBQYfc602jFPXRb_HSv1j77ujND5ITlI6JFO-xd8TfbC8oi8-iun4BE5PvsTugakae5u3hD8A2bX89B-p1OKzuZJ6IAIk1p2l84lPEPLVtM4uG1RwLUUAHZsmxXdYCd01bToZQRtMElHH_1IMVKF2k6iKZRhtPVbcnt-dnM6y9KRC5kHZNJmXofofV1XufbWO8V4dJUqy6rwSoRQhphbXmpfabgthQtQU0TF81pbFlzkx2S0bJbhHaFQG60FNFpyJmrvFfNSex-U1yK3jI8JG0ba-JSPHI_F-G0Gx7MHA8wxyBzTM2dMvm2brPpkHM8R_0D2bQkxj3ZX0KzvTRIkI4vKAUqJiuHXyFq5yALnoShgdS0qNyZiYL7ZEUvoavHcs78MgmJguuIejF2G5nFjOFoYgMiyeP9_XX8mL2Y311fm6mJ--YG8hBreO5GfkFG7fgwfASO17lOaA09i1A_B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SolarNet%3A+A+convolutional+neural+network-based+framework+for+rooftop+solar+potential+estimation+from+aerial+imagery&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Qingyu&rft.au=Krapf%2C+Sebastian&rft.au=Shi%2C+Yilei&rft.au=Zhu%2C+Xiao+Xiang&rft.date=2023-02-01&rft.issn=1569-8432&rft.volume=116&rft.spage=103098&rft_id=info:doi/10.1016%2Fj.jag.2022.103098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2022_103098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon