Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer

Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 133; p. 104122
Main Authors Chen, Yuhan, Yan, Qingyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection. •Employs CYGNSS data for estimating surface water fraction (SWF).•Incorporates topographic factors, soil moisture, and geolocation data.•Proposes the Context Feature Refinement Transformer model to effectively retrieve SWF.
AbstractList Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection.
Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection. •Employs CYGNSS data for estimating surface water fraction (SWF).•Incorporates topographic factors, soil moisture, and geolocation data.•Proposes the Context Feature Refinement Transformer model to effectively retrieve SWF.
ArticleNumber 104122
Author Yan, Qingyun
Chen, Yuhan
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Chen
  fullname: Chen, Yuhan
  organization: School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
– sequence: 2
  givenname: Qingyun
  surname: Yan
  fullname: Yan, Qingyun
  email: 003257@nuist.edu.cn
  organization: School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
BookMark eNp9kT9v1TAUxTMUibbwAdg8suTh_0nEhJ6gVKrKUDowWfc5N68OiZ3aDhXfHj9SMTB0sux7fsf2ORfVmQ8eq-odoztGmf4w7kY47jjlsuwl4_ysOmdKd3UrBX9dXaQ0UsqaRrfn1eO9n4L96fyR5AckS8jos4OJhIHsf1zd3t2RIUSygK9zDIuzZeT8BL4nT5AxkhmWZaNjWI8PZF6n7OoU1miR9JCBnLQ5gk_FaMb4pno1wJTw7fN6Wd1_-fx9_7W--XZ1vf90U1spulwfGkW1ULqhLbRWdGAHJSy2jdJywIGrpky0Foxpduhh4FLggI0FyRvb8k5cVtebbx9gNEt0M8TfJoAzfw9CPBqI2dkJjcWu7ehBKwQlhw4BOiWxY1RQe-gbUbzeb15LDI8rpmxmlyxOJQcMazKCKcnLWzQvUrZJbQwpRRz-Xc2oOdVjRlPqMad6zFZPYZr_GOsyZBd8yc1NL5IfNxJLkr8cRpOsQ2-xdxFtLl91L9B_AN3crlU
CitedBy_id crossref_primary_10_1109_TGRS_2024_3491190
crossref_primary_10_1109_JSTARS_2024_3470508
Cites_doi 10.1007/978-3-030-01234-2_49
10.1007/978-3-030-01228-1_26
10.1016/j.rse.2023.113629
10.1016/j.isprsjprs.2019.10.017
10.1109/JSTARS.2020.3010879
10.3390/rs12162546
10.1016/j.rse.2020.111825
10.1109/JSTARS.2016.2582690
10.1109/TGRS.2020.3047075
10.1109/TGRS.2008.922144
10.1609/aaai.v35i8.16837
10.1007/s41095-022-0274-8
10.1016/j.rse.2021.112345
10.1029/2019WR025813
10.1016/j.rse.2023.113452
10.1038/nature20584
10.1109/LGRS.2020.3020223
10.1007/s11356-022-23172-9
10.1038/s41598-018-27127-4
10.1109/ICCV48922.2021.00986
10.3390/rs15133366
10.1109/JSTARS.2022.3196658
10.5194/essd-16-1137-2024
10.1016/j.scitotenv.2019.133763
10.1109/JSTARS.2020.2966880
10.3390/rs15082157
10.1109/CVPR.2017.660
10.1186/s43020-024-00139-4
10.3390/rs15235552
10.1016/j.rse.2021.112801
10.1016/j.rse.2020.111944
10.3390/rs15123122
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2024.104122
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_ce9890b65ea54f9eaa954e91030cbd73
10_1016_j_jag_2024_104122
S156984322400476X
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXKI
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AFJKZ
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AATTM
AAYWO
AAYXX
ABJNI
AEIPS
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c439t-b7506356708a8c39acf53ce87564fef2577086631161bdaf243efe7ca427c8293
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:25:08 EDT 2025
Thu Jul 10 17:29:02 EDT 2025
Tue Jul 01 02:15:27 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Sat Dec 21 16:00:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Transformer
Cyclone Global Navigation Satellite System (CyGNSS)
Inland water mapping
Global Navigation Satellite System-Reflectometry (GNSS-R)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b7506356708a8c39acf53ce87564fef2577086631161bdaf243efe7ca427c8293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S156984322400476X
PQID 3154263162
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_ce9890b65ea54f9eaa954e91030cbd73
proquest_miscellaneous_3154263162
crossref_primary_10_1016_j_jag_2024_104122
crossref_citationtrail_10_1016_j_jag_2024_104122
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chu, He, Song, Qi, Sun, Bai, Li, Wu (b10) 2020; 13
Bousquet, Mialon, Rodriguez-Fernandez, Prigent, Wagner, Kerr (b4) 2021; 257
Cho, Jacobs, Vuyovich (b9) 2020; 56
Chen, Yan (b6) 2024
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022.
Jin, Camps, Jia, Wang, Martin-Neira, Huang, Yan, Zhang, Li, Edokossi (b13) 2024; 5
Lin, Wang, Wang, Zhou, Zhou, Yang, Zhang, Cai, Yang (b15) 2024; 16
Chen, Yan, Huang (b7) 2023; 15
Yan, Huang (b35) 2016; 9
Ghasemigoudarzi, Huang, De Silva, Yan, Power (b12) 2020; 19
Pekel, Cottam, Gorelick, Belward (b24) 2016; 540
Zribi, Guyon, Motte, Dayau, Wigneron, Baghdadi, Pierdicca (b45) 2019; 74
Al-Khaldi, Johnson, Gleason, Chew, Gerlein-Safdi, Shah, Zuffada (b1) 2021; 59
Chen, Liu, Zhao, Huang, Yan (b5) 2023; 15
Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (b27) 2018; 8
Yan, Huang (b36) 2020; 13
Liu, Wan, Tang, Li, Guo, Chen, Hong (b17) 2022; 60
Seto, Koike, Kachi (b28) 2023
Yan, Huang, Jin, Jia (b37) 2020; 247
Ruan, Xiang (b26) 2024
Paek, Balasubramanian, Kim, de Weck (b23) 2020; 12
Marchán-Hernández, Rodríguez-Álvarez, Camps, Bosch-Lluis, Ramos-Pérez, Valencia (b20) 2008; 46
Asgarimehr, Arnold, Weigel, Ruf, Wickert (b2) 2022; 269
Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, Shao (b29) 2022; 8
Bjorck, J., Weinberger, K.Q., Gomes, C., 2021. Understanding decoupled and early weight decay. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 8. pp. 6777–6785.
Yang, Guo, Zhang, Zhang, Zhu (b39) 2024; 128
Liang, Liu (b14) 2020; 159
Xie, Wang, Yu, Anandkumar, Alvarez, Luo (b32) 2021; 34
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
Manzione, Castrignanò (b19) 2019; 696
Yan, Chen, Jin, Liu, Jia, Zhen, Chen, Huang (b34) 2023; 20
Wieland, Martinis, Kiefl, Gstaiger (b30) 2023; 287
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434.
Zhang, Chen, Meng, Yang, Han, Hong, Yin, Liu (b40) 2022; 60
Zhao, Heidler, Asgarimehr, Arnold, Xiao, Wickert, Zhu, Mou (b42) 2023; 294
Ding, Zhang, Ge, Zhao, Song, Yue, Shan (b11) 2023
Narin, Abdikan (b22) 2023; 30
Zhen, Yan (b44) 2023; 15
Loria, O’brien, Zavorotny, Downs, Zuffada (b18) 2020; 245
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
Rodriguez-Alvarez, Munoz-Martin, Morris (b25) 2023; 15
Xie, Yan (b33) 2024
Yan, Liu, Chen, Jin, Xie, Huang (b38) 2024
Zhang, Morton, Wang, Roesler (b41) 2022; 60
Nabi, Senyurek, Gurbuz, Kurum (b21) 2022; 15
Zhao (10.1016/j.jag.2024.104122_b42) 2023; 294
Yan (10.1016/j.jag.2024.104122_b35) 2016; 9
Zribi (10.1016/j.jag.2024.104122_b45) 2019; 74
Asgarimehr (10.1016/j.jag.2024.104122_b2) 2022; 269
Chen (10.1016/j.jag.2024.104122_b6) 2024
Nabi (10.1016/j.jag.2024.104122_b21) 2022; 15
Zhang (10.1016/j.jag.2024.104122_b40) 2022; 60
Seto (10.1016/j.jag.2024.104122_b28) 2023
Liang (10.1016/j.jag.2024.104122_b14) 2020; 159
Xie (10.1016/j.jag.2024.104122_b33) 2024
Zhen (10.1016/j.jag.2024.104122_b44) 2023; 15
Yan (10.1016/j.jag.2024.104122_b34) 2023; 20
Cho (10.1016/j.jag.2024.104122_b9) 2020; 56
Chu (10.1016/j.jag.2024.104122_b10) 2020; 13
Yan (10.1016/j.jag.2024.104122_b37) 2020; 247
10.1016/j.jag.2024.104122_b43
Marchán-Hernández (10.1016/j.jag.2024.104122_b20) 2008; 46
Yan (10.1016/j.jag.2024.104122_b36) 2020; 13
Lin (10.1016/j.jag.2024.104122_b15) 2024; 16
Chen (10.1016/j.jag.2024.104122_b7) 2023; 15
Bousquet (10.1016/j.jag.2024.104122_b4) 2021; 257
Ghasemigoudarzi (10.1016/j.jag.2024.104122_b12) 2020; 19
10.1016/j.jag.2024.104122_b16
Chen (10.1016/j.jag.2024.104122_b5) 2023; 15
Pekel (10.1016/j.jag.2024.104122_b24) 2016; 540
Jin (10.1016/j.jag.2024.104122_b13) 2024; 5
Rodriguez-Alvarez (10.1016/j.jag.2024.104122_b25) 2023; 15
Zhang (10.1016/j.jag.2024.104122_b41) 2022; 60
Al-Khaldi (10.1016/j.jag.2024.104122_b1) 2021; 59
Loria (10.1016/j.jag.2024.104122_b18) 2020; 245
Ruf (10.1016/j.jag.2024.104122_b27) 2018; 8
Ding (10.1016/j.jag.2024.104122_b11) 2023
Wang (10.1016/j.jag.2024.104122_b29) 2022; 8
10.1016/j.jag.2024.104122_b8
Paek (10.1016/j.jag.2024.104122_b23) 2020; 12
10.1016/j.jag.2024.104122_b3
Liu (10.1016/j.jag.2024.104122_b17) 2022; 60
Ruan (10.1016/j.jag.2024.104122_b26) 2024
Wieland (10.1016/j.jag.2024.104122_b30) 2023; 287
10.1016/j.jag.2024.104122_b31
Yang (10.1016/j.jag.2024.104122_b39) 2024; 128
Manzione (10.1016/j.jag.2024.104122_b19) 2019; 696
Narin (10.1016/j.jag.2024.104122_b22) 2023; 30
Xie (10.1016/j.jag.2024.104122_b32) 2021; 34
Yan (10.1016/j.jag.2024.104122_b38) 2024
References_xml – volume: 5
  start-page: 19
  year: 2024
  ident: b13
  article-title: Remote sensing and its applications using GNSS reflected signals: advances and prospects
  publication-title: Satell. Navig.
– volume: 247
  year: 2020
  ident: b37
  article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data
  publication-title: Remote Sens. Environ.
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: b24
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– volume: 59
  start-page: 7385
  year: 2021
  end-page: 7394
  ident: b1
  article-title: Inland water body mapping using CYGNSS coherence detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: b40
  article-title: Wind direction retrieval from CYGNSS L1 level sea surface data based on machine learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 577
  year: 2020
  end-page: 587
  ident: b36
  article-title: Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 46
  start-page: 2914
  year: 2008
  end-page: 2923
  ident: b20
  article-title: Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  start-page: 1
  year: 2023
  end-page: 5
  ident: b34
  article-title: Inland water mapping based on GA-LinkNet from CyGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2023
  ident: b11
  article-title: UniRepLKNet: A universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition
– volume: 16
  start-page: 1137
  year: 2024
  end-page: 1149
  ident: b15
  article-title: An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
  publication-title: Earth Syst. Sci. Data
– year: 2024
  ident: b26
  article-title: Vm-unet: Vision mamba unet for medical image segmentation
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: b41
  article-title: Mapping surface water extents using high-rate coherent spaceborne GNSS-R measurements
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 269
  year: 2022
  ident: b2
  article-title: GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet
  publication-title: Remote Sens. Environ.
– reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
– year: 2024
  ident: b6
  article-title: LFSMIM: A low-frequency spectral masked image modeling method for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 30
  start-page: 15364
  year: 2023
  end-page: 15376
  ident: b22
  article-title: Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams
  publication-title: Environ. Sci. Pollut. Res.
– volume: 9
  start-page: 4795
  year: 2016
  end-page: 4801
  ident: b35
  article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2023
  ident: b28
  article-title: Feasibility of liquid water path estimation of over land using satellite-based Ka-band passive microwave data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Bjorck, J., Weinberger, K.Q., Gomes, C., 2021. Understanding decoupled and early weight decay. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 8. pp. 6777–6785.
– reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: b17
  article-title: Statistical analysis of CyGNSS speckle and its applications to surface water mapping
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 245
  year: 2020
  ident: b18
  article-title: Analysis of scattering characteristics from inland bodies of water observed by CYGNSS
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 415
  year: 2022
  end-page: 424
  ident: b29
  article-title: Pvt v2: Improved baselines with pyramid vision transformer
  publication-title: Comput. Vis. Media
– volume: 15
  start-page: 3122
  year: 2023
  ident: b44
  article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data
  publication-title: Remote Sens.
– volume: 34
  start-page: 12077
  year: 2021
  end-page: 12090
  ident: b32
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 294
  year: 2023
  ident: b42
  article-title: DDM-former: Transformer networks for GNSS reflectometry global ocean wind speed estimation
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 8782
  year: 2018
  ident: b27
  article-title: A new paradigm in earth environmental monitoring with the cygnss small satellite constellation
  publication-title: Sci. Rep.
– volume: 13
  start-page: 5971
  year: 2020
  end-page: 5981
  ident: b10
  article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022.
– volume: 15
  start-page: 5552
  year: 2023
  ident: b7
  article-title: MFTSC: A semantically constrained method for urban building height estimation using multiple source images
  publication-title: Remote Sens.
– volume: 74
  start-page: 150
  year: 2019
  end-page: 158
  ident: b45
  article-title: Performance of GNSS-R GLORI data for biomass estimation over the Landes forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 287
  year: 2023
  ident: b30
  article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 2157
  year: 2023
  ident: b25
  article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field
  publication-title: Remote Sens.
– volume: 159
  start-page: 53
  year: 2020
  end-page: 62
  ident: b14
  article-title: A local thresholding approach to flood water delineation using sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 128
  year: 2024
  ident: b39
  article-title: High temporal resolution quasi-global landscape soil freeze–thaw map from spaceborne GNSS-R technology and SMAP radiometer measurements
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 257
  year: 2021
  ident: b4
  article-title: Influence of surface water variations on VOD and biomass estimates from passive microwave sensors
  publication-title: Remote Sens. Environ.
– volume: 696
  year: 2019
  ident: b19
  article-title: A geostatistical approach for multi-source data fusion to predict water table depth
  publication-title: Sci. Total Environ.
– volume: 19
  start-page: 1
  year: 2020
  end-page: 5
  ident: b12
  article-title: A machine learning method for inland water detection using CYGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 15
  start-page: 3366
  year: 2023
  ident: b5
  article-title: Shallow-guided transformer for semantic segmentation of hyperspectral remote sensing imagery
  publication-title: Remote Sens.
– year: 2024
  ident: b38
  article-title: Mapping surface water fraction over the pan-tropical region using CYGNSS data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  year: 2020
  ident: b9
  article-title: The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE data sets by seasonal snow and land cover classifications
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 2546
  year: 2020
  ident: b23
  article-title: Small-satellite synthetic aperture radar for continuous global biospheric monitoring: A review
  publication-title: Remote Sens.
– volume: 15
  start-page: 6867
  year: 2022
  end-page: 6881
  ident: b21
  article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay–Doppler maps
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2024
  ident: b33
  article-title: Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2023
  ident: 10.1016/j.jag.2024.104122_b28
  article-title: Feasibility of liquid water path estimation of over land using satellite-based Ka-band passive microwave data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 12077
  year: 2021
  ident: 10.1016/j.jag.2024.104122_b32
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.jag.2024.104122_b8
  doi: 10.1007/978-3-030-01234-2_49
– ident: 10.1016/j.jag.2024.104122_b31
  doi: 10.1007/978-3-030-01228-1_26
– volume: 294
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b42
  article-title: DDM-former: Transformer networks for GNSS reflectometry global ocean wind speed estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113629
– volume: 159
  start-page: 53
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b14
  article-title: A local thresholding approach to flood water delineation using sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.10.017
– volume: 13
  start-page: 5971
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b10
  article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3010879
– volume: 12
  start-page: 2546
  issue: 16
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b23
  article-title: Small-satellite synthetic aperture radar for continuous global biospheric monitoring: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs12162546
– volume: 245
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b18
  article-title: Analysis of scattering characteristics from inland bodies of water observed by CYGNSS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111825
– year: 2024
  ident: 10.1016/j.jag.2024.104122_b33
  article-title: Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 4795
  issue: 10
  year: 2016
  ident: 10.1016/j.jag.2024.104122_b35
  article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2582690
– volume: 59
  start-page: 7385
  issue: 9
  year: 2021
  ident: 10.1016/j.jag.2024.104122_b1
  article-title: Inland water body mapping using CYGNSS coherence detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047075
– volume: 46
  start-page: 2914
  issue: 10
  year: 2008
  ident: 10.1016/j.jag.2024.104122_b20
  article-title: Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.922144
– ident: 10.1016/j.jag.2024.104122_b3
  doi: 10.1609/aaai.v35i8.16837
– volume: 8
  start-page: 415
  issue: 3
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b29
  article-title: Pvt v2: Improved baselines with pyramid vision transformer
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0274-8
– volume: 257
  year: 2021
  ident: 10.1016/j.jag.2024.104122_b4
  article-title: Influence of surface water variations on VOD and biomass estimates from passive microwave sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112345
– volume: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b9
  article-title: The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE data sets by seasonal snow and land cover classifications
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025813
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b17
  article-title: Statistical analysis of CyGNSS speckle and its applications to surface water mapping
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2024
  ident: 10.1016/j.jag.2024.104122_b26
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b40
  article-title: Wind direction retrieval from CYGNSS L1 level sea surface data based on machine learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 287
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b30
  article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113452
– volume: 540
  start-page: 418
  issue: 7633
  year: 2016
  ident: 10.1016/j.jag.2024.104122_b24
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 19
  start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b12
  article-title: A machine learning method for inland water detection using CYGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3020223
– volume: 30
  start-page: 15364
  issue: 6
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b22
  article-title: Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-23172-9
– volume: 8
  start-page: 8782
  issue: 1
  year: 2018
  ident: 10.1016/j.jag.2024.104122_b27
  article-title: A new paradigm in earth environmental monitoring with the cygnss small satellite constellation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27127-4
– volume: 74
  start-page: 150
  year: 2019
  ident: 10.1016/j.jag.2024.104122_b45
  article-title: Performance of GNSS-R GLORI data for biomass estimation over the Landes forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2024.104122_b16
  doi: 10.1109/ICCV48922.2021.00986
– volume: 15
  start-page: 3366
  issue: 13
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b5
  article-title: Shallow-guided transformer for semantic segmentation of hyperspectral remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs15133366
– volume: 15
  start-page: 6867
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b21
  article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay–Doppler maps
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3196658
– volume: 16
  start-page: 1137
  issue: 2
  year: 2024
  ident: 10.1016/j.jag.2024.104122_b15
  article-title: An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-16-1137-2024
– volume: 696
  year: 2019
  ident: 10.1016/j.jag.2024.104122_b19
  article-title: A geostatistical approach for multi-source data fusion to predict water table depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133763
– year: 2024
  ident: 10.1016/j.jag.2024.104122_b6
  article-title: LFSMIM: A low-frequency spectral masked image modeling method for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 20
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b34
  article-title: Inland water mapping based on GA-LinkNet from CyGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b41
  article-title: Mapping surface water extents using high-rate coherent spaceborne GNSS-R measurements
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: 10.1016/j.jag.2024.104122_b11
– volume: 13
  start-page: 577
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b36
  article-title: Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2966880
– volume: 15
  start-page: 2157
  issue: 8
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b25
  article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field
  publication-title: Remote Sens.
  doi: 10.3390/rs15082157
– ident: 10.1016/j.jag.2024.104122_b43
  doi: 10.1109/CVPR.2017.660
– volume: 5
  start-page: 19
  issue: 1
  year: 2024
  ident: 10.1016/j.jag.2024.104122_b13
  article-title: Remote sensing and its applications using GNSS reflected signals: advances and prospects
  publication-title: Satell. Navig.
  doi: 10.1186/s43020-024-00139-4
– year: 2024
  ident: 10.1016/j.jag.2024.104122_b38
  article-title: Mapping surface water fraction over the pan-tropical region using CYGNSS data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 128
  year: 2024
  ident: 10.1016/j.jag.2024.104122_b39
  article-title: High temporal resolution quasi-global landscape soil freeze–thaw map from spaceborne GNSS-R technology and SMAP radiometer measurements
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 15
  start-page: 5552
  issue: 23
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b7
  article-title: MFTSC: A semantically constrained method for urban building height estimation using multiple source images
  publication-title: Remote Sens.
  doi: 10.3390/rs15235552
– volume: 269
  year: 2022
  ident: 10.1016/j.jag.2024.104122_b2
  article-title: GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112801
– volume: 247
  year: 2020
  ident: 10.1016/j.jag.2024.104122_b37
  article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111944
– volume: 15
  start-page: 3122
  issue: 12
  year: 2023
  ident: 10.1016/j.jag.2024.104122_b44
  article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data
  publication-title: Remote Sens.
  doi: 10.3390/rs15123122
SSID ssj0017768
Score 2.4528372
Snippet Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104122
SubjectTerms Cyclone Global Navigation Satellite System (CyGNSS)
Global Navigation Satellite System-Reflectometry (GNSS-R)
global positioning systems
Inland water mapping
inland waters
latitude
longitude
soil water
spatial data
surface water
topography
Transformer
vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzigdilioSBX6qlS1KwfcXwsaAFVggtdiZ6siddGIEiWJYi_35k44XWAS6_JOI48tuezZ-Ybxr5LDdJEiWcTKIpMyfkkqwylcYGucPfzygPlO5-eFScz9ftCX7wo9UUxYYkeOA3cTx9safOq0AG0ijYAWK2CpepYvpqbjucTbd5wmOr9B8akJDhd2KxUUgz-zC6y6xou8WAoFPk3J0K8skgdcf8rw_Rmi-7sztEnttEDRv4r_ehnthLqEVt_QSM4YlvT52w1FO2X6_0mu5vVaKvoMpwjzuOLpqXYIBRpIj_8e3x2fs4Rs3LcELJ22SxIX_yqplhH_ogYdMlvgegbqHVXzYd34YdZuvDnFFzKSbYdwG9YfmGzo-mfw5Osr7GQeYQiLSpG50RRZ_ISSi8t-KilD3iKKVQMERc0vkFUMkFkWM0hCiVDDMaDEsaXiBW22Grd1GGbcalMtDYWxlZSeUpqDR5y8F5MYO5tGLN8GGfnewJyqoNx44ZIs2uHqnGkGpdUM2Y_nposEvvGe8IHpLwnQSLO7h7gdHL9dHIfTacxU4PqXY9BErbAT1291_e3YZo4XJ_kdIE6NA_3TiJGFTh-hdj5H_-3y9ao2xTl9pWttsuHsIewqK32uxXwD_oACc4
  priority: 102
  providerName: Directory of Open Access Journals
Title Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer
URI https://dx.doi.org/10.1016/j.jag.2024.104122
https://www.proquest.com/docview/3154263162
https://doaj.org/article/ce9890b65ea54f9eaa954e91030cbd73
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoHDBIOJjlEZiRNS1NR27Pi4VRvlV4UolcrJclx76gRJyTLt3997TlIohx04xnl2Ir_n58_2954Jecszy1XgsDaxUiaCr8ZJoTCMy2YFeD8nnMV45y8zOV2Ij8tsuUcmfSwM0io739_69Oitu5JR15ujzXo9msPKQ-eCRxakUHL5iBwwriWY9sHZh0_T2fYwQak2Ig7kE6zQH25Gmte1vYJVIhN42DlmbGd6iln8d2apf_x1nIQun5LDDj3Ss_YHn5E9Xx6RJ3_lFDwixxd_QtdAtBu7N8_J70UJExfujFMAfXRTNUgUApEq0MmP97P5nAKApeAdkqauNqg8ui6R-EjvAJDW9JfFXA5YO17tQyMXMWl3_ykyTSnKNj0S9vULsri8-D6ZJt2FC4kDXNKAlrIU89WpNLe549q6kHHnYUkjRfABRje8AYgyBphYrGxggvvglbOCKZcDcDgm-2VV-peEcqGC1kEqXXDhMMLVO5ta59jYrpz2A5L2_Wxcl40cL8X4aXra2bUB1RhUjWlVMyDvtlU2bSqOh4TPUXlbQcyiHQuq-sp0ZmSc17lOC5l5m4mgvbU6E17jzWuuWCk-IKJXvdkxSmhq_dC33_RmYmCw4gmMLX11e2M4AFYG_SfZyf81_Yo8xqeW5HZK9pv61r8GVNQUQ7D6ybfPX4ed9Q_j7sI973INBQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a3QE4IBhMdPwyEiekqGnsxPFxVBsd23rpKpWT5bj21AmSLsvEv897iVMohx242s9O5Gc_f_b73jPAJ54aLj3Hs4nJskjw1TgqJIVxmbRA62eFNRTvfDnLpgvxbZku92DSx8IQrTLY_s6mt9Y6lIzCaI426_VojicPlQvesiCFzJaPYJ-yU6UD2D8-O5_Ots4EKbuIOJSPqEHv3GxpXjfmGk-JiSBn5zhJdranNov_zi71j71uN6HT5_AsoEd23P3gC9hz5QE8_Sun4AEcnvwJXUPRsHbvXsLtosSNi27GGYI-tqkaIgqhSOXZ5PvX2XzOEMAytA5RU1cbUh5bl0R8ZL8QkNbsp6FcDtS6fdqHtVzEqLv9Z8Q0ZSTb9EjY1a9gcXpyNZlG4cGFyCIuaVBLaUz56mScm9xyZaxPuXV4pMmEdx5XN9YgRBkjTCxWxieCO--kNSKRNkfgcAiDsirda2BcSK-Uz6QquLAU4eqsiY21ydisrHJDiPtx1jZkI6dHMX7onnZ2o1E1mlSjO9UM4fO2yaZLxfGQ8BdS3laQsmi3BVV9rcM00tapXMVFljqTCq-cMSoVTtHLa7ZYST4E0ate70xK7Gr90Lc_9tNE42IlD4wpXXV_pzkC1gTHL0uO_q_rD_B4enV5oS_OZudv4AnVdIS3tzBo6nv3DhFSU7wPK-A33LkNYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+the+potential+of+CYGNSS+for+pan-tropical+inland+water+mapping+through+multi-source+data+and+transformer&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Chen%2C+Yuhan&rft.au=Yan%2C+Qingyun&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=133&rft_id=info:doi/10.1016%2Fj.jag.2024.104122&rft.externalDocID=S156984322400476X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon