Road marking extraction in UAV imagery using attentive capsule feature pyramid network

•The proposed ACapsFPN extracted road markings in UAV images.•A capsule feature pyramid network provided a high-resolution, semantically-strong feature representation.•A novel multi-scale context feature (MCF) descriptor was designed to obtain multi-scale contextual information.•Ternary feature atte...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 107; p. 102677
Main Authors Guan, Haiyan, Lei, Xiangda, Yu, Yongtao, Zhao, Haohao, Peng, Daifeng, Marcato Junior, José, Li, Jonathan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The proposed ACapsFPN extracted road markings in UAV images.•A capsule feature pyramid network provided a high-resolution, semantically-strong feature representation.•A novel multi-scale context feature (MCF) descriptor was designed to obtain multi-scale contextual information.•Ternary feature attention modules were designed to improve the accuracy of road marking extraction. Accurately and precisely delineating road-markings from very high spatial resolution unmanned aerial vehicle (UAV) images face many challenges, such as complex scenarios, diverse road marking sizes and shapes, and absent and occluded road markings. To address these issues, we formulate an attentive capsule feature pyramid network (ACapsFPN) by integrating capsule representations with attention mechanisms into the feature pyramid network (FPN), aiming at improving road marking extraction accuracy. Different from the current convolutional neural network (CNN) models based on scalar neuron representations, capsule networks characterize entity features by leveraging vectorial capsule neurons, whose lengths and instantiation parameters contribute to the identification of features and their variants. By constructing a capsule FPN, the ACapsFPN is capable of extracting and integrating multi-level and multi-scale capsule features to provide high-quality and semantically-strong feature abstractions. By formulating a multi-scale context feature descriptor and the ternary feature attention modules, the ACapsFPN can emphasize informative features to generate a class-specific feature representation. Quantitative and qualitative evaluations show the ACapsFPN provides a valuable means for extracting road markings in UAV images under different kinds of complex conditions. In addition, comparative analyses with existing alternatives also demonstrate the superiority and robustness of the ACapsFPN in UAV road marking extraction.
AbstractList Accurately and precisely delineating road-markings from very high spatial resolution unmanned aerial vehicle (UAV) images face many challenges, such as complex scenarios, diverse road marking sizes and shapes, and absent and occluded road markings. To address these issues, we formulate an attentive capsule feature pyramid network (ACapsFPN) by integrating capsule representations with attention mechanisms into the feature pyramid network (FPN), aiming at improving road marking extraction accuracy. Different from the current convolutional neural network (CNN) models based on scalar neuron representations, capsule networks characterize entity features by leveraging vectorial capsule neurons, whose lengths and instantiation parameters contribute to the identification of features and their variants. By constructing a capsule FPN, the ACapsFPN is capable of extracting and integrating multi-level and multi-scale capsule features to provide high-quality and semantically-strong feature abstractions. By formulating a multi-scale context feature descriptor and the ternary feature attention modules, the ACapsFPN can emphasize informative features to generate a class-specific feature representation. Quantitative and qualitative evaluations show the ACapsFPN provides a valuable means for extracting road markings in UAV images under different kinds of complex conditions. In addition, comparative analyses with existing alternatives also demonstrate the superiority and robustness of the ACapsFPN in UAV road marking extraction.
•The proposed ACapsFPN extracted road markings in UAV images.•A capsule feature pyramid network provided a high-resolution, semantically-strong feature representation.•A novel multi-scale context feature (MCF) descriptor was designed to obtain multi-scale contextual information.•Ternary feature attention modules were designed to improve the accuracy of road marking extraction. Accurately and precisely delineating road-markings from very high spatial resolution unmanned aerial vehicle (UAV) images face many challenges, such as complex scenarios, diverse road marking sizes and shapes, and absent and occluded road markings. To address these issues, we formulate an attentive capsule feature pyramid network (ACapsFPN) by integrating capsule representations with attention mechanisms into the feature pyramid network (FPN), aiming at improving road marking extraction accuracy. Different from the current convolutional neural network (CNN) models based on scalar neuron representations, capsule networks characterize entity features by leveraging vectorial capsule neurons, whose lengths and instantiation parameters contribute to the identification of features and their variants. By constructing a capsule FPN, the ACapsFPN is capable of extracting and integrating multi-level and multi-scale capsule features to provide high-quality and semantically-strong feature abstractions. By formulating a multi-scale context feature descriptor and the ternary feature attention modules, the ACapsFPN can emphasize informative features to generate a class-specific feature representation. Quantitative and qualitative evaluations show the ACapsFPN provides a valuable means for extracting road markings in UAV images under different kinds of complex conditions. In addition, comparative analyses with existing alternatives also demonstrate the superiority and robustness of the ACapsFPN in UAV road marking extraction.
ArticleNumber 102677
Author Guan, Haiyan
Peng, Daifeng
Marcato Junior, José
Lei, Xiangda
Yu, Yongtao
Li, Jonathan
Zhao, Haohao
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Guan
  fullname: Guan, Haiyan
  email: guanhy.nj@nuist.edu.cn
  organization: School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 2
  givenname: Xiangda
  surname: Lei
  fullname: Lei, Xiangda
  organization: School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 3
  givenname: Yongtao
  surname: Yu
  fullname: Yu, Yongtao
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 4
  givenname: Haohao
  surname: Zhao
  fullname: Zhao, Haohao
  organization: School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 5
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
  organization: School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 6
  givenname: José
  surname: Marcato Junior
  fullname: Marcato Junior, José
  organization: Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil
– sequence: 7
  givenname: Jonathan
  surname: Li
  fullname: Li, Jonathan
  organization: Department of Geography and Environmental Management and Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
BookMark eNp9kU1v1DAQhiNUJNrCD-DmI5cs8cfajjhVFR-VKiEhWnGzxs545TQbL7bTsv8eL4ELh5489szzavy-F83ZHGdsmre029COyvfjZoTdhnWM1TuTSr1ozqlWrNVM_jir9Vb2rRacvWouch67jiol9Xlz_y3CQPaQHsK8I_irJHAlxJmEmdxd3ZOwhx2mI1nyqQ-l4FzCIxIHh7xMSDxCWRKSwzHBPgxkxvIU08Pr5qWHKeObv-dlc_fp4_frL-3t188311e3rRO8L62lvvMoUFrNGCAfGAys6xG95brnPXjoewtK0AGZld7KobfCbjX3naogv2xuVt0hwmgOqa6bjiZCMH8eYtoZSCW4CY3V3oHsrXRKCFG1wPZOKI6D1I4rWrXerVqHFH8umIvZh-xwmmDGuGTDFNWMC7nt6qhaR12KOSf0xoUCJ9-qf2EytDOnVMxoairmlIpZU6kk_Y_8t_RzzIeVwerkY8Bksgs4OxxCQlfqV8Mz9G_0h6ji
CitedBy_id crossref_primary_10_1080_10106049_2024_2364679
crossref_primary_10_1080_19479832_2024_2382737
crossref_primary_10_3389_fpls_2023_1103276
crossref_primary_10_1109_TGRS_2024_3495508
crossref_primary_10_1016_j_jag_2022_102851
Cites_doi 10.1109/TGRS.2020.3016086
10.1109/TITS.2020.2990120
10.1016/j.neucom.2017.09.098
10.1109/TPAMI.2020.2983686
10.1016/j.eswa.2014.10.024
10.1109/TITS.2015.2393715
10.5220/0005273501300138
10.1109/TNNLS.2016.2522428
10.1109/ACCESS.2019.2933598
10.1109/TIV.2018.2873902
10.1016/j.patcog.2015.12.010
10.1016/j.isprsjprs.2021.01.025
10.1109/ICCV.2017.215
10.1109/TGRS.2018.2878510
10.1109/TITS.2006.869595
10.1109/TITS.2015.2438714
10.1109/TITS.2018.2791572
10.1016/j.isprsjprs.2020.05.009
10.1109/TITS.2007.908582
10.1109/TITS.2012.2184756
10.1016/j.isprsjprs.2007.10.005
10.1109/TITS.2015.2464253
10.1109/TGRS.2018.2871782
10.1016/j.measurement.2018.07.089
10.1109/TITS.2020.2983077
10.1080/01431161.2020.1842544
10.1109/TGRS.2020.2996617
10.1155/2018/9106836
10.1109/JSTARS.2015.2495142
10.1016/j.isprsjprs.2018.10.007
10.1109/TITS.2020.2984813
10.1109/TITS.2016.2586187
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2022.102677
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_b8fca69b6c74446fbab9c473ed68c371
10_1016_j_jag_2022_102677
S0303243422000034
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c439t-b1f0fe4e6b822ae3d2ad209eefb38939afa99ba741de2b6fb6d9b4b583f07fe43
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:29:31 EDT 2025
Fri Jul 11 11:34:11 EDT 2025
Tue Jul 01 02:15:19 EDT 2025
Thu Apr 24 23:11:39 EDT 2025
Fri Feb 23 02:40:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Road markings
Capsule
Dense atrous convolution
Feature pyramid network
UAV images
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b1f0fe4e6b822ae3d2ad209eefb38939afa99ba741de2b6fb6d9b4b583f07fe43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/b8fca69b6c74446fbab9c473ed68c371
PQID 2718234650
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_b8fca69b6c74446fbab9c473ed68c371
proquest_miscellaneous_2718234650
crossref_citationtrail_10_1016_j_jag_2022_102677
crossref_primary_10_1016_j_jag_2022_102677
elsevier_sciencedirect_doi_10_1016_j_jag_2022_102677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hu, Shen, Sun (b0080) 2018; 2018
Xiao, Yang, Li, Islam (b0210) 2020; 194
Wen, Sun, Li, Wang, Guo, Habib (b0205) 2019; 147
Girshick, Donahue, Darrell, Malik (b0035) 2014; 2014
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, Liu, Xiao (b0200) 2021; 43
Huang, Liu, van der Maaten, Weinberger (b0085) 2017; 2017
Gopalan, Hong, Shneier, Chellappa (b0045) 2012; 13
Hoang, Nam, Park (b0075) 2019; 7
Shamsolmoali, Zareapoor, Zhou, Wang, Yang (b0185) 2021; 59
Ma, Li, Li, Yu, Junior, Goncalves, Chapman (b0130) 2021; 22
Ma, Zhong, Li, Ma, Cui, Wang (b0135) 2021; 22
Prakash, Comandur, Chang, Elfiky, Kak (b0165) 2015; 8
Zhao, Shi, Qi, Wang, Jia (b0235) 2017; 2017
Girshick (b0040) 2015; 2015
Zhu, Huang, Hu, Li, Chen, Zhong (b0240) 2021; 174
Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. CoRR, vol. abs/1706.05587, 2017. [Online]. Available
Ozgunalp, Fan, Ai, Dahnoun (b0155) 2017; 18
Yu, Yao, Guan, Li, Liu, Wang, Yu, Xiao, Wang, Chang (b0225) 2021; 42
McCall, Trivedi (b0145) 2006; 7
Shamsolmoali, Chanussot, Zareapoor, Zhou, Yang (b0175) 2021
Gupta, Choudhary (b0060) 2018; 3
Niu, Lu, Xu, Lv, Zhao (b0150) 2016; 59
Kim (b0095) 2008; 9
Grabner, Nguyen, Gruber, Bischof (b0050) 2008; 63
Lee, Moon (b0100) 2018; 19
Mathibela, Newman, Posner (b0140) 2015; 16
Chen, Zhang, Zhong, Zhang, Ma, Liu (b0020) 2021; 59
Lee, S., Kim, J., Yoon, J. S., Shin, S., Bailo, O., Kim, N., Lee, T.-H., Hong, H. S., Han, S.-H., Kweon, I. S., 2017. VPGNet: Vanishing point guided network for lane and road marking detection and recognition. In: Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, Oct. 2017, pp. 1965–1973.
Paoletti, Haut, Fernandez-Beltran, Plaza, Plaza, Li, Pla (b0160) 2019; 57
Sabour, S., Frosst, N., Hinton, G.E., 2017. Dynamic routing between capsules. In: Proc. 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–10 Dec. 2017, pp. 1–11.
Azimi, Fischer, Korner, Reinartz (b0005) 2019; 57
.
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.
Zhang, Wang, Yang, Qiang Li, Chen, Qiu (b0230) 2018; 130
de Paula, Jung (b0010) 2015; 16
Son, Yoo, Kim, Sohn (b0190) 2015; 42
Greenhalgh, Mirmehdi (b0055) 2015; 2015
Jung, Youn, Sull (b0090) 2016; 17
Lyu, Vosselman, Xia, Yilmaz, Yang (b0125) 2020; 165
Ye, Hong, Chen, Hsiao, Fu (b0220) 2020; 102
Han, Han, Hahn (b0065) 2009; 59
Shamsolmoali, Zareapoor, Chanussot, Zhou, Yang (b0180) 2021
Xu, Yu, Hu, Ng, Heng (b0215) 2021; 22
Li, Mei, Prokhorov, Tao (b0110) 2017; 28
Li, Li, Jiang (b0115) 2018; 2018
Tian, Gelernter, Wang, Chen, Gao, Zhang, Li (b0195) 2018; 280
He, B., Ai, R., Yan, Y., Lang, X., 2016. Accurate and robust lane detection based on dual-view convolutional neutral network. In: Proceedings of the IEEE Intell. Vehicles Symp., Gothenburg, Sweden, Jun. 2016, pp. 1041–1046.
Chen, Wang, Peng, Zhang, Yu, Sun (b0025) 2018; 2018
Xu (10.1016/j.jag.2022.102677_b0215) 2021; 22
McCall (10.1016/j.jag.2022.102677_b0145) 2006; 7
Azimi (10.1016/j.jag.2022.102677_b0005) 2019; 57
Zhu (10.1016/j.jag.2022.102677_b0240) 2021; 174
Hoang (10.1016/j.jag.2022.102677_b0075) 2019; 7
Ma (10.1016/j.jag.2022.102677_b0135) 2021; 22
Grabner (10.1016/j.jag.2022.102677_b0050) 2008; 63
Xiao (10.1016/j.jag.2022.102677_b0210) 2020; 194
Ma (10.1016/j.jag.2022.102677_b0130) 2021; 22
Paoletti (10.1016/j.jag.2022.102677_b0160) 2019; 57
de Paula (10.1016/j.jag.2022.102677_b0010) 2015; 16
Zhang (10.1016/j.jag.2022.102677_b0230) 2018; 130
Prakash (10.1016/j.jag.2022.102677_b0165) 2015; 8
10.1016/j.jag.2022.102677_b0070
Son (10.1016/j.jag.2022.102677_b0190) 2015; 42
Yu (10.1016/j.jag.2022.102677_b0225) 2021; 42
Chen (10.1016/j.jag.2022.102677_b0025) 2018; 2018
10.1016/j.jag.2022.102677_b0170
10.1016/j.jag.2022.102677_b0015
Chen (10.1016/j.jag.2022.102677_b0020) 2021; 59
Greenhalgh (10.1016/j.jag.2022.102677_b0055) 2015; 2015
Ozgunalp (10.1016/j.jag.2022.102677_b0155) 2017; 18
Shamsolmoali (10.1016/j.jag.2022.102677_b0185) 2021; 59
Ye (10.1016/j.jag.2022.102677_b0220) 2020; 102
Han (10.1016/j.jag.2022.102677_b0065) 2009; 59
Niu (10.1016/j.jag.2022.102677_b0150) 2016; 59
Girshick (10.1016/j.jag.2022.102677_b0035) 2014; 2014
Li (10.1016/j.jag.2022.102677_b0115) 2018; 2018
Jung (10.1016/j.jag.2022.102677_b0090) 2016; 17
Li (10.1016/j.jag.2022.102677_b0110) 2017; 28
Mathibela (10.1016/j.jag.2022.102677_b0140) 2015; 16
Wen (10.1016/j.jag.2022.102677_b0205) 2019; 147
Lyu (10.1016/j.jag.2022.102677_b0125) 2020; 165
Tian (10.1016/j.jag.2022.102677_b0195) 2018; 280
Gupta (10.1016/j.jag.2022.102677_b0060) 2018; 3
Zhao (10.1016/j.jag.2022.102677_b0235) 2017; 2017
Kim (10.1016/j.jag.2022.102677_b0095) 2008; 9
Gopalan (10.1016/j.jag.2022.102677_b0045) 2012; 13
Girshick (10.1016/j.jag.2022.102677_b0040) 2015; 2015
10.1016/j.jag.2022.102677_b0120
Shamsolmoali (10.1016/j.jag.2022.102677_b0175) 2021
Shamsolmoali (10.1016/j.jag.2022.102677_b0180) 2021
Hu (10.1016/j.jag.2022.102677_b0080) 2018; 2018
Lee (10.1016/j.jag.2022.102677_b0100) 2018; 19
Wang (10.1016/j.jag.2022.102677_b0200) 2021; 43
10.1016/j.jag.2022.102677_b0105
Huang (10.1016/j.jag.2022.102677_b0085) 2017; 2017
References_xml – volume: 280
  start-page: 46
  year: 2018
  end-page: 55
  ident: b0195
  article-title: Lane marking detection via deep convolutional neural network
  publication-title: Neurocomput.
– volume: 28
  start-page: 690
  year: 2017
  end-page: 703
  ident: b0110
  article-title: Deep neural network for structural prediction and lane detection in traffic scene
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2018
  start-page: 7103
  year: 2018
  end-page: 7112
  ident: b0025
  article-title: Cascaded pyramid network for multi-person pose estimation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– year: 2021
  ident: b0180
  article-title: Rotation equivariant feature image pyramid network for object detection in optical remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 22
  start-page: 4986
  year: 2021
  end-page: 4997
  ident: b0215
  article-title: SALMNet: a structure-aware lane marking detection network
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 2015
  start-page: 1440
  year: 2015
  end-page: 1448
  ident: b0040
  article-title: R-CNN Fast
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 3
  start-page: 476
  year: 2018
  end-page: 485
  ident: b0060
  article-title: A framework for camera-based real-time lane and road surface marking detection and recognition
  publication-title: IEEE Trans. Intell. Vehicles
– reference: He, B., Ai, R., Yan, Y., Lang, X., 2016. Accurate and robust lane detection based on dual-view convolutional neutral network. In: Proceedings of the IEEE Intell. Vehicles Symp., Gothenburg, Sweden, Jun. 2016, pp. 1041–1046.
– volume: 22
  start-page: 1981
  year: 2021
  end-page: 1995
  ident: b0130
  article-title: Capsule-based networks for road marking extraction and classification from mobile LiDAR point clouds
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 19
  start-page: 4043
  year: 2018
  end-page: 4048
  ident: b0100
  article-title: Robust lane detection and tracking for real-time applications
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2014
  start-page: 580
  year: 2014
  end-page: 587
  ident: b0035
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 57
  start-page: 2145
  year: 2019
  end-page: 2160
  ident: b0160
  article-title: Capsule networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 4673
  year: 2021
  end-page: 4688
  ident: b0185
  article-title: Road segmentation for remote sensing images using adversarial spatial pyramid networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 130
  start-page: 105
  year: 2018
  end-page: 117
  ident: b0230
  article-title: Pavement lane marking detection using matched filter
  publication-title: Measurement
– volume: 43
  start-page: 3349
  year: 2021
  end-page: 3364
  ident: b0200
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2018
  start-page: 7132
  year: 2018
  end-page: 7141
  ident: b0080
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– reference: Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.
– volume: 165
  start-page: 108
  year: 2020
  end-page: 119
  ident: b0125
  article-title: UAVid: A semantic segmentation dataset for UAV imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 42
  start-page: 1816
  year: 2015
  end-page: 1824
  ident: b0190
  article-title: Real-time illumination invariant lane detection for lane departure warning system
  publication-title: Expert Syst. Appl.
– reference: Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. CoRR, vol. abs/1706.05587, 2017. [Online]. Available:
– volume: 147
  start-page: 178
  year: 2019
  end-page: 192
  ident: b0205
  article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2017
  start-page: 2881
  year: 2017
  end-page: 2890
  ident: b0235
  article-title: Pyramid scene parsing network
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– reference: Lee, S., Kim, J., Yoon, J. S., Shin, S., Bailo, O., Kim, N., Lee, T.-H., Hong, H. S., Han, S.-H., Kweon, I. S., 2017. VPGNet: Vanishing point guided network for lane and road marking detection and recognition. In: Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, Oct. 2017, pp. 1965–1973.
– volume: 63
  start-page: 382
  year: 2008
  end-page: 396
  ident: b0050
  article-title: On-line boosting based car detection from aerial images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Sabour, S., Frosst, N., Hinton, G.E., 2017. Dynamic routing between capsules. In: Proc. 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–10 Dec. 2017, pp. 1–11.
– volume: 13
  start-page: 1088
  year: 2012
  end-page: 1098
  ident: b0045
  article-title: A learning approach towards detection and tracking of lane markings
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 7
  start-page: 20
  year: 2006
  end-page: 37
  ident: b0145
  article-title: Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2021
  ident: b0175
  article-title: Multipatch feature pyramid network for weakly supervised object detection in optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 16
  year: 2008
  end-page: 26
  ident: b0095
  article-title: Robust lane detection and tracking in challenging scenarios
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 16
  start-page: 2072
  year: 2015
  end-page: 2081
  ident: b0140
  article-title: Reading the road: road marking classification and interpretation
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 18
  start-page: 621
  year: 2017
  end-page: 632
  ident: b0155
  article-title: Multiple lane detection algorithm based on novel dense vanishing point estimation
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 2017
  start-page: 4700
  year: 2017
  end-page: 4708
  ident: b0085
  article-title: Densely connected convolutional networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 59
  start-page: 784
  year: 2021
  end-page: 800
  ident: b0020
  article-title: A dense feature pyramid network-based deep learning model for road marking instance segmentation using MLS point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 194
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0210
  article-title: Attention deep neural network for lane marking detection
  publication-title: Knowl-Based Syst.
– reference: .
– volume: 42
  start-page: 1801
  year: 2021
  end-page: 1822
  ident: b0225
  article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 109817
  year: 2019
  end-page: 109832
  ident: b0075
  article-title: Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning
  publication-title: IEEE Access
– volume: 22
  start-page: 4813
  year: 2021
  end-page: 4824
  ident: b0135
  article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0115
  article-title: Lane detection based on connection of various feature extraction methods
  publication-title: Adv. Multimedia
– volume: 16
  start-page: 3160
  year: 2015
  end-page: 3169
  ident: b0010
  article-title: Automatic detection and classification of road lane markings using onboard vehicular cameras
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 8
  start-page: 4729
  year: 2015
  end-page: 4741
  ident: b0165
  article-title: A generic road-following framework for detecting markings and objects in satellite imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 174
  start-page: 105
  year: 2021
  end-page: 116
  ident: b0240
  article-title: Depth-enhanced feature pyramid network for occlusion-aware verification of buildings from oblique images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2015
  start-page: 130
  year: 2015
  end-page: 138
  ident: b0055
  article-title: Detection and recognition of painted road surface markings
  publication-title: Proc. Int. Conf. Pattern Recognit. Appl. Methods
– volume: 57
  start-page: 2920
  year: 2019
  end-page: 2938
  ident: b0005
  article-title: Aerial LaneNet: lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 289
  year: 2016
  end-page: 295
  ident: b0090
  article-title: Efficient lane detection based on spatiotemporal images
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 102
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0220
  article-title: A two-stage real-time YOLOv2-based road marking detector with lightweight spatial transformation-invariant classification
  publication-title: Image Vis. Comput.
– volume: 59
  start-page: 225
  year: 2016
  end-page: 233
  ident: b0150
  article-title: Robust lane detection using two-stage feature extraction with curve fitting
  publication-title: Pattern Recognit.
– volume: 59
  start-page: 455
  year: 2009
  end-page: 459
  ident: b0065
  article-title: Vehicle detection method using Haar-like feature on real time system
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 2014
  start-page: 580
  year: 2014
  ident: 10.1016/j.jag.2022.102677_b0035
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 59
  start-page: 4673
  issue: 6
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0185
  article-title: Road segmentation for remote sensing images using adversarial spatial pyramid networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3016086
– volume: 22
  start-page: 1981
  issue: 4
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0130
  article-title: Capsule-based networks for road marking extraction and classification from mobile LiDAR point clouds
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2990120
– year: 2021
  ident: 10.1016/j.jag.2022.102677_b0180
  article-title: Rotation equivariant feature image pyramid network for object detection in optical remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 280
  start-page: 46
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0195
  article-title: Lane marking detection via deep convolutional neural network
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2017.09.098
– volume: 43
  start-page: 3349
  issue: 10
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0200
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– ident: 10.1016/j.jag.2022.102677_b0070
– volume: 42
  start-page: 1816
  issue: 4
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0190
  article-title: Real-time illumination invariant lane detection for lane departure warning system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.024
– volume: 2018
  start-page: 7103
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0025
  article-title: Cascaded pyramid network for multi-person pose estimation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 16
  start-page: 2072
  issue: 4
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0140
  article-title: Reading the road: road marking classification and interpretation
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2015.2393715
– volume: 2015
  start-page: 130
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0055
  article-title: Detection and recognition of painted road surface markings
  publication-title: Proc. Int. Conf. Pattern Recognit. Appl. Methods
  doi: 10.5220/0005273501300138
– volume: 28
  start-page: 690
  issue: 3
  year: 2017
  ident: 10.1016/j.jag.2022.102677_b0110
  article-title: Deep neural network for structural prediction and lane detection in traffic scene
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2522428
– volume: 2017
  start-page: 4700
  year: 2017
  ident: 10.1016/j.jag.2022.102677_b0085
  article-title: Densely connected convolutional networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 7
  start-page: 109817
  year: 2019
  ident: 10.1016/j.jag.2022.102677_b0075
  article-title: Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933598
– volume: 3
  start-page: 476
  issue: 4
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0060
  article-title: A framework for camera-based real-time lane and road surface marking detection and recognition
  publication-title: IEEE Trans. Intell. Vehicles
  doi: 10.1109/TIV.2018.2873902
– volume: 59
  start-page: 225
  year: 2016
  ident: 10.1016/j.jag.2022.102677_b0150
  article-title: Robust lane detection using two-stage feature extraction with curve fitting
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.12.010
– volume: 174
  start-page: 105
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0240
  article-title: Depth-enhanced feature pyramid network for occlusion-aware verification of buildings from oblique images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.025
– ident: 10.1016/j.jag.2022.102677_b0105
  doi: 10.1109/ICCV.2017.215
– volume: 57
  start-page: 2920
  issue: 5
  year: 2019
  ident: 10.1016/j.jag.2022.102677_b0005
  article-title: Aerial LaneNet: lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2878510
– volume: 7
  start-page: 20
  issue: 1
  year: 2006
  ident: 10.1016/j.jag.2022.102677_b0145
  article-title: Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2006.869595
– volume: 16
  start-page: 3160
  issue: 6
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0010
  article-title: Automatic detection and classification of road lane markings using onboard vehicular cameras
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2015.2438714
– volume: 19
  start-page: 4043
  issue: 12
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0100
  article-title: Robust lane detection and tracking for real-time applications
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2791572
– volume: 165
  start-page: 108
  year: 2020
  ident: 10.1016/j.jag.2022.102677_b0125
  article-title: UAVid: A semantic segmentation dataset for UAV imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.05.009
– ident: 10.1016/j.jag.2022.102677_b0015
– volume: 9
  start-page: 16
  issue: 1
  year: 2008
  ident: 10.1016/j.jag.2022.102677_b0095
  article-title: Robust lane detection and tracking in challenging scenarios
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2007.908582
– volume: 13
  start-page: 1088
  issue: 3
  year: 2012
  ident: 10.1016/j.jag.2022.102677_b0045
  article-title: A learning approach towards detection and tracking of lane markings
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2184756
– ident: 10.1016/j.jag.2022.102677_b0170
– volume: 63
  start-page: 382
  issue: 3
  year: 2008
  ident: 10.1016/j.jag.2022.102677_b0050
  article-title: On-line boosting based car detection from aerial images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.10.005
– volume: 102
  start-page: 1
  issue: 103978
  year: 2020
  ident: 10.1016/j.jag.2022.102677_b0220
  article-title: A two-stage real-time YOLOv2-based road marking detector with lightweight spatial transformation-invariant classification
  publication-title: Image Vis. Comput.
– volume: 17
  start-page: 289
  issue: 1
  year: 2016
  ident: 10.1016/j.jag.2022.102677_b0090
  article-title: Efficient lane detection based on spatiotemporal images
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2464253
– volume: 194
  start-page: 1
  issue: 105584
  year: 2020
  ident: 10.1016/j.jag.2022.102677_b0210
  article-title: Attention deep neural network for lane marking detection
  publication-title: Knowl-Based Syst.
– volume: 2015
  start-page: 1440
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0040
  article-title: R-CNN Fast
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 2018
  start-page: 7132
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0080
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 57
  start-page: 2145
  issue: 4
  year: 2019
  ident: 10.1016/j.jag.2022.102677_b0160
  article-title: Capsule networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2871782
– volume: 130
  start-page: 105
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0230
  article-title: Pavement lane marking detection using matched filter
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.089
– volume: 22
  start-page: 4986
  issue: 8
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0215
  article-title: SALMNet: a structure-aware lane marking detection network
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2020.2983077
– volume: 42
  start-page: 1801
  issue: 5
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0225
  article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1842544
– volume: 59
  start-page: 784
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0020
  article-title: A dense feature pyramid network-based deep learning model for road marking instance segmentation using MLS point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2996617
– volume: 59
  start-page: 455
  year: 2009
  ident: 10.1016/j.jag.2022.102677_b0065
  article-title: Vehicle detection method using Haar-like feature on real time system
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.jag.2022.102677_b0115
  article-title: Lane detection based on connection of various feature extraction methods
  publication-title: Adv. Multimedia
  doi: 10.1155/2018/9106836
– year: 2021
  ident: 10.1016/j.jag.2022.102677_b0175
  article-title: Multipatch feature pyramid network for weakly supervised object detection in optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 4729
  issue: 10
  year: 2015
  ident: 10.1016/j.jag.2022.102677_b0165
  article-title: A generic road-following framework for detecting markings and objects in satellite imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2495142
– volume: 147
  start-page: 178
  year: 2019
  ident: 10.1016/j.jag.2022.102677_b0205
  article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.10.007
– volume: 22
  start-page: 4813
  issue: 8
  year: 2021
  ident: 10.1016/j.jag.2022.102677_b0135
  article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2984813
– volume: 18
  start-page: 621
  issue: 3
  year: 2017
  ident: 10.1016/j.jag.2022.102677_b0155
  article-title: Multiple lane detection algorithm based on novel dense vanishing point estimation
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2016.2586187
– volume: 2017
  start-page: 2881
  year: 2017
  ident: 10.1016/j.jag.2022.102677_b0235
  article-title: Pyramid scene parsing network
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– ident: 10.1016/j.jag.2022.102677_b0120
  doi: 10.1109/CVPR.2017.106
SSID ssj0017768
Score 2.404574
Snippet •The proposed ACapsFPN extracted road markings in UAV images.•A capsule feature pyramid network provided a high-resolution, semantically-strong feature...
Accurately and precisely delineating road-markings from very high spatial resolution unmanned aerial vehicle (UAV) images face many challenges, such as complex...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102677
SubjectTerms Capsule
Dense atrous convolution
Feature pyramid network
neural networks
neurons
Road markings
spatial data
UAV images
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKe4EDooWK8KiMxAlplV3ba6-PoWqVgugBSNWb5fEj2qrZRGl66L9nvI9AeuiB41q2dzUez3xez3xDyGdfRi3A61Qm1WWChSoDPPRkCNZlUQCvVFvr8MelnM7Et-vyeo-cDrkwKayyt_2dTW-tdd8y7qU5XtX1-BeqJ6IBLljKNsm5eEYOGNcSVftgcvF9erm9TFCqy4grpc4qwdlwudmGed3YOZ4SGUscBlKpHffUsvjveKlH9rp1QuevyMsePdJJ94GHZC80R-TFP5yCR-T47G_qGnbt9-7da3L1c2k9Xdj25zhFm7zuchpo3dDZ5IrWi0Rn8UBTJPycJtrNJplC6iwepG8DjaHlAKWrh7Vd1J42XQD5GzI7P_t9Os36qgqZQ_CxwaWIeQwiSEBsYAP3zHqW6xAiJPCibbRag0Wk4QMDGUF6DQLKisdc4UB-TPabZRPeEiq8C7rkApirBIRCW6urKAuQoYIytyOSD8I0rqccT5Uvbs0QW3ZjUP4myd908h-RL9shq45v46nOX9MKbTsmquy2Ybmem15XDFTRWalBOiXw7BvBgnZC8eBl5bgqRkQM62t2NA-nqp9696dBFwzuyHTNYpuwvL8zDN094wKh77v_m_o9eZ6euki3D2R_s74PHxH6bOCkV-0_-5MCRQ
  priority: 102
  providerName: Elsevier
Title Road marking extraction in UAV imagery using attentive capsule feature pyramid network
URI https://dx.doi.org/10.1016/j.jag.2022.102677
https://www.proquest.com/docview/2718234650
https://doaj.org/article/b8fca69b6c74446fbab9c473ed68c371
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQvdADamlRQ1vkSj0hrZrYXq99TBEofSGEGsTN8viBEpENCuHAv-_Y3qXQA71wWmllr63x2PPNeuYbQj77OmoBXqcyqa4SLKgK0OmpEKzL0Qi4anKtw18ncjIV3y_qiwelvlJMWKEHLoL7Aio6KzVI1wh0XSJY0E40PHipHM_Z4wxtXu9MdfcHTVOS4GqpKyU46-8zc2TX3F6iY8hYoi2QTfPIImXi_keG6Z8jOtud41dkuwOMdFwm-ppshHaHvHxAI7hDdo_-Zqth02673rwh52dL6-nC5v_hFI_hVUljoLOWTsfndLZIDBZ3NAW_X9LEtNmm0486i77zVaAxZNpPen23souZp22JGX9LpsdHvw8nVVdIoXKIN9Yo_TiMQQQJCAds4J5Zj0ILIULCK9pGqzVYBBc-MEAZS69BQK14HDbYke-SzXbZhneECu-CrrkA5pSAMNLWahXlCGRQUA_tgAx7YRrXsYynYhdXpg8nmxuUv0nyN0X-A3Jw3-W6UGw81fhrWqH7hokdO79AnTGdzpj_6cyAiH59TQc0CoDAT82eGvtTrwsGN2G6WbFtWN7eGIYWnnGBaHfvOeb3nmylYUuo2weyuV7dho-IfdawT16MD89-nqbntx-Tk_2s9n8AowwFYw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kztB2KNq0Qd0nC3QqIFgiKUoc3SCB0yQe2jjIRvBpKIhlw3GG_Pse9XDrDhm6UiQlHI93H8W77wC-ujxIbpyMZVJtwqkvE4OHngTBusgyw8qiqXV4MRWTGf9xnV_vwVGfCxPDKjvb39r0xlp3LaNOmqNVVY1-oXoiGmCcxmyTlPEnsB_ZqfIB7I9PzybT7WVCUbQZcbmQSckZ7S83mzCvGz3HUyKlkcNAFMWOe2pY_He81D_2unFCJy_hRYceybj9wFew5-sDeP4Xp-ABHB7_SV3Drt3evXsNVz-X2pGFbn6OE7TJ6zangVQ1mY2vSLWIdBYPJEbCz0mk3ayjKSRW40H61pPgGw5QsnpY60XlSN0GkL-B2cnx5dEk6aoqJBbBxwaXIqTBcy8MYgPtmaPa0VR6H0wEL1IHLaXRiDScp0YEI5w03OQlC2mBA9khDOpl7d8C4c56mTNuqC258ZnUWpZBZEb40uSpHkLaC1PZjnI8Vr64VX1s2Y1C-asof9XKfwjftkNWLd_GY52_xxXadoxU2U3Dcj1Xna4oUwarhTTCFhzPvsFoIy0vmHeitKzIhsD79VU7modTVY-9-0uvCwp3ZLxm0bVf3t8piu6eMo7Q993_Tf0Znk4uL87V-en07D08i0_aqLcPMNis7_1HhEEb86lT898rRQUr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+marking+extraction+in+UAV+imagery+using+attentive+capsule+feature+pyramid+network&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Haiyan+Guan&rft.au=Xiangda+Lei&rft.au=Yongtao+Yu&rft.au=Haohao+Zhao&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=107&rft.spage=102677&rft_id=info:doi/10.1016%2Fj.jag.2022.102677&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b8fca69b6c74446fbab9c473ed68c371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon