A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixtu...
Saved in:
Published in | RSC advances Vol. 9; no. 19; pp. 10796 - 10806 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
08.04.2019
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed
via
interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (
R
) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (
F
) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl
2
, MgCl
2
, CaCl
2
, CuCl
2
, MgSO
4
, NaCl, and Na
2
SO
4
. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated
R
and
F
to 1 g L
−1
MgCl
2
aqueous solution as 98.1% and 27.6 L m
−2
h
−1
, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (
M
w
) and the overall charges of the dye. |
---|---|
AbstractList | A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L-1 MgCl2 aqueous solution as 98.1% and 27.6 L m-2 h-1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (M w) and the overall charges of the dye.A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L-1 MgCl2 aqueous solution as 98.1% and 27.6 L m-2 h-1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (M w) and the overall charges of the dye. A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl , MgCl , CaCl , CuCl , MgSO , NaCl, and Na SO . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated and to 1 g L MgCl aqueous solution as 98.1% and 27.6 L m h , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( ) and the overall charges of the dye. A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl₂, MgCl₂, CaCl₂, CuCl₂, MgSO₄, NaCl, and Na₂SO₄. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L⁻¹ MgCl₂ aqueous solution as 98.1% and 27.6 L m⁻² h⁻¹, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (Mw) and the overall charges of the dye. A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( R ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( F ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl 2 , MgCl 2 , CaCl 2 , CuCl 2 , MgSO 4 , NaCl, and Na 2 SO 4 . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L −1 MgCl 2 aqueous solution as 98.1% and 27.6 L m −2 h −1 , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( M w ) and the overall charges of the dye. A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L−1 MgCl2 aqueous solution as 98.1% and 27.6 L m−2 h−1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (Mw) and the overall charges of the dye. A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( R ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( F ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl 2 , MgCl 2 , CaCl 2 , CuCl 2 , MgSO 4 , NaCl, and Na 2 SO 4 . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L −1 MgCl 2 aqueous solution as 98.1% and 27.6 L m −2 h −1 , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( M w ) and the overall charges of the dye. The tunable active layer structure was developed via interfacial polymerization, using polyethyleneimine as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride and tri-mesoyl chloride as the monomer of the organic phase. |
Author | Tu, Kai Chen, Shunquan He, Yuantao Yang, Hao Zhang, Rui Zhang, Ling Jiang, Zhibin Miao, Jing |
Author_xml | – sequence: 1 givenname: Zhibin surname: Jiang fullname: Jiang, Zhibin organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China – sequence: 2 givenname: Jing orcidid: 0000-0003-4436-2823 surname: Miao fullname: Miao, Jing organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China – sequence: 3 givenname: Yuantao surname: He fullname: He, Yuantao organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China – sequence: 4 givenname: Kai surname: Tu fullname: Tu, Kai organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China – sequence: 5 givenname: Shunquan surname: Chen fullname: Chen, Shunquan organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China – sequence: 6 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Shandong Disk Tube Reverse Osmosis (DTRO) Membrane Engineering Laboratory, The New Water Technology, Inc. (NEWA), China – sequence: 7 givenname: Ling orcidid: 0000-0001-7289-2288 surname: Zhang fullname: Zhang, Ling organization: School of Resource and Environment, University of Jinan, Jinan 250022, PR China – sequence: 8 givenname: Hao orcidid: 0000-0003-3325-1378 surname: Yang fullname: Yang, Hao organization: Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35515306$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1qFDEUxwep2Fp74wNIwBsRVvOxyc7cCMuiVSgIotchkznTTckkY5LZMj6Qz-nZbau1COYm4Zzf-Z-vPK2OQgxQVc8ZfcOoaN5umi9rSrkU54-qE06XasGpao7uvY-rs5yvKB4lGVfsSXUspGRSUHVS_VyTEHfgyRizKw5fM7Fbky6hIzYOByuQYELsnS_JFBcDGWBokwlAWpORQ8sY_QxlO3sI4AaHrmtXtsSQMgXTeiDG7sWJNzMkkkuabJkSkA4wYxxRZOcMcaFA6o11xh8UB0juxyHls-pxb3yGs9v7tPr24f3XzcfFxefzT5v1xcIuRVMWbafMshWdUpxh6yuxsgJM3_Zc1qzrDRWcNYIrbjtpelHXndwHMiZsbUUP4rR6d6M7Tu0AnYWAPXs9JjeYNOtonP7bE9xWX8adbqjCHdQo8OpWIMXvE-SiB5cteI_jilPWXClGay5U83-Ui5VcKqYUoi8foFdxSgEngRTFvLyRDKkX94v_XfXdthGgN4BNMecEvbauHOaLvTivGdX7P6X__CkMef0g5E71H_AvxAfQRg |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2021_108686 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_3390_separations9070180 crossref_primary_10_1007_s11814_021_1036_5 crossref_primary_10_1016_j_progpolymsci_2021_101451 crossref_primary_10_1002_apj_3077 crossref_primary_10_1016_j_memsci_2020_118063 crossref_primary_10_3390_membranes13080741 crossref_primary_10_1016_j_jwpe_2022_103287 crossref_primary_10_1016_j_memsci_2022_120389 crossref_primary_10_1016_j_ceja_2025_100717 crossref_primary_10_2139_ssrn_4002130 crossref_primary_10_1007_s10853_021_06857_3 crossref_primary_10_1016_j_desal_2022_116310 crossref_primary_10_1016_j_cscee_2020_100075 crossref_primary_10_1088_2053_1591_ab448a crossref_primary_10_1016_j_cej_2020_127376 crossref_primary_10_1016_j_desal_2023_116877 crossref_primary_10_1016_j_cherd_2021_04_031 crossref_primary_10_1016_j_memsci_2021_119405 crossref_primary_10_1021_acsami_1c16639 crossref_primary_10_1016_j_jhazmat_2020_122582 crossref_primary_10_1016_j_seppur_2021_119142 crossref_primary_10_1016_j_memsci_2022_120534 crossref_primary_10_1002_admi_202001050 crossref_primary_10_1002_mabi_202200162 crossref_primary_10_1016_j_chemosphere_2022_134024 crossref_primary_10_1016_j_matchemphys_2020_123578 crossref_primary_10_1039_C9RA06528H crossref_primary_10_1016_j_memsci_2021_119097 crossref_primary_10_1016_j_jhazmat_2023_133049 crossref_primary_10_1016_j_memsci_2022_120381 crossref_primary_10_1016_j_memsci_2021_119551 crossref_primary_10_1002_app_53235 crossref_primary_10_1016_j_scitotenv_2021_152228 crossref_primary_10_1016_j_seppur_2023_124216 |
Cites_doi | 10.1016/j.memsci.2014.05.047 10.1021/acsami.7b00829 10.1016/S0011-9164(00)90016-X 10.1016/j.memsci.2016.07.038 10.1021/acs.est.5b00336 10.1016/j.memsci.2008.04.057 10.1016/j.desal.2011.03.064 10.1016/j.cej.2010.04.044 10.1016/S1383-5866(00)00135-0 10.1021/acssuschemeng.6b01299 10.1016/j.memsci.2012.01.046 10.1016/j.memsci.2009.11.012 10.1016/S0376-7388(01)00630-5 10.1016/j.memsci.2014.12.045 10.1016/j.reactfunctpolym.2014.08.009 10.1016/j.memsci.2008.07.037 10.1016/S0011-9164(98)00079-4 10.1016/S0376-7388(02)00305-8 10.1016/j.seppur.2015.03.030 10.1002/app.11257 10.1039/C4NR07554D 10.1016/j.memsci.2014.08.055 10.1016/j.desal.2014.07.012 10.1016/j.memsci.2015.02.021 10.1016/j.desal.2011.06.009 10.1016/j.apsusc.2016.01.099 10.1021/ie5017688 10.1016/j.memsci.2012.12.011 10.1021/jp107280m 10.1016/j.memsci.2009.07.033 10.1021/ie0497994 10.1016/j.memsci.2015.05.041 10.1039/C8RA00519B 10.1016/j.cej.2016.07.086 10.1016/j.memsci.2007.11.038 10.1016/j.watres.2016.07.060 10.1016/j.memsci.2013.10.003 10.1016/j.memsci.2015.10.051 10.1016/j.memsci.2013.04.022 10.1016/j.memsci.2010.09.015 10.1016/j.watres.2015.11.032 10.1016/j.carbon.2018.10.058 10.1016/j.memsci.2014.04.016 10.1016/j.memsci.2013.04.063 10.1021/acsami.6b00394 10.1016/j.memsci.2010.07.025 10.1016/j.memsci.2010.06.058 10.1016/0376-7388(96)00127-5 10.1016/j.memsci.2008.09.021 10.1016/j.memsci.2010.02.046 10.1016/S0376-7388(96)00181-0 10.1016/j.memsci.2004.10.042 10.1016/j.memsci.2011.11.018 10.1016/j.jhazmat.2009.05.105 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/C9RA00253G |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 10806 |
ExternalDocumentID | PMC9062538 35515306 10_1039_C9RA00253G |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AFVBQ AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K CITATION EBS EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH ZCN -JG ABGFH AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c439t-bd6a4b3d6621206737c3eafbf2581dfa032193262cd5af388d5c439113c8c3fe3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:13:03 EDT 2025 Fri Jul 11 11:15:31 EDT 2025 Thu Jul 10 22:06:51 EDT 2025 Mon Jun 30 04:11:54 EDT 2025 Thu Jan 02 22:54:22 EST 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 04:24:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-bd6a4b3d6621206737c3eafbf2581dfa032193262cd5af388d5c439113c8c3fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7289-2288 0000-0003-4436-2823 0000-0003-3325-1378 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra00253g |
PMID | 35515306 |
PQID | 2205382951 |
PQPubID | 2047525 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062538 proquest_miscellaneous_2661082369 proquest_miscellaneous_2237546166 proquest_journals_2205382951 pubmed_primary_35515306 crossref_citationtrail_10_1039_C9RA00253G crossref_primary_10_1039_C9RA00253G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190408 |
PublicationDateYYYYMMDD | 2019-04-08 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190408 day: 8 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Hung (C9RA00253G-(cit44)/*[position()=1]) 2019; 142 Dalwani (C9RA00253G-(cit56)/*[position()=1]) 2010; 363 Tiraferri (C9RA00253G-(cit13)/*[position()=1]) 2012; 389 Galama (C9RA00253G-(cit61)/*[position()=1]) 2013; 442 Sun (C9RA00253G-(cit58)/*[position()=1]) 2012; 401–402 Wei (C9RA00253G-(cit59)/*[position()=1]) 2013; 53 Ahmad (C9RA00253G-(cit25)/*[position()=1]) 2004; 43 Bera (C9RA00253G-(cit38)/*[position()=1]) 2016; 519 Shi (C9RA00253G-(cit41)/*[position()=1]) 2012; 401 Ghosh (C9RA00253G-(cit26)/*[position()=1]) 2008; 311 Zhao (C9RA00253G-(cit48)/*[position()=1]) 2016; 8 Afonso (C9RA00253G-(cit60)/*[position()=1]) 2001; 22–23 Si (C9RA00253G-(cit52)/*[position()=1]) 2015; 7 Heo (C9RA00253G-(cit62)/*[position()=1]) 2013; 443 Xing (C9RA00253G-(cit10)/*[position()=1]) 2015; 146 Jiang (C9RA00253G-(cit53)/*[position()=1]) 2017; 9 Nightingale (C9RA00253G-(cit63)/*[position()=1]) 1958; 63 Wu (C9RA00253G-(cit46)/*[position()=1]) 2015; 487 Othman (C9RA00253G-(cit6)/*[position()=1]) 2010; 348 Feng (C9RA00253G-(cit57)/*[position()=1]) 2014; 451 Kosaraju (C9RA00253G-(cit16)/*[position()=1]) 2008; 321 Fang (C9RA00253G-(cit34)/*[position()=1]) 2014; 468 Fridman-Bishop (C9RA00253G-(cit4)/*[position()=1]) 2015; 49 Abu Tarboush (C9RA00253G-(cit23)/*[position()=1]) 2008; 325 Chiang (C9RA00253G-(cit27)/*[position()=1]) 2009; 326 Thong (C9RA00253G-(cit29)/*[position()=1]) 2016; 4 Song (C9RA00253G-(cit54)/*[position()=1]) 2016; 306 Wei (C9RA00253G-(cit36)/*[position()=1]) 2014; 350 Lee (C9RA00253G-(cit31)/*[position()=1]) 2015; 478 Hassan (C9RA00253G-(cit2)/*[position()=1]) 1998; 118 Jegal (C9RA00253G-(cit24)/*[position()=1]) 2002; 86 Tepus (C9RA00253G-(cit7)/*[position()=1]) 2009; 170 Hassan (C9RA00253G-(cit3)/*[position()=1]) 2000; 131 Mansourpanah (C9RA00253G-(cit20)/*[position()=1]) 2009; 343 Wu (C9RA00253G-(cit22)/*[position()=1]) 2010; 114 Lee (C9RA00253G-(cit47)/*[position()=1]) 2015; 478 Childress (C9RA00253G-(cit37)/*[position()=1]) 1996; 119 Thong (C9RA00253G-(cit42)/*[position()=1]) 2016; 4 Wu (C9RA00253G-(cit40)/*[position()=1]) 2015; 86 Wu (C9RA00253G-(cit33)/*[position()=1]) 2015; 86 Zhu (C9RA00253G-(cit11)/*[position()=1]) 2014; 465 Wu (C9RA00253G-(cit39)/*[position()=1]) 2014; 472 Song (C9RA00253G-(cit1)/*[position()=1]) 2011; 276 Song (C9RA00253G-(cit17)/*[position()=1]) 2005; 251 Wei (C9RA00253G-(cit35)/*[position()=1]) 2014; 350 Zhao (C9RA00253G-(cit50)/*[position()=1]) 2015; 492 Yang (C9RA00253G-(cit55)/*[position()=1]) 2016; 388 Sun (C9RA00253G-(cit28)/*[position()=1]) 2012; 401 Hirose (C9RA00253G-(cit45)/*[position()=1]) 1996; 121 Roh (C9RA00253G-(cit19)/*[position()=1]) 2002; 198 An (C9RA00253G-(cit12)/*[position()=1]) 2016; 103 Rao (C9RA00253G-(cit18)/*[position()=1]) 2003; 211 Vanherck (C9RA00253G-(cit51)/*[position()=1]) 2010; 353 Fang (C9RA00253G-(cit49)/*[position()=1]) 2014; 468 Fang (C9RA00253G-(cit43)/*[position()=1]) 2013; 430 Yangali-Quintanilla (C9RA00253G-(cit8)/*[position()=1]) 2010; 362 Zuriaga-Agusti (C9RA00253G-(cit5)/*[position()=1]) 2010; 161 Tang (C9RA00253G-(cit21)/*[position()=1]) 2010; 365 Wei (C9RA00253G-(cit15)/*[position()=1]) 2018; 8 Gao (C9RA00253G-(cit30)/*[position()=1]) 2016; 499 Bera (C9RA00253G-(cit32)/*[position()=1]) 2016; 519 Kaur (C9RA00253G-(cit9)/*[position()=1]) 2011; 279 Li (C9RA00253G-(cit14)/*[position()=1]) 2016; 89 |
References_xml | – volume: 468 start-page: 52 year: 2014 ident: C9RA00253G-(cit34)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.047 – volume: 9 start-page: 9195 year: 2017 ident: C9RA00253G-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00829 – volume: 131 start-page: 157 year: 2000 ident: C9RA00253G-(cit3)/*[position()=1] publication-title: Desalination doi: 10.1016/S0011-9164(00)90016-X – volume: 519 start-page: 64 year: 2016 ident: C9RA00253G-(cit38)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.038 – volume: 401 start-page: 152 year: 2012 ident: C9RA00253G-(cit41)/*[position()=1] publication-title: J. Membr. Sci. – volume: 49 start-page: 8631 year: 2015 ident: C9RA00253G-(cit4)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00336 – volume: 321 start-page: 155 year: 2008 ident: C9RA00253G-(cit16)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.057 – volume: 276 start-page: 109 year: 2011 ident: C9RA00253G-(cit1)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2011.03.064 – volume: 161 start-page: 122 year: 2010 ident: C9RA00253G-(cit5)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.04.044 – volume: 22–23 start-page: 529 year: 2001 ident: C9RA00253G-(cit60)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(00)00135-0 – volume: 4 start-page: 5570 year: 2016 ident: C9RA00253G-(cit29)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01299 – volume: 401 start-page: 152 year: 2012 ident: C9RA00253G-(cit28)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.046 – volume: 348 start-page: 287 year: 2010 ident: C9RA00253G-(cit6)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.012 – volume: 198 start-page: 63 year: 2002 ident: C9RA00253G-(cit19)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00630-5 – volume: 4 start-page: 5570 year: 2016 ident: C9RA00253G-(cit42)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01299 – volume: 478 start-page: 75 year: 2015 ident: C9RA00253G-(cit47)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.045 – volume: 86 start-page: 168 year: 2015 ident: C9RA00253G-(cit40)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.08.009 – volume: 401–402 start-page: 152 year: 2012 ident: C9RA00253G-(cit58)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.046 – volume: 325 start-page: 166 year: 2008 ident: C9RA00253G-(cit23)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.07.037 – volume: 118 start-page: 35 year: 1998 ident: C9RA00253G-(cit2)/*[position()=1] publication-title: Desalination doi: 10.1016/S0011-9164(98)00079-4 – volume: 211 start-page: 13 year: 2003 ident: C9RA00253G-(cit18)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00305-8 – volume: 478 start-page: 75 year: 2015 ident: C9RA00253G-(cit31)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.045 – volume: 468 start-page: 52 year: 2014 ident: C9RA00253G-(cit49)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.047 – volume: 146 start-page: 50 year: 2015 ident: C9RA00253G-(cit10)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.03.030 – volume: 86 start-page: 2781 year: 2002 ident: C9RA00253G-(cit24)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.11257 – volume: 7 start-page: 5922 year: 2015 ident: C9RA00253G-(cit52)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07554D – volume: 472 start-page: 141 year: 2014 ident: C9RA00253G-(cit39)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.08.055 – volume: 519 start-page: 64 year: 2016 ident: C9RA00253G-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.038 – volume: 350 start-page: 44 year: 2014 ident: C9RA00253G-(cit36)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.07.012 – volume: 487 start-page: 256 year: 2015 ident: C9RA00253G-(cit46)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.02.021 – volume: 279 start-page: 201 year: 2011 ident: C9RA00253G-(cit9)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2011.06.009 – volume: 388 start-page: 268 year: 2016 ident: C9RA00253G-(cit55)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.099 – volume: 53 start-page: 14036 year: 2013 ident: C9RA00253G-(cit59)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5017688 – volume: 430 start-page: 129 year: 2013 ident: C9RA00253G-(cit43)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.12.011 – volume: 114 start-page: 16395 year: 2010 ident: C9RA00253G-(cit22)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp107280m – volume: 343 start-page: 219 year: 2009 ident: C9RA00253G-(cit20)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.07.033 – volume: 43 start-page: 8074 year: 2004 ident: C9RA00253G-(cit25)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0497994 – volume: 492 start-page: 412 year: 2015 ident: C9RA00253G-(cit50)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.05.041 – volume: 8 start-page: 10396 year: 2018 ident: C9RA00253G-(cit15)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA00519B – volume: 63 start-page: 566 year: 1958 ident: C9RA00253G-(cit63)/*[position()=1] publication-title: J. Phys. Chem. C – volume: 306 start-page: 504 year: 2016 ident: C9RA00253G-(cit54)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.086 – volume: 311 start-page: 34 year: 2008 ident: C9RA00253G-(cit26)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.11.038 – volume: 103 start-page: 362 year: 2016 ident: C9RA00253G-(cit12)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2016.07.060 – volume: 451 start-page: 103 year: 2014 ident: C9RA00253G-(cit57)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.003 – volume: 499 start-page: 361 year: 2016 ident: C9RA00253G-(cit30)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.10.051 – volume: 350 start-page: 44 year: 2014 ident: C9RA00253G-(cit35)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.07.012 – volume: 442 start-page: 131 year: 2013 ident: C9RA00253G-(cit61)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.022 – volume: 365 start-page: 276 year: 2010 ident: C9RA00253G-(cit21)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.09.015 – volume: 89 start-page: 50 year: 2016 ident: C9RA00253G-(cit14)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2015.11.032 – volume: 142 start-page: 337 year: 2019 ident: C9RA00253G-(cit44)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.10.058 – volume: 465 start-page: 91 year: 2014 ident: C9RA00253G-(cit11)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.016 – volume: 443 start-page: 69 year: 2013 ident: C9RA00253G-(cit62)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.063 – volume: 8 start-page: 6693 year: 2016 ident: C9RA00253G-(cit48)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00394 – volume: 363 start-page: 188 year: 2010 ident: C9RA00253G-(cit56)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.07.025 – volume: 86 start-page: 168 year: 2015 ident: C9RA00253G-(cit33)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.08.009 – volume: 362 start-page: 334 year: 2010 ident: C9RA00253G-(cit8)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.06.058 – volume: 119 start-page: 253 year: 1996 ident: C9RA00253G-(cit37)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(96)00127-5 – volume: 326 start-page: 19 year: 2009 ident: C9RA00253G-(cit27)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.09.021 – volume: 353 start-page: 135 year: 2010 ident: C9RA00253G-(cit51)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.046 – volume: 121 start-page: 209 year: 1996 ident: C9RA00253G-(cit45)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00181-0 – volume: 251 start-page: 67 year: 2005 ident: C9RA00253G-(cit17)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.10.042 – volume: 389 start-page: 499 year: 2012 ident: C9RA00253G-(cit13)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.018 – volume: 170 start-page: 1210 year: 2009 ident: C9RA00253G-(cit7)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.05.105 |
SSID | ssj0000651261 |
Score | 2.4083633 |
Snippet | A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed
via
interfacial polymerization... A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed interfacial polymerization on... A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 10796 |
SubjectTerms | Ambient temperature Aqueous solutions Calcium chloride Cations Chemistry Dichlorides Dyes Electrolytes Gold Magnesium chloride magnesium sulfate Mixing ratio Molecular weight Monomers Nanofiltration organochlorine compounds Polyamide resins polyamides Polyethyleneimine Polymerization Polysulfone resins Pore size Porosity Rejection Rhodamine rhodamines sodium chloride Sodium sulfate Ultrafiltration Zinc chloride |
Title | A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35515306 https://www.proquest.com/docview/2205382951 https://www.proquest.com/docview/2237546166 https://www.proquest.com/docview/2661082369 https://pubmed.ncbi.nlm.nih.gov/PMC9062538 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviDuFMRnBC4oykjhxm8eq2pjQNqTRosJLZCcOi9Sl1Wgndb8H8Ts5x3GclFZoIFVR5DiW1e-Lzzn2uRDyVsInw3kculka5G7YY5kr09Bzgyz0QykCkXOMdz4948fj8OMkmnQ6P1teS8uFPEhvtsaV_A-q0Aa4YpTsPyBrB4UGuAd84QoIw_VWGA-ccnatpk7leQV3K0dnPlI6VE23KqcUJZblNulxnUt1CQYyqJYovzI8K5jPpisFeIH8UVjjS5mAN2exrAKrhF4TnalYYepnnXAWjx1MvBUMcl0InXfiKhd6Bx5HxJOgmwb2Ogf452HtdtD4LhZmz_rbRSELS9bTQlSnQrVw1Tu2WmQsgQ5i1riGVG4hRXsHw9eHMV5r0Q3ARgdcq5ItB2pLm1mp4zYhY2d-ALZrzF10k2wvwrq1JdHt8w1x4THMtprGVwJ1P_a9EYq1I8DZp-RofHKSjA4noztkNwBjBFbT3fMv48lXu5cHapwf6NS8dtp1JlwWv2-GX9d9NgyaP_1yW4rO6AG5bywUOqjo9pB0VPmI3B3WhQEfk18DqmlHG9pRQztqaUfXaUdr2lFNOwotG7SjSDsqqKEdrWhHNe2opR21tKNAO9qiHV2n3RMyPjocDY9dU-7DTUErXrgy4yKULOMc1CldPyllSuQyDyIwqnLhsUBbG0GaRSJn_X4W4Yu-z9J-ynLFnpKdclaq54RGPRmJPgyTSSyZAD_mh3mU-8oLpM96XfKuBiJJTS58LMkyTbRPBouTYXw-0KB96JI3tu-8ygCztddejWdiVogfCQaxs34ARkyXvLaPAS08lIO_fLbEPliEmvuc_6UPKNF4Is7jLnlWUcROBewFUFo8eLu3Rh7bAfPHrz8piwudRx5TlMP8Xtxibi_JvebL3SM7gLl6Bdr4Qu7rXax980n8Bg6n7NM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+positively+charged+composite+nanofiltration+membrane+based+on+polyethyleneimine+with+a+tunable+active+layer+structure+developed+via+interfacial+polymerization&rft.jtitle=RSC+advances&rft.au=Jiang%2C+Zhibin&rft.au=Miao%2C+Jing&rft.au=He%2C+Yuantao&rft.au=Tu%2C+Kai&rft.date=2019-04-08&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=9&rft.issue=19+p.10796-10806&rft.spage=10796&rft.epage=10806&rft_id=info:doi/10.1039%2Fc9ra00253g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |