A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization

A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixtu...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 19; pp. 10796 - 10806
Main Authors Jiang, Zhibin, Miao, Jing, He, Yuantao, Tu, Kai, Chen, Shunquan, Zhang, Rui, Zhang, Ling, Yang, Hao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 08.04.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( R ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( F ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl 2 , MgCl 2 , CaCl 2 , CuCl 2 , MgSO 4 , NaCl, and Na 2 SO 4 . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L −1 MgCl 2 aqueous solution as 98.1% and 27.6 L m −2 h −1 , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( M w ) and the overall charges of the dye.
AbstractList A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L-1 MgCl2 aqueous solution as 98.1% and 27.6 L m-2 h-1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (M w) and the overall charges of the dye.A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L-1 MgCl2 aqueous solution as 98.1% and 27.6 L m-2 h-1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (M w) and the overall charges of the dye.
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl , MgCl , CaCl , CuCl , MgSO , NaCl, and Na SO . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated and to 1 g L MgCl aqueous solution as 98.1% and 27.6 L m h , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( ) and the overall charges of the dye.
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl₂, MgCl₂, CaCl₂, CuCl₂, MgSO₄, NaCl, and Na₂SO₄. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L⁻¹ MgCl₂ aqueous solution as 98.1% and 27.6 L m⁻² h⁻¹, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (Mw) and the overall charges of the dye.
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( R ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( F ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl 2 , MgCl 2 , CaCl 2 , CuCl 2 , MgSO 4 , NaCl, and Na 2 SO 4 . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L −1 MgCl 2 aqueous solution as 98.1% and 27.6 L m −2 h −1 , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( M w ) and the overall charges of the dye.
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L−1 MgCl2 aqueous solution as 98.1% and 27.6 L m−2 h−1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (Mw) and the overall charges of the dye.
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection ( R ) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux ( F ) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl 2 , MgCl 2 , CaCl 2 , CuCl 2 , MgSO 4 , NaCl, and Na 2 SO 4 . At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L −1 MgCl 2 aqueous solution as 98.1% and 27.6 L m −2 h −1 , respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight ( M w ) and the overall charges of the dye. The tunable active layer structure was developed via interfacial polymerization, using polyethyleneimine as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride and tri-mesoyl chloride as the monomer of the organic phase.
Author Tu, Kai
Chen, Shunquan
He, Yuantao
Yang, Hao
Zhang, Rui
Zhang, Ling
Jiang, Zhibin
Miao, Jing
Author_xml – sequence: 1
  givenname: Zhibin
  surname: Jiang
  fullname: Jiang, Zhibin
  organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0003-4436-2823
  surname: Miao
  fullname: Miao, Jing
  organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China
– sequence: 3
  givenname: Yuantao
  surname: He
  fullname: He, Yuantao
  organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China
– sequence: 4
  givenname: Kai
  surname: Tu
  fullname: Tu, Kai
  organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China
– sequence: 5
  givenname: Shunquan
  surname: Chen
  fullname: Chen, Shunquan
  organization: Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Guangzhou 511458, PR China
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Shandong Disk Tube Reverse Osmosis (DTRO) Membrane Engineering Laboratory, The New Water Technology, Inc. (NEWA), China
– sequence: 7
  givenname: Ling
  orcidid: 0000-0001-7289-2288
  surname: Zhang
  fullname: Zhang, Ling
  organization: School of Resource and Environment, University of Jinan, Jinan 250022, PR China
– sequence: 8
  givenname: Hao
  orcidid: 0000-0003-3325-1378
  surname: Yang
  fullname: Yang, Hao
  organization: Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35515306$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1qFDEUxwep2Fp74wNIwBsRVvOxyc7cCMuiVSgIotchkznTTckkY5LZMj6Qz-nZbau1COYm4Zzf-Z-vPK2OQgxQVc8ZfcOoaN5umi9rSrkU54-qE06XasGpao7uvY-rs5yvKB4lGVfsSXUspGRSUHVS_VyTEHfgyRizKw5fM7Fbky6hIzYOByuQYELsnS_JFBcDGWBokwlAWpORQ8sY_QxlO3sI4AaHrmtXtsSQMgXTeiDG7sWJNzMkkkuabJkSkA4wYxxRZOcMcaFA6o11xh8UB0juxyHls-pxb3yGs9v7tPr24f3XzcfFxefzT5v1xcIuRVMWbafMshWdUpxh6yuxsgJM3_Zc1qzrDRWcNYIrbjtpelHXndwHMiZsbUUP4rR6d6M7Tu0AnYWAPXs9JjeYNOtonP7bE9xWX8adbqjCHdQo8OpWIMXvE-SiB5cteI_jilPWXClGay5U83-Ui5VcKqYUoi8foFdxSgEngRTFvLyRDKkX94v_XfXdthGgN4BNMecEvbauHOaLvTivGdX7P6X__CkMef0g5E71H_AvxAfQRg
CitedBy_id crossref_primary_10_1016_j_compositesb_2021_108686
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_3390_separations9070180
crossref_primary_10_1007_s11814_021_1036_5
crossref_primary_10_1016_j_progpolymsci_2021_101451
crossref_primary_10_1002_apj_3077
crossref_primary_10_1016_j_memsci_2020_118063
crossref_primary_10_3390_membranes13080741
crossref_primary_10_1016_j_jwpe_2022_103287
crossref_primary_10_1016_j_memsci_2022_120389
crossref_primary_10_1016_j_ceja_2025_100717
crossref_primary_10_2139_ssrn_4002130
crossref_primary_10_1007_s10853_021_06857_3
crossref_primary_10_1016_j_desal_2022_116310
crossref_primary_10_1016_j_cscee_2020_100075
crossref_primary_10_1088_2053_1591_ab448a
crossref_primary_10_1016_j_cej_2020_127376
crossref_primary_10_1016_j_desal_2023_116877
crossref_primary_10_1016_j_cherd_2021_04_031
crossref_primary_10_1016_j_memsci_2021_119405
crossref_primary_10_1021_acsami_1c16639
crossref_primary_10_1016_j_jhazmat_2020_122582
crossref_primary_10_1016_j_seppur_2021_119142
crossref_primary_10_1016_j_memsci_2022_120534
crossref_primary_10_1002_admi_202001050
crossref_primary_10_1002_mabi_202200162
crossref_primary_10_1016_j_chemosphere_2022_134024
crossref_primary_10_1016_j_matchemphys_2020_123578
crossref_primary_10_1039_C9RA06528H
crossref_primary_10_1016_j_memsci_2021_119097
crossref_primary_10_1016_j_jhazmat_2023_133049
crossref_primary_10_1016_j_memsci_2022_120381
crossref_primary_10_1016_j_memsci_2021_119551
crossref_primary_10_1002_app_53235
crossref_primary_10_1016_j_scitotenv_2021_152228
crossref_primary_10_1016_j_seppur_2023_124216
Cites_doi 10.1016/j.memsci.2014.05.047
10.1021/acsami.7b00829
10.1016/S0011-9164(00)90016-X
10.1016/j.memsci.2016.07.038
10.1021/acs.est.5b00336
10.1016/j.memsci.2008.04.057
10.1016/j.desal.2011.03.064
10.1016/j.cej.2010.04.044
10.1016/S1383-5866(00)00135-0
10.1021/acssuschemeng.6b01299
10.1016/j.memsci.2012.01.046
10.1016/j.memsci.2009.11.012
10.1016/S0376-7388(01)00630-5
10.1016/j.memsci.2014.12.045
10.1016/j.reactfunctpolym.2014.08.009
10.1016/j.memsci.2008.07.037
10.1016/S0011-9164(98)00079-4
10.1016/S0376-7388(02)00305-8
10.1016/j.seppur.2015.03.030
10.1002/app.11257
10.1039/C4NR07554D
10.1016/j.memsci.2014.08.055
10.1016/j.desal.2014.07.012
10.1016/j.memsci.2015.02.021
10.1016/j.desal.2011.06.009
10.1016/j.apsusc.2016.01.099
10.1021/ie5017688
10.1016/j.memsci.2012.12.011
10.1021/jp107280m
10.1016/j.memsci.2009.07.033
10.1021/ie0497994
10.1016/j.memsci.2015.05.041
10.1039/C8RA00519B
10.1016/j.cej.2016.07.086
10.1016/j.memsci.2007.11.038
10.1016/j.watres.2016.07.060
10.1016/j.memsci.2013.10.003
10.1016/j.memsci.2015.10.051
10.1016/j.memsci.2013.04.022
10.1016/j.memsci.2010.09.015
10.1016/j.watres.2015.11.032
10.1016/j.carbon.2018.10.058
10.1016/j.memsci.2014.04.016
10.1016/j.memsci.2013.04.063
10.1021/acsami.6b00394
10.1016/j.memsci.2010.07.025
10.1016/j.memsci.2010.06.058
10.1016/0376-7388(96)00127-5
10.1016/j.memsci.2008.09.021
10.1016/j.memsci.2010.02.046
10.1016/S0376-7388(96)00181-0
10.1016/j.memsci.2004.10.042
10.1016/j.memsci.2011.11.018
10.1016/j.jhazmat.2009.05.105
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/C9RA00253G
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 10806
ExternalDocumentID PMC9062538
35515306
10_1039_C9RA00253G
Genre Journal Article
GroupedDBID 0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CITATION
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
ZCN
-JG
ABGFH
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c439t-bd6a4b3d6621206737c3eafbf2581dfa032193262cd5af388d5c439113c8c3fe3
ISSN 2046-2069
IngestDate Thu Aug 21 18:13:03 EDT 2025
Fri Jul 11 11:15:31 EDT 2025
Thu Jul 10 22:06:51 EDT 2025
Mon Jun 30 04:11:54 EDT 2025
Thu Jan 02 22:54:22 EST 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 04:24:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-bd6a4b3d6621206737c3eafbf2581dfa032193262cd5af388d5c439113c8c3fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7289-2288
0000-0003-4436-2823
0000-0003-3325-1378
OpenAccessLink http://dx.doi.org/10.1039/c9ra00253g
PMID 35515306
PQID 2205382951
PQPubID 2047525
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062538
proquest_miscellaneous_2661082369
proquest_miscellaneous_2237546166
proquest_journals_2205382951
pubmed_primary_35515306
crossref_citationtrail_10_1039_C9RA00253G
crossref_primary_10_1039_C9RA00253G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190408
PublicationDateYYYYMMDD 2019-04-08
PublicationDate_xml – month: 4
  year: 2019
  text: 20190408
  day: 8
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Hung (C9RA00253G-(cit44)/*[position()=1]) 2019; 142
Dalwani (C9RA00253G-(cit56)/*[position()=1]) 2010; 363
Tiraferri (C9RA00253G-(cit13)/*[position()=1]) 2012; 389
Galama (C9RA00253G-(cit61)/*[position()=1]) 2013; 442
Sun (C9RA00253G-(cit58)/*[position()=1]) 2012; 401–402
Wei (C9RA00253G-(cit59)/*[position()=1]) 2013; 53
Ahmad (C9RA00253G-(cit25)/*[position()=1]) 2004; 43
Bera (C9RA00253G-(cit38)/*[position()=1]) 2016; 519
Shi (C9RA00253G-(cit41)/*[position()=1]) 2012; 401
Ghosh (C9RA00253G-(cit26)/*[position()=1]) 2008; 311
Zhao (C9RA00253G-(cit48)/*[position()=1]) 2016; 8
Afonso (C9RA00253G-(cit60)/*[position()=1]) 2001; 22–23
Si (C9RA00253G-(cit52)/*[position()=1]) 2015; 7
Heo (C9RA00253G-(cit62)/*[position()=1]) 2013; 443
Xing (C9RA00253G-(cit10)/*[position()=1]) 2015; 146
Jiang (C9RA00253G-(cit53)/*[position()=1]) 2017; 9
Nightingale (C9RA00253G-(cit63)/*[position()=1]) 1958; 63
Wu (C9RA00253G-(cit46)/*[position()=1]) 2015; 487
Othman (C9RA00253G-(cit6)/*[position()=1]) 2010; 348
Feng (C9RA00253G-(cit57)/*[position()=1]) 2014; 451
Kosaraju (C9RA00253G-(cit16)/*[position()=1]) 2008; 321
Fang (C9RA00253G-(cit34)/*[position()=1]) 2014; 468
Fridman-Bishop (C9RA00253G-(cit4)/*[position()=1]) 2015; 49
Abu Tarboush (C9RA00253G-(cit23)/*[position()=1]) 2008; 325
Chiang (C9RA00253G-(cit27)/*[position()=1]) 2009; 326
Thong (C9RA00253G-(cit29)/*[position()=1]) 2016; 4
Song (C9RA00253G-(cit54)/*[position()=1]) 2016; 306
Wei (C9RA00253G-(cit36)/*[position()=1]) 2014; 350
Lee (C9RA00253G-(cit31)/*[position()=1]) 2015; 478
Hassan (C9RA00253G-(cit2)/*[position()=1]) 1998; 118
Jegal (C9RA00253G-(cit24)/*[position()=1]) 2002; 86
Tepus (C9RA00253G-(cit7)/*[position()=1]) 2009; 170
Hassan (C9RA00253G-(cit3)/*[position()=1]) 2000; 131
Mansourpanah (C9RA00253G-(cit20)/*[position()=1]) 2009; 343
Wu (C9RA00253G-(cit22)/*[position()=1]) 2010; 114
Lee (C9RA00253G-(cit47)/*[position()=1]) 2015; 478
Childress (C9RA00253G-(cit37)/*[position()=1]) 1996; 119
Thong (C9RA00253G-(cit42)/*[position()=1]) 2016; 4
Wu (C9RA00253G-(cit40)/*[position()=1]) 2015; 86
Wu (C9RA00253G-(cit33)/*[position()=1]) 2015; 86
Zhu (C9RA00253G-(cit11)/*[position()=1]) 2014; 465
Wu (C9RA00253G-(cit39)/*[position()=1]) 2014; 472
Song (C9RA00253G-(cit1)/*[position()=1]) 2011; 276
Song (C9RA00253G-(cit17)/*[position()=1]) 2005; 251
Wei (C9RA00253G-(cit35)/*[position()=1]) 2014; 350
Zhao (C9RA00253G-(cit50)/*[position()=1]) 2015; 492
Yang (C9RA00253G-(cit55)/*[position()=1]) 2016; 388
Sun (C9RA00253G-(cit28)/*[position()=1]) 2012; 401
Hirose (C9RA00253G-(cit45)/*[position()=1]) 1996; 121
Roh (C9RA00253G-(cit19)/*[position()=1]) 2002; 198
An (C9RA00253G-(cit12)/*[position()=1]) 2016; 103
Rao (C9RA00253G-(cit18)/*[position()=1]) 2003; 211
Vanherck (C9RA00253G-(cit51)/*[position()=1]) 2010; 353
Fang (C9RA00253G-(cit49)/*[position()=1]) 2014; 468
Fang (C9RA00253G-(cit43)/*[position()=1]) 2013; 430
Yangali-Quintanilla (C9RA00253G-(cit8)/*[position()=1]) 2010; 362
Zuriaga-Agusti (C9RA00253G-(cit5)/*[position()=1]) 2010; 161
Tang (C9RA00253G-(cit21)/*[position()=1]) 2010; 365
Wei (C9RA00253G-(cit15)/*[position()=1]) 2018; 8
Gao (C9RA00253G-(cit30)/*[position()=1]) 2016; 499
Bera (C9RA00253G-(cit32)/*[position()=1]) 2016; 519
Kaur (C9RA00253G-(cit9)/*[position()=1]) 2011; 279
Li (C9RA00253G-(cit14)/*[position()=1]) 2016; 89
References_xml – volume: 468
  start-page: 52
  year: 2014
  ident: C9RA00253G-(cit34)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.047
– volume: 9
  start-page: 9195
  year: 2017
  ident: C9RA00253G-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00829
– volume: 131
  start-page: 157
  year: 2000
  ident: C9RA00253G-(cit3)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/S0011-9164(00)90016-X
– volume: 519
  start-page: 64
  year: 2016
  ident: C9RA00253G-(cit38)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.038
– volume: 401
  start-page: 152
  year: 2012
  ident: C9RA00253G-(cit41)/*[position()=1]
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 8631
  year: 2015
  ident: C9RA00253G-(cit4)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00336
– volume: 321
  start-page: 155
  year: 2008
  ident: C9RA00253G-(cit16)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.057
– volume: 276
  start-page: 109
  year: 2011
  ident: C9RA00253G-(cit1)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.03.064
– volume: 161
  start-page: 122
  year: 2010
  ident: C9RA00253G-(cit5)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.04.044
– volume: 22–23
  start-page: 529
  year: 2001
  ident: C9RA00253G-(cit60)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(00)00135-0
– volume: 4
  start-page: 5570
  year: 2016
  ident: C9RA00253G-(cit29)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01299
– volume: 401
  start-page: 152
  year: 2012
  ident: C9RA00253G-(cit28)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.046
– volume: 348
  start-page: 287
  year: 2010
  ident: C9RA00253G-(cit6)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.012
– volume: 198
  start-page: 63
  year: 2002
  ident: C9RA00253G-(cit19)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00630-5
– volume: 4
  start-page: 5570
  year: 2016
  ident: C9RA00253G-(cit42)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01299
– volume: 478
  start-page: 75
  year: 2015
  ident: C9RA00253G-(cit47)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.12.045
– volume: 86
  start-page: 168
  year: 2015
  ident: C9RA00253G-(cit40)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.08.009
– volume: 401–402
  start-page: 152
  year: 2012
  ident: C9RA00253G-(cit58)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.046
– volume: 325
  start-page: 166
  year: 2008
  ident: C9RA00253G-(cit23)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.07.037
– volume: 118
  start-page: 35
  year: 1998
  ident: C9RA00253G-(cit2)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00079-4
– volume: 211
  start-page: 13
  year: 2003
  ident: C9RA00253G-(cit18)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00305-8
– volume: 478
  start-page: 75
  year: 2015
  ident: C9RA00253G-(cit31)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.12.045
– volume: 468
  start-page: 52
  year: 2014
  ident: C9RA00253G-(cit49)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.047
– volume: 146
  start-page: 50
  year: 2015
  ident: C9RA00253G-(cit10)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.03.030
– volume: 86
  start-page: 2781
  year: 2002
  ident: C9RA00253G-(cit24)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.11257
– volume: 7
  start-page: 5922
  year: 2015
  ident: C9RA00253G-(cit52)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR07554D
– volume: 472
  start-page: 141
  year: 2014
  ident: C9RA00253G-(cit39)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.08.055
– volume: 519
  start-page: 64
  year: 2016
  ident: C9RA00253G-(cit32)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.038
– volume: 350
  start-page: 44
  year: 2014
  ident: C9RA00253G-(cit36)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.07.012
– volume: 487
  start-page: 256
  year: 2015
  ident: C9RA00253G-(cit46)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.02.021
– volume: 279
  start-page: 201
  year: 2011
  ident: C9RA00253G-(cit9)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.06.009
– volume: 388
  start-page: 268
  year: 2016
  ident: C9RA00253G-(cit55)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.099
– volume: 53
  start-page: 14036
  year: 2013
  ident: C9RA00253G-(cit59)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5017688
– volume: 430
  start-page: 129
  year: 2013
  ident: C9RA00253G-(cit43)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.12.011
– volume: 114
  start-page: 16395
  year: 2010
  ident: C9RA00253G-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp107280m
– volume: 343
  start-page: 219
  year: 2009
  ident: C9RA00253G-(cit20)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.07.033
– volume: 43
  start-page: 8074
  year: 2004
  ident: C9RA00253G-(cit25)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0497994
– volume: 492
  start-page: 412
  year: 2015
  ident: C9RA00253G-(cit50)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.05.041
– volume: 8
  start-page: 10396
  year: 2018
  ident: C9RA00253G-(cit15)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA00519B
– volume: 63
  start-page: 566
  year: 1958
  ident: C9RA00253G-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. C
– volume: 306
  start-page: 504
  year: 2016
  ident: C9RA00253G-(cit54)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.086
– volume: 311
  start-page: 34
  year: 2008
  ident: C9RA00253G-(cit26)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.11.038
– volume: 103
  start-page: 362
  year: 2016
  ident: C9RA00253G-(cit12)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.07.060
– volume: 451
  start-page: 103
  year: 2014
  ident: C9RA00253G-(cit57)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.003
– volume: 499
  start-page: 361
  year: 2016
  ident: C9RA00253G-(cit30)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.10.051
– volume: 350
  start-page: 44
  year: 2014
  ident: C9RA00253G-(cit35)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.07.012
– volume: 442
  start-page: 131
  year: 2013
  ident: C9RA00253G-(cit61)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.022
– volume: 365
  start-page: 276
  year: 2010
  ident: C9RA00253G-(cit21)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.09.015
– volume: 89
  start-page: 50
  year: 2016
  ident: C9RA00253G-(cit14)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.11.032
– volume: 142
  start-page: 337
  year: 2019
  ident: C9RA00253G-(cit44)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.058
– volume: 465
  start-page: 91
  year: 2014
  ident: C9RA00253G-(cit11)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.016
– volume: 443
  start-page: 69
  year: 2013
  ident: C9RA00253G-(cit62)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.063
– volume: 8
  start-page: 6693
  year: 2016
  ident: C9RA00253G-(cit48)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00394
– volume: 363
  start-page: 188
  year: 2010
  ident: C9RA00253G-(cit56)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.07.025
– volume: 86
  start-page: 168
  year: 2015
  ident: C9RA00253G-(cit33)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.08.009
– volume: 362
  start-page: 334
  year: 2010
  ident: C9RA00253G-(cit8)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.06.058
– volume: 119
  start-page: 253
  year: 1996
  ident: C9RA00253G-(cit37)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(96)00127-5
– volume: 326
  start-page: 19
  year: 2009
  ident: C9RA00253G-(cit27)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.09.021
– volume: 353
  start-page: 135
  year: 2010
  ident: C9RA00253G-(cit51)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.046
– volume: 121
  start-page: 209
  year: 1996
  ident: C9RA00253G-(cit45)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00181-0
– volume: 251
  start-page: 67
  year: 2005
  ident: C9RA00253G-(cit17)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.10.042
– volume: 389
  start-page: 499
  year: 2012
  ident: C9RA00253G-(cit13)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.018
– volume: 170
  start-page: 1210
  year: 2009
  ident: C9RA00253G-(cit7)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.05.105
SSID ssj0000651261
Score 2.4083633
Snippet A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization...
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed interfacial polymerization on...
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 10796
SubjectTerms Ambient temperature
Aqueous solutions
Calcium chloride
Cations
Chemistry
Dichlorides
Dyes
Electrolytes
Gold
Magnesium chloride
magnesium sulfate
Mixing ratio
Molecular weight
Monomers
Nanofiltration
organochlorine compounds
Polyamide resins
polyamides
Polyethyleneimine
Polymerization
Polysulfone resins
Pore size
Porosity
Rejection
Rhodamine
rhodamines
sodium chloride
Sodium sulfate
Ultrafiltration
Zinc chloride
Title A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization
URI https://www.ncbi.nlm.nih.gov/pubmed/35515306
https://www.proquest.com/docview/2205382951
https://www.proquest.com/docview/2237546166
https://www.proquest.com/docview/2661082369
https://pubmed.ncbi.nlm.nih.gov/PMC9062538
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviDuFMRnBC4oykjhxm8eq2pjQNqTRosJLZCcOi9Sl1Wgndb8H8Ts5x3GclFZoIFVR5DiW1e-Lzzn2uRDyVsInw3kculka5G7YY5kr09Bzgyz0QykCkXOMdz4948fj8OMkmnQ6P1teS8uFPEhvtsaV_A-q0Aa4YpTsPyBrB4UGuAd84QoIw_VWGA-ccnatpk7leQV3K0dnPlI6VE23KqcUJZblNulxnUt1CQYyqJYovzI8K5jPpisFeIH8UVjjS5mAN2exrAKrhF4TnalYYepnnXAWjx1MvBUMcl0InXfiKhd6Bx5HxJOgmwb2Ogf452HtdtD4LhZmz_rbRSELS9bTQlSnQrVw1Tu2WmQsgQ5i1riGVG4hRXsHw9eHMV5r0Q3ARgdcq5ItB2pLm1mp4zYhY2d-ALZrzF10k2wvwrq1JdHt8w1x4THMtprGVwJ1P_a9EYq1I8DZp-RofHKSjA4noztkNwBjBFbT3fMv48lXu5cHapwf6NS8dtp1JlwWv2-GX9d9NgyaP_1yW4rO6AG5bywUOqjo9pB0VPmI3B3WhQEfk18DqmlHG9pRQztqaUfXaUdr2lFNOwotG7SjSDsqqKEdrWhHNe2opR21tKNAO9qiHV2n3RMyPjocDY9dU-7DTUErXrgy4yKULOMc1CldPyllSuQyDyIwqnLhsUBbG0GaRSJn_X4W4Yu-z9J-ynLFnpKdclaq54RGPRmJPgyTSSyZAD_mh3mU-8oLpM96XfKuBiJJTS58LMkyTbRPBouTYXw-0KB96JI3tu-8ygCztddejWdiVogfCQaxs34ARkyXvLaPAS08lIO_fLbEPliEmvuc_6UPKNF4Is7jLnlWUcROBewFUFo8eLu3Rh7bAfPHrz8piwudRx5TlMP8Xtxibi_JvebL3SM7gLl6Bdr4Qu7rXax980n8Bg6n7NM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+positively+charged+composite+nanofiltration+membrane+based+on+polyethyleneimine+with+a+tunable+active+layer+structure+developed+via+interfacial+polymerization&rft.jtitle=RSC+advances&rft.au=Jiang%2C+Zhibin&rft.au=Miao%2C+Jing&rft.au=He%2C+Yuantao&rft.au=Tu%2C+Kai&rft.date=2019-04-08&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=9&rft.issue=19+p.10796-10806&rft.spage=10796&rft.epage=10806&rft_id=info:doi/10.1039%2Fc9ra00253g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon