SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery
Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 116; p. 103098 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors.
•We propose a novel framework, termed as SolarNet, for rooftop solar potential analysis.•We propose a novel representation for rooftop geometry.•We propose a novel multi-task learning network in the SolarNet to learn this novel representation of rooftop geometry, which outperforms state-of-the-art semantic segmentation networks. |
---|---|
AbstractList | Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors.
•We propose a novel framework, termed as SolarNet, for rooftop solar potential analysis.•We propose a novel representation for rooftop geometry.•We propose a novel multi-task learning network in the SolarNet to learn this novel representation of rooftop geometry, which outperforms state-of-the-art semantic segmentation networks. Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also mitigate energy-related emissions and pollutants. This significantly contributes to sustainable development goals. Aerial imagery can provide a cost-effective way for large-scale rooftop solar potential analysis when compared to other data sources. Existing studies mainly utilize aerial imagery and convolutional neural networks to learn the roof segmentation mask or the rooftop geometry map, which are the preliminary input for rooftop solar potential estimation. However, these methods fail to achieve precise solar potential analysis results. To address this issue, we propose a framework, which is termed as SolarNet for rooftop solar potential estimation. A novel multi-task learning network is devised in SolarNet to learn our proposed novel representation for rooftop geometry that incorporates 6 roof segments and orientations. Specifically, this network first learns a roof segmentation map, and then together with the extracted multiscale and contextual features to learn a roof geometry map. Finally, the solar potential can be estimated from the learned roof geometry map. The effectiveness of SolarNet is validated on two datasets: DeepRoof and RID datasets. Experimental results demonstrate that SolarNet can improve not only rooftop geometry prediction accuracy but also solar potential estimation precision, which significantly outperforms other competitors. |
ArticleNumber | 103098 |
Author | Li, Qingyu Zhu, Xiao Xiang Shi, Yilei Krapf, Sebastian |
Author_xml | – sequence: 1 givenname: Qingyu surname: Li fullname: Li, Qingyu email: qingyu.li@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany – sequence: 2 givenname: Sebastian orcidid: 0000-0002-7866-1998 surname: Krapf fullname: Krapf, Sebastian email: sebastian.krapf@tum.de organization: Institute of Automotive Technology, Technical University of Munich, Garching, 85748, Germany – sequence: 3 givenname: Yilei surname: Shi fullname: Shi, Yilei email: yilei.shi@tum.de organization: Remote Sensing Technology, Technical University of Munich, Munich, 80333, Germany – sequence: 4 givenname: Xiao Xiang orcidid: 0000-0001-5530-3613 surname: Zhu fullname: Zhu, Xiao Xiang email: xiaoxiang.zhu@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany |
BookMark | eNp9kctu3CAUhlGVSk3SPkB3LLvxlIsx0K6iqGkjRe0iidQdwvgwwvWYKTCJ8vbB43aTRVbnwvl-OPxn6GSOMyD0kZINJbT7PG5Gu90wwlitOdHqDTqlSrJGse73Sc1FpxvVcvYOneU8EkKl7NQpyrdxsuknlC_4Ars4P8TpUEKc7YRnOKRjKI8x_Wl6m2HAPtkdLDX2MeEUoy9xj_MigvexwFxCZSCXsLOLTgXiDltIS7v2tpCe3qO33k4ZPvyL5-j-6tvd5Y_m5tf368uLm8a1XJfGafDODYOk2lnXK8J9L5UQkjnVAgjw1HKhndQ1FW0P9YR5xemgLYHe83N0veoO0Y5mn-r16clEG8yxEdPW2FSCm8B0TPaEtV6RRakbVO8JcA6Maala2VetT6vWPsW_h7qf2YXsYJrsDPGQDaeCKyFFx-qoXEddijkn8MaFcvyMkmyYDCVmscyMplpmFsvMalkl6Qvy_6NfY76uDNSffAiQTHYBZgdDSOBKXTW8Qj8D5lizbg |
CitedBy_id | crossref_primary_10_1111_mice_13277 crossref_primary_10_1016_j_eswa_2023_122925 crossref_primary_10_1109_TGRS_2024_3369723 |
Cites_doi | 10.1038/s41467-021-25720-2 10.1016/j.enbuild.2014.02.058 10.1016/j.apenergy.2021.118033 10.1016/j.rser.2020.110203 10.1016/j.apenergy.2019.04.113 10.1145/3292500.3330741 10.1016/j.apenergy.2017.08.045 10.1016/j.apenergy.2019.114404 10.1109/TPAMI.2017.2699184 10.1080/2150704X.2019.1649735 10.1016/j.solener.2008.03.007 10.1016/j.egyr.2021.06.031 10.1016/j.apenergy.2021.116817 10.1109/CVPR.2016.90 10.1016/j.apgeog.2015.11.011 10.3390/en14133800 10.1088/1748-9326/aa7225 10.3390/rs14081835 10.1007/978-3-030-01234-2_49 10.1016/j.renene.2017.04.025 10.1016/j.enpol.2013.03.002 10.1016/j.renene.2017.12.096 10.1016/j.rser.2010.01.001 10.1016/j.renene.2014.10.037 10.1016/j.solener.2016.11.045 10.1109/CVPRW50498.2020.00187 10.1016/j.solener.2012.03.006 10.1109/CVPRW.2017.156 10.1016/j.renene.2019.07.099 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2022.103098 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_627b024f80f54b6d8bf0e33e2297847b 10_1016_j_jag_2022_103098 S1569843222002862 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-c9efccdd719cacb803fb785572c84ee5ef1a359c795ef54be5722f831d9a0ebf3 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:29:41 EDT 2025 Fri Aug 22 20:20:13 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 02:15:22 EDT 2025 Fri Feb 23 02:37:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Roof segments and orientations Solar potential Renewable energy Convolutional neural network Remote sensing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-c9efccdd719cacb803fb785572c84ee5ef1a359c795ef54be5722f831d9a0ebf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5530-3613 0000-0002-7866-1998 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843222002862 |
PQID | 3153857562 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_627b024f80f54b6d8bf0e33e2297847b proquest_miscellaneous_3153857562 crossref_citationtrail_10_1016_j_jag_2022_103098 crossref_primary_10_1016_j_jag_2022_103098 elsevier_sciencedirect_doi_10_1016_j_jag_2022_103098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Huld, Müller, Gambardella (b12) 2012; 86 Sun, Hof, Wang, Liu, Lin, Yang (b35) 2013; 58 Suomalainen, Wang, Sharp (b36) 2017; 111 Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. Lingfors, Bright, Engerer, Ahlberg, Killinger, Widén (b24) 2017; 205 Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 11–19. Ronneberger, Fischer, Brox (b32) 2015 Melin, Shapiro, Glover-Kapfer (b26) 2017 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Baheti, B., Innani, S., Gajre, S., Talbar, S., 2020. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359. Fogl, Moudrỳ (b8) 2016; 66 Korfiati, Gkonos, Veronesi, Gaki, Grassi, Schenkel, Volkwein, Raubal, Hurni (b17) 2016; 9 Miranda, Szklo, Schaeffer (b27) 2015; 75 Joshi, Mittal, Holloway, Shukla, Ó Gallachóir, Glynn (b15) 2021; 12 Krapf, Bogenrieder, Netzler, Balke, Lienkamp (b18) 2022 Sharma, Kolhe, Sharma (b34) 2020; 145 Fakhraian, Forment, Dalmau, Nameni, Guerrero (b7) 2021; 7 Lee, S., Iyengar, S., Feng, M., Shenoy, P., Maji, S., 2019. Deeproof: A data-driven approach for solar potential estimation using rooftop imagery. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2105–2113. Gassar, Cha (b9) 2021; 291 Li, Taubenböck, Shi, Auer, Roschlaub, Glock, Kruspe, Zhu (b22) 2022; 112 Izquierdo, Rodrigues, Fueyo (b13) 2008; 82 Li, Zorzi, Shi, Fraundorfer, Zhu (b23) 2022; 14 Ordóñez, Jadraque, Alegre, Martínez (b30) 2010; 14 Huang, Mendis, Xu (b11) 2019; 250 Krapf, Kemmerzell, Khawaja Haseeb Uddin, Hack Vázquez, Netzler, Lienkamp (b19) 2021; 14 Li, Shi, Zhu (b21) 2022 Moudrỳ, Beková, Lagner (b29) 2019; 10 Assouline, Mohajeri, Scartezzini (b2) 2017; 141 United Nations (b37) 2021 Bhola, Bhardwaj (b4) 2016 Margolis, Gagnon, Melius, Phillips, Elmore (b25) 2017; 12 Qi, Wang (b31) 2014; 76 Walch, Castello, Mohajeri, Scartezzini (b38) 2020; 262 Chen, Papandreou, Kokkinos, Murphy, Yuille (b5) 2017; 40 Mohajeri, Assouline, Guiboud, Bill, Gudmundsson, Scartezzini (b28) 2018; 121 Sánchez-Aparicio, Martín-Jiménez, Del Pozo, González-González, Lagüela (b33) 2021; 135 Kolbe (b16) 2009 Aslani, Seipel (b1) 2022; 306 Assouline (10.1016/j.jag.2022.103098_b2) 2017; 141 10.1016/j.jag.2022.103098_b14 Mohajeri (10.1016/j.jag.2022.103098_b28) 2018; 121 Ordóñez (10.1016/j.jag.2022.103098_b30) 2010; 14 Krapf (10.1016/j.jag.2022.103098_b18) 2022 Sánchez-Aparicio (10.1016/j.jag.2022.103098_b33) 2021; 135 Suomalainen (10.1016/j.jag.2022.103098_b36) 2017; 111 United Nations (10.1016/j.jag.2022.103098_b37) 2021 Kolbe (10.1016/j.jag.2022.103098_b16) 2009 Li (10.1016/j.jag.2022.103098_b22) 2022; 112 Margolis (10.1016/j.jag.2022.103098_b25) 2017; 12 Korfiati (10.1016/j.jag.2022.103098_b17) 2016; 9 Ronneberger (10.1016/j.jag.2022.103098_b32) 2015 Miranda (10.1016/j.jag.2022.103098_b27) 2015; 75 10.1016/j.jag.2022.103098_b6 Sun (10.1016/j.jag.2022.103098_b35) 2013; 58 Krapf (10.1016/j.jag.2022.103098_b19) 2021; 14 10.1016/j.jag.2022.103098_b3 Gassar (10.1016/j.jag.2022.103098_b9) 2021; 291 Li (10.1016/j.jag.2022.103098_b23) 2022; 14 10.1016/j.jag.2022.103098_b10 Huld (10.1016/j.jag.2022.103098_b12) 2012; 86 Moudrỳ (10.1016/j.jag.2022.103098_b29) 2019; 10 Qi (10.1016/j.jag.2022.103098_b31) 2014; 76 Fogl (10.1016/j.jag.2022.103098_b8) 2016; 66 Melin (10.1016/j.jag.2022.103098_b26) 2017 Lingfors (10.1016/j.jag.2022.103098_b24) 2017; 205 Joshi (10.1016/j.jag.2022.103098_b15) 2021; 12 Aslani (10.1016/j.jag.2022.103098_b1) 2022; 306 Li (10.1016/j.jag.2022.103098_b21) 2022 Walch (10.1016/j.jag.2022.103098_b38) 2020; 262 Huang (10.1016/j.jag.2022.103098_b11) 2019; 250 Chen (10.1016/j.jag.2022.103098_b5) 2017; 40 Sharma (10.1016/j.jag.2022.103098_b34) 2020; 145 Fakhraian (10.1016/j.jag.2022.103098_b7) 2021; 7 10.1016/j.jag.2022.103098_b20 Bhola (10.1016/j.jag.2022.103098_b4) 2016 Izquierdo (10.1016/j.jag.2022.103098_b13) 2008; 82 |
References_xml | – volume: 141 start-page: 278 year: 2017 end-page: 296 ident: b2 article-title: Quantifying rooftop photovoltaic solar energy potential: A machine learning approach publication-title: Sol. Energy – year: 2022 ident: b18 article-title: RID – roof information dataset for computer vision-based photovoltaic potential assessment – volume: 75 start-page: 694 year: 2015 end-page: 713 ident: b27 article-title: Technical-economic potential of PV systems on Brazilian rooftops publication-title: Renew. Energy – volume: 111 start-page: 463 year: 2017 end-page: 475 ident: b36 article-title: Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level publication-title: Renew. Energy – reference: Baheti, B., Innani, S., Gajre, S., Talbar, S., 2020. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359. – volume: 66 start-page: 73 year: 2016 end-page: 80 ident: b8 article-title: Influence of vegetation canopies on solar potential in urban environments publication-title: Appl. Geogr. – volume: 76 start-page: 72 year: 2014 end-page: 80 ident: b31 article-title: A new calculation method for shape coefficient of residential building using Google Earth publication-title: Energy Build. – volume: 9 start-page: 17 year: 2016 end-page: 30 ident: b17 article-title: Estimation of the global solar energy potential and photovoltaic cost with the use of open data publication-title: Int. J. Sustain. Energy Plan. Manag. – volume: 291 year: 2021 ident: b9 article-title: Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales publication-title: Appl. Energy – volume: 121 start-page: 81 year: 2018 end-page: 93 ident: b28 article-title: A city-scale roof shape classification using machine learning for solar energy applications publication-title: Renew. Energy – volume: 58 start-page: 248 year: 2013 end-page: 259 ident: b35 article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province publication-title: Energy Policy – reference: Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 11–19. – volume: 14 start-page: 1835 year: 2022 ident: b23 article-title: RegGAN: An end-to-end network for building footprint generation with boundary regularization publication-title: Remote Sens. – year: 2021 ident: b37 article-title: Sustainable Development Goal 11: Make cities inclusive, safe, resilient and sustainable – volume: 12 year: 2017 ident: b25 article-title: Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities publication-title: Environ. Res. Lett. – volume: 112 year: 2022 ident: b22 article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 250 start-page: 283 year: 2019 end-page: 291 ident: b11 article-title: Urban solar utilization potential mapping via deep learning technology: A case study of wuhan, China publication-title: Appl. Energy – volume: 135 year: 2021 ident: b33 article-title: Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential publication-title: Renew. Sustain. Energy Rev. – reference: Lee, S., Iyengar, S., Feng, M., Shenoy, P., Maji, S., 2019. Deeproof: A data-driven approach for solar potential estimation using rooftop imagery. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2105–2113. – volume: 205 start-page: 1216 year: 2017 end-page: 1230 ident: b24 article-title: Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis publication-title: Appl. Energy – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b5 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 2122 year: 2010 end-page: 2130 ident: b30 article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain) publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2016 end-page: 5 ident: b4 article-title: Solar energy estimation techniques: A review publication-title: 2016 7th India International Conference on Power Electronics – start-page: 15 year: 2009 end-page: 31 ident: b16 article-title: Representing and exchanging 3D city models with CityGML publication-title: 3D Geo-Information Sciences – year: 2017 ident: b26 article-title: LiDAR for ecology and conservation - WWF conservation technology series (3) – volume: 145 start-page: 1901 year: 2020 end-page: 1909 ident: b34 article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints publication-title: Renew. Energy – volume: 10 start-page: 1077 year: 2019 end-page: 1085 ident: b29 article-title: Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates publication-title: Remote Sens. Lett. – volume: 12 start-page: 1 year: 2021 end-page: 15 ident: b15 article-title: High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation publication-title: Nature Commun. – reference: Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – volume: 262 year: 2020 ident: b38 article-title: Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty publication-title: Appl. Energy – volume: 82 start-page: 929 year: 2008 end-page: 939 ident: b13 article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations publication-title: Sol. Energy – start-page: 234 year: 2015 end-page: 241 ident: b32 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 306 year: 2022 ident: b1 article-title: Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment publication-title: Appl. Energy – volume: 86 start-page: 1803 year: 2012 end-page: 1815 ident: b12 article-title: A new solar radiation database for estimating PV performance in Europe and Africa publication-title: Sol. Energy – volume: 7 start-page: 176 year: 2021 end-page: 185 ident: b7 article-title: Determination of the urban rooftop photovoltaic potential: A state of the art publication-title: Energy Rep. – year: 2022 ident: b21 article-title: Semi-supervised building footprint generation with feature and output consistency training publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 3800 year: 2021 ident: b19 article-title: Towards scalable economic photovoltaic potential analysis using aerial images and deep learning publication-title: Energies – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jag.2022.103098_b15 article-title: High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation publication-title: Nature Commun. doi: 10.1038/s41467-021-25720-2 – volume: 76 start-page: 72 year: 2014 ident: 10.1016/j.jag.2022.103098_b31 article-title: A new calculation method for shape coefficient of residential building using Google Earth publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.02.058 – start-page: 1 year: 2016 ident: 10.1016/j.jag.2022.103098_b4 article-title: Solar energy estimation techniques: A review – volume: 306 year: 2022 ident: 10.1016/j.jag.2022.103098_b1 article-title: Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118033 – volume: 9 start-page: 17 year: 2016 ident: 10.1016/j.jag.2022.103098_b17 article-title: Estimation of the global solar energy potential and photovoltaic cost with the use of open data publication-title: Int. J. Sustain. Energy Plan. Manag. – volume: 135 year: 2021 ident: 10.1016/j.jag.2022.103098_b33 article-title: Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110203 – year: 2017 ident: 10.1016/j.jag.2022.103098_b26 – volume: 250 start-page: 283 year: 2019 ident: 10.1016/j.jag.2022.103098_b11 article-title: Urban solar utilization potential mapping via deep learning technology: A case study of wuhan, China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.113 – ident: 10.1016/j.jag.2022.103098_b20 doi: 10.1145/3292500.3330741 – volume: 205 start-page: 1216 year: 2017 ident: 10.1016/j.jag.2022.103098_b24 article-title: Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.045 – volume: 262 year: 2020 ident: 10.1016/j.jag.2022.103098_b38 article-title: Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114404 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.jag.2022.103098_b5 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 10 start-page: 1077 issue: 11 year: 2019 ident: 10.1016/j.jag.2022.103098_b29 article-title: Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1649735 – volume: 82 start-page: 929 issue: 10 year: 2008 ident: 10.1016/j.jag.2022.103098_b13 article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations publication-title: Sol. Energy doi: 10.1016/j.solener.2008.03.007 – start-page: 15 year: 2009 ident: 10.1016/j.jag.2022.103098_b16 article-title: Representing and exchanging 3D city models with CityGML – volume: 7 start-page: 176 year: 2021 ident: 10.1016/j.jag.2022.103098_b7 article-title: Determination of the urban rooftop photovoltaic potential: A state of the art publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.06.031 – volume: 291 year: 2021 ident: 10.1016/j.jag.2022.103098_b9 article-title: Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116817 – ident: 10.1016/j.jag.2022.103098_b10 doi: 10.1109/CVPR.2016.90 – volume: 66 start-page: 73 year: 2016 ident: 10.1016/j.jag.2022.103098_b8 article-title: Influence of vegetation canopies on solar potential in urban environments publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2015.11.011 – year: 2022 ident: 10.1016/j.jag.2022.103098_b21 article-title: Semi-supervised building footprint generation with feature and output consistency training publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 3800 issue: 13 year: 2021 ident: 10.1016/j.jag.2022.103098_b19 article-title: Towards scalable economic photovoltaic potential analysis using aerial images and deep learning publication-title: Energies doi: 10.3390/en14133800 – start-page: 234 year: 2015 ident: 10.1016/j.jag.2022.103098_b32 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.jag.2022.103098_b25 article-title: Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa7225 – volume: 112 year: 2022 ident: 10.1016/j.jag.2022.103098_b22 article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2021 ident: 10.1016/j.jag.2022.103098_b37 – year: 2022 ident: 10.1016/j.jag.2022.103098_b18 – volume: 14 start-page: 1835 issue: 8 year: 2022 ident: 10.1016/j.jag.2022.103098_b23 article-title: RegGAN: An end-to-end network for building footprint generation with boundary regularization publication-title: Remote Sens. doi: 10.3390/rs14081835 – ident: 10.1016/j.jag.2022.103098_b6 doi: 10.1007/978-3-030-01234-2_49 – volume: 111 start-page: 463 year: 2017 ident: 10.1016/j.jag.2022.103098_b36 article-title: Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.025 – volume: 58 start-page: 248 year: 2013 ident: 10.1016/j.jag.2022.103098_b35 article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province publication-title: Energy Policy doi: 10.1016/j.enpol.2013.03.002 – volume: 121 start-page: 81 year: 2018 ident: 10.1016/j.jag.2022.103098_b28 article-title: A city-scale roof shape classification using machine learning for solar energy applications publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.096 – volume: 14 start-page: 2122 issue: 7 year: 2010 ident: 10.1016/j.jag.2022.103098_b30 article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.01.001 – volume: 75 start-page: 694 year: 2015 ident: 10.1016/j.jag.2022.103098_b27 article-title: Technical-economic potential of PV systems on Brazilian rooftops publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.037 – volume: 141 start-page: 278 year: 2017 ident: 10.1016/j.jag.2022.103098_b2 article-title: Quantifying rooftop photovoltaic solar energy potential: A machine learning approach publication-title: Sol. Energy doi: 10.1016/j.solener.2016.11.045 – ident: 10.1016/j.jag.2022.103098_b3 doi: 10.1109/CVPRW50498.2020.00187 – volume: 86 start-page: 1803 issn: 0038092X issue: 6 year: 2012 ident: 10.1016/j.jag.2022.103098_b12 article-title: A new solar radiation database for estimating PV performance in Europe and Africa publication-title: Sol. Energy doi: 10.1016/j.solener.2012.03.006 – ident: 10.1016/j.jag.2022.103098_b14 doi: 10.1109/CVPRW.2017.156 – volume: 145 start-page: 1901 year: 2020 ident: 10.1016/j.jag.2022.103098_b34 article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.099 |
SSID | ssj0017768 |
Score | 2.4243925 |
Snippet | Solar power is a clean and renewable energy source. Promoting solar technology can not only offer all people affordable, reliable, and modern energy, but also... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103098 |
SubjectTerms | Convolutional neural network cost effectiveness data collection energy geometry people prediction Remote sensing Renewable energy Roof segments and orientations solar energy Solar potential spatial data sustainable development |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nax0hEJeSU3sIbZqQ1y8M9BSQuH6t5paWhBBoTg3kJupqaCjvPfI2_39ndDcfPaSXnnbR0RVndH6u80HI184YZ0J2jAejmCrasgiolgUAHzEYUVRNB_Tj0pxfqYtrff0k1RfahLXwwG3ijozoI-iRYnnRKprBxsKzlFkIOP-oPuLuCzpvPkxN9wd935zgtHHMKinm-8xq2XUbbuBgKAQ6nHNnn2mkGrj_mWL6a4uueufsLdmeACM9aQN9R17l5Q558ySM4A7ZO330VgPSablu3hP86RXuLvN4TE8o2pdPcgZEGMeyPqoVOENlNtAyW2pRgLIUMHUZV2u6wU7oejWiYRG0wbgczeGRonMKDVWIKZShg_UuuTo7_fn9nE1ZFlgCMDKy5HJJaRj6zqWQouWyxN5q3YtkVc46ly5I7VLv4BVYkKFGFCu7wQWeY5F7ZGu5WuZ9QqG2hAAAVEuuhpQsT8allG1yqgtcLgifZ9qnKQQ5ZsL47Wdbs1sPzPHIHN-YsyCHD03WLf7GS8TfkH0PhBg6uxaAQPlJoPy_BGpB1Mx8P6GQhi6gq18vfftgFhQPKxSvXcIyr-43XqJSAVRsxIf_Mb6P5DWmvG-W45_I1nh3nz8DMBrjl7oG_gAKKwsq priority: 102 providerName: Directory of Open Access Journals |
Title | SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery |
URI | https://dx.doi.org/10.1016/j.jag.2022.103098 https://www.proquest.com/docview/3153857562 https://doaj.org/article/627b024f80f54b6d8bf0e33e2297847b |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9sgEEdV-7I9TFu3atlHxKQ9TbJCMMbQtyxqlX1F07ZKfUOAoUo1xVHi_v-9wzhb9tCHPdmCA9vc-e4H3B2EvJ9KqaUNumBWikLEShUOUG1hAXw4K3kU6Tigb0u5uBKfr6vrIzIfYmHQrTLr_l6nJ22dSyZ5NCeb1WryE2YeWgncKcCJA-rhE15qCaJ9Mvv0ZbHcbybUdR8RB_QFNhg2N5Ob1629gVki5xh9zrQ6ME8pi_-BlfpHXycjdPmUPMnokc76F3xGjsL6lDz-K6fgKTm7-BO6BqT53909J7gCZrfL0J3TGUVn8yx0QIRJLdMluYQXaNkaGge3LQq4lgLAjl27oTvshG7aDr2MoA0m6eijHylGqlCbJJpCGUZbvyBXlxe_5osiH7lQeEAmXeF1iN43TT3V3nqnWBldraqq5l6JEKoQp7astK813FbCBajhUZXTRlsWXCzPyPG6XYeXhEJttBbQaFUy0XivmJfa-6C8FlPLyhFhw0gbn_OR47EYv83geHZrgDkGmWN65ozIh32TTZ-M4yHij8i-PSHm0U4F7fbGZEEyktcOUEpUDL9GNspFFsoycA6za1G7ERED882BWEJXq4ee_W4QFAO_K-7B2HVo73amRAsDEFnyV__X9WvyCE-87x3H35DjbnsX3gIu6twY5H7-4-v3cZb_cVpfuAd59Q9l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9sgEEZV-rDtoeq6VcvWbUza0yQr2GAMe8uqVuna5mWt1DcEGKpUUxwl7v_vnY2zZQ992JMtOLDNHXcf5u4g5GsupZY26IxZKTIRS5U5QLWZBfDhrCyi6I4Dup7L2a34eVfe7ZHTIRYG3SqT7u91eqetU8kkjeZktVhMfsHKQyuBOwW4cEA9vI_ZqcoR2Z9eXM7m282Equoj4oA-wwbD5mbn5vVg72GVWBQYfc602jFPXRb_HSv1j77ujND5ITlI6JFO-xd8TfbC8oi8-iun4BE5PvsTugakae5u3hD8A2bX89B-p1OKzuZJ6IAIk1p2l84lPEPLVtM4uG1RwLUUAHZsmxXdYCd01bToZQRtMElHH_1IMVKF2k6iKZRhtPVbcnt-dnM6y9KRC5kHZNJmXofofV1XufbWO8V4dJUqy6rwSoRQhphbXmpfabgthQtQU0TF81pbFlzkx2S0bJbhHaFQG60FNFpyJmrvFfNSex-U1yK3jI8JG0ba-JSPHI_F-G0Gx7MHA8wxyBzTM2dMvm2brPpkHM8R_0D2bQkxj3ZX0KzvTRIkI4vKAUqJiuHXyFq5yALnoShgdS0qNyZiYL7ZEUvoavHcs78MgmJguuIejF2G5nFjOFoYgMiyeP9_XX8mL2Y311fm6mJ--YG8hBreO5GfkFG7fgwfASO17lOaA09i1A_B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SolarNet%3A+A+convolutional+neural+network-based+framework+for+rooftop+solar+potential+estimation+from+aerial+imagery&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Qingyu&rft.au=Krapf%2C+Sebastian&rft.au=Shi%2C+Yilei&rft.au=Zhu%2C+Xiao+Xiang&rft.date=2023-02-01&rft.issn=1569-8432&rft.volume=116&rft.spage=103098&rft_id=info:doi/10.1016%2Fj.jag.2022.103098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2022_103098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |