Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway

•Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 429; pp. 282 - 292
Main Authors Liu, Chiung-Hui, Chang, Hung-Ming, Yang, Yin-Shuo, Lin, Yu-Ta, Ho, Ying-Jui, Tseng, To-Jung, Lan, Chyn-Tair, Li, Shao-Ti, Liao, Wen-Chieh
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2020
Subjects
Online AccessGet full text
ISSN0306-4522
1873-7544
1873-7544
DOI10.1016/j.neuroscience.2019.09.009

Cover

Loading…
Abstract •Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons. Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
AbstractList Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
•Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a membrane receptor pathway in neural cells.•Melatonin at physiological concentrations (1–10 nM) causes cytoskeletal changes in regenerated axons. Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
Author Lin, Yu-Ta
Tseng, To-Jung
Chang, Hung-Ming
Yang, Yin-Shuo
Lan, Chyn-Tair
Liu, Chiung-Hui
Li, Shao-Ti
Liao, Wen-Chieh
Ho, Ying-Jui
Author_xml – sequence: 1
  givenname: Chiung-Hui
  surname: Liu
  fullname: Liu, Chiung-Hui
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
– sequence: 2
  givenname: Hung-Ming
  surname: Chang
  fullname: Chang, Hung-Ming
  organization: Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 3
  givenname: Yin-Shuo
  surname: Yang
  fullname: Yang, Yin-Shuo
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
– sequence: 4
  givenname: Yu-Ta
  surname: Lin
  fullname: Lin, Yu-Ta
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
– sequence: 5
  givenname: Ying-Jui
  surname: Ho
  fullname: Ho, Ying-Jui
  organization: Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
– sequence: 6
  givenname: To-Jung
  surname: Tseng
  fullname: Tseng, To-Jung
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
– sequence: 7
  givenname: Chyn-Tair
  surname: Lan
  fullname: Lan, Chyn-Tair
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
– sequence: 8
  givenname: Shao-Ti
  surname: Li
  fullname: Li, Shao-Ti
  organization: Division of Radiation Oncology, Chung Shan University Hospital, Taichung, Taiwan
– sequence: 9
  givenname: Wen-Chieh
  orcidid: 0000-0001-7848-2124
  surname: Liao
  fullname: Liao, Wen-Chieh
  email: khrnangel@gmail.com
  organization: Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31689489$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9uFCEUxompsdvqKxjilTezwswwf7yyXVs1qdpUvSYMnOmyZWAEdpt5GN9VtruNpldLTsKBfOd34Hwn6Mg6Cwi9oWROCa3ereYW1t4FqcFKmOeEtnOSgrTP0Iw2dZHVrCyP0IwUpMpKlufH6CSEFUmLlcULdFzQqmnLpp2hP1_BiOistvjau8FFCPgb-A3gG7gFC15E7Sy-dMa4e21v8YVVWXTZD60gCdMzvF-KcTnhbsJnUoJ5KEnCxRRduEvnKEyCDU6B2d5vtMBxCfhf4xuQMEbnMwUjWAU24msRl_dieome98IEeLXfT9Gvy4ufi8_Z1fdPXxZnV5ksizZmktG-oYKyTnR9LVnVVrVsSyaUEjnJaypbIE0vSpmnjHYdqVjNlOzbRopeQXGK3u64o3e_1xAiH3RIfzHCglsHnhc0Z6wgdZ6kr_fSdTeA4qPXg_ATfxxpEnzYCWSyKHjoudTxYYrRC204JXzrIl_x_13kWxc5SUG2iPdPEI9dDir-uCuGNLCNBs_3KqU9yMiV04dhzp9gZLJPS2HuYDoU8hfcONyL
CitedBy_id crossref_primary_10_1093_biolre_ioab155
crossref_primary_10_3390_molecules27206934
crossref_primary_10_1007_s12035_021_02473_z
crossref_primary_10_3390_biomedicines10071678
crossref_primary_10_3390_molecules28093742
crossref_primary_10_3390_ijms21165645
crossref_primary_10_1002_adfm_202004537
crossref_primary_10_1016_j_theriogenology_2022_05_008
crossref_primary_10_1111_jcmm_16325
crossref_primary_10_3390_antiox10010047
crossref_primary_10_1007_s11033_021_06439_1
Cites_doi 10.1385/ENDO:27:2:137
10.1097/00006534-199412000-00019
10.1007/s11064-009-9985-9
10.1016/S0167-4889(00)00127-0
10.2174/157015908785777201
10.1111/bph.14197
10.1023/B:NEUR.0000021903.24849.6c
10.1016/j.cbpa.2011.12.005
10.1089/neu.2006.23.281
10.1016/0304-3940(94)90532-0
10.1034/j.1600-079X.2003.00047.x
10.1523/JNEUROSCI.17-03-00924.1997
10.1159/000109138
10.1002/dneu.22227
10.1016/j.neuron.2004.08.037
10.1111/j.1600-079X.2005.00282.x
10.1016/S0021-9258(17)39683-7
10.1034/j.1600-079X.2000.280401.x
10.1111/j.1471-4159.1971.tb03752.x
10.1002/bies.950190906
10.1371/journal.pcbi.1002421
10.1111/j.1471-4159.1985.tb12880.x
10.1111/j.1469-7580.2009.01135.x
10.1016/j.nbd.2013.03.008
10.2174/0929867324666170209104926
10.1016/j.mce.2012.01.004
10.1016/S0021-9258(18)67528-3
10.1523/JNEUROSCI.09-03-00893.1989
10.1523/JNEUROSCI.08-03-01026.1988
10.1111/j.1600-079X.1994.tb00114.x
10.1016/0165-0270(93)90068-3
10.7150/thno.19500
10.1016/j.jocn.2005.07.019
10.1111/jpi.12125
10.1023/A:1020107915919
10.1242/jcs.02716
10.1002/(SICI)1097-0169(200005)46:1<28::AID-CM4>3.0.CO;2-5
10.1096/fj.03-0694fje
10.1016/0304-4165(96)00025-6
10.3390/ijms16011907
10.1210/edrv-12-2-151
10.1023/A:1020763716886
10.1523/JNEUROSCI.17-15-05807.1997
ContentType Journal Article
Copyright 2019 IBRO
Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 IBRO
– notice: Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuroscience.2019.09.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 292
ExternalDocumentID 31689489
10_1016_j_neuroscience_2019_09_009
S0306452219306542
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c439t-c51f81a15babf7c56967c945adda20271c9e08fa4c2c9e1bb06575dcf98cafde3
IEDL.DBID .~1
ISSN 0306-4522
1873-7544
IngestDate Fri Jul 11 10:47:32 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 02:21:47 EDT 2025
Fri Feb 23 02:48:40 EST 2024
Tue Aug 26 17:32:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords N2a cells
ESN
β3-tubulin
end-to-side neurorrhaphy
CMAP
MT2
PNI
MT1
MTs
RA
GAP43
CaMKII
McN
UN
melatonin receptor
nerve regeneration
melatonin
cytoskeletal remodeling
MEPs
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-c51f81a15babf7c56967c945adda20271c9e08fa4c2c9e1bb06575dcf98cafde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7848-2124
PMID 31689489
PQID 2312553072
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2312553072
pubmed_primary_31689489
crossref_citationtrail_10_1016_j_neuroscience_2019_09_009
crossref_primary_10_1016_j_neuroscience_2019_09_009
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2019_09_009
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2019_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Slaughter, Wang, Black (b0175) 1997; 17
Zhang, Cook, Kim, Baranov, Jiang, Smith, Cormier, Bennett, Browser, Day, Carlisle, Ferrante, Wang, Friedlander (b0240) 2013; 55
Benitez-King, Soto-Vega, Ramirez-Rodriguez (b0020) 2009; 24
Conti, Conconi, Hertens, Skwarlo-Sonta, Markowska, Maestroni (b0075) 2000; 28
Slominski, Fischer, Zmijewski, Wortsman, Semak, Zbytek, Slominski, Tobin (b0180) 2005; 27
Lin, Lin, Zhao, Zhang, Zhang, Chen, Ding, Chang, Zhang, Sun, Zhao, Zhu, Li, Li (b0125) 2017; 7
Skelding, Rostas (b0170) 2009; 34
Viterbo, Trindade, Hoshino, Mazzoni Neto (b0205) 1994; 94
Lee, Wolff (b0115) 1984; 259
Pang, Wan, Brown (b0150) 1997; 6
Slominski, Reiter, Schlabritz-Loutsevitch, Ostrom, Slominski (b0185) 2012; 351
Masse, Kelly (b0130) 1997; 17
Caroni (b0055) 1997; 19
Benitez-King, Rios, Martinez, Anton-Tay (b0015) 1996; 1290
Wan, Pang (b0210) 1994; 180
Bordt, McKeon, Li, Witt-Enderby, Melan (b0030) 2001; 1499
Chang, Liu, Hsu, Chen, Wang, Wu, Chen, Ho, Liao (b0070) 2014; 56
Cardinali, Rosner (b0050) 1971; 18
Hoffman (b0100) 1989; 9
Valdes-Tovar, Estrada-Reyes, Solis-Chagoyan, Argueta, Dorantes-Barron, Quero-Chavez, Cruz-Garduno, Cercos, Trueta, Oikawa-Sala, Dubocovich, Benitez-King (b0195) 2018; 175
Bertelli, Mira (b0025) 1993; 46
Wen, Guirland, Ming, Zheng (b0220) 2004; 43
Hagg (b0095) 2006; 23
Craddock, Tuszynski, Hameroff (b0080) 2012; 8
Cammarota, Bevilaqua, Viola, Kerr, Reichmann, Teixeira, Bulla, Izquierdo, Medina (b0045) 2002; 22
Witt-Enderby, MacKenzie, McKeon, Carroll, Bordt, Melan (b0225) 2000; 46
Viterbo, Trindade, Hoshino, Mazzoni Neto (b0200) 1992; 110
Wandosell, Serrano, Hernandez, Avila (b0215) 1986; 261
Turgut, Oktem, Uysal, Yurtseven (b0190) 2006; 13
Carrillo-Vico, Calvo, Abreu, Lardone, Garcia-Maurino, Reiter, Guerrero (b0060) 2004; 18
Zahn, Lansmann, Berger, Speckmann, Musshoff (b0235) 2003; 35
Cary, Cuttler, Duda, Kusema, Myers, Tilden (b0065) 2012; 161
Kaya, Sarikcioglu, Aslan, Kencebay, Demir, Derin, Angelov, Yildirim (b0110) 2012
Benitez-King (b0010) 2006; 40
Nogueira, Sampaio (b0140) 2017; 220
Yamamoto, Fukunaga, Goto, Tanaka, Miyamoto (b0230) 1985; 44
Sakurai, Ayukawa, Setsuie, Nishikawa, Hara, Ohashi, Nishimoto, Abe, Kudo, Sekiguchi, Sato, Aoki, Noda, Wada (b0165) 2006; 119
Reiter (b0160) 1991; 12
Ortiz, Benitez-King, Rosales-Corral, Pacheco-Moises, Velazquez-Brizuela (b0145) 2008; 6
Dubocovich (b0090) 1988; 246
Dominguez-Alonso, Valdes-Tovar, Solis-Chagoyan, Benitez-King (b0085) 2015; 16
Bubenik (b0040) 2002; 47
Huerto-Delgadillo, Anton-Tay, Benitez-King (b0105) 1994; 17
Liao, Chen, Wang, Tseng (b0120) 2009; 215
Brushart (b0035) 1988; 8
McVicker, Millette, Dent (b0135) 2015; 75
Avwenagha, Campbell, Bird (b0005) 2003; 32
Posa, De Gregorio, Gobbi, Comai (b0155) 2018; 25
Benitez-King (10.1016/j.neuroscience.2019.09.009_b0015) 1996; 1290
Pang (10.1016/j.neuroscience.2019.09.009_b0150) 1997; 6
Wan (10.1016/j.neuroscience.2019.09.009_b0210) 1994; 180
Avwenagha (10.1016/j.neuroscience.2019.09.009_b0005) 2003; 32
Caroni (10.1016/j.neuroscience.2019.09.009_b0055) 1997; 19
Dubocovich (10.1016/j.neuroscience.2019.09.009_b0090) 1988; 246
Zhang (10.1016/j.neuroscience.2019.09.009_b0240) 2013; 55
Conti (10.1016/j.neuroscience.2019.09.009_b0075) 2000; 28
Wen (10.1016/j.neuroscience.2019.09.009_b0220) 2004; 43
Brushart (10.1016/j.neuroscience.2019.09.009_b0035) 1988; 8
Bubenik (10.1016/j.neuroscience.2019.09.009_b0040) 2002; 47
McVicker (10.1016/j.neuroscience.2019.09.009_b0135) 2015; 75
Hagg (10.1016/j.neuroscience.2019.09.009_b0095) 2006; 23
Bordt (10.1016/j.neuroscience.2019.09.009_b0030) 2001; 1499
Dominguez-Alonso (10.1016/j.neuroscience.2019.09.009_b0085) 2015; 16
Lin (10.1016/j.neuroscience.2019.09.009_b0125) 2017; 7
Zahn (10.1016/j.neuroscience.2019.09.009_b0235) 2003; 35
Hoffman (10.1016/j.neuroscience.2019.09.009_b0100) 1989; 9
Turgut (10.1016/j.neuroscience.2019.09.009_b0190) 2006; 13
Cary (10.1016/j.neuroscience.2019.09.009_b0065) 2012; 161
Chang (10.1016/j.neuroscience.2019.09.009_b0070) 2014; 56
Benitez-King (10.1016/j.neuroscience.2019.09.009_b0010) 2006; 40
Posa (10.1016/j.neuroscience.2019.09.009_b0155) 2018; 25
Viterbo (10.1016/j.neuroscience.2019.09.009_b0205) 1994; 94
Witt-Enderby (10.1016/j.neuroscience.2019.09.009_b0225) 2000; 46
Viterbo (10.1016/j.neuroscience.2019.09.009_b0200) 1992; 110
Huerto-Delgadillo (10.1016/j.neuroscience.2019.09.009_b0105) 1994; 17
Slominski (10.1016/j.neuroscience.2019.09.009_b0180) 2005; 27
Cardinali (10.1016/j.neuroscience.2019.09.009_b0050) 1971; 18
Nogueira (10.1016/j.neuroscience.2019.09.009_b0140) 2017; 220
Slaughter (10.1016/j.neuroscience.2019.09.009_b0175) 1997; 17
Benitez-King (10.1016/j.neuroscience.2019.09.009_b0020) 2009; 24
Craddock (10.1016/j.neuroscience.2019.09.009_b0080) 2012; 8
Liao (10.1016/j.neuroscience.2019.09.009_b0120) 2009; 215
Reiter (10.1016/j.neuroscience.2019.09.009_b0160) 1991; 12
Slominski (10.1016/j.neuroscience.2019.09.009_b0185) 2012; 351
Yamamoto (10.1016/j.neuroscience.2019.09.009_b0230) 1985; 44
Bertelli (10.1016/j.neuroscience.2019.09.009_b0025) 1993; 46
Valdes-Tovar (10.1016/j.neuroscience.2019.09.009_b0195) 2018; 175
Kaya (10.1016/j.neuroscience.2019.09.009_b0110) 2012
Skelding (10.1016/j.neuroscience.2019.09.009_b0170) 2009; 34
Cammarota (10.1016/j.neuroscience.2019.09.009_b0045) 2002; 22
Lee (10.1016/j.neuroscience.2019.09.009_b0115) 1984; 259
Masse (10.1016/j.neuroscience.2019.09.009_b0130) 1997; 17
Ortiz (10.1016/j.neuroscience.2019.09.009_b0145) 2008; 6
Wandosell (10.1016/j.neuroscience.2019.09.009_b0215) 1986; 261
Carrillo-Vico (10.1016/j.neuroscience.2019.09.009_b0060) 2004; 18
Sakurai (10.1016/j.neuroscience.2019.09.009_b0165) 2006; 119
References_xml – volume: 8
  start-page: 1026
  year: 1988
  end-page: 1031
  ident: b0035
  article-title: Preferential reinnervation of motor nerves by regenerating motor axons
  publication-title: J Neurosci
– volume: 44
  start-page: 759
  year: 1985
  end-page: 768
  ident: b0230
  article-title: Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation
  publication-title: J Neurochem
– volume: 34
  start-page: 1792
  year: 2009
  end-page: 1804
  ident: b0170
  article-title: Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment
  publication-title: Neurochem Res
– volume: 27
  start-page: 137
  year: 2005
  end-page: 148
  ident: b0180
  article-title: On the role of melatonin in skin physiology and pathology
  publication-title: Endocrine
– volume: 13
  start-page: 753
  year: 2006
  end-page: 758
  ident: b0190
  article-title: Immunohistochemical profile of transforming growth factor-beta1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats
  publication-title: J Clin Neurosci
– volume: 35
  start-page: 24
  year: 2003
  end-page: 31
  ident: b0235
  article-title: Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation
  publication-title: J Pineal Res
– volume: 6
  start-page: 203
  year: 2008
  end-page: 214
  ident: b0145
  article-title: Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders
  publication-title: Curr Neuropharmacol
– volume: 259
  start-page: 8041
  year: 1984
  end-page: 8044
  ident: b0115
  article-title: The calmodulin-binding domain on microtubule-associated protein 2
  publication-title: J Biol Chem
– volume: 94
  start-page: 1038
  year: 1994
  end-page: 1047
  ident: b0205
  article-title: End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats
  publication-title: Plast Reconstr Surg
– volume: 55
  start-page: 26
  year: 2013
  end-page: 35
  ident: b0240
  article-title: Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis
  publication-title: Neurobiol Dis
– volume: 6
  start-page: 272
  year: 1997
  end-page: 283
  ident: b0150
  article-title: Melatonin receptors in the spinal cord
  publication-title: Biol Signals
– volume: 43
  start-page: 835
  year: 2004
  end-page: 846
  ident: b0220
  article-title: A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance
  publication-title: Neuron
– volume: 246
  start-page: 902
  year: 1988
  end-page: 910
  ident: b0090
  article-title: Luzindole (N-0774): a novel melatonin receptor antagonist
  publication-title: J Pharmacol Exp Ther
– volume: 32
  start-page: 1077
  year: 2003
  end-page: 1089
  ident: b0005
  article-title: Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment
  publication-title: J Neurocytol
– volume: 215
  start-page: 506
  year: 2009
  end-page: 521
  ident: b0120
  article-title: The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in the rat brachial plexus
  publication-title: J Anat
– year: 2012
  ident: b0110
  article-title: Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses
  publication-title: Childs Nerv Syst
– volume: 261
  start-page: 10332
  year: 1986
  end-page: 10339
  ident: b0215
  article-title: Phosphorylation of tubulin by a calmodulin-dependent protein kinase
  publication-title: J Biol Chem
– volume: 1499
  start-page: 257
  year: 2001
  end-page: 264
  ident: b0030
  article-title: N1E–115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin
  publication-title: Biochim Biophys Acta
– volume: 18
  start-page: 1769
  year: 1971
  end-page: 1770
  ident: b0050
  article-title: Metabolism of serotonin by the rat retina in vitro
  publication-title: J Neurochem
– volume: 16
  start-page: 1907
  year: 2015
  end-page: 1927
  ident: b0085
  article-title: Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex
  publication-title: Int J Mol Sci
– volume: 75
  start-page: 423
  year: 2015
  end-page: 434
  ident: b0135
  article-title: Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII
  publication-title: Dev Neurobiol
– volume: 24
  start-page: 789
  year: 2009
  end-page: 799
  ident: b0020
  article-title: Melatonin modulates microfilament phenotypes in epithelial cells: implications for adhesion and inhibition of cancer cell migration
  publication-title: Histol Histopathol
– volume: 23
  start-page: 281
  year: 2006
  end-page: 294
  ident: b0095
  article-title: Collateral sprouting as a target for improved function after spinal cord injury
  publication-title: J Neurotrauma
– volume: 220
  start-page: 3826
  year: 2017
  end-page: 3835
  ident: b0140
  article-title: Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos
  publication-title: The Journal of experimental biology
– volume: 25
  start-page: 3866
  year: 2018
  end-page: 3882
  ident: b0155
  article-title: Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain
  publication-title: Curr Med Chem
– volume: 40
  start-page: 1
  year: 2006
  end-page: 9
  ident: b0010
  article-title: Melatonin as a cytoskeletal modulator: implications for cell physiology and disease
  publication-title: J Pineal Res
– volume: 19
  start-page: 767
  year: 1997
  end-page: 775
  ident: b0055
  article-title: Intrinsic neuronal determinants that promote axonal sprouting and elongation
  publication-title: BioEssays
– volume: 9
  start-page: 893
  year: 1989
  end-page: 897
  ident: b0100
  article-title: Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons
  publication-title: J Neurosci
– volume: 28
  start-page: 193
  year: 2000
  end-page: 202
  ident: b0075
  article-title: Evidence for melatonin synthesis in mouse and human bone marrow cells
  publication-title: J Pineal Res
– volume: 7
  start-page: 2015
  year: 2017
  end-page: 2032
  ident: b0125
  article-title: Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice
  publication-title: Theranostics
– volume: 1290
  start-page: 191
  year: 1996
  end-page: 196
  ident: b0015
  article-title: In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin
  publication-title: Biochim Biophys Acta
– volume: 46
  start-page: 203
  year: 1993
  end-page: 208
  ident: b0025
  article-title: Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat
  publication-title: J Neurosci Methods
– volume: 351
  start-page: 152
  year: 2012
  end-page: 166
  ident: b0185
  article-title: Melatonin membrane receptors in peripheral tissues: distribution and functions
  publication-title: Mol Cell Endocrinol
– volume: 46
  start-page: 28
  year: 2000
  end-page: 42
  ident: b0225
  article-title: Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor
  publication-title: Cell Motil Cytoskelet
– volume: 22
  start-page: 259
  year: 2002
  end-page: 267
  ident: b0045
  article-title: Participation of CaMKII in neuronal plasticity and memory formation
  publication-title: Cell Mol Neurobiol
– volume: 12
  start-page: 151
  year: 1991
  end-page: 180
  ident: b0160
  article-title: Pineal melatonin: cell biology of its synthesis and of its physiological interactions
  publication-title: Endocr Rev
– volume: 110
  start-page: 267
  year: 1992
  end-page: 275
  ident: b0200
  article-title: Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats
  publication-title: Rev Paul Med
– volume: 17
  start-page: 924
  year: 1997
  end-page: 931
  ident: b0130
  article-title: Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation
  publication-title: J Neurosci
– volume: 180
  start-page: 253
  year: 1994
  end-page: 256
  ident: b0210
  article-title: Segmental, coronal and subcellular distribution of 2-[125I]iodomelatonin binding sites in the chicken spinal cord
  publication-title: Neurosci Lett
– volume: 17
  start-page: 5807
  year: 1997
  end-page: 5819
  ident: b0175
  article-title: Microtubule transport from the cell body into the axons of growing neurons
  publication-title: J Neurosci
– volume: 161
  start-page: 355
  year: 2012
  end-page: 360
  ident: b0065
  article-title: Melatonin: neuritogenesis and neuroprotective effects in crustacean x-organ cells
  publication-title: Comp Biochem Physiol A: Mol Integr Physiol
– volume: 56
  start-page: 322
  year: 2014
  end-page: 332
  ident: b0070
  article-title: Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury
  publication-title: J Pineal Res
– volume: 18
  start-page: 537
  year: 2004
  end-page: 539
  ident: b0060
  article-title: Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance
  publication-title: FASEB J
– volume: 175
  start-page: 3200
  year: 2018
  end-page: 3208
  ident: b0195
  article-title: Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression
  publication-title: Br J Pharmacol
– volume: 8
  year: 2012
  ident: b0080
  article-title: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?
  publication-title: PLoS Comput Biol
– volume: 17
  start-page: 55
  year: 1994
  end-page: 62
  ident: b0105
  article-title: Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist
  publication-title: J Pineal Res
– volume: 119
  start-page: 162
  year: 2006
  end-page: 171
  ident: b0165
  article-title: Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation
  publication-title: J Cell Sci
– volume: 47
  start-page: 2336
  year: 2002
  end-page: 2348
  ident: b0040
  article-title: Gastrointestinal melatonin: localization, function, and clinical relevance
  publication-title: Dig Dis Sci
– volume: 27
  start-page: 137
  year: 2005
  ident: 10.1016/j.neuroscience.2019.09.009_b0180
  article-title: On the role of melatonin in skin physiology and pathology
  publication-title: Endocrine
  doi: 10.1385/ENDO:27:2:137
– volume: 94
  start-page: 1038
  year: 1994
  ident: 10.1016/j.neuroscience.2019.09.009_b0205
  article-title: End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats
  publication-title: Plast Reconstr Surg
  doi: 10.1097/00006534-199412000-00019
– volume: 34
  start-page: 1792
  year: 2009
  ident: 10.1016/j.neuroscience.2019.09.009_b0170
  article-title: Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment
  publication-title: Neurochem Res
  doi: 10.1007/s11064-009-9985-9
– volume: 1499
  start-page: 257
  year: 2001
  ident: 10.1016/j.neuroscience.2019.09.009_b0030
  article-title: N1E–115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0167-4889(00)00127-0
– volume: 6
  start-page: 203
  year: 2008
  ident: 10.1016/j.neuroscience.2019.09.009_b0145
  article-title: Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders
  publication-title: Curr Neuropharmacol
  doi: 10.2174/157015908785777201
– volume: 175
  start-page: 3200
  year: 2018
  ident: 10.1016/j.neuroscience.2019.09.009_b0195
  article-title: Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14197
– volume: 32
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroscience.2019.09.009_b0005
  article-title: Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment
  publication-title: J Neurocytol
  doi: 10.1023/B:NEUR.0000021903.24849.6c
– volume: 161
  start-page: 355
  year: 2012
  ident: 10.1016/j.neuroscience.2019.09.009_b0065
  article-title: Melatonin: neuritogenesis and neuroprotective effects in crustacean x-organ cells
  publication-title: Comp Biochem Physiol A: Mol Integr Physiol
  doi: 10.1016/j.cbpa.2011.12.005
– volume: 23
  start-page: 281
  year: 2006
  ident: 10.1016/j.neuroscience.2019.09.009_b0095
  article-title: Collateral sprouting as a target for improved function after spinal cord injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.23.281
– volume: 180
  start-page: 253
  year: 1994
  ident: 10.1016/j.neuroscience.2019.09.009_b0210
  article-title: Segmental, coronal and subcellular distribution of 2-[125I]iodomelatonin binding sites in the chicken spinal cord
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(94)90532-0
– volume: 35
  start-page: 24
  year: 2003
  ident: 10.1016/j.neuroscience.2019.09.009_b0235
  article-title: Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation
  publication-title: J Pineal Res
  doi: 10.1034/j.1600-079X.2003.00047.x
– volume: 17
  start-page: 924
  year: 1997
  ident: 10.1016/j.neuroscience.2019.09.009_b0130
  article-title: Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-03-00924.1997
– volume: 6
  start-page: 272
  year: 1997
  ident: 10.1016/j.neuroscience.2019.09.009_b0150
  article-title: Melatonin receptors in the spinal cord
  publication-title: Biol Signals
  doi: 10.1159/000109138
– volume: 75
  start-page: 423
  year: 2015
  ident: 10.1016/j.neuroscience.2019.09.009_b0135
  article-title: Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII
  publication-title: Dev Neurobiol
  doi: 10.1002/dneu.22227
– volume: 43
  start-page: 835
  year: 2004
  ident: 10.1016/j.neuroscience.2019.09.009_b0220
  article-title: A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.08.037
– volume: 40
  start-page: 1
  year: 2006
  ident: 10.1016/j.neuroscience.2019.09.009_b0010
  article-title: Melatonin as a cytoskeletal modulator: implications for cell physiology and disease
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.2005.00282.x
– volume: 259
  start-page: 8041
  year: 1984
  ident: 10.1016/j.neuroscience.2019.09.009_b0115
  article-title: The calmodulin-binding domain on microtubule-associated protein 2
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)39683-7
– volume: 28
  start-page: 193
  year: 2000
  ident: 10.1016/j.neuroscience.2019.09.009_b0075
  article-title: Evidence for melatonin synthesis in mouse and human bone marrow cells
  publication-title: J Pineal Res
  doi: 10.1034/j.1600-079X.2000.280401.x
– volume: 18
  start-page: 1769
  year: 1971
  ident: 10.1016/j.neuroscience.2019.09.009_b0050
  article-title: Metabolism of serotonin by the rat retina in vitro
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.1971.tb03752.x
– volume: 19
  start-page: 767
  year: 1997
  ident: 10.1016/j.neuroscience.2019.09.009_b0055
  article-title: Intrinsic neuronal determinants that promote axonal sprouting and elongation
  publication-title: BioEssays
  doi: 10.1002/bies.950190906
– volume: 8
  year: 2012
  ident: 10.1016/j.neuroscience.2019.09.009_b0080
  article-title: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002421
– volume: 44
  start-page: 759
  year: 1985
  ident: 10.1016/j.neuroscience.2019.09.009_b0230
  article-title: Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.1985.tb12880.x
– volume: 24
  start-page: 789
  year: 2009
  ident: 10.1016/j.neuroscience.2019.09.009_b0020
  article-title: Melatonin modulates microfilament phenotypes in epithelial cells: implications for adhesion and inhibition of cancer cell migration
  publication-title: Histol Histopathol
– volume: 215
  start-page: 506
  year: 2009
  ident: 10.1016/j.neuroscience.2019.09.009_b0120
  article-title: The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in the rat brachial plexus
  publication-title: J Anat
  doi: 10.1111/j.1469-7580.2009.01135.x
– volume: 55
  start-page: 26
  year: 2013
  ident: 10.1016/j.neuroscience.2019.09.009_b0240
  article-title: Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2013.03.008
– volume: 25
  start-page: 3866
  year: 2018
  ident: 10.1016/j.neuroscience.2019.09.009_b0155
  article-title: Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain
  publication-title: Curr Med Chem
  doi: 10.2174/0929867324666170209104926
– volume: 351
  start-page: 152
  year: 2012
  ident: 10.1016/j.neuroscience.2019.09.009_b0185
  article-title: Melatonin membrane receptors in peripheral tissues: distribution and functions
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2012.01.004
– volume: 261
  start-page: 10332
  year: 1986
  ident: 10.1016/j.neuroscience.2019.09.009_b0215
  article-title: Phosphorylation of tubulin by a calmodulin-dependent protein kinase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)67528-3
– volume: 9
  start-page: 893
  year: 1989
  ident: 10.1016/j.neuroscience.2019.09.009_b0100
  article-title: Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.09-03-00893.1989
– volume: 220
  start-page: 3826
  year: 2017
  ident: 10.1016/j.neuroscience.2019.09.009_b0140
  article-title: Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos
  publication-title: The Journal of experimental biology
– volume: 8
  start-page: 1026
  year: 1988
  ident: 10.1016/j.neuroscience.2019.09.009_b0035
  article-title: Preferential reinnervation of motor nerves by regenerating motor axons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.08-03-01026.1988
– volume: 17
  start-page: 55
  year: 1994
  ident: 10.1016/j.neuroscience.2019.09.009_b0105
  article-title: Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1994.tb00114.x
– volume: 46
  start-page: 203
  year: 1993
  ident: 10.1016/j.neuroscience.2019.09.009_b0025
  article-title: Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(93)90068-3
– volume: 7
  start-page: 2015
  year: 2017
  ident: 10.1016/j.neuroscience.2019.09.009_b0125
  article-title: Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice
  publication-title: Theranostics
  doi: 10.7150/thno.19500
– volume: 13
  start-page: 753
  year: 2006
  ident: 10.1016/j.neuroscience.2019.09.009_b0190
  article-title: Immunohistochemical profile of transforming growth factor-beta1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2005.07.019
– volume: 246
  start-page: 902
  year: 1988
  ident: 10.1016/j.neuroscience.2019.09.009_b0090
  article-title: Luzindole (N-0774): a novel melatonin receptor antagonist
  publication-title: J Pharmacol Exp Ther
– year: 2012
  ident: 10.1016/j.neuroscience.2019.09.009_b0110
  article-title: Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses
  publication-title: Childs Nerv Syst
– volume: 56
  start-page: 322
  year: 2014
  ident: 10.1016/j.neuroscience.2019.09.009_b0070
  article-title: Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12125
– volume: 47
  start-page: 2336
  year: 2002
  ident: 10.1016/j.neuroscience.2019.09.009_b0040
  article-title: Gastrointestinal melatonin: localization, function, and clinical relevance
  publication-title: Dig Dis Sci
  doi: 10.1023/A:1020107915919
– volume: 119
  start-page: 162
  year: 2006
  ident: 10.1016/j.neuroscience.2019.09.009_b0165
  article-title: Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02716
– volume: 46
  start-page: 28
  year: 2000
  ident: 10.1016/j.neuroscience.2019.09.009_b0225
  article-title: Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor
  publication-title: Cell Motil Cytoskelet
  doi: 10.1002/(SICI)1097-0169(200005)46:1<28::AID-CM4>3.0.CO;2-5
– volume: 18
  start-page: 537
  year: 2004
  ident: 10.1016/j.neuroscience.2019.09.009_b0060
  article-title: Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance
  publication-title: FASEB J
  doi: 10.1096/fj.03-0694fje
– volume: 110
  start-page: 267
  year: 1992
  ident: 10.1016/j.neuroscience.2019.09.009_b0200
  article-title: Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats
  publication-title: Rev Paul Med
– volume: 1290
  start-page: 191
  year: 1996
  ident: 10.1016/j.neuroscience.2019.09.009_b0015
  article-title: In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0304-4165(96)00025-6
– volume: 16
  start-page: 1907
  year: 2015
  ident: 10.1016/j.neuroscience.2019.09.009_b0085
  article-title: Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16011907
– volume: 12
  start-page: 151
  year: 1991
  ident: 10.1016/j.neuroscience.2019.09.009_b0160
  article-title: Pineal melatonin: cell biology of its synthesis and of its physiological interactions
  publication-title: Endocr Rev
  doi: 10.1210/edrv-12-2-151
– volume: 22
  start-page: 259
  year: 2002
  ident: 10.1016/j.neuroscience.2019.09.009_b0045
  article-title: Participation of CaMKII in neuronal plasticity and memory formation
  publication-title: Cell Mol Neurobiol
  doi: 10.1023/A:1020763716886
– volume: 17
  start-page: 5807
  year: 1997
  ident: 10.1016/j.neuroscience.2019.09.009_b0175
  article-title: Microtubule transport from the cell body into the axons of growing neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-15-05807.1997
SSID ssj0000543
Score 2.3780708
Snippet •Melatonin suppresses activation of calmodulin-dependent protein kinase II (CaMKII) in sprouting axons.•Melatonin regulates cytoskeleton rearrangement via a...
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 282
SubjectTerms Animals
cytoskeletal remodeling
Cytoskeleton
end-to-side neurorrhaphy
melatonin
Melatonin - pharmacology
melatonin receptor
Mice
Nerve Regeneration
Rats
Rats, Wistar
Receptors, Melatonin
β3-tubulin
Title Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452219306542
https://dx.doi.org/10.1016/j.neuroscience.2019.09.009
https://www.ncbi.nlm.nih.gov/pubmed/31689489
https://www.proquest.com/docview/2312553072
Volume 429
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4huHCpyqM05aFFQr0t8Tp-rSoOUUSUUhGhAhK31e56XQLFjhKnKBf-Cf-1M2s7UIlKkZBySCxP7GTGO9_sfvsNIUcal16gUGaZ7kQM8L_HtIe9XmI_VDwRSZTg5uTzYTS4Ds5uwpsV0mv2wiCtsh77qzHdjdb1kXb9b7bHo1H7EtEu6oEDBHFtl3AHexBjlB8_vdA8AJJULZKhcsazG-FRx_F6pRmJkplcOM1TJCe-naT-B0JdMup_JB9qFEm71Y1ukBWbb5Ktbg4V9MOcfqWO1-kmzLfI8zny3XDWlV447p2d0iHyHOlP-8uJTqNvaB8ConiEREZP85SVBbscpZY67Y7J5BZVrame064xkKfQBE7szctieg-fAcDDl7mmOnj8z0hRwJX05cIATu0YqnvW9Nwt6QVAz0c13ybX_dOr3oDVTRmYAexSMhPyLOGKh1rpLDZhJKLYiCCEcVLhRAo3wnpJpgLjwzuutYdLO6nJRGJUltrOJ7KaF7n9TCjArTjuhNz6GQ94nGqB6n4hFOuZ8kWkWkQ0XpCmVizHxhm_ZUNNu5OvPSjRg9KDlydapLOwHVe6HUtZfWucLZudqTCWSkgvS1mfLKz_ieGl7Q-b-JLwkOPKjcptMZtKAOE-9neK_RbZqQJv8auw85gIEvHlnVffJes-ziU4ft0eWS0nM7sPgKvUB-6JOiBr3e8_BsO_xaQwbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVG9wAvEzA-CmMYCfFmNU7jJBbioapWdWytJrZJe7NsxxmFkVRtxtQfw3_dvU7SbRJIlZD6kEa5-brOvcf28bmEfDQ49QIdZZabfswA_wfMBFjrJQmF5qlM4xQXJ0-m8fg8-nohLrbIsF0Lg7TKJvbXMd1H62ZPr3mbvfls1jtFtIt64ABBfNmlR2Qb1alEh2wPDo_G07uALGryHBzG0KDVHvU0r3uykaiayaWXPUV-4t_z1L9wqM9Ho6dkpwGSdFDf6zOy5YrnZHdQQCf614p-op7a6cfMd8mfCVLecOCVnnj6nVvSKVId6Td36XWn0T10BG2ivIFcRg-KjFUlO51ljnr5jsXiOwpbU7OiA2shVaEJHDhcVeXyJ_wHDA8n83V1cP_vmaYALendhQGfujl08FlbdreiJ4A-b_TqBTkfHZwNx6ypy8AswJeKWcHzlGsujDZ5YkUs48TKSECo1DiWwq10QZrryIawxY0JcHYns7lMrc4z139JOkVZuNeEAuJKkr7gLsx5xJPMSBT4E9Bfz3UoY90lsvWCso1oOdbOuFItO-2Huu9BhR5UAfwC2SX9te28lu7YyOpz62zVLk6FcKogw2xk_WVt_aAZb2z_oW1fCr5znLzRhSuvlwpweIglnpKwS17VDW_9VFh8TEapfPOfV39PHo_PJsfq-HB69JY8CXFowdPt9kinWly7d4C_KrPffF-3CCUzHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+Promotes+Nerve+Regeneration+Following+End-to-Side+Neurorrhaphy+by+Accelerating+Cytoskeletal+Remodeling+via+the+Melatonin+Receptor-dependent+Pathway&rft.jtitle=Neuroscience&rft.au=Liu%2C+Chiung-Hui&rft.au=Chang%2C+Hung-Ming&rft.au=Yang%2C+Yin-Shuo&rft.au=Lin%2C+Yu-Ta&rft.date=2020-03-01&rft.issn=1873-7544&rft.eissn=1873-7544&rft.volume=429&rft.spage=282&rft_id=info:doi/10.1016%2Fj.neuroscience.2019.09.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon