Flow goes forward and cells step backward: endothelial migration
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing b...
Saved in:
Published in | Experimental & molecular medicine Vol. 54; no. 6; pp. 711 - 719 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2022
Springer Nature B.V 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.
Blood vessel formation: Migratory cells lining veins key to growth
Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion. |
---|---|
AbstractList | Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.Blood vessel formation: Migratory cells lining veins key to growthCells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion. Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion. Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. KCI Citation Count: 0 Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Blood vessel formation: Migratory cells lining veins key to growth Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion. |
Author | Shin, Jae Hun Simons, Michael Lee, Heon-Woo |
Author_xml | – sequence: 1 givenname: Heon-Woo surname: Lee fullname: Lee, Heon-Woo organization: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine – sequence: 2 givenname: Jae Hun surname: Shin fullname: Shin, Jae Hun organization: Department of Immunobiology, Yale University School of Medicine – sequence: 3 givenname: Michael surname: Simons fullname: Simons, Michael email: michael.simons@yale.edu organization: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, Department of Cell Biology, Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35701563$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002858898$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kV1rFDEYhYO02A_9A17IgDdSGJvvDy_EUlotFApSr0M288423dlkTWYt_nuzO622vehVQvKcw3nfc4B2YoqA0DuCPxHM9HEhlCrZYkpbjJUWLXmF9ik2tJWcsJ1H9z10UMotxlRwxV-jPSYUJkKyffT1fEh3zTxBafqU71zuGhe7xsMwlKaMsGpmzi82758biF0ab2AIbmiWYZ7dGFJ8g3Z7NxR4e38eop_nZ9en39vLq28XpyeXrefMjO2MGeI96UB47nnHhQDTC675jApMgVPJqALRK0KdBqcxkQJIp6R0DBPj2SE6mnxj7u3CB5tc2J7zZBfZnvy4vrCkTsixkRX-MsGr9WwJnYc4ZjfYVQ5Ll_9spU9_YripRr-toUJKpavBx3uDnH6toYx2GcpmKS5CWhdLpZKGMkJxRT88Q2_TOse6i0pprpTRZEO9f5zoX5SHJiqgJ8DnVEqG3vowbjdcA4ahzmY3pdupdFtLt9vSLalS-kz64P6iiE2iUuE4h_w_9guqvwbzvJw |
CitedBy_id | crossref_primary_10_1016_j_exer_2023_109646 crossref_primary_10_1039_D4LC00824C crossref_primary_10_3390_molecules29133103 crossref_primary_10_1002_tox_24012 crossref_primary_10_1111_jdv_19899 crossref_primary_10_1007_s13577_024_01154_y crossref_primary_10_3390_cells11213363 crossref_primary_10_3389_fmed_2022_973964 crossref_primary_10_1002_adhm_202401150 crossref_primary_10_3389_fphys_2024_1411995 crossref_primary_10_1002_adhm_202402045 crossref_primary_10_3390_ijms24097914 crossref_primary_10_3389_fcell_2023_1034455 crossref_primary_10_1016_j_bioactmat_2024_03_013 crossref_primary_10_1161_ATVBAHA_124_321719 crossref_primary_10_1038_s41586_024_07698_1 crossref_primary_10_1016_j_bej_2023_109095 crossref_primary_10_2174_0118715257246589231018053646 crossref_primary_10_1016_j_cytogfr_2024_07_005 crossref_primary_10_1007_s12011_022_03364_7 crossref_primary_10_1016_j_talanta_2024_126415 crossref_primary_10_3390_ijms25105559 crossref_primary_10_1002_jcp_31185 crossref_primary_10_1016_j_biopha_2022_114151 crossref_primary_10_1002_advs_202410659 crossref_primary_10_1016_j_compositesb_2024_111920 crossref_primary_10_3390_molecules29184360 crossref_primary_10_1016_j_bioadv_2024_214094 crossref_primary_10_3390_biomedicines12081795 crossref_primary_10_1080_14789450_2023_2174851 crossref_primary_10_3389_fphys_2024_1351753 crossref_primary_10_1016_j_bbamcr_2025_119926 crossref_primary_10_1016_j_cell_2025_02_005 crossref_primary_10_3389_fphys_2024_1408605 crossref_primary_10_1021_acsabm_4c00504 crossref_primary_10_1038_s41467_024_54570_x crossref_primary_10_1089_ten_teb_2023_0044 crossref_primary_10_3389_fphys_2024_1386151 |
Cites_doi | 10.1016/j.ceb.2015.07.009 10.1038/nm0195-27 10.1371/journal.pone.0098646 10.1016/j.ydbio.2003.08.016 10.1167/iovs.18-24320 10.1073/pnas.0611206104 10.1242/dev.039990 10.1038/ncomms11805 10.1089/wound.2011.0308 10.1038/ncb3574 10.4161/cam.1.3.4978 10.1152/ajpcell.2001.280.6.C1358 10.1038/ncb3528 10.1038/nrc909 10.1242/jcs.104.4.1145 10.1242/dev.096255 10.1073/pnas.0611177104 10.1056/NEJM197111182852108 10.1115/1.3138275 10.1161/CIRCULATIONAHA.120.053047 10.7554/eLife.61413 10.1042/BST0371233 10.1074/jbc.274.24.17267 10.1016/j.devcel.2009.01.013 10.1016/j.ydbio.2014.06.015 10.1038/nrc1094 10.3389/fphys.2016.00056 10.1097/MOH.0000000000000425 10.1016/j.exer.2013.10.001 10.1016/j.modgep.2004.05.004 10.1091/mbc.e11-04-0287 10.1007/s10456-018-9602-0 10.1038/nature05571 10.1016/j.yexcr.2013.01.010 10.1016/j.preteyeres.2010.05.003 10.1007/s10456-015-9485-2 10.1038/eye.2015.48 10.1039/D0LC00738B 10.1182/blood-2002-01-0046 10.1101/cshperspect.a006569 10.15252/embr.201745253 10.1073/pnas.91.12.5686 10.1016/S0022-5320(63)80034-9 10.1002/cphy.c100081 10.1016/S0092-8674(00)81810-3 10.1161/CIRCULATIONAHA.121.054071 10.1101/cshperspect.a006429 10.1161/ATVBAHA.115.305775 10.1161/CIRCULATIONAHA.118.033842 10.1152/ajpheart.00035.2016 10.1111/gtc.12234 10.1073/pnas.79.8.2603 10.1016/j.critrevonc.2019.02.010 10.1007/s00018-020-03664-y 10.1038/ncomms6758 10.1111/apha.12725 10.1101/gad.301549.117 10.1002/dvdy.22306 10.1242/dev.093351 10.1016/j.ceb.2019.10.003 10.1038/ncb3555 10.1242/bio.20134622 10.1016/j.cub.2008.07.048 10.1038/s41467-017-01742-7 10.3389/fphys.2020.600767 10.1038/nature25739 10.1038/eye.2009.306 10.1242/dev.060467 10.1371/journal.pone.0149281 10.1073/pnas.80.23.7224 10.1080/14397595.2018.1431004 10.1182/blood-2009-07-230284 10.1007/s10456-016-9498-5 10.1038/nature07083 10.1038/nrm3176 10.1161/ATVBAHA.113.301826 10.1073/pnas.82.10.3272 10.1083/jcb.200302047 10.1242/dev.129.12.3009 10.3389/fphys.2017.00671 10.1161/CIRCRESAHA.119.311405 10.1161/01.RES.76.4.536 10.1161/ATVBAHA.109.193185 10.1016/j.cell.2020.01.015 10.1016/j.plefa.2005.02.004 10.1089/zeb.2014.0976 10.1007/s10456-021-09797-3 10.1016/j.cell.2011.08.039 10.1161/CIRCRESAHA.119.316267 10.3389/fphar.2020.00873 10.1242/dev.00831 10.1038/ncomms15296 10.7554/eLife.06489 10.1038/ncb3534 10.1016/j.ccell.2019.12.001 10.1242/dev.02883 10.1161/CIRCRESAHA.109.211037 10.1371/journal.pone.0022820 10.1089/wound.2014.0594 10.1242/dev.150904 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ACYCR |
DOI | 10.1038/s12276-022-00785-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 719 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10024096 PMC9256678 35701563 10_1038_s12276_022_00785_1 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c439t-b391cc1de5c4c4d455e9f5484b2502e426327e5f712a8ea80165e1d766a3019c3 |
IEDL.DBID | AAJSJ |
ISSN | 2092-6413 1226-3613 |
IngestDate | Sun Mar 09 07:51:12 EDT 2025 Thu Aug 21 18:19:43 EDT 2025 Fri Jul 11 00:13:04 EDT 2025 Wed Aug 13 08:42:33 EDT 2025 Thu Apr 03 07:04:29 EDT 2025 Tue Jul 01 04:10:31 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-b391cc1de5c4c4d455e9f5484b2502e426327e5f712a8ea80165e1d766a3019c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s12276-022-00785-1 |
PMID | 35701563 |
PQID | 2684779810 |
PQPubID | 2041975 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10024096 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256678 proquest_miscellaneous_2676923120 proquest_journals_2684779810 pubmed_primary_35701563 crossref_citationtrail_10_1038_s12276_022_00785_1 crossref_primary_10_1038_s12276_022_00785_1 springer_journals_10_1038_s12276_022_00785_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: 생화학분자생물학회 |
References | Wang, Baker, Chen, Schwartz (CR38) 2013; 33 Tkachenko (CR57) 2013; 2 Park (CR17) 2017; 8 Noris (CR40) 1995; 76 Demidova-Rice, Durham, Herman (CR89) 2012; 1 Suchting (CR19) 2007; 104 Pitulescu (CR28) 2017; 19 Crist, Lee, Patel, Westhoff, Meadows (CR76) 2018; 21 Fukuhara (CR71) 2014; 393 Hardy (CR85) 2005; 72 Tammela (CR20) 2008; 454 Chang (CR63) 2017; 31 Azevedo, Grotek, Jacinto, Weidinger, Saude (CR91) 2011; 6 Iruela-Arispe, Davis (CR27) 2009; 16 Fang (CR41) 2017; 8 Kalucka (CR4) 2020; 180 Coan, Wechezak, Viggers, Sauvage (CR54) 1993; 104 Morgan (CR59) 2011; 22 Chavez, Aedo, Fierro, Allende, Egana (CR93) 2016; 7 Kim (CR80) 2020; 127 Huang, Lawson, Weinstein, Johnson (CR98) 2003; 264 Nerem, Levesque, Cornhill (CR39) 1981; 103 Ehling, Adams, Benedito, Adams (CR69) 2013; 140 Benedito, Hellstrom (CR14) 2013; 319 Aird (CR5) 2012; 2 Orsenigo (CR81) 2020; 9 Russell-Puleri (CR46) 2017; 312 Ola (CR77) 2018; 138 Singleman, Holtzman (CR70) 2014; 11 Hellstrom (CR23) 2007; 445 Folkman (CR10) 1995; 1 Dvorak, Brown, Detmar, Dvorak (CR11) 1995; 146 Lobov (CR22) 2007; 104 Hasan (CR29) 2017; 19 Hikita (CR48) 2018; 19 Kametani, Chi, Stainier, Takada (CR100) 2015; 20 Ferrara (CR13) 2001; 280 Strasser, Kaminker, Tessier-Lavigne (CR18) 2010; 115 Vanlandewijck (CR3) 2018; 554 Masumura, Yamamoto, Shimizu, Obi, Ando (CR42) 2009; 29 Kupfer, Dennert, Singer (CR50) 1983; 80 Townsley (CR37) 2012; 2 Xu (CR68) 2014; 5 Ferrara (CR12) 2002; 2 Mahmoud (CR75) 2010; 106 Chistiakov, Orekhov, Bobryshev (CR47) 2017; 219 Lee (CR8) 2021; 144 Hellstrom, Phng, Gerhardt (CR31) 2007; 1 Gonzalez-Avila (CR35) 2019; 137 Bershadsky, Futerman (CR49) 1994; 91 Franco (CR61) 2015; 13 Koo (CR72) 2016; 19 Park (CR56) 2021; 144 Amoaku (CR103) 2015; 29 Heuslein (CR62) 2015; 35 Muhleder, Fernandez-Chacon, Garcia-Gonzalez, Benedito (CR15) 2021; 78 Dekker (CR44) 2002; 100 Rogers, McKee, Kalnins (CR64) 1985; 82 Liakouli (CR34) 2018; 28 Vahatupa, Jarvinen, Uusitalo-Jarvinen (CR86) 2020; 11 Vanhollebeke (CR95) 2015; 4 Poduri (CR58) 2017; 144 Mack, Iruela-Arispe (CR25) 2018; 25 Folkman, D’Amore (CR33) 1996; 87 Hlushchuk (CR99) 2016; 11 Ishibazawa, Nagaoka, Yokota, Ono, Yoshida (CR45) 2013; 116 Herbert, Stainier (CR26) 2011; 12 Liu, Walmsley, Rodaway, Patient (CR97) 2008; 18 Kwon (CR60) 2016; 7 Grossniklaus, Kang, Berglin (CR83) 2010; 29 Farwell, Reylander, Iovine, Lowe-Krentz (CR92) 2017; 8 Sonmez, Cheng, Watkins, Roman, Davidson (CR55) 2020; 20 Bodnar (CR90) 2015; 4 Folkman (CR9) 1971; 285 Tah (CR102) 2015; 2015 Blanco, Gerhardt (CR24) 2013; 3 Maleszewska, Vanchin, Harmsen, Krenning (CR43) 2016; 19 Hasan, Siekmann (CR1) 2015; 36 Tual-Chalot (CR74) 2014; 9 Takahashi (CR51) 1999; 274 Jakobsson, Bentley, Gerhardt (CR30) 2009; 37 Pasut, Becker, Cuypers, Carmeliet (CR6) 2021; 24 Corti (CR96) 2011; 138 Kalluri (CR32) 2003; 3 Hogan (CR94) 2009; 136 Claxton, Fruttiger (CR21) 2004; 5 Davies, Stempel, Hubert, Powers (CR87) 2010; 239 Jin (CR82) 2017; 19 Ross (CR2) 2020; 11 Potente, Gerhardt, Carmeliet (CR73) 2011; 146 Scott, Fruttiger (CR88) 2010; 24 Roman (CR79) 2002; 129 Goveia (CR101) 2020; 37 Hogan, Feeney (CR36) 1963; 49 Qiu, Hirschi (CR7) 2019; 125 Kupfer, Louvard, Singer (CR53) 1982; 79 Sugden (CR78) 2017; 19 Udan, Vadakkan, Dickinson (CR65) 2013; 140 Lucitti (CR67) 2007; 134 Gerhardt (CR16) 2003; 161 Huang (CR66) 2003; 130 Kim (CR84) 2018; 59 Ravichandran, Goud, Manneville (CR52) 2020; 62 H Park (785_CR56) 2021; 144 RS Udan (785_CR65) 2013; 140 HB Kwon (785_CR60) 2016; 7 C Huang (785_CR66) 2003; 130 HW Lee (785_CR8) 2021; 144 N Ferrara (785_CR13) 2001; 280 V Liakouli (785_CR34) 2018; 28 ME Pitulescu (785_CR28) 2017; 19 WM Amoaku (785_CR103) 2015; 29 M Takahashi (785_CR51) 1999; 274 TN Demidova-Rice (785_CR89) 2012; 1 T Hikita (785_CR48) 2018; 19 G Gonzalez-Avila (785_CR35) 2019; 137 N Ferrara (785_CR12) 2002; 2 C Wang (785_CR38) 2013; 33 A Poduri (785_CR58) 2017; 144 C Singleman (785_CR70) 2014; 11 A Kupfer (785_CR50) 1983; 80 R Hlushchuk (785_CR99) 2016; 11 HF Dvorak (785_CR11) 1995; 146 J Folkman (785_CR10) 1995; 1 S Suchting (785_CR19) 2007; 104 HE Grossniklaus (785_CR83) 2010; 29 S Claxton (785_CR21) 2004; 5 M Maleszewska (785_CR43) 2016; 19 M Potente (785_CR73) 2011; 146 WW Sugden (785_CR78) 2017; 19 CA Franco (785_CR61) 2015; 13 DA Chistiakov (785_CR47) 2017; 219 AD Bershadsky (785_CR49) 1994; 91 SS Hasan (785_CR29) 2017; 19 F Orsenigo (785_CR81) 2020; 9 MH Davies (785_CR87) 2010; 239 C Xu (785_CR68) 2014; 5 SLN Farwell (785_CR92) 2017; 8 MN Chavez (785_CR93) 2016; 7 M Noris (785_CR40) 1995; 76 BL Roman (785_CR79) 2002; 129 JL Heuslein (785_CR62) 2015; 35 KA Rogers (785_CR64) 1985; 82 MI Townsley (785_CR37) 2012; 2 M Mahmoud (785_CR75) 2010; 106 AM Crist (785_CR76) 2018; 21 R Benedito (785_CR14) 2013; 319 T Tammela (785_CR20) 2008; 454 F Liu (785_CR97) 2008; 18 JM Ross (785_CR2) 2020; 11 AS Azevedo (785_CR91) 2011; 6 Y Ravichandran (785_CR52) 2020; 62 A Kupfer (785_CR53) 1982; 79 WC Aird (785_CR5) 2012; 2 RJ Dekker (785_CR44) 2002; 100 E Tkachenko (785_CR57) 2013; 2 M Hellstrom (785_CR23) 2007; 445 SP Herbert (785_CR26) 2011; 12 L Jakobsson (785_CR30) 2009; 37 S Tual-Chalot (785_CR74) 2014; 9 J Kalucka (785_CR4) 2020; 180 A Ishibazawa (785_CR45) 2013; 116 JY Qiu (785_CR7) 2019; 125 M Ehling (785_CR69) 2013; 140 V Tah (785_CR102) 2015; 2015 S Muhleder (785_CR15) 2021; 78 J Folkman (785_CR33) 1996; 87 BM Hogan (785_CR94) 2009; 136 AH Chang (785_CR63) 2017; 31 T Masumura (785_CR42) 2009; 29 RJ Bodnar (785_CR90) 2015; 4 MJ Hogan (785_CR36) 1963; 49 R Kalluri (785_CR32) 2003; 3 M Hellstrom (785_CR31) 2007; 1 J Goveia (785_CR101) 2020; 37 S Fukuhara (785_CR71) 2014; 393 R Ola (785_CR77) 2018; 138 YH Kim (785_CR80) 2020; 127 Y Kim (785_CR84) 2018; 59 JS Fang (785_CR41) 2017; 8 JT Morgan (785_CR59) 2011; 22 GA Strasser (785_CR18) 2010; 115 IB Lobov (785_CR22) 2007; 104 Y Koo (785_CR72) 2016; 19 SS Hasan (785_CR1) 2015; 36 JL Lucitti (785_CR67) 2007; 134 Y Jin (785_CR82) 2017; 19 B Vanhollebeke (785_CR95) 2015; 4 P Corti (785_CR96) 2011; 138 J Folkman (785_CR9) 1971; 285 ML Iruela-Arispe (785_CR27) 2009; 16 S Russell-Puleri (785_CR46) 2017; 312 UM Sonmez (785_CR55) 2020; 20 DE Coan (785_CR54) 1993; 104 M Vanlandewijck (785_CR3) 2018; 554 A Scott (785_CR88) 2010; 24 Y Kametani (785_CR100) 2015; 20 A Pasut (785_CR6) 2021; 24 CC Huang (785_CR98) 2003; 264 JJ Mack (785_CR25) 2018; 25 M Vahatupa (785_CR86) 2020; 11 RM Nerem (785_CR39) 1981; 103 H Gerhardt (785_CR16) 2003; 161 P Hardy (785_CR85) 2005; 72 R Blanco (785_CR24) 2013; 3 DY Park (785_CR17) 2017; 8 |
References_xml | – volume: 36 start-page: 86 year: 2015 end-page: 92 ident: CR1 article-title: The same but different: signaling pathways in control of endothelial cell migration publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.07.009 – volume: 1 start-page: 27 year: 1995 end-page: 31 ident: CR10 article-title: Angiogenesis in cancer, vascular, rheumatoid and other disease publication-title: Nat. Med. doi: 10.1038/nm0195-27 – volume: 9 start-page: e98646 year: 2014 ident: CR74 article-title: Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression publication-title: PLoS ONE doi: 10.1371/journal.pone.0098646 – volume: 264 start-page: 263 year: 2003 end-page: 274 ident: CR98 article-title: reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2003.08.016 – volume: 59 start-page: 3932 year: 2018 end-page: 3942 ident: CR84 article-title: Oxygen-induced retinopathy and choroidopathy: in vivo longitudinal observation of vascular changes using OCTA publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-24320 – volume: 104 start-page: 3219 year: 2007 end-page: 3224 ident: CR22 article-title: Delta-like ligand 4 (DII4) is induced by VEGF as a negative regulator of angiogenic sprouting publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0611206104 – volume: 136 start-page: 4001 year: 2009 end-page: 4009 ident: CR94 article-title: Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries publication-title: Development doi: 10.1242/dev.039990 – volume: 2015 start-page: 627674 year: 2015 ident: CR102 article-title: Anti-VEGF therapy and the retina: an update publication-title: J. Ophthalmol. – volume: 7 start-page: 1 year: 2016 end-page: 12 ident: CR60 article-title: In vivo modulation of endothelial polarization by Apelin receptor signalling publication-title: Nat. Commun. doi: 10.1038/ncomms11805 – volume: 1 start-page: 17 year: 2012 end-page: 22 ident: CR89 article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing publication-title: Adv. Wound Care doi: 10.1089/wound.2011.0308 – volume: 19 start-page: 928 year: 2017 end-page: 940 ident: CR29 article-title: Endothelial Notch signalling limits angiogenesis via control of artery formation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3574 – volume: 1 start-page: 133 year: 2007 end-page: 136 ident: CR31 article-title: VEGF and Notch signaling: the yin and yang of angiogenic sprouting publication-title: Cell Adh. Migr. doi: 10.4161/cam.1.3.4978 – volume: 146 start-page: 1029 year: 1995 end-page: 1039 ident: CR11 article-title: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis publication-title: Am. J. Pathol. – volume: 280 start-page: C1358 year: 2001 end-page: C1366 ident: CR13 article-title: Role of vascular endothelial growth factor in regulation of physiological angiogenesis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.2001.280.6.C1358 – volume: 19 start-page: 653 year: 2017 end-page: 665 ident: CR78 article-title: Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues publication-title: Nat. Cell Biol. doi: 10.1038/ncb3528 – volume: 2 start-page: 795 year: 2002 end-page: 803 ident: CR12 article-title: VEGF and the quest for tumour angiogenesis factors publication-title: Nat. Rev. Cancer doi: 10.1038/nrc909 – volume: 104 start-page: 1145 year: 1993 end-page: 1153 ident: CR54 article-title: Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.104.4.1145 – volume: 140 start-page: 4041 year: 2013 end-page: 4050 ident: CR65 article-title: Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac publication-title: Development doi: 10.1242/dev.096255 – volume: 104 start-page: 3225 year: 2007 end-page: 3230 ident: CR19 article-title: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0611177104 – volume: 285 start-page: 1182 year: 1971 end-page: 1186 ident: CR9 article-title: Tumor angiogenesis: therapeutic implications publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197111182852108 – volume: 103 start-page: 172 year: 1981 end-page: 176 ident: CR39 article-title: Vascular endothelial morphology as an indicator of the pattern of blood flow publication-title: J. Biomech. Eng. doi: 10.1115/1.3138275 – volume: 144 start-page: 805 year: 2021 end-page: 822 ident: CR56 article-title: Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.053047 – volume: 9 start-page: e61413 year: 2020 ident: CR81 article-title: Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution publication-title: Elife doi: 10.7554/eLife.61413 – volume: 37 start-page: 1233 year: 2009 end-page: 1236 ident: CR30 article-title: VEGFRs and Notch: a dynamic collaboration in vascular patterning publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0371233 – volume: 274 start-page: 17267 year: 1999 end-page: 17274 ident: CR51 article-title: Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.24.17267 – volume: 16 start-page: 222 year: 2009 end-page: 231 ident: CR27 article-title: Cellular and molecular mechanisms of vascular lumen formation publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.01.013 – volume: 393 start-page: 10 year: 2014 end-page: 23 ident: CR71 article-title: Visualizing the cell-cycle progression of endothelial cells in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2014.06.015 – volume: 3 start-page: 422 year: 2003 end-page: 433 ident: CR32 article-title: Basement membranes: structure, assembly and role in tumour angiogenesis publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1094 – volume: 7 start-page: 56 year: 2016 ident: CR93 article-title: Zebrafish as an emerging model organism to study angiogenesis in development and regeneration publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00056 – volume: 25 start-page: 212 year: 2018 end-page: 218 ident: CR25 article-title: NOTCH regulation of the endothelial cell phenotype publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0000000000000425 – volume: 116 start-page: 308 year: 2013 end-page: 311 ident: CR45 article-title: Low shear stress up-regulation of proinflammatory gene expression in human retinal microvascular endothelial cells publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2013.10.001 – volume: 5 start-page: 123 year: 2004 end-page: 127 ident: CR21 article-title: Periodic delta-like 4 expression in developing retinal arteries publication-title: Gene Expr. Patterns doi: 10.1016/j.modgep.2004.05.004 – volume: 22 start-page: 4324 year: 2011 end-page: 4334 ident: CR59 article-title: Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0287 – volume: 21 start-page: 363 year: 2018 end-page: 380 ident: CR76 article-title: Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of hereditary hemorrhagic telangiectasia publication-title: Angiogenesis doi: 10.1007/s10456-018-9602-0 – volume: 445 start-page: 776 year: 2007 end-page: 780 ident: CR23 article-title: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis publication-title: Nature doi: 10.1038/nature05571 – volume: 319 start-page: 1281 year: 2013 end-page: 1288 ident: CR14 article-title: Notch as a hub for signaling in angiogenesis publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.01.010 – volume: 29 start-page: 500 year: 2010 end-page: 519 ident: CR83 article-title: Animal models of choroidal and retinal neovascularization publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2010.05.003 – volume: 19 start-page: 9 year: 2016 end-page: 24 ident: CR43 article-title: The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence publication-title: Angiogenesis doi: 10.1007/s10456-015-9485-2 – volume: 29 start-page: 721 year: 2015 end-page: 731 ident: CR103 article-title: Defining response to anti-VEGF therapies in neovascular AMD publication-title: Eye doi: 10.1038/eye.2015.48 – volume: 20 start-page: 4373 year: 2020 end-page: 4390 ident: CR55 article-title: Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator publication-title: Lab Chip doi: 10.1039/D0LC00738B – volume: 100 start-page: 1689 year: 2002 end-page: 1698 ident: CR44 article-title: Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2) publication-title: Blood doi: 10.1182/blood-2002-01-0046 – volume: 3 start-page: 1 year: 2013 end-page: 19 ident: CR24 article-title: VEGF and notch in tip and stalk cell selection publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006569 – volume: 19 start-page: e45253 year: 2018 ident: CR48 article-title: PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow publication-title: Embo Rep. doi: 10.15252/embr.201745253 – volume: 91 start-page: 5686 year: 1994 end-page: 5689 ident: CR49 article-title: Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.12.5686 – volume: 49 start-page: 29 year: 1963 end-page: 46 ident: CR36 article-title: The ultrastructure of the retinal vessels: II. The small vessels publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(63)80034-9 – volume: 2 start-page: 675 year: 2012 end-page: 709 ident: CR37 article-title: Structure and composition of pulmonary arteries, capillaries, and veins publication-title: Compr. Physiol. doi: 10.1002/cphy.c100081 – volume: 87 start-page: 1153 year: 1996 end-page: 1155 ident: CR33 article-title: Blood vessel formation: what is its molecular basis? publication-title: Cell doi: 10.1016/S0092-8674(00)81810-3 – volume: 144 start-page: 1308 year: 2021 end-page: 1322 ident: CR8 article-title: Role of venous endothelial cells in developmental and pathologic angiogenesis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.054071 – volume: 2 start-page: a006429 year: 2012 ident: CR5 article-title: Endothelial cell heterogeneity publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006429 – volume: 35 start-page: 2354 year: 2015 end-page: 2365 ident: CR62 article-title: Mechanisms of amplified arteriogenesis in collateral artery segments exposed to reversed flow direction publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.305775 – volume: 138 start-page: 2379 year: 2018 end-page: 2394 ident: CR77 article-title: SMAD4 prevents flow induced arteriovenous malformations by inhibiting casein kinase 2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.033842 – volume: 312 start-page: H485 year: 2017 end-page: H500 ident: CR46 article-title: Fluid shear stress induces upregulation of COX-2 and PGI(2) release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00035.2016 – volume: 20 start-page: 427 year: 2015 end-page: 438 ident: CR100 article-title: Notch signaling regulates venous arterialization during zebrafish fin regeneration publication-title: Genes Cells doi: 10.1111/gtc.12234 – volume: 79 start-page: 2603 year: 1982 end-page: 2607 ident: CR53 article-title: Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2603 – volume: 137 start-page: 57 year: 2019 end-page: 83 ident: CR35 article-title: Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2019.02.010 – volume: 78 start-page: 1329 year: 2021 end-page: 1354 ident: CR15 article-title: Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-020-03664-y – volume: 5 start-page: 1 year: 2014 end-page: 11 ident: CR68 article-title: Arteries are formed by vein-derived endothelial tip cells publication-title: Nat. Commun. doi: 10.1038/ncomms6758 – volume: 219 start-page: 382 year: 2017 end-page: 408 ident: CR47 article-title: Effects of shear stress on endothelial cells: go with the flow publication-title: Acta Physiol. doi: 10.1111/apha.12725 – volume: 31 start-page: 1308 year: 2017 end-page: 1324 ident: CR63 article-title: DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis publication-title: Genes Dev. doi: 10.1101/gad.301549.117 – volume: 239 start-page: 1695 year: 2010 end-page: 1707 ident: CR87 article-title: Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy publication-title: Dev. Dyn. doi: 10.1002/dvdy.22306 – volume: 140 start-page: 3051 year: 2013 end-page: 3061 ident: CR69 article-title: Notch controls retinal blood vessel maturation and quiescence publication-title: Development doi: 10.1242/dev.093351 – volume: 62 start-page: 104 year: 2020 end-page: 113 ident: CR52 article-title: The Golgi apparatus and cell polarity: roles of the cytoskeleton, the Golgi matrix, and Golgi membranes publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2019.10.003 – volume: 19 start-page: 915 year: 2017 end-page: 927 ident: CR28 article-title: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3555 – volume: 2 start-page: 1007 year: 2013 end-page: 1012 ident: CR57 article-title: The nucleus of endothelial cell as a sensor of blood flow direction publication-title: Biol. Open doi: 10.1242/bio.20134622 – volume: 13 start-page: 1 year: 2015 end-page: 19 ident: CR61 article-title: Dynamic endothelial cell rearrangements drive developmental vessel regression publication-title: PLoS Biol. – volume: 18 start-page: 1234 year: 2008 end-page: 1240 ident: CR97 article-title: Fli1 acts at the top of the transcriptional network driving blood and endothelial development publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.07.048 – volume: 8 start-page: 1 year: 2017 end-page: 14 ident: CR41 article-title: Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification publication-title: Nat. Commun. doi: 10.1038/s41467-017-01742-7 – volume: 11 start-page: 600767 year: 2020 ident: CR2 article-title: The expanding cell diversity of the brain vasculature publication-title: Front. Physiol. doi: 10.3389/fphys.2020.600767 – volume: 554 start-page: 475 year: 2018 end-page: 480 ident: CR3 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature doi: 10.1038/nature25739 – volume: 24 start-page: 416 year: 2010 end-page: 421 ident: CR88 article-title: Oxygen-induced retinopathy: a model for vascular pathology in the retina publication-title: Eye doi: 10.1038/eye.2009.306 – volume: 138 start-page: 1573 year: 2011 end-page: 1582 ident: CR96 article-title: Interaction between alk1 and blood flow in the development of arteriovenous malformations publication-title: Development doi: 10.1242/dev.060467 – volume: 11 start-page: e0149281 year: 2016 ident: CR99 article-title: Zebrafish caudal fin angiogenesis assay-advanced quantitative assessment including 3-way correlative microscopy publication-title: PLoS ONE doi: 10.1371/journal.pone.0149281 – volume: 80 start-page: 7224 year: 1983 end-page: 7228 ident: CR50 article-title: Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.80.23.7224 – volume: 28 start-page: 922 year: 2018 end-page: 932 ident: CR34 article-title: The role of extracellular matrix components in angiogenesis and fibrosis: possible implication for systemic sclerosis publication-title: Mod. Rheumatol. doi: 10.1080/14397595.2018.1431004 – volume: 115 start-page: 5102 year: 2010 end-page: 5110 ident: CR18 article-title: Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching publication-title: Blood doi: 10.1182/blood-2009-07-230284 – volume: 19 start-page: 173 year: 2016 end-page: 190 ident: CR72 article-title: Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth publication-title: Angiogenesis doi: 10.1007/s10456-016-9498-5 – volume: 454 start-page: 656 year: 2008 end-page: 660 ident: CR20 article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation publication-title: Nature doi: 10.1038/nature07083 – volume: 12 start-page: 551 year: 2011 end-page: 564 ident: CR26 article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3176 – volume: 33 start-page: 2130 year: 2013 end-page: 2136 ident: CR38 article-title: Endothelial cell sensing of flow direction publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.301826 – volume: 82 start-page: 3272 year: 1985 end-page: 3276 ident: CR64 article-title: Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.82.10.3272 – volume: 161 start-page: 1163 year: 2003 end-page: 1177 ident: CR16 article-title: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia publication-title: J. Cell Biol. doi: 10.1083/jcb.200302047 – volume: 129 start-page: 3009 year: 2002 end-page: 3019 ident: CR79 article-title: Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels publication-title: Development doi: 10.1242/dev.129.12.3009 – volume: 8 start-page: 671 year: 2017 ident: CR92 article-title: Novel heparin receptor transmembrane protein 184a regulates angiogenesis in the adult zebrafish caudal fin publication-title: Front Physiol. doi: 10.3389/fphys.2017.00671 – volume: 125 start-page: 489 year: 2019 end-page: 501 ident: CR7 article-title: Endothelial cell development and its application to regenerative medicine publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.311405 – volume: 76 start-page: 536 year: 1995 end-page: 543 ident: CR40 article-title: Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions publication-title: Circ. Res. doi: 10.1161/01.RES.76.4.536 – volume: 29 start-page: 2125 year: 2009 end-page: 2131 ident: CR42 article-title: Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.109.193185 – volume: 180 start-page: 764 year: 2020 end-page: 779 ident: CR4 article-title: Single-cell transcriptome atlas of murine endothelial cells publication-title: Cell doi: 10.1016/j.cell.2020.01.015 – volume: 72 start-page: 301 year: 2005 end-page: 325 ident: CR85 article-title: New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy publication-title: Prostaglandins Leukot. Essent. Fat. Acids doi: 10.1016/j.plefa.2005.02.004 – volume: 11 start-page: 396 year: 2014 end-page: 406 ident: CR70 article-title: Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research publication-title: Zebrafish doi: 10.1089/zeb.2014.0976 – volume: 24 start-page: 311 year: 2021 end-page: 326 ident: CR6 article-title: Endothelial cell plasticity at the single-cell level publication-title: Angiogenesis doi: 10.1007/s10456-021-09797-3 – volume: 146 start-page: 873 year: 2011 end-page: 887 ident: CR73 article-title: Basic and therapeutic aspects of angiogenesis publication-title: Cell doi: 10.1016/j.cell.2011.08.039 – volume: 144 start-page: 3241 year: 2017 end-page: 3252 ident: CR58 article-title: Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size publication-title: Development – volume: 127 start-page: 1122 year: 2020 end-page: 1137 ident: CR80 article-title: Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.316267 – volume: 11 start-page: 873 year: 2020 ident: CR86 article-title: Exploration of oxygen-induced retinopathy model to discover new therapeutic drug targets in retinopathies publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00873 – volume: 130 start-page: 6111 year: 2003 end-page: 6119 ident: CR66 article-title: Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis publication-title: Development doi: 10.1242/dev.00831 – volume: 8 year: 2017 ident: CR17 article-title: Plastic roles of pericytes in the blood-retinal barrier publication-title: Nat. Commun. doi: 10.1038/ncomms15296 – volume: 4 start-page: e06489 year: 2015 ident: CR95 article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis publication-title: Elife doi: 10.7554/eLife.06489 – volume: 19 start-page: 639 year: 2017 end-page: 652 ident: CR82 article-title: Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb3534 – volume: 37 start-page: 21 year: 2020 end-page: 36 ident: CR101 article-title: An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.12.001 – volume: 134 start-page: 3317 year: 2007 end-page: 3326 ident: CR67 article-title: Vascular remodeling of the mouse yolk sac requires hemodynamic force publication-title: Development doi: 10.1242/dev.02883 – volume: 106 start-page: 1425 year: 2010 end-page: 1433 ident: CR75 article-title: Pathogenesis of arteriovenous malformations in the absence of endoglin publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.211037 – volume: 6 start-page: e22820 year: 2011 ident: CR91 article-title: The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations publication-title: PLoS ONE doi: 10.1371/journal.pone.0022820 – volume: 4 start-page: 641 year: 2015 end-page: 650 ident: CR90 article-title: Chemokine regulation of angiogenesis during wound healing publication-title: Adv. Wound Care doi: 10.1089/wound.2014.0594 – volume: 31 start-page: 1308 year: 2017 ident: 785_CR63 publication-title: Genes Dev. doi: 10.1101/gad.301549.117 – volume: 4 start-page: 641 year: 2015 ident: 785_CR90 publication-title: Adv. Wound Care doi: 10.1089/wound.2014.0594 – volume: 393 start-page: 10 year: 2014 ident: 785_CR71 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2014.06.015 – volume: 19 start-page: 928 year: 2017 ident: 785_CR29 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3574 – volume: 137 start-page: 57 year: 2019 ident: 785_CR35 publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2019.02.010 – volume: 146 start-page: 1029 year: 1995 ident: 785_CR11 publication-title: Am. J. Pathol. – volume: 29 start-page: 2125 year: 2009 ident: 785_CR42 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.109.193185 – volume: 134 start-page: 3317 year: 2007 ident: 785_CR67 publication-title: Development doi: 10.1242/dev.02883 – volume: 19 start-page: 639 year: 2017 ident: 785_CR82 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3534 – volume: 11 start-page: 873 year: 2020 ident: 785_CR86 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00873 – volume: 78 start-page: 1329 year: 2021 ident: 785_CR15 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-020-03664-y – volume: 5 start-page: 123 year: 2004 ident: 785_CR21 publication-title: Gene Expr. Patterns doi: 10.1016/j.modgep.2004.05.004 – volume: 9 start-page: e98646 year: 2014 ident: 785_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0098646 – volume: 3 start-page: 1 year: 2013 ident: 785_CR24 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006569 – volume: 24 start-page: 416 year: 2010 ident: 785_CR88 publication-title: Eye doi: 10.1038/eye.2009.306 – volume: 554 start-page: 475 year: 2018 ident: 785_CR3 publication-title: Nature doi: 10.1038/nature25739 – volume: 19 start-page: 173 year: 2016 ident: 785_CR72 publication-title: Angiogenesis doi: 10.1007/s10456-016-9498-5 – volume: 8 start-page: 671 year: 2017 ident: 785_CR92 publication-title: Front Physiol. doi: 10.3389/fphys.2017.00671 – volume: 103 start-page: 172 year: 1981 ident: 785_CR39 publication-title: J. Biomech. Eng. doi: 10.1115/1.3138275 – volume: 29 start-page: 721 year: 2015 ident: 785_CR103 publication-title: Eye doi: 10.1038/eye.2015.48 – volume: 319 start-page: 1281 year: 2013 ident: 785_CR14 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.01.010 – volume: 219 start-page: 382 year: 2017 ident: 785_CR47 publication-title: Acta Physiol. doi: 10.1111/apha.12725 – volume: 62 start-page: 104 year: 2020 ident: 785_CR52 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2019.10.003 – volume: 2 start-page: 675 year: 2012 ident: 785_CR37 publication-title: Compr. Physiol. doi: 10.1002/cphy.c100081 – volume: 9 start-page: e61413 year: 2020 ident: 785_CR81 publication-title: Elife doi: 10.7554/eLife.61413 – volume: 274 start-page: 17267 year: 1999 ident: 785_CR51 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.24.17267 – volume: 29 start-page: 500 year: 2010 ident: 785_CR83 publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2010.05.003 – volume: 5 start-page: 1 year: 2014 ident: 785_CR68 publication-title: Nat. Commun. doi: 10.1038/ncomms6758 – volume: 6 start-page: e22820 year: 2011 ident: 785_CR91 publication-title: PLoS ONE doi: 10.1371/journal.pone.0022820 – volume: 1 start-page: 27 year: 1995 ident: 785_CR10 publication-title: Nat. Med. doi: 10.1038/nm0195-27 – volume: 138 start-page: 2379 year: 2018 ident: 785_CR77 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.033842 – volume: 13 start-page: 1 year: 2015 ident: 785_CR61 publication-title: PLoS Biol. – volume: 264 start-page: 263 year: 2003 ident: 785_CR98 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2003.08.016 – volume: 7 start-page: 1 year: 2016 ident: 785_CR60 publication-title: Nat. Commun. doi: 10.1038/ncomms11805 – volume: 19 start-page: 9 year: 2016 ident: 785_CR43 publication-title: Angiogenesis doi: 10.1007/s10456-015-9485-2 – volume: 18 start-page: 1234 year: 2008 ident: 785_CR97 publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.07.048 – volume: 22 start-page: 4324 year: 2011 ident: 785_CR59 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0287 – volume: 35 start-page: 2354 year: 2015 ident: 785_CR62 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.305775 – volume: 72 start-page: 301 year: 2005 ident: 785_CR85 publication-title: Prostaglandins Leukot. Essent. Fat. Acids doi: 10.1016/j.plefa.2005.02.004 – volume: 1 start-page: 133 year: 2007 ident: 785_CR31 publication-title: Cell Adh. Migr. doi: 10.4161/cam.1.3.4978 – volume: 19 start-page: e45253 year: 2018 ident: 785_CR48 publication-title: Embo Rep. doi: 10.15252/embr.201745253 – volume: 130 start-page: 6111 year: 2003 ident: 785_CR66 publication-title: Development doi: 10.1242/dev.00831 – volume: 104 start-page: 3219 year: 2007 ident: 785_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0611206104 – volume: 12 start-page: 551 year: 2011 ident: 785_CR26 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3176 – volume: 20 start-page: 4373 year: 2020 ident: 785_CR55 publication-title: Lab Chip doi: 10.1039/D0LC00738B – volume: 59 start-page: 3932 year: 2018 ident: 785_CR84 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-24320 – volume: 3 start-page: 422 year: 2003 ident: 785_CR32 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1094 – volume: 2 start-page: 1007 year: 2013 ident: 785_CR57 publication-title: Biol. Open doi: 10.1242/bio.20134622 – volume: 4 start-page: e06489 year: 2015 ident: 785_CR95 publication-title: Elife doi: 10.7554/eLife.06489 – volume: 144 start-page: 3241 year: 2017 ident: 785_CR58 publication-title: Development doi: 10.1242/dev.150904 – volume: 82 start-page: 3272 year: 1985 ident: 785_CR64 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.82.10.3272 – volume: 1 start-page: 17 year: 2012 ident: 785_CR89 publication-title: Adv. Wound Care doi: 10.1089/wound.2011.0308 – volume: 7 start-page: 56 year: 2016 ident: 785_CR93 publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00056 – volume: 140 start-page: 3051 year: 2013 ident: 785_CR69 publication-title: Development doi: 10.1242/dev.093351 – volume: 28 start-page: 922 year: 2018 ident: 785_CR34 publication-title: Mod. Rheumatol. doi: 10.1080/14397595.2018.1431004 – volume: 79 start-page: 2603 year: 1982 ident: 785_CR53 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2603 – volume: 21 start-page: 363 year: 2018 ident: 785_CR76 publication-title: Angiogenesis doi: 10.1007/s10456-018-9602-0 – volume: 144 start-page: 805 year: 2021 ident: 785_CR56 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.053047 – volume: 445 start-page: 776 year: 2007 ident: 785_CR23 publication-title: Nature doi: 10.1038/nature05571 – volume: 2 start-page: 795 year: 2002 ident: 785_CR12 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc909 – volume: 80 start-page: 7224 year: 1983 ident: 785_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.80.23.7224 – volume: 76 start-page: 536 year: 1995 ident: 785_CR40 publication-title: Circ. Res. doi: 10.1161/01.RES.76.4.536 – volume: 116 start-page: 308 year: 2013 ident: 785_CR45 publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2013.10.001 – volume: 285 start-page: 1182 year: 1971 ident: 785_CR9 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197111182852108 – volume: 454 start-page: 656 year: 2008 ident: 785_CR20 publication-title: Nature doi: 10.1038/nature07083 – volume: 129 start-page: 3009 year: 2002 ident: 785_CR79 publication-title: Development doi: 10.1242/dev.129.12.3009 – volume: 11 start-page: e0149281 year: 2016 ident: 785_CR99 publication-title: PLoS ONE doi: 10.1371/journal.pone.0149281 – volume: 11 start-page: 600767 year: 2020 ident: 785_CR2 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.600767 – volume: 312 start-page: H485 year: 2017 ident: 785_CR46 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00035.2016 – volume: 104 start-page: 3225 year: 2007 ident: 785_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0611177104 – volume: 161 start-page: 1163 year: 2003 ident: 785_CR16 publication-title: J. Cell Biol. doi: 10.1083/jcb.200302047 – volume: 2 start-page: a006429 year: 2012 ident: 785_CR5 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006429 – volume: 11 start-page: 396 year: 2014 ident: 785_CR70 publication-title: Zebrafish doi: 10.1089/zeb.2014.0976 – volume: 87 start-page: 1153 year: 1996 ident: 785_CR33 publication-title: Cell doi: 10.1016/S0092-8674(00)81810-3 – volume: 49 start-page: 29 year: 1963 ident: 785_CR36 publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(63)80034-9 – volume: 127 start-page: 1122 year: 2020 ident: 785_CR80 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.316267 – volume: 19 start-page: 915 year: 2017 ident: 785_CR28 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3555 – volume: 239 start-page: 1695 year: 2010 ident: 785_CR87 publication-title: Dev. Dyn. doi: 10.1002/dvdy.22306 – volume: 91 start-page: 5686 year: 1994 ident: 785_CR49 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.12.5686 – volume: 16 start-page: 222 year: 2009 ident: 785_CR27 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.01.013 – volume: 180 start-page: 764 year: 2020 ident: 785_CR4 publication-title: Cell doi: 10.1016/j.cell.2020.01.015 – volume: 8 year: 2017 ident: 785_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms15296 – volume: 37 start-page: 21 year: 2020 ident: 785_CR101 publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.12.001 – volume: 125 start-page: 489 year: 2019 ident: 785_CR7 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.311405 – volume: 140 start-page: 4041 year: 2013 ident: 785_CR65 publication-title: Development doi: 10.1242/dev.096255 – volume: 115 start-page: 5102 year: 2010 ident: 785_CR18 publication-title: Blood doi: 10.1182/blood-2009-07-230284 – volume: 36 start-page: 86 year: 2015 ident: 785_CR1 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.07.009 – volume: 138 start-page: 1573 year: 2011 ident: 785_CR96 publication-title: Development doi: 10.1242/dev.060467 – volume: 2015 start-page: 627674 year: 2015 ident: 785_CR102 publication-title: J. Ophthalmol. – volume: 100 start-page: 1689 year: 2002 ident: 785_CR44 publication-title: Blood doi: 10.1182/blood-2002-01-0046 – volume: 20 start-page: 427 year: 2015 ident: 785_CR100 publication-title: Genes Cells doi: 10.1111/gtc.12234 – volume: 25 start-page: 212 year: 2018 ident: 785_CR25 publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0000000000000425 – volume: 280 start-page: C1358 year: 2001 ident: 785_CR13 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.2001.280.6.C1358 – volume: 33 start-page: 2130 year: 2013 ident: 785_CR38 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.301826 – volume: 136 start-page: 4001 year: 2009 ident: 785_CR94 publication-title: Development doi: 10.1242/dev.039990 – volume: 37 start-page: 1233 year: 2009 ident: 785_CR30 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0371233 – volume: 146 start-page: 873 year: 2011 ident: 785_CR73 publication-title: Cell doi: 10.1016/j.cell.2011.08.039 – volume: 8 start-page: 1 year: 2017 ident: 785_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01742-7 – volume: 104 start-page: 1145 year: 1993 ident: 785_CR54 publication-title: J. Cell Sci. doi: 10.1242/jcs.104.4.1145 – volume: 19 start-page: 653 year: 2017 ident: 785_CR78 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3528 – volume: 24 start-page: 311 year: 2021 ident: 785_CR6 publication-title: Angiogenesis doi: 10.1007/s10456-021-09797-3 – volume: 106 start-page: 1425 year: 2010 ident: 785_CR75 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.211037 – volume: 144 start-page: 1308 year: 2021 ident: 785_CR8 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.054071 |
SSID | ssj0025474 |
Score | 2.4973812 |
SecondaryResourceType | review_article |
Snippet | Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing... |
SourceID | nrf pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 711 |
SubjectTerms | 42/41 45/41 631/136/16/1986 631/80/84/1372 64/60 96/35 Angiogenesis Autoimmune diseases Autoimmunity Biomedical and Life Sciences Biomedicine Blood flow Blood vessels Cell fate Cell migration Embryogenesis Endothelial cells Fate maps Gene mapping Genome editing Genomes Medical Biochemistry Molecular Medicine Review Review Article RNA editing Smooth muscle Stem Cells Veins 생화학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xISFeEGx8BAYyAvEC1uY4jhNeYEJUA2k8MalvluM4XbUuKU2naf89d47bqnzsKZJziezz2f757vwzwFuioJJKFDjSGssR39bcZq7ksiAAYbO0CiRJpz_yk7Ps-1iNo8Otj2mVqzkxTNR158hHfkisJFqXhTj6NP_F6dYoiq7GKzR24C5Rl5FV6_Fmw6WywMIsEGJwietWPDRzJIvDHgs1pd-mnFZJxcXWwrTTLpp_Yc6_Uyf_iJ-GZWn0EB5EPMmOBwN4BHd8uwf7xy3upS9v2DsWMjyD63wP7p3GQPo-fB7Nums26XzPELVS5iyzbc3Ijd8z7Pg5q8ixh-UfmW9rOqY1Q0tll9PJYDKP4Wz09eeXEx4vU-AOMceSV7IUzonaK5e5rM6U8mWD25WsQhCU-sDbrr1qtEht4W1Bx5y8qHWeW5wDSiefwG7btf4ZsMaWGlGDVdL6EHYr8C81IkGlEZ5Jl4BYadK4yDROF17MTIh4y8IM2jeofRO0b0QC79ffzAeejVul32AHmQs3NUSPTc9JZy4WBjcB34iGGXFKmSdwsOpAE0dmbzZ2lMDr9WscU6Rh2_ruimR0TsA3RZmnQ3-vK4WNpNPnMgG9ZQlrAarQ9pt2eh54u0uEl4gNEviwsplNtf7f1ue3t-IF3E-DFZNj6AB2l4sr_xJx0rJ6FQbDb3xYCbU priority: 102 providerName: ProQuest |
Title | Flow goes forward and cells step backward: endothelial migration |
URI | https://link.springer.com/article/10.1038/s12276-022-00785-1 https://www.ncbi.nlm.nih.gov/pubmed/35701563 https://www.proquest.com/docview/2684779810 https://www.proquest.com/docview/2676923120 https://pubmed.ncbi.nlm.nih.gov/PMC9256678 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002858898 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2022, 54(0), , pp.711-719 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0K8oLEBC4zKCMQLRMxxHCc8UapVo9ImBEzqm-U4TqnWJVPbaeK_5875QIWBxFOk5BLZ57v45_PdzwCviIJKSJ6ip5UmRHxbhCa2WShSAhAmjnJPknR2npxexJOpnG5B1NXC-KR9T2npf9Nddti7FY8iRemyUUizmgxxxbNLVO1o27vD4eTrpF9myVjFbXnMsUjveHNjCtquluVd6PLPJMnfdkr9BDTegwctcmTDpq0PYctV-3AwxG7UVz_Ya-ZzOX2QfB_unbVb5gfwYbyob9msdiuG-JRyZJmpCkYB-xXDIb5mOYXw8P575qqCCrIWaJPsaj5rjOMRXIxPvo1Ow_bYhNAiuliHuci4tbxw0sY2LmIpXVbiwiTOEe5EzjO0KydLxSOTOpNSQZPjhUoSg96eWfEYdqq6cofASpMpxAdGCuP8BluKXykQ80mFQEzYAHinSW1bTnE62mKh_d62SHWjfY3a1177mgfwpn_numHU-Kf0SxwgfWnnmoiw6Tqr9eVSI9z_RITLiEiyJICjbgB164MrTTw2SmUpPw7gRf8YvYc0bCpX35CMSgjiRijzpBnvvlHYSaozFwGoDUvoBahBm0-q-XfP0J0hkEQUEMDbzmZ-NevvfX36f-LP4H7krZpCQkews17euOeIkNb5ALbVVA1ax8Drx5Pzz1_w7igZDXzU4Sd4CQsx |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQwJeEGx8BAYY8fEC0Zo4rhMkBBNQtWzd0yb1zTiOU6p1SWk6Tfun-Bu5c5JW5WNve6qUuJF9vvP9znf-GeAVUVBxEcRoabn2Ed9mvo5M4vOYAISOwtSRJA2Puv2T6NtIjDbgV3sWhsoq2zXRLdRZaWiPfI9YSaRM4qDzcfbTp1ujKLvaXqFRq8WBvbzAkK36MPiC8_s6DHtfjz_3_eZWAd-g8134KU8CY4LMChOZKIuEsEmOuD1KEQ2E1hGYSytyGYQ6tjqm8z42yGS3q9EYEsPxu5twAx1vh4I9OVoFeCJyrM8BQhqfo59sDul0eLxX4UNJ5b6hT15Z-MGaI9ws5vm_MO7fpZp_5GudG-zdhTsNfmX7tcLdgw1bbMPOfoGx-9kle8NcRanbqt-Gm8Mmcb8Dn3rT8oKNS1sxRMlUqct0kTFKG1QMFW3GUtpIxOfvmS0yOhY2RctgZ5NxraL34eRaxPwAtoqysI-A5TqRiFK04Nq6NF-MX8kQeQqJcJAbD4JWkso0zOZ0wcZUuQw7j1UtfYXSV076KvDg7fI_s5rX48rWL3GC1KmZKKLjpt9xqU7nCoOOAdE-Iy5Kuh7sthOompWgUiu99eDF8jXaMElYF7Y8pzayS0A7xDYP6_ledgoHSafduQdyTROWDahD62-KyQ_HE54gnEUs4sG7VmdW3fr_WB9fPYrncKt_PDxUh4OjgydwO3QaTZtSu7C1mJ_bp4jRFukzZxgMvl-3Jf4GQUVFMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED9BkdBepg32kY1tnvbxskUlcRInkyZgg4qOUaFpSLwZx3G6ipJ0bRHiX9tftzvnA3UfvPFUKXEj-3zn-53v_DPAa6Kg4qEXo6XlykV8m7kq0InLYwIQKvBTS5J0OIj2j4MvJ-HJEvxqzsJQWWWzJtqFOis17ZF3iZVEiCT2Nrt5XRZxtNvbmvx06QYpyrQ212lUKnJgri4xfJt97O_iXL_x_d7e98_7bn3DgKvREc_dlCee1l5mQh3oIAvC0CQ5YvggRWTgG0tmLkyYC89XsVExnf0xXiaiSKFhJJrjd5dhRVBU1IGVT3uDo29tuBcGlgPaQ4DjcvSa9ZGdTR53Z_hQUPGv75KPDl1vwS0uF9P8X4j378LNP7K31in27sHdGs2ynUr97sOSKdZgfafASP78ir1ltr7UbtyvwephncZfh-3euLxkw9LMGGJmqttlqsgYJRFmDNVuwlLaVsTnH5gpMjokNkY7YeejYaWwD-D4VgT9EDpFWZjHwHKVCMQsKuTK2KRfjF_JEIeGAsEh1w54jSSlrnnO6bqNsbT5dh7LSvoSpS-t9KXnwLv2P5OK5ePG1q9wguSZHkki56bfYSnPphJDkD6RQCNKSiIHNpoJlPW6MJPXWuzAy_Y1WjRJWBWmvKA2IiLY7WObR9V8t53CQdLZd-6AWNCEtgF1aPFNMfphWcMTBLeITBx43-jMdbf-P9YnN4_iBayiFcqv_cHBU7jjW4WmHaoN6MynF-YZArZ5-ry2DAant22MvwFxfkrN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+goes+forward+and+cells+step+backward%3A+endothelial+migration&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee+Heon-Woo&rft.au=Shin+Jae+Hun&rft.au=Simons+Michael&rft.date=2022-06-01&rft.pub=%EC%83%9D%ED%99%94%ED%95%99%EB%B6%84%EC%9E%90%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1226-3613&rft.eissn=2092-6413&rft.spage=711&rft.epage=719&rft_id=info:doi/10.1038%2Fs12276-022-00785-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10024096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon |