Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway
•Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons...
Saved in:
Published in | Neuroscience Vol. 429; pp. 282 - 292 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-4522 1873-7544 1873-7544 |
DOI | 10.1016/j.neuroscience.2019.09.009 |
Cover
Loading…
Abstract | •Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons.
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons.
End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN.
Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression.
Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway. |
---|---|
AbstractList | Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca
signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway. •Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons. Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway. Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway. |
Author | Lin, Yu-Ta Tseng, To-Jung Chang, Hung-Ming Yang, Yin-Shuo Lan, Chyn-Tair Liu, Chiung-Hui Li, Shao-Ti Liao, Wen-Chieh Ho, Ying-Jui |
Author_xml | – sequence: 1 givenname: Chiung-Hui surname: Liu fullname: Liu, Chiung-Hui organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan – sequence: 2 givenname: Hung-Ming surname: Chang fullname: Chang, Hung-Ming organization: Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan – sequence: 3 givenname: Yin-Shuo surname: Yang fullname: Yang, Yin-Shuo organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan – sequence: 4 givenname: Yu-Ta surname: Lin fullname: Lin, Yu-Ta organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan – sequence: 5 givenname: Ying-Jui surname: Ho fullname: Ho, Ying-Jui organization: Department of Psychology, Chung Shan Medical University, Taichung, Taiwan – sequence: 6 givenname: To-Jung surname: Tseng fullname: Tseng, To-Jung organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan – sequence: 7 givenname: Chyn-Tair surname: Lan fullname: Lan, Chyn-Tair organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan – sequence: 8 givenname: Shao-Ti surname: Li fullname: Li, Shao-Ti organization: Division of Radiation Oncology, Chung Shan University Hospital, Taichung, Taiwan – sequence: 9 givenname: Wen-Chieh orcidid: 0000-0001-7848-2124 surname: Liao fullname: Liao, Wen-Chieh email: khrnangel@gmail.com organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31689489$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9uFCEUxompsdvqKxjilTezwswwf7yyXVs1qdpUvSYMnOmyZWAEdpt5GN9VtruNpldLTsKBfOd34Hwn6Mg6Cwi9oWROCa3ereYW1t4FqcFKmOeEtnOSgrTP0Iw2dZHVrCyP0IwUpMpKlufH6CSEFUmLlcULdFzQqmnLpp2hP1_BiOistvjau8FFCPgb-A3gG7gFC15E7Sy-dMa4e21v8YVVWXTZD60gCdMzvF-KcTnhbsJnUoJ5KEnCxRRduEvnKEyCDU6B2d5vtMBxCfhf4xuQMEbnMwUjWAU24msRl_dieome98IEeLXfT9Gvy4ufi8_Z1fdPXxZnV5ksizZmktG-oYKyTnR9LVnVVrVsSyaUEjnJaypbIE0vSpmnjHYdqVjNlOzbRopeQXGK3u64o3e_1xAiH3RIfzHCglsHnhc0Z6wgdZ6kr_fSdTeA4qPXg_ATfxxpEnzYCWSyKHjoudTxYYrRC204JXzrIl_x_13kWxc5SUG2iPdPEI9dDir-uCuGNLCNBs_3KqU9yMiV04dhzp9gZLJPS2HuYDoU8hfcONyL |
CitedBy_id | crossref_primary_10_1093_biolre_ioab155 crossref_primary_10_3390_molecules27206934 crossref_primary_10_1007_s12035_021_02473_z crossref_primary_10_3390_biomedicines10071678 crossref_primary_10_3390_molecules28093742 crossref_primary_10_3390_ijms21165645 crossref_primary_10_1002_adfm_202004537 crossref_primary_10_1016_j_theriogenology_2022_05_008 crossref_primary_10_1111_jcmm_16325 crossref_primary_10_3390_antiox10010047 crossref_primary_10_1007_s11033_021_06439_1 |
Cites_doi | 10.1385/ENDO:27:2:137 10.1097/00006534-199412000-00019 10.1007/s11064-009-9985-9 10.1016/S0167-4889(00)00127-0 10.2174/157015908785777201 10.1111/bph.14197 10.1023/B:NEUR.0000021903.24849.6c 10.1016/j.cbpa.2011.12.005 10.1089/neu.2006.23.281 10.1016/0304-3940(94)90532-0 10.1034/j.1600-079X.2003.00047.x 10.1523/JNEUROSCI.17-03-00924.1997 10.1159/000109138 10.1002/dneu.22227 10.1016/j.neuron.2004.08.037 10.1111/j.1600-079X.2005.00282.x 10.1016/S0021-9258(17)39683-7 10.1034/j.1600-079X.2000.280401.x 10.1111/j.1471-4159.1971.tb03752.x 10.1002/bies.950190906 10.1371/journal.pcbi.1002421 10.1111/j.1471-4159.1985.tb12880.x 10.1111/j.1469-7580.2009.01135.x 10.1016/j.nbd.2013.03.008 10.2174/0929867324666170209104926 10.1016/j.mce.2012.01.004 10.1016/S0021-9258(18)67528-3 10.1523/JNEUROSCI.09-03-00893.1989 10.1523/JNEUROSCI.08-03-01026.1988 10.1111/j.1600-079X.1994.tb00114.x 10.1016/0165-0270(93)90068-3 10.7150/thno.19500 10.1016/j.jocn.2005.07.019 10.1111/jpi.12125 10.1023/A:1020107915919 10.1242/jcs.02716 10.1002/(SICI)1097-0169(200005)46:1<28::AID-CM4>3.0.CO;2-5 10.1096/fj.03-0694fje 10.1016/0304-4165(96)00025-6 10.3390/ijms16011907 10.1210/edrv-12-2-151 10.1023/A:1020763716886 10.1523/JNEUROSCI.17-15-05807.1997 |
ContentType | Journal Article |
Copyright | 2019 IBRO Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 IBRO – notice: Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neuroscience.2019.09.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 292 |
ExternalDocumentID | 31689489 10_1016_j_neuroscience_2019_09_009 S0306452219306542 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG .55 .GJ 29N 53G 5VS AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AHHHB AIGII ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c439t-c51f81a15babf7c56967c945adda20271c9e08fa4c2c9e1bb06575dcf98cafde3 |
IEDL.DBID | .~1 |
ISSN | 0306-4522 1873-7544 |
IngestDate | Fri Jul 11 10:47:32 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 02:21:47 EDT 2025 Fri Feb 23 02:48:40 EST 2024 Tue Aug 26 17:32:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N2a cells ESN β3-tubulin end-to-side neurorrhaphy CMAP MT2 PNI MT1 MTs RA GAP43 CaMKII McN UN melatonin receptor nerve regeneration melatonin cytoskeletal remodeling MEPs |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-c51f81a15babf7c56967c945adda20271c9e08fa4c2c9e1bb06575dcf98cafde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7848-2124 |
PMID | 31689489 |
PQID | 2312553072 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2312553072 pubmed_primary_31689489 crossref_citationtrail_10_1016_j_neuroscience_2019_09_009 crossref_primary_10_1016_j_neuroscience_2019_09_009 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2019_09_009 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2019_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Slaughter, Wang, Black (b0175) 1997; 17 Zhang, Cook, Kim, Baranov, Jiang, Smith, Cormier, Bennett, Browser, Day, Carlisle, Ferrante, Wang, Friedlander (b0240) 2013; 55 Benitez-King, Soto-Vega, Ramirez-Rodriguez (b0020) 2009; 24 Conti, Conconi, Hertens, Skwarlo-Sonta, Markowska, Maestroni (b0075) 2000; 28 Slominski, Fischer, Zmijewski, Wortsman, Semak, Zbytek, Slominski, Tobin (b0180) 2005; 27 Lin, Lin, Zhao, Zhang, Zhang, Chen, Ding, Chang, Zhang, Sun, Zhao, Zhu, Li, Li (b0125) 2017; 7 Skelding, Rostas (b0170) 2009; 34 Viterbo, Trindade, Hoshino, Mazzoni Neto (b0205) 1994; 94 Lee, Wolff (b0115) 1984; 259 Pang, Wan, Brown (b0150) 1997; 6 Slominski, Reiter, Schlabritz-Loutsevitch, Ostrom, Slominski (b0185) 2012; 351 Masse, Kelly (b0130) 1997; 17 Caroni (b0055) 1997; 19 Benitez-King, Rios, Martinez, Anton-Tay (b0015) 1996; 1290 Wan, Pang (b0210) 1994; 180 Bordt, McKeon, Li, Witt-Enderby, Melan (b0030) 2001; 1499 Chang, Liu, Hsu, Chen, Wang, Wu, Chen, Ho, Liao (b0070) 2014; 56 Cardinali, Rosner (b0050) 1971; 18 Hoffman (b0100) 1989; 9 Valdes-Tovar, Estrada-Reyes, Solis-Chagoyan, Argueta, Dorantes-Barron, Quero-Chavez, Cruz-Garduno, Cercos, Trueta, Oikawa-Sala, Dubocovich, Benitez-King (b0195) 2018; 175 Bertelli, Mira (b0025) 1993; 46 Wen, Guirland, Ming, Zheng (b0220) 2004; 43 Hagg (b0095) 2006; 23 Craddock, Tuszynski, Hameroff (b0080) 2012; 8 Cammarota, Bevilaqua, Viola, Kerr, Reichmann, Teixeira, Bulla, Izquierdo, Medina (b0045) 2002; 22 Witt-Enderby, MacKenzie, McKeon, Carroll, Bordt, Melan (b0225) 2000; 46 Viterbo, Trindade, Hoshino, Mazzoni Neto (b0200) 1992; 110 Wandosell, Serrano, Hernandez, Avila (b0215) 1986; 261 Turgut, Oktem, Uysal, Yurtseven (b0190) 2006; 13 Carrillo-Vico, Calvo, Abreu, Lardone, Garcia-Maurino, Reiter, Guerrero (b0060) 2004; 18 Zahn, Lansmann, Berger, Speckmann, Musshoff (b0235) 2003; 35 Cary, Cuttler, Duda, Kusema, Myers, Tilden (b0065) 2012; 161 Kaya, Sarikcioglu, Aslan, Kencebay, Demir, Derin, Angelov, Yildirim (b0110) 2012 Benitez-King (b0010) 2006; 40 Nogueira, Sampaio (b0140) 2017; 220 Yamamoto, Fukunaga, Goto, Tanaka, Miyamoto (b0230) 1985; 44 Sakurai, Ayukawa, Setsuie, Nishikawa, Hara, Ohashi, Nishimoto, Abe, Kudo, Sekiguchi, Sato, Aoki, Noda, Wada (b0165) 2006; 119 Reiter (b0160) 1991; 12 Ortiz, Benitez-King, Rosales-Corral, Pacheco-Moises, Velazquez-Brizuela (b0145) 2008; 6 Dubocovich (b0090) 1988; 246 Dominguez-Alonso, Valdes-Tovar, Solis-Chagoyan, Benitez-King (b0085) 2015; 16 Bubenik (b0040) 2002; 47 Huerto-Delgadillo, Anton-Tay, Benitez-King (b0105) 1994; 17 Liao, Chen, Wang, Tseng (b0120) 2009; 215 Brushart (b0035) 1988; 8 McVicker, Millette, Dent (b0135) 2015; 75 Avwenagha, Campbell, Bird (b0005) 2003; 32 Posa, De Gregorio, Gobbi, Comai (b0155) 2018; 25 Benitez-King (10.1016/j.neuroscience.2019.09.009_b0015) 1996; 1290 Pang (10.1016/j.neuroscience.2019.09.009_b0150) 1997; 6 Wan (10.1016/j.neuroscience.2019.09.009_b0210) 1994; 180 Avwenagha (10.1016/j.neuroscience.2019.09.009_b0005) 2003; 32 Caroni (10.1016/j.neuroscience.2019.09.009_b0055) 1997; 19 Dubocovich (10.1016/j.neuroscience.2019.09.009_b0090) 1988; 246 Zhang (10.1016/j.neuroscience.2019.09.009_b0240) 2013; 55 Conti (10.1016/j.neuroscience.2019.09.009_b0075) 2000; 28 Wen (10.1016/j.neuroscience.2019.09.009_b0220) 2004; 43 Brushart (10.1016/j.neuroscience.2019.09.009_b0035) 1988; 8 Bubenik (10.1016/j.neuroscience.2019.09.009_b0040) 2002; 47 McVicker (10.1016/j.neuroscience.2019.09.009_b0135) 2015; 75 Hagg (10.1016/j.neuroscience.2019.09.009_b0095) 2006; 23 Bordt (10.1016/j.neuroscience.2019.09.009_b0030) 2001; 1499 Dominguez-Alonso (10.1016/j.neuroscience.2019.09.009_b0085) 2015; 16 Lin (10.1016/j.neuroscience.2019.09.009_b0125) 2017; 7 Zahn (10.1016/j.neuroscience.2019.09.009_b0235) 2003; 35 Hoffman (10.1016/j.neuroscience.2019.09.009_b0100) 1989; 9 Turgut (10.1016/j.neuroscience.2019.09.009_b0190) 2006; 13 Cary (10.1016/j.neuroscience.2019.09.009_b0065) 2012; 161 Chang (10.1016/j.neuroscience.2019.09.009_b0070) 2014; 56 Benitez-King (10.1016/j.neuroscience.2019.09.009_b0010) 2006; 40 Posa (10.1016/j.neuroscience.2019.09.009_b0155) 2018; 25 Viterbo (10.1016/j.neuroscience.2019.09.009_b0205) 1994; 94 Witt-Enderby (10.1016/j.neuroscience.2019.09.009_b0225) 2000; 46 Viterbo (10.1016/j.neuroscience.2019.09.009_b0200) 1992; 110 Huerto-Delgadillo (10.1016/j.neuroscience.2019.09.009_b0105) 1994; 17 Slominski (10.1016/j.neuroscience.2019.09.009_b0180) 2005; 27 Cardinali (10.1016/j.neuroscience.2019.09.009_b0050) 1971; 18 Nogueira (10.1016/j.neuroscience.2019.09.009_b0140) 2017; 220 Slaughter (10.1016/j.neuroscience.2019.09.009_b0175) 1997; 17 Benitez-King (10.1016/j.neuroscience.2019.09.009_b0020) 2009; 24 Craddock (10.1016/j.neuroscience.2019.09.009_b0080) 2012; 8 Liao (10.1016/j.neuroscience.2019.09.009_b0120) 2009; 215 Reiter (10.1016/j.neuroscience.2019.09.009_b0160) 1991; 12 Slominski (10.1016/j.neuroscience.2019.09.009_b0185) 2012; 351 Yamamoto (10.1016/j.neuroscience.2019.09.009_b0230) 1985; 44 Bertelli (10.1016/j.neuroscience.2019.09.009_b0025) 1993; 46 Valdes-Tovar (10.1016/j.neuroscience.2019.09.009_b0195) 2018; 175 Kaya (10.1016/j.neuroscience.2019.09.009_b0110) 2012 Skelding (10.1016/j.neuroscience.2019.09.009_b0170) 2009; 34 Cammarota (10.1016/j.neuroscience.2019.09.009_b0045) 2002; 22 Lee (10.1016/j.neuroscience.2019.09.009_b0115) 1984; 259 Masse (10.1016/j.neuroscience.2019.09.009_b0130) 1997; 17 Ortiz (10.1016/j.neuroscience.2019.09.009_b0145) 2008; 6 Wandosell (10.1016/j.neuroscience.2019.09.009_b0215) 1986; 261 Carrillo-Vico (10.1016/j.neuroscience.2019.09.009_b0060) 2004; 18 Sakurai (10.1016/j.neuroscience.2019.09.009_b0165) 2006; 119 |
References_xml | – volume: 8 start-page: 1026 year: 1988 end-page: 1031 ident: b0035 article-title: Preferential reinnervation of motor nerves by regenerating motor axons publication-title: J Neurosci – volume: 44 start-page: 759 year: 1985 end-page: 768 ident: b0230 article-title: Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation publication-title: J Neurochem – volume: 34 start-page: 1792 year: 2009 end-page: 1804 ident: b0170 article-title: Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment publication-title: Neurochem Res – volume: 27 start-page: 137 year: 2005 end-page: 148 ident: b0180 article-title: On the role of melatonin in skin physiology and pathology publication-title: Endocrine – volume: 13 start-page: 753 year: 2006 end-page: 758 ident: b0190 article-title: Immunohistochemical profile of transforming growth factor-beta1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats publication-title: J Clin Neurosci – volume: 35 start-page: 24 year: 2003 end-page: 31 ident: b0235 article-title: Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation publication-title: J Pineal Res – volume: 6 start-page: 203 year: 2008 end-page: 214 ident: b0145 article-title: Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders publication-title: Curr Neuropharmacol – volume: 259 start-page: 8041 year: 1984 end-page: 8044 ident: b0115 article-title: The calmodulin-binding domain on microtubule-associated protein 2 publication-title: J Biol Chem – volume: 94 start-page: 1038 year: 1994 end-page: 1047 ident: b0205 article-title: End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats publication-title: Plast Reconstr Surg – volume: 55 start-page: 26 year: 2013 end-page: 35 ident: b0240 article-title: Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis publication-title: Neurobiol Dis – volume: 6 start-page: 272 year: 1997 end-page: 283 ident: b0150 article-title: Melatonin receptors in the spinal cord publication-title: Biol Signals – volume: 43 start-page: 835 year: 2004 end-page: 846 ident: b0220 article-title: A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance publication-title: Neuron – volume: 246 start-page: 902 year: 1988 end-page: 910 ident: b0090 article-title: Luzindole (N-0774): a novel melatonin receptor antagonist publication-title: J Pharmacol Exp Ther – volume: 32 start-page: 1077 year: 2003 end-page: 1089 ident: b0005 article-title: Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment publication-title: J Neurocytol – volume: 215 start-page: 506 year: 2009 end-page: 521 ident: b0120 article-title: The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in the rat brachial plexus publication-title: J Anat – year: 2012 ident: b0110 article-title: Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses publication-title: Childs Nerv Syst – volume: 261 start-page: 10332 year: 1986 end-page: 10339 ident: b0215 article-title: Phosphorylation of tubulin by a calmodulin-dependent protein kinase publication-title: J Biol Chem – volume: 1499 start-page: 257 year: 2001 end-page: 264 ident: b0030 article-title: N1E–115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin publication-title: Biochim Biophys Acta – volume: 18 start-page: 1769 year: 1971 end-page: 1770 ident: b0050 article-title: Metabolism of serotonin by the rat retina in vitro publication-title: J Neurochem – volume: 16 start-page: 1907 year: 2015 end-page: 1927 ident: b0085 article-title: Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex publication-title: Int J Mol Sci – volume: 75 start-page: 423 year: 2015 end-page: 434 ident: b0135 article-title: Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII publication-title: Dev Neurobiol – volume: 24 start-page: 789 year: 2009 end-page: 799 ident: b0020 article-title: Melatonin modulates microfilament phenotypes in epithelial cells: implications for adhesion and inhibition of cancer cell migration publication-title: Histol Histopathol – volume: 23 start-page: 281 year: 2006 end-page: 294 ident: b0095 article-title: Collateral sprouting as a target for improved function after spinal cord injury publication-title: J Neurotrauma – volume: 220 start-page: 3826 year: 2017 end-page: 3835 ident: b0140 article-title: Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos publication-title: The Journal of experimental biology – volume: 25 start-page: 3866 year: 2018 end-page: 3882 ident: b0155 article-title: Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain publication-title: Curr Med Chem – volume: 40 start-page: 1 year: 2006 end-page: 9 ident: b0010 article-title: Melatonin as a cytoskeletal modulator: implications for cell physiology and disease publication-title: J Pineal Res – volume: 19 start-page: 767 year: 1997 end-page: 775 ident: b0055 article-title: Intrinsic neuronal determinants that promote axonal sprouting and elongation publication-title: BioEssays – volume: 9 start-page: 893 year: 1989 end-page: 897 ident: b0100 article-title: Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons publication-title: J Neurosci – volume: 28 start-page: 193 year: 2000 end-page: 202 ident: b0075 article-title: Evidence for melatonin synthesis in mouse and human bone marrow cells publication-title: J Pineal Res – volume: 7 start-page: 2015 year: 2017 end-page: 2032 ident: b0125 article-title: Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice publication-title: Theranostics – volume: 1290 start-page: 191 year: 1996 end-page: 196 ident: b0015 article-title: In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin publication-title: Biochim Biophys Acta – volume: 46 start-page: 203 year: 1993 end-page: 208 ident: b0025 article-title: Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat publication-title: J Neurosci Methods – volume: 351 start-page: 152 year: 2012 end-page: 166 ident: b0185 article-title: Melatonin membrane receptors in peripheral tissues: distribution and functions publication-title: Mol Cell Endocrinol – volume: 46 start-page: 28 year: 2000 end-page: 42 ident: b0225 article-title: Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor publication-title: Cell Motil Cytoskelet – volume: 22 start-page: 259 year: 2002 end-page: 267 ident: b0045 article-title: Participation of CaMKII in neuronal plasticity and memory formation publication-title: Cell Mol Neurobiol – volume: 12 start-page: 151 year: 1991 end-page: 180 ident: b0160 article-title: Pineal melatonin: cell biology of its synthesis and of its physiological interactions publication-title: Endocr Rev – volume: 110 start-page: 267 year: 1992 end-page: 275 ident: b0200 article-title: Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats publication-title: Rev Paul Med – volume: 17 start-page: 924 year: 1997 end-page: 931 ident: b0130 article-title: Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation publication-title: J Neurosci – volume: 180 start-page: 253 year: 1994 end-page: 256 ident: b0210 article-title: Segmental, coronal and subcellular distribution of 2-[125I]iodomelatonin binding sites in the chicken spinal cord publication-title: Neurosci Lett – volume: 17 start-page: 5807 year: 1997 end-page: 5819 ident: b0175 article-title: Microtubule transport from the cell body into the axons of growing neurons publication-title: J Neurosci – volume: 161 start-page: 355 year: 2012 end-page: 360 ident: b0065 article-title: Melatonin: neuritogenesis and neuroprotective effects in crustacean x-organ cells publication-title: Comp Biochem Physiol A: Mol Integr Physiol – volume: 56 start-page: 322 year: 2014 end-page: 332 ident: b0070 article-title: Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury publication-title: J Pineal Res – volume: 18 start-page: 537 year: 2004 end-page: 539 ident: b0060 article-title: Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance publication-title: FASEB J – volume: 175 start-page: 3200 year: 2018 end-page: 3208 ident: b0195 article-title: Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression publication-title: Br J Pharmacol – volume: 8 year: 2012 ident: b0080 article-title: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? publication-title: PLoS Comput Biol – volume: 17 start-page: 55 year: 1994 end-page: 62 ident: b0105 article-title: Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist publication-title: J Pineal Res – volume: 119 start-page: 162 year: 2006 end-page: 171 ident: b0165 article-title: Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation publication-title: J Cell Sci – volume: 47 start-page: 2336 year: 2002 end-page: 2348 ident: b0040 article-title: Gastrointestinal melatonin: localization, function, and clinical relevance publication-title: Dig Dis Sci – volume: 27 start-page: 137 year: 2005 ident: 10.1016/j.neuroscience.2019.09.009_b0180 article-title: On the role of melatonin in skin physiology and pathology publication-title: Endocrine doi: 10.1385/ENDO:27:2:137 – volume: 94 start-page: 1038 year: 1994 ident: 10.1016/j.neuroscience.2019.09.009_b0205 article-title: End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats publication-title: Plast Reconstr Surg doi: 10.1097/00006534-199412000-00019 – volume: 34 start-page: 1792 year: 2009 ident: 10.1016/j.neuroscience.2019.09.009_b0170 article-title: Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment publication-title: Neurochem Res doi: 10.1007/s11064-009-9985-9 – volume: 1499 start-page: 257 year: 2001 ident: 10.1016/j.neuroscience.2019.09.009_b0030 article-title: N1E–115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin publication-title: Biochim Biophys Acta doi: 10.1016/S0167-4889(00)00127-0 – volume: 6 start-page: 203 year: 2008 ident: 10.1016/j.neuroscience.2019.09.009_b0145 article-title: Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders publication-title: Curr Neuropharmacol doi: 10.2174/157015908785777201 – volume: 175 start-page: 3200 year: 2018 ident: 10.1016/j.neuroscience.2019.09.009_b0195 article-title: Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression publication-title: Br J Pharmacol doi: 10.1111/bph.14197 – volume: 32 start-page: 1077 year: 2003 ident: 10.1016/j.neuroscience.2019.09.009_b0005 article-title: Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment publication-title: J Neurocytol doi: 10.1023/B:NEUR.0000021903.24849.6c – volume: 161 start-page: 355 year: 2012 ident: 10.1016/j.neuroscience.2019.09.009_b0065 article-title: Melatonin: neuritogenesis and neuroprotective effects in crustacean x-organ cells publication-title: Comp Biochem Physiol A: Mol Integr Physiol doi: 10.1016/j.cbpa.2011.12.005 – volume: 23 start-page: 281 year: 2006 ident: 10.1016/j.neuroscience.2019.09.009_b0095 article-title: Collateral sprouting as a target for improved function after spinal cord injury publication-title: J Neurotrauma doi: 10.1089/neu.2006.23.281 – volume: 180 start-page: 253 year: 1994 ident: 10.1016/j.neuroscience.2019.09.009_b0210 article-title: Segmental, coronal and subcellular distribution of 2-[125I]iodomelatonin binding sites in the chicken spinal cord publication-title: Neurosci Lett doi: 10.1016/0304-3940(94)90532-0 – volume: 35 start-page: 24 year: 2003 ident: 10.1016/j.neuroscience.2019.09.009_b0235 article-title: Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation publication-title: J Pineal Res doi: 10.1034/j.1600-079X.2003.00047.x – volume: 17 start-page: 924 year: 1997 ident: 10.1016/j.neuroscience.2019.09.009_b0130 article-title: Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-03-00924.1997 – volume: 6 start-page: 272 year: 1997 ident: 10.1016/j.neuroscience.2019.09.009_b0150 article-title: Melatonin receptors in the spinal cord publication-title: Biol Signals doi: 10.1159/000109138 – volume: 75 start-page: 423 year: 2015 ident: 10.1016/j.neuroscience.2019.09.009_b0135 article-title: Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII publication-title: Dev Neurobiol doi: 10.1002/dneu.22227 – volume: 43 start-page: 835 year: 2004 ident: 10.1016/j.neuroscience.2019.09.009_b0220 article-title: A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance publication-title: Neuron doi: 10.1016/j.neuron.2004.08.037 – volume: 40 start-page: 1 year: 2006 ident: 10.1016/j.neuroscience.2019.09.009_b0010 article-title: Melatonin as a cytoskeletal modulator: implications for cell physiology and disease publication-title: J Pineal Res doi: 10.1111/j.1600-079X.2005.00282.x – volume: 259 start-page: 8041 year: 1984 ident: 10.1016/j.neuroscience.2019.09.009_b0115 article-title: The calmodulin-binding domain on microtubule-associated protein 2 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)39683-7 – volume: 28 start-page: 193 year: 2000 ident: 10.1016/j.neuroscience.2019.09.009_b0075 article-title: Evidence for melatonin synthesis in mouse and human bone marrow cells publication-title: J Pineal Res doi: 10.1034/j.1600-079X.2000.280401.x – volume: 18 start-page: 1769 year: 1971 ident: 10.1016/j.neuroscience.2019.09.009_b0050 article-title: Metabolism of serotonin by the rat retina in vitro publication-title: J Neurochem doi: 10.1111/j.1471-4159.1971.tb03752.x – volume: 19 start-page: 767 year: 1997 ident: 10.1016/j.neuroscience.2019.09.009_b0055 article-title: Intrinsic neuronal determinants that promote axonal sprouting and elongation publication-title: BioEssays doi: 10.1002/bies.950190906 – volume: 8 year: 2012 ident: 10.1016/j.neuroscience.2019.09.009_b0080 article-title: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002421 – volume: 44 start-page: 759 year: 1985 ident: 10.1016/j.neuroscience.2019.09.009_b0230 article-title: Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation publication-title: J Neurochem doi: 10.1111/j.1471-4159.1985.tb12880.x – volume: 24 start-page: 789 year: 2009 ident: 10.1016/j.neuroscience.2019.09.009_b0020 article-title: Melatonin modulates microfilament phenotypes in epithelial cells: implications for adhesion and inhibition of cancer cell migration publication-title: Histol Histopathol – volume: 215 start-page: 506 year: 2009 ident: 10.1016/j.neuroscience.2019.09.009_b0120 article-title: The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in the rat brachial plexus publication-title: J Anat doi: 10.1111/j.1469-7580.2009.01135.x – volume: 55 start-page: 26 year: 2013 ident: 10.1016/j.neuroscience.2019.09.009_b0240 article-title: Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2013.03.008 – volume: 25 start-page: 3866 year: 2018 ident: 10.1016/j.neuroscience.2019.09.009_b0155 article-title: Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain publication-title: Curr Med Chem doi: 10.2174/0929867324666170209104926 – volume: 351 start-page: 152 year: 2012 ident: 10.1016/j.neuroscience.2019.09.009_b0185 article-title: Melatonin membrane receptors in peripheral tissues: distribution and functions publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2012.01.004 – volume: 261 start-page: 10332 year: 1986 ident: 10.1016/j.neuroscience.2019.09.009_b0215 article-title: Phosphorylation of tubulin by a calmodulin-dependent protein kinase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)67528-3 – volume: 9 start-page: 893 year: 1989 ident: 10.1016/j.neuroscience.2019.09.009_b0100 article-title: Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.09-03-00893.1989 – volume: 220 start-page: 3826 year: 2017 ident: 10.1016/j.neuroscience.2019.09.009_b0140 article-title: Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos publication-title: The Journal of experimental biology – volume: 8 start-page: 1026 year: 1988 ident: 10.1016/j.neuroscience.2019.09.009_b0035 article-title: Preferential reinnervation of motor nerves by regenerating motor axons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.08-03-01026.1988 – volume: 17 start-page: 55 year: 1994 ident: 10.1016/j.neuroscience.2019.09.009_b0105 article-title: Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist publication-title: J Pineal Res doi: 10.1111/j.1600-079X.1994.tb00114.x – volume: 46 start-page: 203 year: 1993 ident: 10.1016/j.neuroscience.2019.09.009_b0025 article-title: Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat publication-title: J Neurosci Methods doi: 10.1016/0165-0270(93)90068-3 – volume: 7 start-page: 2015 year: 2017 ident: 10.1016/j.neuroscience.2019.09.009_b0125 article-title: Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice publication-title: Theranostics doi: 10.7150/thno.19500 – volume: 13 start-page: 753 year: 2006 ident: 10.1016/j.neuroscience.2019.09.009_b0190 article-title: Immunohistochemical profile of transforming growth factor-beta1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2005.07.019 – volume: 246 start-page: 902 year: 1988 ident: 10.1016/j.neuroscience.2019.09.009_b0090 article-title: Luzindole (N-0774): a novel melatonin receptor antagonist publication-title: J Pharmacol Exp Ther – year: 2012 ident: 10.1016/j.neuroscience.2019.09.009_b0110 article-title: Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses publication-title: Childs Nerv Syst – volume: 56 start-page: 322 year: 2014 ident: 10.1016/j.neuroscience.2019.09.009_b0070 article-title: Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury publication-title: J Pineal Res doi: 10.1111/jpi.12125 – volume: 47 start-page: 2336 year: 2002 ident: 10.1016/j.neuroscience.2019.09.009_b0040 article-title: Gastrointestinal melatonin: localization, function, and clinical relevance publication-title: Dig Dis Sci doi: 10.1023/A:1020107915919 – volume: 119 start-page: 162 year: 2006 ident: 10.1016/j.neuroscience.2019.09.009_b0165 article-title: Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation publication-title: J Cell Sci doi: 10.1242/jcs.02716 – volume: 46 start-page: 28 year: 2000 ident: 10.1016/j.neuroscience.2019.09.009_b0225 article-title: Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor publication-title: Cell Motil Cytoskelet doi: 10.1002/(SICI)1097-0169(200005)46:1<28::AID-CM4>3.0.CO;2-5 – volume: 18 start-page: 537 year: 2004 ident: 10.1016/j.neuroscience.2019.09.009_b0060 article-title: Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance publication-title: FASEB J doi: 10.1096/fj.03-0694fje – volume: 110 start-page: 267 year: 1992 ident: 10.1016/j.neuroscience.2019.09.009_b0200 article-title: Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats publication-title: Rev Paul Med – volume: 1290 start-page: 191 year: 1996 ident: 10.1016/j.neuroscience.2019.09.009_b0015 article-title: In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin publication-title: Biochim Biophys Acta doi: 10.1016/0304-4165(96)00025-6 – volume: 16 start-page: 1907 year: 2015 ident: 10.1016/j.neuroscience.2019.09.009_b0085 article-title: Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex publication-title: Int J Mol Sci doi: 10.3390/ijms16011907 – volume: 12 start-page: 151 year: 1991 ident: 10.1016/j.neuroscience.2019.09.009_b0160 article-title: Pineal melatonin: cell biology of its synthesis and of its physiological interactions publication-title: Endocr Rev doi: 10.1210/edrv-12-2-151 – volume: 22 start-page: 259 year: 2002 ident: 10.1016/j.neuroscience.2019.09.009_b0045 article-title: Participation of CaMKII in neuronal plasticity and memory formation publication-title: Cell Mol Neurobiol doi: 10.1023/A:1020763716886 – volume: 17 start-page: 5807 year: 1997 ident: 10.1016/j.neuroscience.2019.09.009_b0175 article-title: Microtubule transport from the cell body into the axons of growing neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-15-05807.1997 |
SSID | ssj0000543 |
Score | 2.3780708 |
Snippet | •Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a... Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 282 |
SubjectTerms | Animals cytoskeletal remodeling Cytoskeleton end-to-side neurorrhaphy melatonin Melatonin - pharmacology melatonin receptor Mice Nerve Regeneration Rats Rats, Wistar Receptors, Melatonin β3-tubulin |
Title | Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452219306542 https://dx.doi.org/10.1016/j.neuroscience.2019.09.009 https://www.ncbi.nlm.nih.gov/pubmed/31689489 https://www.proquest.com/docview/2312553072 |
Volume | 429 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4huHCpyqM05aFFQr0t8Tp-rSoOUUSUUhGhAhK31e56XQLFjhKnKBf-Cf-1M2s7UIlKkZBySCxP7GTGO9_sfvsNIUcal16gUGaZ7kQM8L_HtIe9XmI_VDwRSZTg5uTzYTS4Ds5uwpsV0mv2wiCtsh77qzHdjdb1kXb9b7bHo1H7EtEu6oEDBHFtl3AHexBjlB8_vdA8AJJULZKhcsazG-FRx_F6pRmJkplcOM1TJCe-naT-B0JdMup_JB9qFEm71Y1ukBWbb5Ktbg4V9MOcfqWO1-kmzLfI8zny3XDWlV447p2d0iHyHOlP-8uJTqNvaB8ConiEREZP85SVBbscpZY67Y7J5BZVrame064xkKfQBE7szctieg-fAcDDl7mmOnj8z0hRwJX05cIATu0YqnvW9Nwt6QVAz0c13ybX_dOr3oDVTRmYAexSMhPyLOGKh1rpLDZhJKLYiCCEcVLhRAo3wnpJpgLjwzuutYdLO6nJRGJUltrOJ7KaF7n9TCjArTjuhNz6GQ94nGqB6n4hFOuZ8kWkWkQ0XpCmVizHxhm_ZUNNu5OvPSjRg9KDlydapLOwHVe6HUtZfWucLZudqTCWSkgvS1mfLKz_ieGl7Q-b-JLwkOPKjcptMZtKAOE-9neK_RbZqQJv8auw85gIEvHlnVffJes-ziU4ft0eWS0nM7sPgKvUB-6JOiBr3e8_BsO_xaQwbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVG9wAvEzA-CmMYCfFmNU7jJBbioapWdWytJrZJe7NsxxmFkVRtxtQfw3_dvU7SbRJIlZD6kEa5-brOvcf28bmEfDQ49QIdZZabfswA_wfMBFjrJQmF5qlM4xQXJ0-m8fg8-nohLrbIsF0Lg7TKJvbXMd1H62ZPr3mbvfls1jtFtIt64ABBfNmlR2Qb1alEh2wPDo_G07uALGryHBzG0KDVHvU0r3uykaiayaWXPUV-4t_z1L9wqM9Ho6dkpwGSdFDf6zOy5YrnZHdQQCf614p-op7a6cfMd8mfCVLecOCVnnj6nVvSKVId6Td36XWn0T10BG2ivIFcRg-KjFUlO51ljnr5jsXiOwpbU7OiA2shVaEJHDhcVeXyJ_wHDA8n83V1cP_vmaYALendhQGfujl08FlbdreiJ4A-b_TqBTkfHZwNx6ypy8AswJeKWcHzlGsujDZ5YkUs48TKSECo1DiWwq10QZrryIawxY0JcHYns7lMrc4z139JOkVZuNeEAuJKkr7gLsx5xJPMSBT4E9Bfz3UoY90lsvWCso1oOdbOuFItO-2Huu9BhR5UAfwC2SX9te28lu7YyOpz62zVLk6FcKogw2xk_WVt_aAZb2z_oW1fCr5znLzRhSuvlwpweIglnpKwS17VDW_9VFh8TEapfPOfV39PHo_PJsfq-HB69JY8CXFowdPt9kinWly7d4C_KrPffF-3CCUzHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+Promotes+Nerve+Regeneration+Following+End-to-Side+Neurorrhaphy+by+Accelerating+Cytoskeletal+Remodeling+via+the+Melatonin+Receptor-dependent+Pathway&rft.jtitle=Neuroscience&rft.au=Liu%2C+Chiung-Hui&rft.au=Chang%2C+Hung-Ming&rft.au=Yang%2C+Yin-Shuo&rft.au=Lin%2C+Yu-Ta&rft.date=2020-03-01&rft.issn=1873-7544&rft.eissn=1873-7544&rft.volume=429&rft.spage=282&rft_id=info:doi/10.1016%2Fj.neuroscience.2019.09.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |