Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer
Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 133; p. 104122 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection.
•Employs CYGNSS data for estimating surface water fraction (SWF).•Incorporates topographic factors, soil moisture, and geolocation data.•Proposes the Context Feature Refinement Transformer model to effectively retrieve SWF. |
---|---|
AbstractList | Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection. Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection. •Employs CYGNSS data for estimating surface water fraction (SWF).•Incorporates topographic factors, soil moisture, and geolocation data.•Proposes the Context Feature Refinement Transformer model to effectively retrieve SWF. |
ArticleNumber | 104122 |
Author | Yan, Qingyun Chen, Yuhan |
Author_xml | – sequence: 1 givenname: Yuhan surname: Chen fullname: Chen, Yuhan organization: School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China – sequence: 2 givenname: Qingyun surname: Yan fullname: Yan, Qingyun email: 003257@nuist.edu.cn organization: School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China |
BookMark | eNp9kT9v1TAUxTMUibbwAdg8suTh_0nEhJ6gVKrKUDowWfc5N68OiZ3aDhXfHj9SMTB0sux7fsf2ORfVmQ8eq-odoztGmf4w7kY47jjlsuwl4_ysOmdKd3UrBX9dXaQ0UsqaRrfn1eO9n4L96fyR5AckS8jos4OJhIHsf1zd3t2RIUSygK9zDIuzZeT8BL4nT5AxkhmWZaNjWI8PZF6n7OoU1miR9JCBnLQ5gk_FaMb4pno1wJTw7fN6Wd1_-fx9_7W--XZ1vf90U1spulwfGkW1ULqhLbRWdGAHJSy2jdJywIGrpky0Foxpduhh4FLggI0FyRvb8k5cVtebbx9gNEt0M8TfJoAzfw9CPBqI2dkJjcWu7ehBKwQlhw4BOiWxY1RQe-gbUbzeb15LDI8rpmxmlyxOJQcMazKCKcnLWzQvUrZJbQwpRRz-Xc2oOdVjRlPqMad6zFZPYZr_GOsyZBd8yc1NL5IfNxJLkr8cRpOsQ2-xdxFtLl91L9B_AN3crlU |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3491190 crossref_primary_10_1109_JSTARS_2024_3470508 |
Cites_doi | 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-01228-1_26 10.1016/j.rse.2023.113629 10.1016/j.isprsjprs.2019.10.017 10.1109/JSTARS.2020.3010879 10.3390/rs12162546 10.1016/j.rse.2020.111825 10.1109/JSTARS.2016.2582690 10.1109/TGRS.2020.3047075 10.1109/TGRS.2008.922144 10.1609/aaai.v35i8.16837 10.1007/s41095-022-0274-8 10.1016/j.rse.2021.112345 10.1029/2019WR025813 10.1016/j.rse.2023.113452 10.1038/nature20584 10.1109/LGRS.2020.3020223 10.1007/s11356-022-23172-9 10.1038/s41598-018-27127-4 10.1109/ICCV48922.2021.00986 10.3390/rs15133366 10.1109/JSTARS.2022.3196658 10.5194/essd-16-1137-2024 10.1016/j.scitotenv.2019.133763 10.1109/JSTARS.2020.2966880 10.3390/rs15082157 10.1109/CVPR.2017.660 10.1186/s43020-024-00139-4 10.3390/rs15235552 10.1016/j.rse.2021.112801 10.1016/j.rse.2020.111944 10.3390/rs15123122 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2024.104122 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_ce9890b65ea54f9eaa954e91030cbd73 10_1016_j_jag_2024_104122 S156984322400476X |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXKI AAXUO ABFYP ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AFJKZ AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AATTM AAYWO AAYXX ABJNI AEIPS AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c439t-b7506356708a8c39acf53ce87564fef2577086631161bdaf243efe7ca427c8293 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:25:08 EDT 2025 Thu Jul 10 17:29:02 EDT 2025 Tue Jul 01 02:15:27 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Sat Dec 21 16:00:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transformer Cyclone Global Navigation Satellite System (CyGNSS) Inland water mapping Global Navigation Satellite System-Reflectometry (GNSS-R) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-b7506356708a8c39acf53ce87564fef2577086631161bdaf243efe7ca427c8293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S156984322400476X |
PQID | 3154263162 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce9890b65ea54f9eaa954e91030cbd73 proquest_miscellaneous_3154263162 crossref_primary_10_1016_j_jag_2024_104122 crossref_citationtrail_10_1016_j_jag_2024_104122 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chu, He, Song, Qi, Sun, Bai, Li, Wu (b10) 2020; 13 Bousquet, Mialon, Rodriguez-Fernandez, Prigent, Wagner, Kerr (b4) 2021; 257 Cho, Jacobs, Vuyovich (b9) 2020; 56 Chen, Yan (b6) 2024 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022. Jin, Camps, Jia, Wang, Martin-Neira, Huang, Yan, Zhang, Li, Edokossi (b13) 2024; 5 Lin, Wang, Wang, Zhou, Zhou, Yang, Zhang, Cai, Yang (b15) 2024; 16 Chen, Yan, Huang (b7) 2023; 15 Yan, Huang (b35) 2016; 9 Ghasemigoudarzi, Huang, De Silva, Yan, Power (b12) 2020; 19 Pekel, Cottam, Gorelick, Belward (b24) 2016; 540 Zribi, Guyon, Motte, Dayau, Wigneron, Baghdadi, Pierdicca (b45) 2019; 74 Al-Khaldi, Johnson, Gleason, Chew, Gerlein-Safdi, Shah, Zuffada (b1) 2021; 59 Chen, Liu, Zhao, Huang, Yan (b5) 2023; 15 Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (b27) 2018; 8 Yan, Huang (b36) 2020; 13 Liu, Wan, Tang, Li, Guo, Chen, Hong (b17) 2022; 60 Seto, Koike, Kachi (b28) 2023 Yan, Huang, Jin, Jia (b37) 2020; 247 Ruan, Xiang (b26) 2024 Paek, Balasubramanian, Kim, de Weck (b23) 2020; 12 Marchán-Hernández, Rodríguez-Álvarez, Camps, Bosch-Lluis, Ramos-Pérez, Valencia (b20) 2008; 46 Asgarimehr, Arnold, Weigel, Ruf, Wickert (b2) 2022; 269 Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, Shao (b29) 2022; 8 Bjorck, J., Weinberger, K.Q., Gomes, C., 2021. Understanding decoupled and early weight decay. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 8. pp. 6777–6785. Yang, Guo, Zhang, Zhang, Zhu (b39) 2024; 128 Liang, Liu (b14) 2020; 159 Xie, Wang, Yu, Anandkumar, Alvarez, Luo (b32) 2021; 34 Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. Manzione, Castrignanò (b19) 2019; 696 Yan, Chen, Jin, Liu, Jia, Zhen, Chen, Huang (b34) 2023; 20 Wieland, Martinis, Kiefl, Gstaiger (b30) 2023; 287 Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434. Zhang, Chen, Meng, Yang, Han, Hong, Yin, Liu (b40) 2022; 60 Zhao, Heidler, Asgarimehr, Arnold, Xiao, Wickert, Zhu, Mou (b42) 2023; 294 Ding, Zhang, Ge, Zhao, Song, Yue, Shan (b11) 2023 Narin, Abdikan (b22) 2023; 30 Zhen, Yan (b44) 2023; 15 Loria, O’brien, Zavorotny, Downs, Zuffada (b18) 2020; 245 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. Rodriguez-Alvarez, Munoz-Martin, Morris (b25) 2023; 15 Xie, Yan (b33) 2024 Yan, Liu, Chen, Jin, Xie, Huang (b38) 2024 Zhang, Morton, Wang, Roesler (b41) 2022; 60 Nabi, Senyurek, Gurbuz, Kurum (b21) 2022; 15 Zhao (10.1016/j.jag.2024.104122_b42) 2023; 294 Yan (10.1016/j.jag.2024.104122_b35) 2016; 9 Zribi (10.1016/j.jag.2024.104122_b45) 2019; 74 Asgarimehr (10.1016/j.jag.2024.104122_b2) 2022; 269 Chen (10.1016/j.jag.2024.104122_b6) 2024 Nabi (10.1016/j.jag.2024.104122_b21) 2022; 15 Zhang (10.1016/j.jag.2024.104122_b40) 2022; 60 Seto (10.1016/j.jag.2024.104122_b28) 2023 Liang (10.1016/j.jag.2024.104122_b14) 2020; 159 Xie (10.1016/j.jag.2024.104122_b33) 2024 Zhen (10.1016/j.jag.2024.104122_b44) 2023; 15 Yan (10.1016/j.jag.2024.104122_b34) 2023; 20 Cho (10.1016/j.jag.2024.104122_b9) 2020; 56 Chu (10.1016/j.jag.2024.104122_b10) 2020; 13 Yan (10.1016/j.jag.2024.104122_b37) 2020; 247 10.1016/j.jag.2024.104122_b43 Marchán-Hernández (10.1016/j.jag.2024.104122_b20) 2008; 46 Yan (10.1016/j.jag.2024.104122_b36) 2020; 13 Lin (10.1016/j.jag.2024.104122_b15) 2024; 16 Chen (10.1016/j.jag.2024.104122_b7) 2023; 15 Bousquet (10.1016/j.jag.2024.104122_b4) 2021; 257 Ghasemigoudarzi (10.1016/j.jag.2024.104122_b12) 2020; 19 10.1016/j.jag.2024.104122_b16 Chen (10.1016/j.jag.2024.104122_b5) 2023; 15 Pekel (10.1016/j.jag.2024.104122_b24) 2016; 540 Jin (10.1016/j.jag.2024.104122_b13) 2024; 5 Rodriguez-Alvarez (10.1016/j.jag.2024.104122_b25) 2023; 15 Zhang (10.1016/j.jag.2024.104122_b41) 2022; 60 Al-Khaldi (10.1016/j.jag.2024.104122_b1) 2021; 59 Loria (10.1016/j.jag.2024.104122_b18) 2020; 245 Ruf (10.1016/j.jag.2024.104122_b27) 2018; 8 Ding (10.1016/j.jag.2024.104122_b11) 2023 Wang (10.1016/j.jag.2024.104122_b29) 2022; 8 10.1016/j.jag.2024.104122_b8 Paek (10.1016/j.jag.2024.104122_b23) 2020; 12 10.1016/j.jag.2024.104122_b3 Liu (10.1016/j.jag.2024.104122_b17) 2022; 60 Ruan (10.1016/j.jag.2024.104122_b26) 2024 Wieland (10.1016/j.jag.2024.104122_b30) 2023; 287 10.1016/j.jag.2024.104122_b31 Yang (10.1016/j.jag.2024.104122_b39) 2024; 128 Manzione (10.1016/j.jag.2024.104122_b19) 2019; 696 Narin (10.1016/j.jag.2024.104122_b22) 2023; 30 Xie (10.1016/j.jag.2024.104122_b32) 2021; 34 Yan (10.1016/j.jag.2024.104122_b38) 2024 |
References_xml | – volume: 5 start-page: 19 year: 2024 ident: b13 article-title: Remote sensing and its applications using GNSS reflected signals: advances and prospects publication-title: Satell. Navig. – volume: 247 year: 2020 ident: b37 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sens. Environ. – volume: 540 start-page: 418 year: 2016 end-page: 422 ident: b24 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – volume: 59 start-page: 7385 year: 2021 end-page: 7394 ident: b1 article-title: Inland water body mapping using CYGNSS coherence detection publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434. – volume: 60 start-page: 1 year: 2022 end-page: 13 ident: b40 article-title: Wind direction retrieval from CYGNSS L1 level sea surface data based on machine learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 577 year: 2020 end-page: 587 ident: b36 article-title: Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 46 start-page: 2914 year: 2008 end-page: 2923 ident: b20 article-title: Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 20 start-page: 1 year: 2023 end-page: 5 ident: b34 article-title: Inland water mapping based on GA-LinkNet from CyGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2023 ident: b11 article-title: UniRepLKNet: A universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition – volume: 16 start-page: 1137 year: 2024 end-page: 1149 ident: b15 article-title: An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China publication-title: Earth Syst. Sci. Data – year: 2024 ident: b26 article-title: Vm-unet: Vision mamba unet for medical image segmentation – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: b41 article-title: Mapping surface water extents using high-rate coherent spaceborne GNSS-R measurements publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 269 year: 2022 ident: b2 article-title: GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet publication-title: Remote Sens. Environ. – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. – year: 2024 ident: b6 article-title: LFSMIM: A low-frequency spectral masked image modeling method for hyperspectral image classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 30 start-page: 15364 year: 2023 end-page: 15376 ident: b22 article-title: Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams publication-title: Environ. Sci. Pollut. Res. – volume: 9 start-page: 4795 year: 2016 end-page: 4801 ident: b35 article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2023 ident: b28 article-title: Feasibility of liquid water path estimation of over land using satellite-based Ka-band passive microwave data publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Bjorck, J., Weinberger, K.Q., Gomes, C., 2021. Understanding decoupled and early weight decay. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 8. pp. 6777–6785. – reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: b17 article-title: Statistical analysis of CyGNSS speckle and its applications to surface water mapping publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 245 year: 2020 ident: b18 article-title: Analysis of scattering characteristics from inland bodies of water observed by CYGNSS publication-title: Remote Sens. Environ. – volume: 8 start-page: 415 year: 2022 end-page: 424 ident: b29 article-title: Pvt v2: Improved baselines with pyramid vision transformer publication-title: Comput. Vis. Media – volume: 15 start-page: 3122 year: 2023 ident: b44 article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data publication-title: Remote Sens. – volume: 34 start-page: 12077 year: 2021 end-page: 12090 ident: b32 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Process. Syst. – volume: 294 year: 2023 ident: b42 article-title: DDM-former: Transformer networks for GNSS reflectometry global ocean wind speed estimation publication-title: Remote Sens. Environ. – volume: 8 start-page: 8782 year: 2018 ident: b27 article-title: A new paradigm in earth environmental monitoring with the cygnss small satellite constellation publication-title: Sci. Rep. – volume: 13 start-page: 5971 year: 2020 end-page: 5981 ident: b10 article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022. – volume: 15 start-page: 5552 year: 2023 ident: b7 article-title: MFTSC: A semantically constrained method for urban building height estimation using multiple source images publication-title: Remote Sens. – volume: 74 start-page: 150 year: 2019 end-page: 158 ident: b45 article-title: Performance of GNSS-R GLORI data for biomass estimation over the Landes forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 287 year: 2023 ident: b30 article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images publication-title: Remote Sens. Environ. – volume: 15 start-page: 2157 year: 2023 ident: b25 article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field publication-title: Remote Sens. – volume: 159 start-page: 53 year: 2020 end-page: 62 ident: b14 article-title: A local thresholding approach to flood water delineation using sentinel-1 SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 128 year: 2024 ident: b39 article-title: High temporal resolution quasi-global landscape soil freeze–thaw map from spaceborne GNSS-R technology and SMAP radiometer measurements publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 257 year: 2021 ident: b4 article-title: Influence of surface water variations on VOD and biomass estimates from passive microwave sensors publication-title: Remote Sens. Environ. – volume: 696 year: 2019 ident: b19 article-title: A geostatistical approach for multi-source data fusion to predict water table depth publication-title: Sci. Total Environ. – volume: 19 start-page: 1 year: 2020 end-page: 5 ident: b12 article-title: A machine learning method for inland water detection using CYGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 15 start-page: 3366 year: 2023 ident: b5 article-title: Shallow-guided transformer for semantic segmentation of hyperspectral remote sensing imagery publication-title: Remote Sens. – year: 2024 ident: b38 article-title: Mapping surface water fraction over the pan-tropical region using CYGNSS data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 year: 2020 ident: b9 article-title: The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE data sets by seasonal snow and land cover classifications publication-title: Water Resour. Res. – volume: 12 start-page: 2546 year: 2020 ident: b23 article-title: Small-satellite synthetic aperture radar for continuous global biospheric monitoring: A review publication-title: Remote Sens. – volume: 15 start-page: 6867 year: 2022 end-page: 6881 ident: b21 article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay–Doppler maps publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2024 ident: b33 article-title: Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2023 ident: 10.1016/j.jag.2024.104122_b28 article-title: Feasibility of liquid water path estimation of over land using satellite-based Ka-band passive microwave data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 12077 year: 2021 ident: 10.1016/j.jag.2024.104122_b32 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.jag.2024.104122_b8 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.jag.2024.104122_b31 doi: 10.1007/978-3-030-01228-1_26 – volume: 294 year: 2023 ident: 10.1016/j.jag.2024.104122_b42 article-title: DDM-former: Transformer networks for GNSS reflectometry global ocean wind speed estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113629 – volume: 159 start-page: 53 year: 2020 ident: 10.1016/j.jag.2024.104122_b14 article-title: A local thresholding approach to flood water delineation using sentinel-1 SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.10.017 – volume: 13 start-page: 5971 year: 2020 ident: 10.1016/j.jag.2024.104122_b10 article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3010879 – volume: 12 start-page: 2546 issue: 16 year: 2020 ident: 10.1016/j.jag.2024.104122_b23 article-title: Small-satellite synthetic aperture radar for continuous global biospheric monitoring: A review publication-title: Remote Sens. doi: 10.3390/rs12162546 – volume: 245 year: 2020 ident: 10.1016/j.jag.2024.104122_b18 article-title: Analysis of scattering characteristics from inland bodies of water observed by CYGNSS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111825 – year: 2024 ident: 10.1016/j.jag.2024.104122_b33 article-title: Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 4795 issue: 10 year: 2016 ident: 10.1016/j.jag.2024.104122_b35 article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2582690 – volume: 59 start-page: 7385 issue: 9 year: 2021 ident: 10.1016/j.jag.2024.104122_b1 article-title: Inland water body mapping using CYGNSS coherence detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3047075 – volume: 46 start-page: 2914 issue: 10 year: 2008 ident: 10.1016/j.jag.2024.104122_b20 article-title: Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.922144 – ident: 10.1016/j.jag.2024.104122_b3 doi: 10.1609/aaai.v35i8.16837 – volume: 8 start-page: 415 issue: 3 year: 2022 ident: 10.1016/j.jag.2024.104122_b29 article-title: Pvt v2: Improved baselines with pyramid vision transformer publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0274-8 – volume: 257 year: 2021 ident: 10.1016/j.jag.2024.104122_b4 article-title: Influence of surface water variations on VOD and biomass estimates from passive microwave sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112345 – volume: 56 issue: 1 year: 2020 ident: 10.1016/j.jag.2024.104122_b9 article-title: The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE data sets by seasonal snow and land cover classifications publication-title: Water Resour. Res. doi: 10.1029/2019WR025813 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2024.104122_b17 article-title: Statistical analysis of CyGNSS speckle and its applications to surface water mapping publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2024 ident: 10.1016/j.jag.2024.104122_b26 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2024.104122_b40 article-title: Wind direction retrieval from CYGNSS L1 level sea surface data based on machine learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 287 year: 2023 ident: 10.1016/j.jag.2024.104122_b30 article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113452 – volume: 540 start-page: 418 issue: 7633 year: 2016 ident: 10.1016/j.jag.2024.104122_b24 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 19 start-page: 1 year: 2020 ident: 10.1016/j.jag.2024.104122_b12 article-title: A machine learning method for inland water detection using CYGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3020223 – volume: 30 start-page: 15364 issue: 6 year: 2023 ident: 10.1016/j.jag.2024.104122_b22 article-title: Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-23172-9 – volume: 8 start-page: 8782 issue: 1 year: 2018 ident: 10.1016/j.jag.2024.104122_b27 article-title: A new paradigm in earth environmental monitoring with the cygnss small satellite constellation publication-title: Sci. Rep. doi: 10.1038/s41598-018-27127-4 – volume: 74 start-page: 150 year: 2019 ident: 10.1016/j.jag.2024.104122_b45 article-title: Performance of GNSS-R GLORI data for biomass estimation over the Landes forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2024.104122_b16 doi: 10.1109/ICCV48922.2021.00986 – volume: 15 start-page: 3366 issue: 13 year: 2023 ident: 10.1016/j.jag.2024.104122_b5 article-title: Shallow-guided transformer for semantic segmentation of hyperspectral remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs15133366 – volume: 15 start-page: 6867 year: 2022 ident: 10.1016/j.jag.2024.104122_b21 article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay–Doppler maps publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3196658 – volume: 16 start-page: 1137 issue: 2 year: 2024 ident: 10.1016/j.jag.2024.104122_b15 article-title: An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-16-1137-2024 – volume: 696 year: 2019 ident: 10.1016/j.jag.2024.104122_b19 article-title: A geostatistical approach for multi-source data fusion to predict water table depth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133763 – year: 2024 ident: 10.1016/j.jag.2024.104122_b6 article-title: LFSMIM: A low-frequency spectral masked image modeling method for hyperspectral image classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 20 start-page: 1 year: 2023 ident: 10.1016/j.jag.2024.104122_b34 article-title: Inland water mapping based on GA-LinkNet from CyGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2024.104122_b41 article-title: Mapping surface water extents using high-rate coherent spaceborne GNSS-R measurements publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: 10.1016/j.jag.2024.104122_b11 – volume: 13 start-page: 577 year: 2020 ident: 10.1016/j.jag.2024.104122_b36 article-title: Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2966880 – volume: 15 start-page: 2157 issue: 8 year: 2023 ident: 10.1016/j.jag.2024.104122_b25 article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field publication-title: Remote Sens. doi: 10.3390/rs15082157 – ident: 10.1016/j.jag.2024.104122_b43 doi: 10.1109/CVPR.2017.660 – volume: 5 start-page: 19 issue: 1 year: 2024 ident: 10.1016/j.jag.2024.104122_b13 article-title: Remote sensing and its applications using GNSS reflected signals: advances and prospects publication-title: Satell. Navig. doi: 10.1186/s43020-024-00139-4 – year: 2024 ident: 10.1016/j.jag.2024.104122_b38 article-title: Mapping surface water fraction over the pan-tropical region using CYGNSS data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 128 year: 2024 ident: 10.1016/j.jag.2024.104122_b39 article-title: High temporal resolution quasi-global landscape soil freeze–thaw map from spaceborne GNSS-R technology and SMAP radiometer measurements publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 15 start-page: 5552 issue: 23 year: 2023 ident: 10.1016/j.jag.2024.104122_b7 article-title: MFTSC: A semantically constrained method for urban building height estimation using multiple source images publication-title: Remote Sens. doi: 10.3390/rs15235552 – volume: 269 year: 2022 ident: 10.1016/j.jag.2024.104122_b2 article-title: GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112801 – volume: 247 year: 2020 ident: 10.1016/j.jag.2024.104122_b37 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111944 – volume: 15 start-page: 3122 issue: 12 year: 2023 ident: 10.1016/j.jag.2024.104122_b44 article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data publication-title: Remote Sens. doi: 10.3390/rs15123122 |
SSID | ssj0017768 |
Score | 2.4528372 |
Snippet | Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104122 |
SubjectTerms | Cyclone Global Navigation Satellite System (CyGNSS) Global Navigation Satellite System-Reflectometry (GNSS-R) global positioning systems Inland water mapping inland waters latitude longitude soil water spatial data surface water topography Transformer vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzigdilioSBX6qlS1KwfcXwsaAFVggtdiZ6siddGIEiWJYi_35k44XWAS6_JOI48tuezZ-Ybxr5LDdJEiWcTKIpMyfkkqwylcYGucPfzygPlO5-eFScz9ftCX7wo9UUxYYkeOA3cTx9safOq0AG0ijYAWK2CpepYvpqbjucTbd5wmOr9B8akJDhd2KxUUgz-zC6y6xou8WAoFPk3J0K8skgdcf8rw_Rmi-7sztEnttEDRv4r_ehnthLqEVt_QSM4YlvT52w1FO2X6_0mu5vVaKvoMpwjzuOLpqXYIBRpIj_8e3x2fs4Rs3LcELJ22SxIX_yqplhH_ogYdMlvgegbqHVXzYd34YdZuvDnFFzKSbYdwG9YfmGzo-mfw5Osr7GQeYQiLSpG50RRZ_ISSi8t-KilD3iKKVQMERc0vkFUMkFkWM0hCiVDDMaDEsaXiBW22Grd1GGbcalMtDYWxlZSeUpqDR5y8F5MYO5tGLN8GGfnewJyqoNx44ZIs2uHqnGkGpdUM2Y_nposEvvGe8IHpLwnQSLO7h7gdHL9dHIfTacxU4PqXY9BErbAT1291_e3YZo4XJ_kdIE6NA_3TiJGFTh-hdj5H_-3y9ao2xTl9pWttsuHsIewqK32uxXwD_oACc4 priority: 102 providerName: Directory of Open Access Journals |
Title | Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer |
URI | https://dx.doi.org/10.1016/j.jag.2024.104122 https://www.proquest.com/docview/3154263162 https://doaj.org/article/ce9890b65ea54f9eaa954e91030cbd73 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoHDBIOJjlEZiRNS1NR27Pi4VRvlV4UolcrJclx76gRJyTLt3997TlIohx04xnl2Ir_n58_2954Jecszy1XgsDaxUiaCr8ZJoTCMy2YFeD8nnMV45y8zOV2Ij8tsuUcmfSwM0io739_69Oitu5JR15ujzXo9msPKQ-eCRxakUHL5iBwwriWY9sHZh0_T2fYwQak2Ig7kE6zQH25Gmte1vYJVIhN42DlmbGd6iln8d2apf_x1nIQun5LDDj3Ss_YHn5E9Xx6RJ3_lFDwixxd_QtdAtBu7N8_J70UJExfujFMAfXRTNUgUApEq0MmP97P5nAKApeAdkqauNqg8ui6R-EjvAJDW9JfFXA5YO17tQyMXMWl3_ykyTSnKNj0S9vULsri8-D6ZJt2FC4kDXNKAlrIU89WpNLe549q6kHHnYUkjRfABRje8AYgyBphYrGxggvvglbOCKZcDcDgm-2VV-peEcqGC1kEqXXDhMMLVO5ta59jYrpz2A5L2_Wxcl40cL8X4aXra2bUB1RhUjWlVMyDvtlU2bSqOh4TPUXlbQcyiHQuq-sp0ZmSc17lOC5l5m4mgvbU6E17jzWuuWCk-IKJXvdkxSmhq_dC33_RmYmCw4gmMLX11e2M4AFYG_SfZyf81_Yo8xqeW5HZK9pv61r8GVNQUQ7D6ybfPX4ed9Q_j7sI973INBQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a3QE4IBhMdPwyEiekqGnsxPFxVBsd23rpKpWT5bj21AmSLsvEv897iVMohx242s9O5Gc_f_b73jPAJ54aLj3Hs4nJskjw1TgqJIVxmbRA62eFNRTvfDnLpgvxbZku92DSx8IQrTLY_s6mt9Y6lIzCaI426_VojicPlQvesiCFzJaPYJ-yU6UD2D8-O5_Ots4EKbuIOJSPqEHv3GxpXjfmGk-JiSBn5zhJdranNov_zi71j71uN6HT5_AsoEd23P3gC9hz5QE8_Sun4AEcnvwJXUPRsHbvXsLtosSNi27GGYI-tqkaIgqhSOXZ5PvX2XzOEMAytA5RU1cbUh5bl0R8ZL8QkNbsp6FcDtS6fdqHtVzEqLv9Z8Q0ZSTb9EjY1a9gcXpyNZlG4cGFyCIuaVBLaUz56mScm9xyZaxPuXV4pMmEdx5XN9YgRBkjTCxWxieCO--kNSKRNkfgcAiDsirda2BcSK-Uz6QquLAU4eqsiY21ydisrHJDiPtx1jZkI6dHMX7onnZ2o1E1mlSjO9UM4fO2yaZLxfGQ8BdS3laQsmi3BVV9rcM00tapXMVFljqTCq-cMSoVTtHLa7ZYST4E0ate70xK7Gr90Lc_9tNE42IlD4wpXXV_pzkC1gTHL0uO_q_rD_B4enV5oS_OZudv4AnVdIS3tzBo6nv3DhFSU7wPK-A33LkNYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+the+potential+of+CYGNSS+for+pan-tropical+inland+water+mapping+through+multi-source+data+and+transformer&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Chen%2C+Yuhan&rft.au=Yan%2C+Qingyun&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=133&rft_id=info:doi/10.1016%2Fj.jag.2024.104122&rft.externalDocID=S156984322400476X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |