Flow goes forward and cells step backward: endothelial migration

Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing b...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 54; no. 6; pp. 711 - 719
Main Authors Lee, Heon-Woo, Shin, Jae Hun, Simons, Michael
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2022
Springer Nature B.V
생화학분자생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Blood vessel formation: Migratory cells lining veins key to growth Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
AbstractList Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.Blood vessel formation: Migratory cells lining veins key to growthCells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. KCI Citation Count: 0
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Blood vessel formation: Migratory cells lining veins key to growth Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
Author Shin, Jae Hun
Simons, Michael
Lee, Heon-Woo
Author_xml – sequence: 1
  givenname: Heon-Woo
  surname: Lee
  fullname: Lee, Heon-Woo
  organization: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine
– sequence: 2
  givenname: Jae Hun
  surname: Shin
  fullname: Shin, Jae Hun
  organization: Department of Immunobiology, Yale University School of Medicine
– sequence: 3
  givenname: Michael
  surname: Simons
  fullname: Simons, Michael
  email: michael.simons@yale.edu
  organization: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, Department of Cell Biology, Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35701563$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002858898$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kV1rFDEYhYO02A_9A17IgDdSGJvvDy_EUlotFApSr0M288423dlkTWYt_nuzO622vehVQvKcw3nfc4B2YoqA0DuCPxHM9HEhlCrZYkpbjJUWLXmF9ik2tJWcsJ1H9z10UMotxlRwxV-jPSYUJkKyffT1fEh3zTxBafqU71zuGhe7xsMwlKaMsGpmzi82758biF0ab2AIbmiWYZ7dGFJ8g3Z7NxR4e38eop_nZ9en39vLq28XpyeXrefMjO2MGeI96UB47nnHhQDTC675jApMgVPJqALRK0KdBqcxkQJIp6R0DBPj2SE6mnxj7u3CB5tc2J7zZBfZnvy4vrCkTsixkRX-MsGr9WwJnYc4ZjfYVQ5Ll_9spU9_YripRr-toUJKpavBx3uDnH6toYx2GcpmKS5CWhdLpZKGMkJxRT88Q2_TOse6i0pprpTRZEO9f5zoX5SHJiqgJ8DnVEqG3vowbjdcA4ahzmY3pdupdFtLt9vSLalS-kz64P6iiE2iUuE4h_w_9guqvwbzvJw
CitedBy_id crossref_primary_10_1016_j_exer_2023_109646
crossref_primary_10_1039_D4LC00824C
crossref_primary_10_3390_molecules29133103
crossref_primary_10_1002_tox_24012
crossref_primary_10_1111_jdv_19899
crossref_primary_10_1007_s13577_024_01154_y
crossref_primary_10_3390_cells11213363
crossref_primary_10_3389_fmed_2022_973964
crossref_primary_10_1002_adhm_202401150
crossref_primary_10_3389_fphys_2024_1411995
crossref_primary_10_1002_adhm_202402045
crossref_primary_10_3390_ijms24097914
crossref_primary_10_3389_fcell_2023_1034455
crossref_primary_10_1016_j_bioactmat_2024_03_013
crossref_primary_10_1161_ATVBAHA_124_321719
crossref_primary_10_1038_s41586_024_07698_1
crossref_primary_10_1016_j_bej_2023_109095
crossref_primary_10_2174_0118715257246589231018053646
crossref_primary_10_1016_j_cytogfr_2024_07_005
crossref_primary_10_1007_s12011_022_03364_7
crossref_primary_10_1016_j_talanta_2024_126415
crossref_primary_10_3390_ijms25105559
crossref_primary_10_1002_jcp_31185
crossref_primary_10_1016_j_biopha_2022_114151
crossref_primary_10_1002_advs_202410659
crossref_primary_10_1016_j_compositesb_2024_111920
crossref_primary_10_3390_molecules29184360
crossref_primary_10_1016_j_bioadv_2024_214094
crossref_primary_10_3390_biomedicines12081795
crossref_primary_10_1080_14789450_2023_2174851
crossref_primary_10_3389_fphys_2024_1351753
crossref_primary_10_1016_j_bbamcr_2025_119926
crossref_primary_10_1016_j_cell_2025_02_005
crossref_primary_10_3389_fphys_2024_1408605
crossref_primary_10_1021_acsabm_4c00504
crossref_primary_10_1038_s41467_024_54570_x
crossref_primary_10_1089_ten_teb_2023_0044
crossref_primary_10_3389_fphys_2024_1386151
Cites_doi 10.1016/j.ceb.2015.07.009
10.1038/nm0195-27
10.1371/journal.pone.0098646
10.1016/j.ydbio.2003.08.016
10.1167/iovs.18-24320
10.1073/pnas.0611206104
10.1242/dev.039990
10.1038/ncomms11805
10.1089/wound.2011.0308
10.1038/ncb3574
10.4161/cam.1.3.4978
10.1152/ajpcell.2001.280.6.C1358
10.1038/ncb3528
10.1038/nrc909
10.1242/jcs.104.4.1145
10.1242/dev.096255
10.1073/pnas.0611177104
10.1056/NEJM197111182852108
10.1115/1.3138275
10.1161/CIRCULATIONAHA.120.053047
10.7554/eLife.61413
10.1042/BST0371233
10.1074/jbc.274.24.17267
10.1016/j.devcel.2009.01.013
10.1016/j.ydbio.2014.06.015
10.1038/nrc1094
10.3389/fphys.2016.00056
10.1097/MOH.0000000000000425
10.1016/j.exer.2013.10.001
10.1016/j.modgep.2004.05.004
10.1091/mbc.e11-04-0287
10.1007/s10456-018-9602-0
10.1038/nature05571
10.1016/j.yexcr.2013.01.010
10.1016/j.preteyeres.2010.05.003
10.1007/s10456-015-9485-2
10.1038/eye.2015.48
10.1039/D0LC00738B
10.1182/blood-2002-01-0046
10.1101/cshperspect.a006569
10.15252/embr.201745253
10.1073/pnas.91.12.5686
10.1016/S0022-5320(63)80034-9
10.1002/cphy.c100081
10.1016/S0092-8674(00)81810-3
10.1161/CIRCULATIONAHA.121.054071
10.1101/cshperspect.a006429
10.1161/ATVBAHA.115.305775
10.1161/CIRCULATIONAHA.118.033842
10.1152/ajpheart.00035.2016
10.1111/gtc.12234
10.1073/pnas.79.8.2603
10.1016/j.critrevonc.2019.02.010
10.1007/s00018-020-03664-y
10.1038/ncomms6758
10.1111/apha.12725
10.1101/gad.301549.117
10.1002/dvdy.22306
10.1242/dev.093351
10.1016/j.ceb.2019.10.003
10.1038/ncb3555
10.1242/bio.20134622
10.1016/j.cub.2008.07.048
10.1038/s41467-017-01742-7
10.3389/fphys.2020.600767
10.1038/nature25739
10.1038/eye.2009.306
10.1242/dev.060467
10.1371/journal.pone.0149281
10.1073/pnas.80.23.7224
10.1080/14397595.2018.1431004
10.1182/blood-2009-07-230284
10.1007/s10456-016-9498-5
10.1038/nature07083
10.1038/nrm3176
10.1161/ATVBAHA.113.301826
10.1073/pnas.82.10.3272
10.1083/jcb.200302047
10.1242/dev.129.12.3009
10.3389/fphys.2017.00671
10.1161/CIRCRESAHA.119.311405
10.1161/01.RES.76.4.536
10.1161/ATVBAHA.109.193185
10.1016/j.cell.2020.01.015
10.1016/j.plefa.2005.02.004
10.1089/zeb.2014.0976
10.1007/s10456-021-09797-3
10.1016/j.cell.2011.08.039
10.1161/CIRCRESAHA.119.316267
10.3389/fphar.2020.00873
10.1242/dev.00831
10.1038/ncomms15296
10.7554/eLife.06489
10.1038/ncb3534
10.1016/j.ccell.2019.12.001
10.1242/dev.02883
10.1161/CIRCRESAHA.109.211037
10.1371/journal.pone.0022820
10.1089/wound.2014.0594
10.1242/dev.150904
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ACYCR
DOI 10.1038/s12276-022-00785-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 719
ExternalDocumentID oai_kci_go_kr_ARTI_10024096
PMC9256678
35701563
10_1038_s12276_022_00785_1
Genre Journal Article
Review
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c439t-b391cc1de5c4c4d455e9f5484b2502e426327e5f712a8ea80165e1d766a3019c3
IEDL.DBID AAJSJ
ISSN 2092-6413
1226-3613
IngestDate Sun Mar 09 07:51:12 EDT 2025
Thu Aug 21 18:19:43 EDT 2025
Fri Jul 11 00:13:04 EDT 2025
Wed Aug 13 08:42:33 EDT 2025
Thu Apr 03 07:04:29 EDT 2025
Tue Jul 01 04:10:31 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b391cc1de5c4c4d455e9f5484b2502e426327e5f712a8ea80165e1d766a3019c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/s12276-022-00785-1
PMID 35701563
PQID 2684779810
PQPubID 2041975
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10024096
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256678
proquest_miscellaneous_2676923120
proquest_journals_2684779810
pubmed_primary_35701563
crossref_citationtrail_10_1038_s12276_022_00785_1
crossref_primary_10_1038_s12276_022_00785_1
springer_journals_10_1038_s12276_022_00785_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: 생화학분자생물학회
References Wang, Baker, Chen, Schwartz (CR38) 2013; 33
Tkachenko (CR57) 2013; 2
Park (CR17) 2017; 8
Noris (CR40) 1995; 76
Demidova-Rice, Durham, Herman (CR89) 2012; 1
Suchting (CR19) 2007; 104
Pitulescu (CR28) 2017; 19
Crist, Lee, Patel, Westhoff, Meadows (CR76) 2018; 21
Fukuhara (CR71) 2014; 393
Hardy (CR85) 2005; 72
Tammela (CR20) 2008; 454
Chang (CR63) 2017; 31
Azevedo, Grotek, Jacinto, Weidinger, Saude (CR91) 2011; 6
Iruela-Arispe, Davis (CR27) 2009; 16
Fang (CR41) 2017; 8
Kalucka (CR4) 2020; 180
Coan, Wechezak, Viggers, Sauvage (CR54) 1993; 104
Morgan (CR59) 2011; 22
Chavez, Aedo, Fierro, Allende, Egana (CR93) 2016; 7
Kim (CR80) 2020; 127
Huang, Lawson, Weinstein, Johnson (CR98) 2003; 264
Nerem, Levesque, Cornhill (CR39) 1981; 103
Ehling, Adams, Benedito, Adams (CR69) 2013; 140
Benedito, Hellstrom (CR14) 2013; 319
Aird (CR5) 2012; 2
Orsenigo (CR81) 2020; 9
Russell-Puleri (CR46) 2017; 312
Ola (CR77) 2018; 138
Singleman, Holtzman (CR70) 2014; 11
Hellstrom (CR23) 2007; 445
Folkman (CR10) 1995; 1
Dvorak, Brown, Detmar, Dvorak (CR11) 1995; 146
Lobov (CR22) 2007; 104
Hasan (CR29) 2017; 19
Hikita (CR48) 2018; 19
Kametani, Chi, Stainier, Takada (CR100) 2015; 20
Ferrara (CR13) 2001; 280
Strasser, Kaminker, Tessier-Lavigne (CR18) 2010; 115
Vanlandewijck (CR3) 2018; 554
Masumura, Yamamoto, Shimizu, Obi, Ando (CR42) 2009; 29
Kupfer, Dennert, Singer (CR50) 1983; 80
Townsley (CR37) 2012; 2
Xu (CR68) 2014; 5
Ferrara (CR12) 2002; 2
Mahmoud (CR75) 2010; 106
Chistiakov, Orekhov, Bobryshev (CR47) 2017; 219
Lee (CR8) 2021; 144
Hellstrom, Phng, Gerhardt (CR31) 2007; 1
Gonzalez-Avila (CR35) 2019; 137
Bershadsky, Futerman (CR49) 1994; 91
Franco (CR61) 2015; 13
Koo (CR72) 2016; 19
Park (CR56) 2021; 144
Amoaku (CR103) 2015; 29
Heuslein (CR62) 2015; 35
Muhleder, Fernandez-Chacon, Garcia-Gonzalez, Benedito (CR15) 2021; 78
Dekker (CR44) 2002; 100
Rogers, McKee, Kalnins (CR64) 1985; 82
Liakouli (CR34) 2018; 28
Vahatupa, Jarvinen, Uusitalo-Jarvinen (CR86) 2020; 11
Vanhollebeke (CR95) 2015; 4
Poduri (CR58) 2017; 144
Mack, Iruela-Arispe (CR25) 2018; 25
Folkman, D’Amore (CR33) 1996; 87
Hlushchuk (CR99) 2016; 11
Ishibazawa, Nagaoka, Yokota, Ono, Yoshida (CR45) 2013; 116
Herbert, Stainier (CR26) 2011; 12
Liu, Walmsley, Rodaway, Patient (CR97) 2008; 18
Kwon (CR60) 2016; 7
Grossniklaus, Kang, Berglin (CR83) 2010; 29
Farwell, Reylander, Iovine, Lowe-Krentz (CR92) 2017; 8
Sonmez, Cheng, Watkins, Roman, Davidson (CR55) 2020; 20
Bodnar (CR90) 2015; 4
Folkman (CR9) 1971; 285
Tah (CR102) 2015; 2015
Blanco, Gerhardt (CR24) 2013; 3
Maleszewska, Vanchin, Harmsen, Krenning (CR43) 2016; 19
Hasan, Siekmann (CR1) 2015; 36
Tual-Chalot (CR74) 2014; 9
Takahashi (CR51) 1999; 274
Jakobsson, Bentley, Gerhardt (CR30) 2009; 37
Pasut, Becker, Cuypers, Carmeliet (CR6) 2021; 24
Corti (CR96) 2011; 138
Kalluri (CR32) 2003; 3
Hogan (CR94) 2009; 136
Claxton, Fruttiger (CR21) 2004; 5
Davies, Stempel, Hubert, Powers (CR87) 2010; 239
Jin (CR82) 2017; 19
Ross (CR2) 2020; 11
Potente, Gerhardt, Carmeliet (CR73) 2011; 146
Scott, Fruttiger (CR88) 2010; 24
Roman (CR79) 2002; 129
Goveia (CR101) 2020; 37
Hogan, Feeney (CR36) 1963; 49
Qiu, Hirschi (CR7) 2019; 125
Kupfer, Louvard, Singer (CR53) 1982; 79
Sugden (CR78) 2017; 19
Udan, Vadakkan, Dickinson (CR65) 2013; 140
Lucitti (CR67) 2007; 134
Gerhardt (CR16) 2003; 161
Huang (CR66) 2003; 130
Kim (CR84) 2018; 59
Ravichandran, Goud, Manneville (CR52) 2020; 62
H Park (785_CR56) 2021; 144
RS Udan (785_CR65) 2013; 140
HB Kwon (785_CR60) 2016; 7
C Huang (785_CR66) 2003; 130
HW Lee (785_CR8) 2021; 144
N Ferrara (785_CR13) 2001; 280
V Liakouli (785_CR34) 2018; 28
ME Pitulescu (785_CR28) 2017; 19
WM Amoaku (785_CR103) 2015; 29
M Takahashi (785_CR51) 1999; 274
TN Demidova-Rice (785_CR89) 2012; 1
T Hikita (785_CR48) 2018; 19
G Gonzalez-Avila (785_CR35) 2019; 137
N Ferrara (785_CR12) 2002; 2
C Wang (785_CR38) 2013; 33
A Poduri (785_CR58) 2017; 144
C Singleman (785_CR70) 2014; 11
A Kupfer (785_CR50) 1983; 80
R Hlushchuk (785_CR99) 2016; 11
HF Dvorak (785_CR11) 1995; 146
J Folkman (785_CR10) 1995; 1
S Suchting (785_CR19) 2007; 104
HE Grossniklaus (785_CR83) 2010; 29
S Claxton (785_CR21) 2004; 5
M Maleszewska (785_CR43) 2016; 19
M Potente (785_CR73) 2011; 146
WW Sugden (785_CR78) 2017; 19
CA Franco (785_CR61) 2015; 13
DA Chistiakov (785_CR47) 2017; 219
AD Bershadsky (785_CR49) 1994; 91
SS Hasan (785_CR29) 2017; 19
F Orsenigo (785_CR81) 2020; 9
MH Davies (785_CR87) 2010; 239
C Xu (785_CR68) 2014; 5
SLN Farwell (785_CR92) 2017; 8
MN Chavez (785_CR93) 2016; 7
M Noris (785_CR40) 1995; 76
BL Roman (785_CR79) 2002; 129
JL Heuslein (785_CR62) 2015; 35
KA Rogers (785_CR64) 1985; 82
MI Townsley (785_CR37) 2012; 2
M Mahmoud (785_CR75) 2010; 106
AM Crist (785_CR76) 2018; 21
R Benedito (785_CR14) 2013; 319
T Tammela (785_CR20) 2008; 454
F Liu (785_CR97) 2008; 18
JM Ross (785_CR2) 2020; 11
AS Azevedo (785_CR91) 2011; 6
Y Ravichandran (785_CR52) 2020; 62
A Kupfer (785_CR53) 1982; 79
WC Aird (785_CR5) 2012; 2
RJ Dekker (785_CR44) 2002; 100
E Tkachenko (785_CR57) 2013; 2
M Hellstrom (785_CR23) 2007; 445
SP Herbert (785_CR26) 2011; 12
L Jakobsson (785_CR30) 2009; 37
S Tual-Chalot (785_CR74) 2014; 9
J Kalucka (785_CR4) 2020; 180
A Ishibazawa (785_CR45) 2013; 116
JY Qiu (785_CR7) 2019; 125
M Ehling (785_CR69) 2013; 140
V Tah (785_CR102) 2015; 2015
S Muhleder (785_CR15) 2021; 78
J Folkman (785_CR33) 1996; 87
BM Hogan (785_CR94) 2009; 136
AH Chang (785_CR63) 2017; 31
T Masumura (785_CR42) 2009; 29
RJ Bodnar (785_CR90) 2015; 4
MJ Hogan (785_CR36) 1963; 49
R Kalluri (785_CR32) 2003; 3
M Hellstrom (785_CR31) 2007; 1
J Goveia (785_CR101) 2020; 37
S Fukuhara (785_CR71) 2014; 393
R Ola (785_CR77) 2018; 138
YH Kim (785_CR80) 2020; 127
Y Kim (785_CR84) 2018; 59
JS Fang (785_CR41) 2017; 8
JT Morgan (785_CR59) 2011; 22
GA Strasser (785_CR18) 2010; 115
IB Lobov (785_CR22) 2007; 104
Y Koo (785_CR72) 2016; 19
SS Hasan (785_CR1) 2015; 36
JL Lucitti (785_CR67) 2007; 134
Y Jin (785_CR82) 2017; 19
B Vanhollebeke (785_CR95) 2015; 4
P Corti (785_CR96) 2011; 138
J Folkman (785_CR9) 1971; 285
ML Iruela-Arispe (785_CR27) 2009; 16
S Russell-Puleri (785_CR46) 2017; 312
UM Sonmez (785_CR55) 2020; 20
DE Coan (785_CR54) 1993; 104
M Vanlandewijck (785_CR3) 2018; 554
A Scott (785_CR88) 2010; 24
Y Kametani (785_CR100) 2015; 20
A Pasut (785_CR6) 2021; 24
CC Huang (785_CR98) 2003; 264
JJ Mack (785_CR25) 2018; 25
M Vahatupa (785_CR86) 2020; 11
RM Nerem (785_CR39) 1981; 103
H Gerhardt (785_CR16) 2003; 161
P Hardy (785_CR85) 2005; 72
R Blanco (785_CR24) 2013; 3
DY Park (785_CR17) 2017; 8
References_xml – volume: 36
  start-page: 86
  year: 2015
  end-page: 92
  ident: CR1
  article-title: The same but different: signaling pathways in control of endothelial cell migration
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.07.009
– volume: 1
  start-page: 27
  year: 1995
  end-page: 31
  ident: CR10
  article-title: Angiogenesis in cancer, vascular, rheumatoid and other disease
  publication-title: Nat. Med.
  doi: 10.1038/nm0195-27
– volume: 9
  start-page: e98646
  year: 2014
  ident: CR74
  article-title: Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098646
– volume: 264
  start-page: 263
  year: 2003
  end-page: 274
  ident: CR98
  article-title: reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2003.08.016
– volume: 59
  start-page: 3932
  year: 2018
  end-page: 3942
  ident: CR84
  article-title: Oxygen-induced retinopathy and choroidopathy: in vivo longitudinal observation of vascular changes using OCTA
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-24320
– volume: 104
  start-page: 3219
  year: 2007
  end-page: 3224
  ident: CR22
  article-title: Delta-like ligand 4 (DII4) is induced by VEGF as a negative regulator of angiogenic sprouting
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611206104
– volume: 136
  start-page: 4001
  year: 2009
  end-page: 4009
  ident: CR94
  article-title: Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries
  publication-title: Development
  doi: 10.1242/dev.039990
– volume: 2015
  start-page: 627674
  year: 2015
  ident: CR102
  article-title: Anti-VEGF therapy and the retina: an update
  publication-title: J. Ophthalmol.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR60
  article-title: In vivo modulation of endothelial polarization by Apelin receptor signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11805
– volume: 1
  start-page: 17
  year: 2012
  end-page: 22
  ident: CR89
  article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2011.0308
– volume: 19
  start-page: 928
  year: 2017
  end-page: 940
  ident: CR29
  article-title: Endothelial Notch signalling limits angiogenesis via control of artery formation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3574
– volume: 1
  start-page: 133
  year: 2007
  end-page: 136
  ident: CR31
  article-title: VEGF and Notch signaling: the yin and yang of angiogenic sprouting
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.1.3.4978
– volume: 146
  start-page: 1029
  year: 1995
  end-page: 1039
  ident: CR11
  article-title: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis
  publication-title: Am. J. Pathol.
– volume: 280
  start-page: C1358
  year: 2001
  end-page: C1366
  ident: CR13
  article-title: Role of vascular endothelial growth factor in regulation of physiological angiogenesis
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.2001.280.6.C1358
– volume: 19
  start-page: 653
  year: 2017
  end-page: 665
  ident: CR78
  article-title: Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3528
– volume: 2
  start-page: 795
  year: 2002
  end-page: 803
  ident: CR12
  article-title: VEGF and the quest for tumour angiogenesis factors
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc909
– volume: 104
  start-page: 1145
  year: 1993
  end-page: 1153
  ident: CR54
  article-title: Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.4.1145
– volume: 140
  start-page: 4041
  year: 2013
  end-page: 4050
  ident: CR65
  article-title: Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac
  publication-title: Development
  doi: 10.1242/dev.096255
– volume: 104
  start-page: 3225
  year: 2007
  end-page: 3230
  ident: CR19
  article-title: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611177104
– volume: 285
  start-page: 1182
  year: 1971
  end-page: 1186
  ident: CR9
  article-title: Tumor angiogenesis: therapeutic implications
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197111182852108
– volume: 103
  start-page: 172
  year: 1981
  end-page: 176
  ident: CR39
  article-title: Vascular endothelial morphology as an indicator of the pattern of blood flow
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138275
– volume: 144
  start-page: 805
  year: 2021
  end-page: 822
  ident: CR56
  article-title: Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.053047
– volume: 9
  start-page: e61413
  year: 2020
  ident: CR81
  article-title: Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution
  publication-title: Elife
  doi: 10.7554/eLife.61413
– volume: 37
  start-page: 1233
  year: 2009
  end-page: 1236
  ident: CR30
  article-title: VEGFRs and Notch: a dynamic collaboration in vascular patterning
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0371233
– volume: 274
  start-page: 17267
  year: 1999
  end-page: 17274
  ident: CR51
  article-title: Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.24.17267
– volume: 16
  start-page: 222
  year: 2009
  end-page: 231
  ident: CR27
  article-title: Cellular and molecular mechanisms of vascular lumen formation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.01.013
– volume: 393
  start-page: 10
  year: 2014
  end-page: 23
  ident: CR71
  article-title: Visualizing the cell-cycle progression of endothelial cells in zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2014.06.015
– volume: 3
  start-page: 422
  year: 2003
  end-page: 433
  ident: CR32
  article-title: Basement membranes: structure, assembly and role in tumour angiogenesis
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1094
– volume: 7
  start-page: 56
  year: 2016
  ident: CR93
  article-title: Zebrafish as an emerging model organism to study angiogenesis in development and regeneration
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00056
– volume: 25
  start-page: 212
  year: 2018
  end-page: 218
  ident: CR25
  article-title: NOTCH regulation of the endothelial cell phenotype
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0000000000000425
– volume: 116
  start-page: 308
  year: 2013
  end-page: 311
  ident: CR45
  article-title: Low shear stress up-regulation of proinflammatory gene expression in human retinal microvascular endothelial cells
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2013.10.001
– volume: 5
  start-page: 123
  year: 2004
  end-page: 127
  ident: CR21
  article-title: Periodic delta-like 4 expression in developing retinal arteries
  publication-title: Gene Expr. Patterns
  doi: 10.1016/j.modgep.2004.05.004
– volume: 22
  start-page: 4324
  year: 2011
  end-page: 4334
  ident: CR59
  article-title: Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-04-0287
– volume: 21
  start-page: 363
  year: 2018
  end-page: 380
  ident: CR76
  article-title: Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of hereditary hemorrhagic telangiectasia
  publication-title: Angiogenesis
  doi: 10.1007/s10456-018-9602-0
– volume: 445
  start-page: 776
  year: 2007
  end-page: 780
  ident: CR23
  article-title: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis
  publication-title: Nature
  doi: 10.1038/nature05571
– volume: 319
  start-page: 1281
  year: 2013
  end-page: 1288
  ident: CR14
  article-title: Notch as a hub for signaling in angiogenesis
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.01.010
– volume: 29
  start-page: 500
  year: 2010
  end-page: 519
  ident: CR83
  article-title: Animal models of choroidal and retinal neovascularization
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2010.05.003
– volume: 19
  start-page: 9
  year: 2016
  end-page: 24
  ident: CR43
  article-title: The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence
  publication-title: Angiogenesis
  doi: 10.1007/s10456-015-9485-2
– volume: 29
  start-page: 721
  year: 2015
  end-page: 731
  ident: CR103
  article-title: Defining response to anti-VEGF therapies in neovascular AMD
  publication-title: Eye
  doi: 10.1038/eye.2015.48
– volume: 20
  start-page: 4373
  year: 2020
  end-page: 4390
  ident: CR55
  article-title: Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator
  publication-title: Lab Chip
  doi: 10.1039/D0LC00738B
– volume: 100
  start-page: 1689
  year: 2002
  end-page: 1698
  ident: CR44
  article-title: Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2)
  publication-title: Blood
  doi: 10.1182/blood-2002-01-0046
– volume: 3
  start-page: 1
  year: 2013
  end-page: 19
  ident: CR24
  article-title: VEGF and notch in tip and stalk cell selection
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006569
– volume: 19
  start-page: e45253
  year: 2018
  ident: CR48
  article-title: PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow
  publication-title: Embo Rep.
  doi: 10.15252/embr.201745253
– volume: 91
  start-page: 5686
  year: 1994
  end-page: 5689
  ident: CR49
  article-title: Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.12.5686
– volume: 49
  start-page: 29
  year: 1963
  end-page: 46
  ident: CR36
  article-title: The ultrastructure of the retinal vessels: II. The small vessels
  publication-title: J. Ultrastruct. Res.
  doi: 10.1016/S0022-5320(63)80034-9
– volume: 2
  start-page: 675
  year: 2012
  end-page: 709
  ident: CR37
  article-title: Structure and composition of pulmonary arteries, capillaries, and veins
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c100081
– volume: 87
  start-page: 1153
  year: 1996
  end-page: 1155
  ident: CR33
  article-title: Blood vessel formation: what is its molecular basis?
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81810-3
– volume: 144
  start-page: 1308
  year: 2021
  end-page: 1322
  ident: CR8
  article-title: Role of venous endothelial cells in developmental and pathologic angiogenesis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.054071
– volume: 2
  start-page: a006429
  year: 2012
  ident: CR5
  article-title: Endothelial cell heterogeneity
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006429
– volume: 35
  start-page: 2354
  year: 2015
  end-page: 2365
  ident: CR62
  article-title: Mechanisms of amplified arteriogenesis in collateral artery segments exposed to reversed flow direction
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.305775
– volume: 138
  start-page: 2379
  year: 2018
  end-page: 2394
  ident: CR77
  article-title: SMAD4 prevents flow induced arteriovenous malformations by inhibiting casein kinase 2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.033842
– volume: 312
  start-page: H485
  year: 2017
  end-page: H500
  ident: CR46
  article-title: Fluid shear stress induces upregulation of COX-2 and PGI(2) release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00035.2016
– volume: 20
  start-page: 427
  year: 2015
  end-page: 438
  ident: CR100
  article-title: Notch signaling regulates venous arterialization during zebrafish fin regeneration
  publication-title: Genes Cells
  doi: 10.1111/gtc.12234
– volume: 79
  start-page: 2603
  year: 1982
  end-page: 2607
  ident: CR53
  article-title: Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2603
– volume: 137
  start-page: 57
  year: 2019
  end-page: 83
  ident: CR35
  article-title: Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2019.02.010
– volume: 78
  start-page: 1329
  year: 2021
  end-page: 1354
  ident: CR15
  article-title: Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-020-03664-y
– volume: 5
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR68
  article-title: Arteries are formed by vein-derived endothelial tip cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6758
– volume: 219
  start-page: 382
  year: 2017
  end-page: 408
  ident: CR47
  article-title: Effects of shear stress on endothelial cells: go with the flow
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12725
– volume: 31
  start-page: 1308
  year: 2017
  end-page: 1324
  ident: CR63
  article-title: DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis
  publication-title: Genes Dev.
  doi: 10.1101/gad.301549.117
– volume: 239
  start-page: 1695
  year: 2010
  end-page: 1707
  ident: CR87
  article-title: Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22306
– volume: 140
  start-page: 3051
  year: 2013
  end-page: 3061
  ident: CR69
  article-title: Notch controls retinal blood vessel maturation and quiescence
  publication-title: Development
  doi: 10.1242/dev.093351
– volume: 62
  start-page: 104
  year: 2020
  end-page: 113
  ident: CR52
  article-title: The Golgi apparatus and cell polarity: roles of the cytoskeleton, the Golgi matrix, and Golgi membranes
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2019.10.003
– volume: 19
  start-page: 915
  year: 2017
  end-page: 927
  ident: CR28
  article-title: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3555
– volume: 2
  start-page: 1007
  year: 2013
  end-page: 1012
  ident: CR57
  article-title: The nucleus of endothelial cell as a sensor of blood flow direction
  publication-title: Biol. Open
  doi: 10.1242/bio.20134622
– volume: 13
  start-page: 1
  year: 2015
  end-page: 19
  ident: CR61
  article-title: Dynamic endothelial cell rearrangements drive developmental vessel regression
  publication-title: PLoS Biol.
– volume: 18
  start-page: 1234
  year: 2008
  end-page: 1240
  ident: CR97
  article-title: Fli1 acts at the top of the transcriptional network driving blood and endothelial development
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.07.048
– volume: 8
  start-page: 1
  year: 2017
  end-page: 14
  ident: CR41
  article-title: Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01742-7
– volume: 11
  start-page: 600767
  year: 2020
  ident: CR2
  article-title: The expanding cell diversity of the brain vasculature
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.600767
– volume: 554
  start-page: 475
  year: 2018
  end-page: 480
  ident: CR3
  article-title: A molecular atlas of cell types and zonation in the brain vasculature
  publication-title: Nature
  doi: 10.1038/nature25739
– volume: 24
  start-page: 416
  year: 2010
  end-page: 421
  ident: CR88
  article-title: Oxygen-induced retinopathy: a model for vascular pathology in the retina
  publication-title: Eye
  doi: 10.1038/eye.2009.306
– volume: 138
  start-page: 1573
  year: 2011
  end-page: 1582
  ident: CR96
  article-title: Interaction between alk1 and blood flow in the development of arteriovenous malformations
  publication-title: Development
  doi: 10.1242/dev.060467
– volume: 11
  start-page: e0149281
  year: 2016
  ident: CR99
  article-title: Zebrafish caudal fin angiogenesis assay-advanced quantitative assessment including 3-way correlative microscopy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149281
– volume: 80
  start-page: 7224
  year: 1983
  end-page: 7228
  ident: CR50
  article-title: Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.23.7224
– volume: 28
  start-page: 922
  year: 2018
  end-page: 932
  ident: CR34
  article-title: The role of extracellular matrix components in angiogenesis and fibrosis: possible implication for systemic sclerosis
  publication-title: Mod. Rheumatol.
  doi: 10.1080/14397595.2018.1431004
– volume: 115
  start-page: 5102
  year: 2010
  end-page: 5110
  ident: CR18
  article-title: Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching
  publication-title: Blood
  doi: 10.1182/blood-2009-07-230284
– volume: 19
  start-page: 173
  year: 2016
  end-page: 190
  ident: CR72
  article-title: Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth
  publication-title: Angiogenesis
  doi: 10.1007/s10456-016-9498-5
– volume: 454
  start-page: 656
  year: 2008
  end-page: 660
  ident: CR20
  article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation
  publication-title: Nature
  doi: 10.1038/nature07083
– volume: 12
  start-page: 551
  year: 2011
  end-page: 564
  ident: CR26
  article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3176
– volume: 33
  start-page: 2130
  year: 2013
  end-page: 2136
  ident: CR38
  article-title: Endothelial cell sensing of flow direction
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.301826
– volume: 82
  start-page: 3272
  year: 1985
  end-page: 3276
  ident: CR64
  article-title: Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.10.3272
– volume: 161
  start-page: 1163
  year: 2003
  end-page: 1177
  ident: CR16
  article-title: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200302047
– volume: 129
  start-page: 3009
  year: 2002
  end-page: 3019
  ident: CR79
  article-title: Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels
  publication-title: Development
  doi: 10.1242/dev.129.12.3009
– volume: 8
  start-page: 671
  year: 2017
  ident: CR92
  article-title: Novel heparin receptor transmembrane protein 184a regulates angiogenesis in the adult zebrafish caudal fin
  publication-title: Front Physiol.
  doi: 10.3389/fphys.2017.00671
– volume: 125
  start-page: 489
  year: 2019
  end-page: 501
  ident: CR7
  article-title: Endothelial cell development and its application to regenerative medicine
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.311405
– volume: 76
  start-page: 536
  year: 1995
  end-page: 543
  ident: CR40
  article-title: Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.76.4.536
– volume: 29
  start-page: 2125
  year: 2009
  end-page: 2131
  ident: CR42
  article-title: Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.109.193185
– volume: 180
  start-page: 764
  year: 2020
  end-page: 779
  ident: CR4
  article-title: Single-cell transcriptome atlas of murine endothelial cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.015
– volume: 72
  start-page: 301
  year: 2005
  end-page: 325
  ident: CR85
  article-title: New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy
  publication-title: Prostaglandins Leukot. Essent. Fat. Acids
  doi: 10.1016/j.plefa.2005.02.004
– volume: 11
  start-page: 396
  year: 2014
  end-page: 406
  ident: CR70
  article-title: Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research
  publication-title: Zebrafish
  doi: 10.1089/zeb.2014.0976
– volume: 24
  start-page: 311
  year: 2021
  end-page: 326
  ident: CR6
  article-title: Endothelial cell plasticity at the single-cell level
  publication-title: Angiogenesis
  doi: 10.1007/s10456-021-09797-3
– volume: 146
  start-page: 873
  year: 2011
  end-page: 887
  ident: CR73
  article-title: Basic and therapeutic aspects of angiogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.039
– volume: 144
  start-page: 3241
  year: 2017
  end-page: 3252
  ident: CR58
  article-title: Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size
  publication-title: Development
– volume: 127
  start-page: 1122
  year: 2020
  end-page: 1137
  ident: CR80
  article-title: Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.316267
– volume: 11
  start-page: 873
  year: 2020
  ident: CR86
  article-title: Exploration of oxygen-induced retinopathy model to discover new therapeutic drug targets in retinopathies
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00873
– volume: 130
  start-page: 6111
  year: 2003
  end-page: 6119
  ident: CR66
  article-title: Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis
  publication-title: Development
  doi: 10.1242/dev.00831
– volume: 8
  year: 2017
  ident: CR17
  article-title: Plastic roles of pericytes in the blood-retinal barrier
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15296
– volume: 4
  start-page: e06489
  year: 2015
  ident: CR95
  article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis
  publication-title: Elife
  doi: 10.7554/eLife.06489
– volume: 19
  start-page: 639
  year: 2017
  end-page: 652
  ident: CR82
  article-title: Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3534
– volume: 37
  start-page: 21
  year: 2020
  end-page: 36
  ident: CR101
  article-title: An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.12.001
– volume: 134
  start-page: 3317
  year: 2007
  end-page: 3326
  ident: CR67
  article-title: Vascular remodeling of the mouse yolk sac requires hemodynamic force
  publication-title: Development
  doi: 10.1242/dev.02883
– volume: 106
  start-page: 1425
  year: 2010
  end-page: 1433
  ident: CR75
  article-title: Pathogenesis of arteriovenous malformations in the absence of endoglin
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.211037
– volume: 6
  start-page: e22820
  year: 2011
  ident: CR91
  article-title: The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022820
– volume: 4
  start-page: 641
  year: 2015
  end-page: 650
  ident: CR90
  article-title: Chemokine regulation of angiogenesis during wound healing
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2014.0594
– volume: 31
  start-page: 1308
  year: 2017
  ident: 785_CR63
  publication-title: Genes Dev.
  doi: 10.1101/gad.301549.117
– volume: 4
  start-page: 641
  year: 2015
  ident: 785_CR90
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2014.0594
– volume: 393
  start-page: 10
  year: 2014
  ident: 785_CR71
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2014.06.015
– volume: 19
  start-page: 928
  year: 2017
  ident: 785_CR29
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3574
– volume: 137
  start-page: 57
  year: 2019
  ident: 785_CR35
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2019.02.010
– volume: 146
  start-page: 1029
  year: 1995
  ident: 785_CR11
  publication-title: Am. J. Pathol.
– volume: 29
  start-page: 2125
  year: 2009
  ident: 785_CR42
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.109.193185
– volume: 134
  start-page: 3317
  year: 2007
  ident: 785_CR67
  publication-title: Development
  doi: 10.1242/dev.02883
– volume: 19
  start-page: 639
  year: 2017
  ident: 785_CR82
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3534
– volume: 11
  start-page: 873
  year: 2020
  ident: 785_CR86
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00873
– volume: 78
  start-page: 1329
  year: 2021
  ident: 785_CR15
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-020-03664-y
– volume: 5
  start-page: 123
  year: 2004
  ident: 785_CR21
  publication-title: Gene Expr. Patterns
  doi: 10.1016/j.modgep.2004.05.004
– volume: 9
  start-page: e98646
  year: 2014
  ident: 785_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098646
– volume: 3
  start-page: 1
  year: 2013
  ident: 785_CR24
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006569
– volume: 24
  start-page: 416
  year: 2010
  ident: 785_CR88
  publication-title: Eye
  doi: 10.1038/eye.2009.306
– volume: 554
  start-page: 475
  year: 2018
  ident: 785_CR3
  publication-title: Nature
  doi: 10.1038/nature25739
– volume: 19
  start-page: 173
  year: 2016
  ident: 785_CR72
  publication-title: Angiogenesis
  doi: 10.1007/s10456-016-9498-5
– volume: 8
  start-page: 671
  year: 2017
  ident: 785_CR92
  publication-title: Front Physiol.
  doi: 10.3389/fphys.2017.00671
– volume: 103
  start-page: 172
  year: 1981
  ident: 785_CR39
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138275
– volume: 29
  start-page: 721
  year: 2015
  ident: 785_CR103
  publication-title: Eye
  doi: 10.1038/eye.2015.48
– volume: 319
  start-page: 1281
  year: 2013
  ident: 785_CR14
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.01.010
– volume: 219
  start-page: 382
  year: 2017
  ident: 785_CR47
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12725
– volume: 62
  start-page: 104
  year: 2020
  ident: 785_CR52
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2019.10.003
– volume: 2
  start-page: 675
  year: 2012
  ident: 785_CR37
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c100081
– volume: 9
  start-page: e61413
  year: 2020
  ident: 785_CR81
  publication-title: Elife
  doi: 10.7554/eLife.61413
– volume: 274
  start-page: 17267
  year: 1999
  ident: 785_CR51
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.24.17267
– volume: 29
  start-page: 500
  year: 2010
  ident: 785_CR83
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2010.05.003
– volume: 5
  start-page: 1
  year: 2014
  ident: 785_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6758
– volume: 6
  start-page: e22820
  year: 2011
  ident: 785_CR91
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022820
– volume: 1
  start-page: 27
  year: 1995
  ident: 785_CR10
  publication-title: Nat. Med.
  doi: 10.1038/nm0195-27
– volume: 138
  start-page: 2379
  year: 2018
  ident: 785_CR77
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.033842
– volume: 13
  start-page: 1
  year: 2015
  ident: 785_CR61
  publication-title: PLoS Biol.
– volume: 264
  start-page: 263
  year: 2003
  ident: 785_CR98
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2003.08.016
– volume: 7
  start-page: 1
  year: 2016
  ident: 785_CR60
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11805
– volume: 19
  start-page: 9
  year: 2016
  ident: 785_CR43
  publication-title: Angiogenesis
  doi: 10.1007/s10456-015-9485-2
– volume: 18
  start-page: 1234
  year: 2008
  ident: 785_CR97
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.07.048
– volume: 22
  start-page: 4324
  year: 2011
  ident: 785_CR59
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-04-0287
– volume: 35
  start-page: 2354
  year: 2015
  ident: 785_CR62
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.305775
– volume: 72
  start-page: 301
  year: 2005
  ident: 785_CR85
  publication-title: Prostaglandins Leukot. Essent. Fat. Acids
  doi: 10.1016/j.plefa.2005.02.004
– volume: 1
  start-page: 133
  year: 2007
  ident: 785_CR31
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.1.3.4978
– volume: 19
  start-page: e45253
  year: 2018
  ident: 785_CR48
  publication-title: Embo Rep.
  doi: 10.15252/embr.201745253
– volume: 130
  start-page: 6111
  year: 2003
  ident: 785_CR66
  publication-title: Development
  doi: 10.1242/dev.00831
– volume: 104
  start-page: 3219
  year: 2007
  ident: 785_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611206104
– volume: 12
  start-page: 551
  year: 2011
  ident: 785_CR26
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3176
– volume: 20
  start-page: 4373
  year: 2020
  ident: 785_CR55
  publication-title: Lab Chip
  doi: 10.1039/D0LC00738B
– volume: 59
  start-page: 3932
  year: 2018
  ident: 785_CR84
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-24320
– volume: 3
  start-page: 422
  year: 2003
  ident: 785_CR32
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1094
– volume: 2
  start-page: 1007
  year: 2013
  ident: 785_CR57
  publication-title: Biol. Open
  doi: 10.1242/bio.20134622
– volume: 4
  start-page: e06489
  year: 2015
  ident: 785_CR95
  publication-title: Elife
  doi: 10.7554/eLife.06489
– volume: 144
  start-page: 3241
  year: 2017
  ident: 785_CR58
  publication-title: Development
  doi: 10.1242/dev.150904
– volume: 82
  start-page: 3272
  year: 1985
  ident: 785_CR64
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.10.3272
– volume: 1
  start-page: 17
  year: 2012
  ident: 785_CR89
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2011.0308
– volume: 7
  start-page: 56
  year: 2016
  ident: 785_CR93
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00056
– volume: 140
  start-page: 3051
  year: 2013
  ident: 785_CR69
  publication-title: Development
  doi: 10.1242/dev.093351
– volume: 28
  start-page: 922
  year: 2018
  ident: 785_CR34
  publication-title: Mod. Rheumatol.
  doi: 10.1080/14397595.2018.1431004
– volume: 79
  start-page: 2603
  year: 1982
  ident: 785_CR53
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2603
– volume: 21
  start-page: 363
  year: 2018
  ident: 785_CR76
  publication-title: Angiogenesis
  doi: 10.1007/s10456-018-9602-0
– volume: 144
  start-page: 805
  year: 2021
  ident: 785_CR56
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.053047
– volume: 445
  start-page: 776
  year: 2007
  ident: 785_CR23
  publication-title: Nature
  doi: 10.1038/nature05571
– volume: 2
  start-page: 795
  year: 2002
  ident: 785_CR12
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc909
– volume: 80
  start-page: 7224
  year: 1983
  ident: 785_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.23.7224
– volume: 76
  start-page: 536
  year: 1995
  ident: 785_CR40
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.76.4.536
– volume: 116
  start-page: 308
  year: 2013
  ident: 785_CR45
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2013.10.001
– volume: 285
  start-page: 1182
  year: 1971
  ident: 785_CR9
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197111182852108
– volume: 454
  start-page: 656
  year: 2008
  ident: 785_CR20
  publication-title: Nature
  doi: 10.1038/nature07083
– volume: 129
  start-page: 3009
  year: 2002
  ident: 785_CR79
  publication-title: Development
  doi: 10.1242/dev.129.12.3009
– volume: 11
  start-page: e0149281
  year: 2016
  ident: 785_CR99
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149281
– volume: 11
  start-page: 600767
  year: 2020
  ident: 785_CR2
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.600767
– volume: 312
  start-page: H485
  year: 2017
  ident: 785_CR46
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00035.2016
– volume: 104
  start-page: 3225
  year: 2007
  ident: 785_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611177104
– volume: 161
  start-page: 1163
  year: 2003
  ident: 785_CR16
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200302047
– volume: 2
  start-page: a006429
  year: 2012
  ident: 785_CR5
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006429
– volume: 11
  start-page: 396
  year: 2014
  ident: 785_CR70
  publication-title: Zebrafish
  doi: 10.1089/zeb.2014.0976
– volume: 87
  start-page: 1153
  year: 1996
  ident: 785_CR33
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81810-3
– volume: 49
  start-page: 29
  year: 1963
  ident: 785_CR36
  publication-title: J. Ultrastruct. Res.
  doi: 10.1016/S0022-5320(63)80034-9
– volume: 127
  start-page: 1122
  year: 2020
  ident: 785_CR80
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.316267
– volume: 19
  start-page: 915
  year: 2017
  ident: 785_CR28
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3555
– volume: 239
  start-page: 1695
  year: 2010
  ident: 785_CR87
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22306
– volume: 91
  start-page: 5686
  year: 1994
  ident: 785_CR49
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.12.5686
– volume: 16
  start-page: 222
  year: 2009
  ident: 785_CR27
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.01.013
– volume: 180
  start-page: 764
  year: 2020
  ident: 785_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.015
– volume: 8
  year: 2017
  ident: 785_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15296
– volume: 37
  start-page: 21
  year: 2020
  ident: 785_CR101
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.12.001
– volume: 125
  start-page: 489
  year: 2019
  ident: 785_CR7
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.311405
– volume: 140
  start-page: 4041
  year: 2013
  ident: 785_CR65
  publication-title: Development
  doi: 10.1242/dev.096255
– volume: 115
  start-page: 5102
  year: 2010
  ident: 785_CR18
  publication-title: Blood
  doi: 10.1182/blood-2009-07-230284
– volume: 36
  start-page: 86
  year: 2015
  ident: 785_CR1
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.07.009
– volume: 138
  start-page: 1573
  year: 2011
  ident: 785_CR96
  publication-title: Development
  doi: 10.1242/dev.060467
– volume: 2015
  start-page: 627674
  year: 2015
  ident: 785_CR102
  publication-title: J. Ophthalmol.
– volume: 100
  start-page: 1689
  year: 2002
  ident: 785_CR44
  publication-title: Blood
  doi: 10.1182/blood-2002-01-0046
– volume: 20
  start-page: 427
  year: 2015
  ident: 785_CR100
  publication-title: Genes Cells
  doi: 10.1111/gtc.12234
– volume: 25
  start-page: 212
  year: 2018
  ident: 785_CR25
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0000000000000425
– volume: 280
  start-page: C1358
  year: 2001
  ident: 785_CR13
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.2001.280.6.C1358
– volume: 33
  start-page: 2130
  year: 2013
  ident: 785_CR38
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.301826
– volume: 136
  start-page: 4001
  year: 2009
  ident: 785_CR94
  publication-title: Development
  doi: 10.1242/dev.039990
– volume: 37
  start-page: 1233
  year: 2009
  ident: 785_CR30
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0371233
– volume: 146
  start-page: 873
  year: 2011
  ident: 785_CR73
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.039
– volume: 8
  start-page: 1
  year: 2017
  ident: 785_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01742-7
– volume: 104
  start-page: 1145
  year: 1993
  ident: 785_CR54
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.4.1145
– volume: 19
  start-page: 653
  year: 2017
  ident: 785_CR78
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3528
– volume: 24
  start-page: 311
  year: 2021
  ident: 785_CR6
  publication-title: Angiogenesis
  doi: 10.1007/s10456-021-09797-3
– volume: 106
  start-page: 1425
  year: 2010
  ident: 785_CR75
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.211037
– volume: 144
  start-page: 1308
  year: 2021
  ident: 785_CR8
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.054071
SSID ssj0025474
Score 2.4973812
SecondaryResourceType review_article
Snippet Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 711
SubjectTerms 42/41
45/41
631/136/16/1986
631/80/84/1372
64/60
96/35
Angiogenesis
Autoimmune diseases
Autoimmunity
Biomedical and Life Sciences
Biomedicine
Blood flow
Blood vessels
Cell fate
Cell migration
Embryogenesis
Endothelial cells
Fate maps
Gene mapping
Genome editing
Genomes
Medical Biochemistry
Molecular Medicine
Review
Review Article
RNA editing
Smooth muscle
Stem Cells
Veins
생화학
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xISFeEGx8BAYyAvEC1uY4jhNeYEJUA2k8MalvluM4XbUuKU2naf89d47bqnzsKZJziezz2f757vwzwFuioJJKFDjSGssR39bcZq7ksiAAYbO0CiRJpz_yk7Ps-1iNo8Otj2mVqzkxTNR158hHfkisJFqXhTj6NP_F6dYoiq7GKzR24C5Rl5FV6_Fmw6WywMIsEGJwietWPDRzJIvDHgs1pd-mnFZJxcXWwrTTLpp_Yc6_Uyf_iJ-GZWn0EB5EPMmOBwN4BHd8uwf7xy3upS9v2DsWMjyD63wP7p3GQPo-fB7Nums26XzPELVS5iyzbc3Ijd8z7Pg5q8ixh-UfmW9rOqY1Q0tll9PJYDKP4Wz09eeXEx4vU-AOMceSV7IUzonaK5e5rM6U8mWD25WsQhCU-sDbrr1qtEht4W1Bx5y8qHWeW5wDSiefwG7btf4ZsMaWGlGDVdL6EHYr8C81IkGlEZ5Jl4BYadK4yDROF17MTIh4y8IM2jeofRO0b0QC79ffzAeejVul32AHmQs3NUSPTc9JZy4WBjcB34iGGXFKmSdwsOpAE0dmbzZ2lMDr9WscU6Rh2_ruimR0TsA3RZmnQ3-vK4WNpNPnMgG9ZQlrAarQ9pt2eh54u0uEl4gNEviwsplNtf7f1ue3t-IF3E-DFZNj6AB2l4sr_xJx0rJ6FQbDb3xYCbU
  priority: 102
  providerName: ProQuest
Title Flow goes forward and cells step backward: endothelial migration
URI https://link.springer.com/article/10.1038/s12276-022-00785-1
https://www.ncbi.nlm.nih.gov/pubmed/35701563
https://www.proquest.com/docview/2684779810
https://www.proquest.com/docview/2676923120
https://pubmed.ncbi.nlm.nih.gov/PMC9256678
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002858898
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2022, 54(0), , pp.711-719
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0K8oLEBC4zKCMQLRMxxHCc8UapVo9ImBEzqm-U4TqnWJVPbaeK_5875QIWBxFOk5BLZ57v45_PdzwCviIJKSJ6ip5UmRHxbhCa2WShSAhAmjnJPknR2npxexJOpnG5B1NXC-KR9T2npf9Nddti7FY8iRemyUUizmgxxxbNLVO1o27vD4eTrpF9myVjFbXnMsUjveHNjCtquluVd6PLPJMnfdkr9BDTegwctcmTDpq0PYctV-3AwxG7UVz_Ya-ZzOX2QfB_unbVb5gfwYbyob9msdiuG-JRyZJmpCkYB-xXDIb5mOYXw8P575qqCCrIWaJPsaj5rjOMRXIxPvo1Ow_bYhNAiuliHuci4tbxw0sY2LmIpXVbiwiTOEe5EzjO0KydLxSOTOpNSQZPjhUoSg96eWfEYdqq6cofASpMpxAdGCuP8BluKXykQ80mFQEzYAHinSW1bTnE62mKh_d62SHWjfY3a1177mgfwpn_numHU-Kf0SxwgfWnnmoiw6Tqr9eVSI9z_RITLiEiyJICjbgB164MrTTw2SmUpPw7gRf8YvYc0bCpX35CMSgjiRijzpBnvvlHYSaozFwGoDUvoBahBm0-q-XfP0J0hkEQUEMDbzmZ-NevvfX36f-LP4H7krZpCQkews17euOeIkNb5ALbVVA1ax8Drx5Pzz1_w7igZDXzU4Sd4CQsx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQwJeEGx8BAYY8fEC0Zo4rhMkBBNQtWzd0yb1zTiOU6p1SWk6Tfun-Bu5c5JW5WNve6qUuJF9vvP9znf-GeAVUVBxEcRoabn2Ed9mvo5M4vOYAISOwtSRJA2Puv2T6NtIjDbgV3sWhsoq2zXRLdRZaWiPfI9YSaRM4qDzcfbTp1ujKLvaXqFRq8WBvbzAkK36MPiC8_s6DHtfjz_3_eZWAd-g8134KU8CY4LMChOZKIuEsEmOuD1KEQ2E1hGYSytyGYQ6tjqm8z42yGS3q9EYEsPxu5twAx1vh4I9OVoFeCJyrM8BQhqfo59sDul0eLxX4UNJ5b6hT15Z-MGaI9ws5vm_MO7fpZp_5GudG-zdhTsNfmX7tcLdgw1bbMPOfoGx-9kle8NcRanbqt-Gm8Mmcb8Dn3rT8oKNS1sxRMlUqct0kTFKG1QMFW3GUtpIxOfvmS0yOhY2RctgZ5NxraL34eRaxPwAtoqysI-A5TqRiFK04Nq6NF-MX8kQeQqJcJAbD4JWkso0zOZ0wcZUuQw7j1UtfYXSV076KvDg7fI_s5rX48rWL3GC1KmZKKLjpt9xqU7nCoOOAdE-Iy5Kuh7sthOompWgUiu99eDF8jXaMElYF7Y8pzayS0A7xDYP6_ledgoHSafduQdyTROWDahD62-KyQ_HE54gnEUs4sG7VmdW3fr_WB9fPYrncKt_PDxUh4OjgydwO3QaTZtSu7C1mJ_bp4jRFukzZxgMvl-3Jf4GQUVFMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED9BkdBepg32kY1tnvbxskUlcRInkyZgg4qOUaFpSLwZx3G6ipJ0bRHiX9tftzvnA3UfvPFUKXEj-3zn-53v_DPAa6Kg4qEXo6XlykV8m7kq0InLYwIQKvBTS5J0OIj2j4MvJ-HJEvxqzsJQWWWzJtqFOis17ZF3iZVEiCT2Nrt5XRZxtNvbmvx06QYpyrQ212lUKnJgri4xfJt97O_iXL_x_d7e98_7bn3DgKvREc_dlCee1l5mQh3oIAvC0CQ5YvggRWTgG0tmLkyYC89XsVExnf0xXiaiSKFhJJrjd5dhRVBU1IGVT3uDo29tuBcGlgPaQ4DjcvSa9ZGdTR53Z_hQUPGv75KPDl1vwS0uF9P8X4j378LNP7K31in27sHdGs2ynUr97sOSKdZgfafASP78ir1ltr7UbtyvwephncZfh-3euLxkw9LMGGJmqttlqsgYJRFmDNVuwlLaVsTnH5gpMjokNkY7YeejYaWwD-D4VgT9EDpFWZjHwHKVCMQsKuTK2KRfjF_JEIeGAsEh1w54jSSlrnnO6bqNsbT5dh7LSvoSpS-t9KXnwLv2P5OK5ePG1q9wguSZHkki56bfYSnPphJDkD6RQCNKSiIHNpoJlPW6MJPXWuzAy_Y1WjRJWBWmvKA2IiLY7WObR9V8t53CQdLZd-6AWNCEtgF1aPFNMfphWcMTBLeITBx43-jMdbf-P9YnN4_iBayiFcqv_cHBU7jjW4WmHaoN6MynF-YZArZ5-ry2DAant22MvwFxfkrN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+goes+forward+and+cells+step+backward%3A+endothelial+migration&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee+Heon-Woo&rft.au=Shin+Jae+Hun&rft.au=Simons+Michael&rft.date=2022-06-01&rft.pub=%EC%83%9D%ED%99%94%ED%95%99%EB%B6%84%EC%9E%90%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1226-3613&rft.eissn=2092-6413&rft.spage=711&rft.epage=719&rft_id=info:doi/10.1038%2Fs12276-022-00785-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10024096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon