Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes

We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 19; no. 5; pp. 552 - 558
Main Authors Bi, Sheng, Banda, Harish, Chen, Ming, Niu, Liang, Chen, Mingyu, Wu, Taizheng, Wang, Jiasheng, Wang, Runxi, Feng, Jiamao, Chen, Tianyang, Dincă, Mircea, Kornyshev, Alexei A., Feng, Guang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes.
AbstractList We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.
We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes.
We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes.
We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.
Author Wu, Taizheng
Bi, Sheng
Wang, Jiasheng
Niu, Liang
Chen, Tianyang
Dincă, Mircea
Feng, Guang
Chen, Mingyu
Wang, Runxi
Chen, Ming
Feng, Jiamao
Banda, Harish
Kornyshev, Alexei A.
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0001-8804-7353
  surname: Bi
  fullname: Bi, Sheng
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Department of Chemistry, Faculty of Natural Sciences, Imperial College London
– sequence: 2
  givenname: Harish
  surname: Banda
  fullname: Banda, Harish
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-2188-5472
  surname: Chen
  fullname: Chen, Ming
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Shenzhen Research Institute of HUST
– sequence: 4
  givenname: Liang
  orcidid: 0000-0001-8810-1305
  surname: Niu
  fullname: Niu, Liang
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Mingyu
  orcidid: 0000-0001-7985-8103
  surname: Chen
  fullname: Chen, Mingyu
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Taizheng
  surname: Wu
  fullname: Wu, Taizheng
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 7
  givenname: Jiasheng
  orcidid: 0000-0002-8013-0723
  surname: Wang
  fullname: Wang, Jiasheng
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 8
  givenname: Runxi
  surname: Wang
  fullname: Wang, Runxi
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Jiamao
  surname: Feng
  fullname: Feng, Jiamao
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
– sequence: 10
  givenname: Tianyang
  surname: Chen
  fullname: Chen, Tianyang
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 11
  givenname: Mircea
  orcidid: 0000-0002-1262-1264
  surname: Dincă
  fullname: Dincă, Mircea
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 12
  givenname: Alexei A.
  orcidid: 0000-0002-3157-8791
  surname: Kornyshev
  fullname: Kornyshev, Alexei A.
  email: a.kornyshev@imperial.ac.uk
  organization: Department of Chemistry, Faculty of Natural Sciences, Imperial College London
– sequence: 13
  givenname: Guang
  orcidid: 0000-0001-6659-9181
  surname: Feng
  fullname: Feng, Guang
  email: gfeng@hust.edu.cn
  organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32015536$$D View this record in MEDLINE/PubMed
BookMark eNp9kctqHDEQRYWxiR_JB3gTBNlk07He6l4GE9sBG2-StVDrMZbpkcaSmjB7f3g06XEChnhVRdW5VUXdU3AYU3QAnGP0BSPaXxSGuaAdwkOH-NB38gCcYCZFx4RAh_scY0KOwWkpjwgRzLl4B44pQS2j4gQ836XJmXnSGc7RulyqjjbEFUwemgedVw6WmrJusTWW0q5tt1GvgykwRFjmjctGb7QJDS3wV6gP8O7-Cro2uuZkXfkjDikGA6fwNAf70pu21ZX34MjrqbgP-3gGfl59-3F5093eX3-__HrbGUaH2mlr6DhSYiR2HhlhLPO9kY72xDMjZI9G7ikdibdC4ME45CXxWtqRGYrFQM_A52XuJqen2ZWq1qEYN006ujQXRShHA-KNbOinV-hjmnNs1ynCJEdE0h6_SdGBcYIk3q39uKfmce2s2uSw1nmrXlxoAF4Ak1Mp2fm_CEZq57RanFbNabVzWsmmka807fu6th_XrMP0ppIsytK2xJXL_47-v-g3PlG-GQ
CitedBy_id crossref_primary_10_3390_molecules26092631
crossref_primary_10_1016_j_cej_2021_128920
crossref_primary_10_1021_acsenergylett_0c01750
crossref_primary_10_1063_5_0195325
crossref_primary_10_1039_D3CE00883E
crossref_primary_10_1021_acs_accounts_3c00788
crossref_primary_10_1016_j_apsusc_2021_150324
crossref_primary_10_1073_pnas_2401656121
crossref_primary_10_1002_cssc_202401176
crossref_primary_10_1002_cjoc_202000543
crossref_primary_10_2139_ssrn_4057607
crossref_primary_10_1016_j_ccr_2022_214967
crossref_primary_10_1021_acsenergylett_4c03296
crossref_primary_10_1021_acs_cgd_2c01305
crossref_primary_10_1002_admt_202000941
crossref_primary_10_1002_smll_202308453
crossref_primary_10_1002_sstr_202100115
crossref_primary_10_1021_acs_energyfuels_3c03735
crossref_primary_10_1016_j_apsusc_2025_162670
crossref_primary_10_1098_rspa_2023_0044
crossref_primary_10_1039_D1DT01729B
crossref_primary_10_1039_D4NH00007B
crossref_primary_10_1038_s41467_024_45900_0
crossref_primary_10_1039_D0TA06643E
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1016_j_electacta_2020_137181
crossref_primary_10_2139_ssrn_4126724
crossref_primary_10_1016_j_xcrp_2022_100919
crossref_primary_10_1002_ange_202413115
crossref_primary_10_1016_j_electacta_2022_141808
crossref_primary_10_1002_adma_202302280
crossref_primary_10_1039_D1DT03113A
crossref_primary_10_3390_electronics12112465
crossref_primary_10_1016_j_nanoen_2021_106630
crossref_primary_10_1021_acs_jctc_3c00359
crossref_primary_10_1002_anie_202112811
crossref_primary_10_1021_acs_jpclett_1c00156
crossref_primary_10_1016_j_cej_2023_143739
crossref_primary_10_1039_D4CP00695J
crossref_primary_10_1016_j_chempr_2020_12_007
crossref_primary_10_1021_acs_chemrev_1c00925
crossref_primary_10_1021_jacs_4c05330
crossref_primary_10_1021_jacs_1c03748
crossref_primary_10_1021_acsenergylett_2c01853
crossref_primary_10_1002_smll_202308147
crossref_primary_10_1103_PhysRevLett_128_206001
crossref_primary_10_1016_j_ensm_2022_05_040
crossref_primary_10_1515_gps_2022_8127
crossref_primary_10_1016_j_cej_2022_135301
crossref_primary_10_1039_D4TA06293K
crossref_primary_10_1039_D4TA00701H
crossref_primary_10_1016_j_electacta_2021_138403
crossref_primary_10_1016_j_est_2022_104225
crossref_primary_10_1002_eom2_12106
crossref_primary_10_1016_j_jcis_2024_02_041
crossref_primary_10_1039_D3CS00906H
crossref_primary_10_1039_D4TA04514A
crossref_primary_10_1063_5_0091322
crossref_primary_10_1021_acs_jpcc_3c08105
crossref_primary_10_1021_acsphyschemau_4c00104
crossref_primary_10_1039_D2TA03074H
crossref_primary_10_1002_aic_18189
crossref_primary_10_1016_j_nanoen_2024_109559
crossref_primary_10_1039_D1CP03888E
crossref_primary_10_1002_adma_202404232
crossref_primary_10_1021_jacs_3c04625
crossref_primary_10_1016_j_jallcom_2021_160423
crossref_primary_10_1016_j_ensm_2022_05_020
crossref_primary_10_1002_celc_202100286
crossref_primary_10_1016_j_cej_2022_140905
crossref_primary_10_1021_acsanm_2c00306
crossref_primary_10_1002_smll_202303911
crossref_primary_10_1016_j_jiec_2022_10_006
crossref_primary_10_1039_D2CP01840C
crossref_primary_10_1039_D0TB01352H
crossref_primary_10_1360_SSC_2021_0250
crossref_primary_10_1021_acs_chemmater_4c00229
crossref_primary_10_3390_batteries9030160
crossref_primary_10_1021_acs_inorgchem_2c01285
crossref_primary_10_1021_acs_inorgchem_2c03226
crossref_primary_10_1039_D3CE00622K
crossref_primary_10_1002_advs_201903109
crossref_primary_10_1039_D3TA04708C
crossref_primary_10_1002_anie_202317413
crossref_primary_10_1016_j_jallcom_2022_167100
crossref_primary_10_1016_j_carbon_2023_118090
crossref_primary_10_1016_j_cej_2023_148260
crossref_primary_10_1021_acsnano_3c03886
crossref_primary_10_2139_ssrn_4095295
crossref_primary_10_1016_j_recm_2024_03_001
crossref_primary_10_1038_s41467_023_40590_6
crossref_primary_10_2139_ssrn_4100151
crossref_primary_10_1002_anie_202413115
crossref_primary_10_1021_acsomega_2c07187
crossref_primary_10_1002_smtd_202200806
crossref_primary_10_1016_j_mtcomm_2022_104657
crossref_primary_10_1016_j_cej_2022_138052
crossref_primary_10_1002_admi_202100642
crossref_primary_10_1021_jacs_1c00666
crossref_primary_10_1088_1674_4926_41_9_091707
crossref_primary_10_1016_j_cej_2024_154665
crossref_primary_10_1021_acs_chemrev_2c00728
crossref_primary_10_1021_acsami_3c12270
crossref_primary_10_1002_adfm_202110223
crossref_primary_10_1021_acs_jpclett_1c03900
crossref_primary_10_1016_j_jcis_2020_11_037
crossref_primary_10_1021_acs_chemmater_1c04285
crossref_primary_10_1016_j_chemosphere_2021_130913
crossref_primary_10_1021_acs_jpcc_1c10956
crossref_primary_10_1002_anie_202006102
crossref_primary_10_1039_D4QI02314E
crossref_primary_10_1103_PRXEnergy_2_043006
crossref_primary_10_1002_smll_202200602
crossref_primary_10_1002_sstr_202100195
crossref_primary_10_20517_energymater_2023_20
crossref_primary_10_1016_j_jallcom_2023_169285
crossref_primary_10_1007_s12274_022_4307_5
crossref_primary_10_1016_j_joule_2024_01_014
crossref_primary_10_1002_adfm_202008422
crossref_primary_10_1021_acsnano_4c12712
crossref_primary_10_1002_smll_202309256
crossref_primary_10_1007_s11664_023_10507_6
crossref_primary_10_1016_j_ccr_2022_214670
crossref_primary_10_1088_2632_959X_ad0446
crossref_primary_10_1002_adma_202006147
crossref_primary_10_1016_j_est_2025_115297
crossref_primary_10_1016_j_ccr_2024_216098
crossref_primary_10_1016_j_electacta_2023_143302
crossref_primary_10_1016_j_apsusc_2022_152847
crossref_primary_10_1039_D2QM00503D
crossref_primary_10_1021_acs_jctc_0c00607
crossref_primary_10_3390_batteries10100339
crossref_primary_10_1016_j_est_2024_110673
crossref_primary_10_1039_D0TA06195F
crossref_primary_10_3390_inorganics12070186
crossref_primary_10_1016_j_ces_2023_118718
crossref_primary_10_1016_j_est_2022_105727
crossref_primary_10_1002_adfm_202414229
crossref_primary_10_1016_j_mtsust_2024_100775
crossref_primary_10_1021_acs_jpcc_1c06578
crossref_primary_10_1039_D4RA01324G
crossref_primary_10_1016_j_enchem_2020_100029
crossref_primary_10_1016_j_ensm_2021_02_027
crossref_primary_10_1002_adfm_202101303
crossref_primary_10_1002_chem_202001211
crossref_primary_10_1002_adfm_202308497
crossref_primary_10_2139_ssrn_4007274
crossref_primary_10_1002_adma_202101216
crossref_primary_10_1016_j_scitotenv_2023_163478
crossref_primary_10_1021_acsaelm_3c00022
crossref_primary_10_1002_anie_202303903
crossref_primary_10_1002_adfm_202110258
crossref_primary_10_1016_j_surfin_2024_105174
crossref_primary_10_2139_ssrn_3985234
crossref_primary_10_1016_j_est_2021_102289
crossref_primary_10_1016_j_molstruc_2021_132184
crossref_primary_10_1016_S1872_5805_21_60038_0
crossref_primary_10_1039_D4SC02699C
crossref_primary_10_1016_j_jechem_2021_12_041
crossref_primary_10_1016_j_jtice_2020_12_020
crossref_primary_10_1016_j_xcrp_2022_100979
crossref_primary_10_1039_D0DT04363J
crossref_primary_10_1039_D2CC07081B
crossref_primary_10_1016_j_mser_2022_100713
crossref_primary_10_6023_A22120494
crossref_primary_10_1002_adma_202403202
crossref_primary_10_1016_j_cej_2025_161555
crossref_primary_10_1021_acsaelm_2c00388
crossref_primary_10_1016_j_est_2022_105700
crossref_primary_10_1038_s43588_021_00153_5
crossref_primary_10_1016_j_carbon_2024_119736
crossref_primary_10_1039_D2SC03389E
crossref_primary_10_1016_j_ensm_2024_103368
crossref_primary_10_1016_j_trechm_2023_03_002
crossref_primary_10_1021_acsaem_0c02758
crossref_primary_10_1002_anie_202106055
crossref_primary_10_1016_j_ccr_2024_216020
crossref_primary_10_1021_acssensors_3c00715
crossref_primary_10_1016_j_ccr_2021_214300
crossref_primary_10_1039_D0SC01762K
crossref_primary_10_1016_j_xcrp_2022_100866
crossref_primary_10_1021_acsami_3c04454
crossref_primary_10_1016_j_esci_2023_100092
crossref_primary_10_3390_polym12040918
crossref_primary_10_1016_j_est_2023_110320
crossref_primary_10_1021_acsnano_2c07272
crossref_primary_10_1063_5_0094553
crossref_primary_10_1149_1945_7111_ac4841
crossref_primary_10_1002_smll_202001987
crossref_primary_10_1039_D4TA08063G
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1002_anie_202402526
crossref_primary_10_1016_j_jelechem_2020_114915
crossref_primary_10_1016_j_recm_2023_03_004
crossref_primary_10_1007_s11581_023_04906_2
crossref_primary_10_1016_j_seppur_2022_120736
crossref_primary_10_1002_admt_202200258
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1111_nyas_14906
crossref_primary_10_1021_acs_iecr_0c05190
crossref_primary_10_1021_acs_jpcc_1c10629
crossref_primary_10_1002_aenm_202003994
crossref_primary_10_1039_D2TA06006J
crossref_primary_10_1002_adsu_202100152
crossref_primary_10_1016_j_electacta_2023_143500
crossref_primary_10_1002_cphc_202400569
crossref_primary_10_1016_j_cej_2022_134750
crossref_primary_10_1007_s11581_022_04557_9
crossref_primary_10_1021_jacs_4c00508
crossref_primary_10_1002_aelm_202000944
crossref_primary_10_1039_D4TA04301D
crossref_primary_10_1016_j_cej_2022_135607
crossref_primary_10_1002_wcms_70009
crossref_primary_10_1002_advs_202104753
crossref_primary_10_1016_j_mtnano_2020_100105
crossref_primary_10_1016_j_cej_2020_127520
crossref_primary_10_1016_j_est_2024_110529
crossref_primary_10_1002_adma_202500943
crossref_primary_10_1039_D4TA02137A
crossref_primary_10_1016_j_ensm_2022_03_042
crossref_primary_10_1007_s12274_020_2874_x
crossref_primary_10_1016_j_jallcom_2021_159702
crossref_primary_10_1002_smll_202104649
crossref_primary_10_1016_j_cej_2022_137919
crossref_primary_10_1016_j_apsusc_2021_151888
crossref_primary_10_1016_j_ccr_2023_215304
crossref_primary_10_1002_celc_202200274
crossref_primary_10_1002_aenm_202402795
crossref_primary_10_1021_acsami_1c15754
crossref_primary_10_1021_acs_jctc_3c00940
crossref_primary_10_1016_j_molliq_2023_122542
crossref_primary_10_1002_adma_202307151
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1021_envhealth_4c00088
crossref_primary_10_1088_1361_648X_ad386f
crossref_primary_10_1002_adma_202204272
crossref_primary_10_1002_smll_202301153
crossref_primary_10_3390_coatings11070854
crossref_primary_10_1002_aic_18313
crossref_primary_10_1016_j_jclepro_2022_131161
crossref_primary_10_1039_D0SC03429K
crossref_primary_10_1016_j_jcis_2022_01_137
crossref_primary_10_1016_j_memsci_2021_119407
crossref_primary_10_1016_j_nanoen_2022_107571
crossref_primary_10_1002_admt_202201828
crossref_primary_10_1016_j_electacta_2024_145130
crossref_primary_10_1021_acs_jpclett_3c03248
crossref_primary_10_1016_j_ijbiomac_2023_127989
crossref_primary_10_1039_D0TA03547E
crossref_primary_10_1016_j_electacta_2022_141694
crossref_primary_10_1016_j_cclet_2023_108354
crossref_primary_10_1021_acsnano_4c01787
crossref_primary_10_1016_j_jallcom_2021_160074
crossref_primary_10_1016_j_jcis_2021_08_087
crossref_primary_10_1021_jacs_4c11782
crossref_primary_10_1039_D1TA00652E
crossref_primary_10_1016_j_ccr_2021_213804
crossref_primary_10_1021_acsaem_1c01694
crossref_primary_10_1016_j_cej_2022_138347
crossref_primary_10_1021_acsami_0c19212
crossref_primary_10_1016_j_renene_2021_08_103
crossref_primary_10_1039_D2SE00092J
crossref_primary_10_1007_s11581_020_03899_6
crossref_primary_10_1016_j_jpowsour_2024_235170
crossref_primary_10_1021_acsaem_4c03246
crossref_primary_10_1021_acs_inorgchem_1c02174
crossref_primary_10_1016_j_ssnmr_2022_101811
crossref_primary_10_1021_jacs_4c03827
crossref_primary_10_1016_j_est_2024_110953
crossref_primary_10_1103_PhysRevLett_134_046201
crossref_primary_10_3390_inorganics11040169
crossref_primary_10_1016_j_jpowsour_2022_231163
crossref_primary_10_1016_j_jelechem_2022_117096
crossref_primary_10_1016_j_envpol_2021_118076
crossref_primary_10_1016_j_fuel_2024_131504
crossref_primary_10_1007_s40820_023_01178_3
crossref_primary_10_1007_s41918_022_00131_z
crossref_primary_10_1016_j_cej_2021_131328
crossref_primary_10_1039_D0CS00721H
crossref_primary_10_1021_acs_langmuir_4c01431
crossref_primary_10_1039_D2DT02857C
crossref_primary_10_1063_5_0176346
crossref_primary_10_1016_j_scib_2023_08_042
crossref_primary_10_1007_s42114_023_00765_7
crossref_primary_10_1021_acs_energyfuels_1c01722
crossref_primary_10_1002_ange_202006102
crossref_primary_10_1039_D3DT02354K
crossref_primary_10_1002_smtd_202300808
crossref_primary_10_1016_j_est_2021_102310
crossref_primary_10_1039_D1NR07915H
crossref_primary_10_1016_j_jpowsour_2020_228698
crossref_primary_10_1088_2515_7655_acfe9b
crossref_primary_10_1002_advs_202205760
crossref_primary_10_1021_acsaelm_1c00297
crossref_primary_10_1039_D4CP02487G
crossref_primary_10_1039_D2SC04898A
crossref_primary_10_1002_adma_202209652
crossref_primary_10_1021_acs_langmuir_4c02651
crossref_primary_10_1016_j_snb_2021_129885
crossref_primary_10_1016_j_synthmet_2024_117627
crossref_primary_10_1002_ange_202317413
crossref_primary_10_1021_acs_nanolett_4c02678
crossref_primary_10_1016_j_electacta_2021_139057
crossref_primary_10_1021_acsenergylett_4c00544
crossref_primary_10_1002_elsa_202100038
crossref_primary_10_1007_s11426_024_2277_2
crossref_primary_10_1002_zaac_202200115
crossref_primary_10_1063_5_0028232
crossref_primary_10_1039_D3ME00007A
crossref_primary_10_1002_adfm_202310270
crossref_primary_10_1021_acsnano_1c07339
crossref_primary_10_1016_j_cej_2020_126810
crossref_primary_10_1016_j_gce_2020_10_006
crossref_primary_10_1039_D1NR00593F
crossref_primary_10_1126_sciadv_adk9752
crossref_primary_10_2139_ssrn_4002361
crossref_primary_10_1002_adfm_202008900
crossref_primary_10_1016_j_vacuum_2022_111731
crossref_primary_10_1039_D1SC05431G
crossref_primary_10_1002_cnma_202400011
crossref_primary_10_1007_s10008_020_04762_4
crossref_primary_10_1021_acsnano_4c01590
crossref_primary_10_1016_j_jechem_2021_01_003
crossref_primary_10_1007_s40843_024_3109_5
crossref_primary_10_1515_nanoph_2023_0053
crossref_primary_10_1039_D4YA00332B
crossref_primary_10_1016_j_snb_2021_130760
crossref_primary_10_1103_PhysRevLett_128_086001
crossref_primary_10_1021_acs_jpcc_4c00619
crossref_primary_10_1021_acsami_1c15734
crossref_primary_10_1039_D3EE03819J
crossref_primary_10_1039_D0NR09167G
crossref_primary_10_1002_slct_202304973
crossref_primary_10_1088_1361_6528_abdf8e
crossref_primary_10_1021_acsami_1c01339
crossref_primary_10_1021_jacs_4c11372
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1021_acs_langmuir_1c02922
crossref_primary_10_1016_j_surfcoat_2020_126679
crossref_primary_10_1039_D1TA04026J
crossref_primary_10_1016_j_nantod_2024_102154
crossref_primary_10_1002_smsc_202200042
crossref_primary_10_1021_acsami_1c14537
crossref_primary_10_1021_acs_energyfuels_1c00321
crossref_primary_10_1016_j_electacta_2021_139192
crossref_primary_10_1039_D0TA12624A
crossref_primary_10_1021_jacs_4c11243
crossref_primary_10_1021_acs_chemrev_9b00693
crossref_primary_10_1016_j_est_2021_102528
crossref_primary_10_1021_acs_energyfuels_3c00092
crossref_primary_10_1016_j_ensm_2020_12_013
crossref_primary_10_1039_D2SC05090K
crossref_primary_10_1016_j_ensm_2024_103859
crossref_primary_10_1016_j_coelec_2022_101030
crossref_primary_10_1016_j_apt_2021_02_030
crossref_primary_10_1016_j_chemosphere_2022_133670
crossref_primary_10_1016_j_electacta_2024_145543
crossref_primary_10_3390_nano12040587
crossref_primary_10_1002_ange_202402526
crossref_primary_10_1016_j_cej_2021_128767
crossref_primary_10_1002_adma_202200999
crossref_primary_10_3390_ma14112942
crossref_primary_10_1021_acs_jpcc_3c03814
crossref_primary_10_1016_j_cej_2022_140804
crossref_primary_10_1016_j_mtphys_2024_101498
crossref_primary_10_1016_j_electacta_2021_138289
crossref_primary_10_1016_j_conbuildmat_2024_136167
crossref_primary_10_1007_s40544_021_0566_5
crossref_primary_10_1016_j_cej_2022_137409
crossref_primary_10_1002_cnma_202300171
crossref_primary_10_1002_adma_202004654
crossref_primary_10_1016_j_apsusc_2022_154241
crossref_primary_10_1063_5_0053253
crossref_primary_10_1021_acs_jpcb_0c09332
crossref_primary_10_1002_aesr_202100024
crossref_primary_10_1126_sciadv_add9627
crossref_primary_10_1002_adfm_202310902
crossref_primary_10_1002_ange_202112811
crossref_primary_10_1021_acssuschemeng_2c06191
crossref_primary_10_1016_j_ijoes_2024_100691
crossref_primary_10_1055_s_0044_1786500
crossref_primary_10_1002_smll_202107778
crossref_primary_10_1021_acs_jpclett_3c02561
crossref_primary_10_1016_j_radphyschem_2024_111580
crossref_primary_10_1002_adma_202406178
crossref_primary_10_1021_jacs_4c06935
crossref_primary_10_1021_acs_jpcb_3c01559
crossref_primary_10_1002_adma_202301118
crossref_primary_10_2174_0118779468279377240318035448
crossref_primary_10_1002_eem2_12124
crossref_primary_10_1021_acs_inorgchem_2c02866
crossref_primary_10_1021_acs_inorgchem_0c00060
crossref_primary_10_1039_D4TA01820F
crossref_primary_10_1002_slct_202200092
crossref_primary_10_1016_j_electacta_2022_140555
crossref_primary_10_1016_j_est_2025_115731
crossref_primary_10_1016_j_cej_2022_136452
crossref_primary_10_1016_j_jcis_2021_05_149
crossref_primary_10_1002_ange_202303903
crossref_primary_10_1002_aesr_202100042
crossref_primary_10_1039_D1CP05355H
crossref_primary_10_1063_5_0166034
crossref_primary_10_1016_j_jcis_2023_12_026
crossref_primary_10_1021_jacs_0c05130
crossref_primary_10_1021_acsami_3c12913
crossref_primary_10_1063_5_0081827
crossref_primary_10_1016_j_molliq_2022_120116
crossref_primary_10_1039_D1DT02323C
crossref_primary_10_1021_acs_nanolett_4c00408
crossref_primary_10_1021_jacs_0c10849
crossref_primary_10_1063_5_0160729
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1016_j_jallcom_2021_159348
crossref_primary_10_1002_adfm_202002664
crossref_primary_10_1016_j_micromeso_2022_112089
crossref_primary_10_1002_batt_202300536
crossref_primary_10_1007_s12598_022_02016_y
crossref_primary_10_2139_ssrn_4052322
crossref_primary_10_1021_acsnano_4c14258
crossref_primary_10_1021_acs_chemrev_2c00097
crossref_primary_10_2139_ssrn_4003181
crossref_primary_10_1021_acs_jpclett_1c01131
crossref_primary_10_1039_D1CS00992C
crossref_primary_10_1016_j_mtphys_2023_101174
crossref_primary_10_1016_j_memsci_2021_119682
crossref_primary_10_1002_adfm_202313027
crossref_primary_10_2139_ssrn_4051664
crossref_primary_10_3390_molecules29061246
crossref_primary_10_1002_adma_202301011
crossref_primary_10_1007_s11705_021_2036_z
crossref_primary_10_1007_s11467_023_1258_6
crossref_primary_10_1002_adma_202405079
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1021_acs_iecr_2c03667
crossref_primary_10_1002_chem_202100768
crossref_primary_10_1002_adma_202312382
crossref_primary_10_1007_s11630_022_1716_4
crossref_primary_10_1515_ntrev_2022_0042
crossref_primary_10_1002_smll_202205936
crossref_primary_10_3390_chemosensors11070402
crossref_primary_10_1016_j_seppur_2024_128056
crossref_primary_10_1002_ange_202106055
crossref_primary_10_1039_D0QM00936A
crossref_primary_10_1007_s12598_022_02115_w
crossref_primary_10_1021_acscentsci_3c00027
crossref_primary_10_1002_eem2_12521
crossref_primary_10_1021_acs_jpcc_2c01121
crossref_primary_10_1016_j_ensm_2022_08_035
crossref_primary_10_1515_revic_2024_0137
crossref_primary_10_1039_D2NR02812C
crossref_primary_10_1039_D2DT02624D
crossref_primary_10_1002_smll_202203307
crossref_primary_10_1039_D1TA01818C
crossref_primary_10_1002_chem_202400157
crossref_primary_10_1021_acsami_1c23885
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1021_jacs_1c03039
crossref_primary_10_1021_acs_langmuir_3c03397
crossref_primary_10_1002_adma_202300064
crossref_primary_10_1016_j_est_2022_105378
crossref_primary_10_1038_s41467_025_57893_5
crossref_primary_10_1021_acs_jpclett_2c03330
crossref_primary_10_1039_D0EE02649B
crossref_primary_10_6023_A22010024
crossref_primary_10_1016_j_cej_2023_141910
crossref_primary_10_2139_ssrn_4102608
crossref_primary_10_1002_tcr_202300141
crossref_primary_10_1016_j_ces_2024_120321
crossref_primary_10_1021_acs_jpcb_0c02643
crossref_primary_10_1016_j_diamond_2022_108912
crossref_primary_10_1088_1402_4896_ad8320
crossref_primary_10_1360_SSC_2022_0073
crossref_primary_10_1021_acsaem_0c02062
crossref_primary_10_1007_s40843_022_2341_2
crossref_primary_10_1002_cey2_45
crossref_primary_10_1002_smll_202303189
crossref_primary_10_1002_cey2_504
crossref_primary_10_1002_aenm_202300401
crossref_primary_10_1038_s41563_020_0747_z
Cites_doi 10.1038/nmat3916
10.1088/0953-8984/23/2/022201
10.1038/s41578-018-0069-9
10.1021/jp5047062
10.1038/nmat3260
10.1126/science.1230444
10.1021/jacs.8b06020
10.1021/ja502765n
10.1021/nn900500n
10.1088/1361-6528/aa8948
10.1038/nenergy.2016.70
10.1039/C7CS00283A
10.1039/c0cp02778b
10.1039/C7TA05153K
10.1016/j.jpowsour.2010.05.043
10.1021/acs.jpcc.5b05930
10.1021/nn5027092
10.1126/science.1239089
10.1016/j.rser.2015.12.249
10.1002/adma.201703614
10.1016/j.ensm.2017.06.009
10.1063/1.2408420
10.1002/anie.201506219
10.1002/ijch.201800078
10.1016/0927-0256(96)00008-0
10.1038/nmat4766
10.1016/j.chempr.2016.12.002
10.1021/acs.chemrev.8b00252
10.1038/nmat2448
10.1016/j.cplett.2010.10.010
10.1021/cr400374x
10.1038/nmat2297
10.1021/ja104273r
10.1021/ja00051a040
10.1021/ja108766y
10.1038/nmat4974
10.1002/advs.201700059
10.1021/ja7106178
10.1038/s41560-017-0044-5
10.1021/jacs.8b06666
10.1063/1.2776887
10.1038/nnano.2009.177
10.1039/C5CS00303B
10.3390/polym10090962
10.1021/je900789j
10.1016/j.joule.2017.07.018
10.1021/acsnano.5b00945
10.1021/acs.chemrev.6b00504
10.1021/cr500411q
10.1021/ct700301q
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-019-0598-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 558
ExternalDocumentID 32015536
10_1038_s41563_019_0598_7
Genre Journal Article
GrantInformation_xml – fundername: Shenzhen Basic Research Project (JCYJ20170307171511292)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51876072, 51836003; 51876072, 51836003; 51876072, 51836003
  funderid: https://doi.org/10.13039/501100001809
– fundername: Leverhulme Trust
  grantid: RPG-2016-223
  funderid: https://doi.org/10.13039/501100000275
– fundername: the Army Research Office (W911NF-17-1-0174)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51876072, 51836003
– fundername: Leverhulme Trust
  grantid: RPG-2016-223
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c439t-adc3bb32c71ef0c6cd4f8c7e382f4c6780b5f33b2fd6619ce0f72fa7db4c31693
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Thu Jul 10 18:21:18 EDT 2025
Fri Jul 25 09:01:47 EDT 2025
Sat Aug 23 14:59:42 EDT 2025
Wed Feb 19 02:29:51 EST 2025
Thu Apr 24 22:58:48 EDT 2025
Tue Jul 01 02:14:00 EDT 2025
Fri Feb 21 02:40:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-adc3bb32c71ef0c6cd4f8c7e382f4c6780b5f33b2fd6619ce0f72fa7db4c31693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8013-0723
0000-0002-1262-1264
0000-0001-8804-7353
0000-0001-7985-8103
0000-0002-3157-8791
0000-0002-2188-5472
0000-0001-8810-1305
0000-0001-6659-9181
PMID 32015536
PQID 2394520719
PQPubID 27576
PageCount 7
ParticipantIDs proquest_miscellaneous_2350905693
proquest_journals_2475027381
proquest_journals_2394520719
pubmed_primary_32015536
crossref_primary_10_1038_s41563_019_0598_7
crossref_citationtrail_10_1038_s41563_019_0598_7
springer_journals_10_1038_s41563_019_0598_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sheberla (CR32) 2014; 136
Largeot (CR21) 2008; 130
Xia, Chen, Li, Tao (CR49) 2009; 4
Vatamanu, Vatamanu, Bedrov (CR41) 2015; 9
Simon, Gogotsi (CR1) 2008; 7
Sun (CR2) 2018; 4
Sheberla (CR10) 2017; 16
Hess, Kutzner, van der Spoel, Lindahl (CR45) 2008; 4
Choi (CR9) 2014; 8
Nonoguchi, Sato, Kawai (CR36) 2018; 10
Furukawa, Cordova, O’Keeffe, Yaghi (CR3) 2013; 341
Park (CR35) 2018; 140
Yang, Cheng, Wang, Qiu, Li (CR23) 2013; 341
Wang, Zhu, Zou, Xu (CR5) 2017; 2
Fletcher (CR27) 2010; 195
Guan, Yu, Wu, Lou (CR4) 2017; 29
Watanabe (CR13) 2017; 117
Eftekhari (CR38) 2017; 9
Merlet (CR31) 2012; 11
Feng (CR8) 2018; 3
Rappe, Casewit, Colwell, Goddard, Skiff (CR44) 1992; 114
Zhan, Neal, Wu, Jiang (CR50) 2015; 119
Sun (CR34) 2017; 1
Li, Wang (CR40) 2018; 58
Bussi, Donadio, Parrinello (CR46) 2007; 126
Zhou, Wang (CR7) 2017; 46
Zhan (CR17) 2017; 4
Kondrat, Kornyshev (CR29) 2011; 23
Armand, Endres, MacFarlane, Ohno, Scrosati (CR14) 2009; 8
Salanne (CR15) 2016; 1
Stoppa, Zech, Kunz, Buchner (CR28) 2010; 55
Sun, Campbell, Dincă (CR6) 2016; 55
Izadi-Najafabadi, Futaba, Iijima, Hata (CR37) 2010; 132
Kresse, Furthmüller (CR43) 1996; 6
González, Goikolea, Barrena, Mysyk (CR39) 2016; 58
Chaban, Voroshylova, Kalugin (CR33) 2011; 13
Gingrich, Wilson (CR47) 2010; 500
Vatamanu, Borodin, Olguin, Yushin, Bedrov (CR16) 2017; 5
Yang (CR24) 2017; 28
Zhong (CR22) 2015; 44
Kornyshev, Qiao (CR20) 2014; 118
Futamura (CR30) 2017; 16
Kondrat, Wu, Qiao, Kornyshev (CR25) 2014; 13
Masarapu, Zeng, Hung, Wei (CR26) 2009; 3
Vatamanu, Borodin, Smith (CR19) 2010; 132
Hayes, Warr, Atkin (CR12) 2015; 115
Park (CR42) 2018; 140
Fang, Konar, Xing, Jena (CR48) 2007; 91
Fedorov, Kornyshev (CR11) 2014; 114
Shao (CR18) 2018; 118
Y Nonoguchi (598_CR36) 2018; 10
J Xia (598_CR49) 2009; 4
A González (598_CR39) 2016; 58
AA Kornyshev (598_CR20) 2014; 118
M Armand (598_CR14) 2009; 8
C Masarapu (598_CR26) 2009; 3
S Kondrat (598_CR29) 2011; 23
J Vatamanu (598_CR19) 2010; 132
H Wang (598_CR5) 2017; 2
MV Fedorov (598_CR11) 2014; 114
J Vatamanu (598_CR41) 2015; 9
R Futamura (598_CR30) 2017; 16
AK Rappe (598_CR44) 1992; 114
A Stoppa (598_CR28) 2010; 55
C Largeot (598_CR21) 2008; 130
P Li (598_CR40) 2018; 58
BY Guan (598_CR4) 2017; 29
D Sheberla (598_CR32) 2014; 136
L Sun (598_CR6) 2016; 55
L Sun (598_CR34) 2017; 1
H Sun (598_CR2) 2018; 4
A Izadi-Najafabadi (598_CR37) 2010; 132
TR Gingrich (598_CR47) 2010; 500
C Zhan (598_CR50) 2015; 119
P Simon (598_CR1) 2008; 7
G Bussi (598_CR46) 2007; 126
D Sheberla (598_CR10) 2017; 16
KM Choi (598_CR9) 2014; 8
J Park (598_CR42) 2018; 140
D Feng (598_CR8) 2018; 3
R Hayes (598_CR12) 2015; 115
M Salanne (598_CR15) 2016; 1
S Kondrat (598_CR25) 2014; 13
VV Chaban (598_CR33) 2011; 13
C Zhong (598_CR22) 2015; 44
M Watanabe (598_CR13) 2017; 117
H Yang (598_CR24) 2017; 28
B Hess (598_CR45) 2008; 4
H Furukawa (598_CR3) 2013; 341
SI Fletcher (598_CR27) 2010; 195
C Merlet (598_CR31) 2012; 11
J Zhou (598_CR7) 2017; 46
G Kresse (598_CR43) 1996; 6
J Vatamanu (598_CR16) 2017; 5
J Park (598_CR35) 2018; 140
X Yang (598_CR23) 2013; 341
A Eftekhari (598_CR38) 2017; 9
T Fang (598_CR48) 2007; 91
C Zhan (598_CR17) 2017; 4
Y Shao (598_CR18) 2018; 118
References_xml – volume: 115
  start-page: 6357
  year: 2015
  end-page: 6426
  ident: CR12
  article-title: Structure and nanostructure in ionic liquids
  publication-title: Chem. Rev.
– volume: 58
  start-page: 1189
  year: 2016
  end-page: 1206
  ident: CR39
  article-title: Review on supercapacitors: technologies and materials
  publication-title: Renew. Sustain. Energy Rev.
– volume: 55
  start-page: 1768
  year: 2010
  end-page: 1773
  ident: CR28
  article-title: The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of cation’s alkyl chain
  publication-title: J. Chem. Eng. Data
– volume: 13
  start-page: 387
  year: 2014
  end-page: 393
  ident: CR25
  article-title: Accelerating charging dynamics in subnanometre pores
  publication-title: Nat. Mater.
– volume: 195
  start-page: 7484
  year: 2010
  end-page: 7488
  ident: CR27
  article-title: The effects of temperature on the performance of electrochemical double layer capacitors
  publication-title: J. Power Sources
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR43
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 10
  start-page: 962
  year: 2018
  ident: CR36
  article-title: Crystallinity-dependent thermoelectric properties of a two-dimensional coordination polymer: Ni (2,3,6,7,10,11-hexaiminotriphenylene)
  publication-title: Polymers
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  ident: CR44
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 14825
  year: 2010
  end-page: 14833
  ident: CR19
  article-title: Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 7190
  year: 2017
  end-page: 7239
  ident: CR13
  article-title: Application of ionic liquids to energy storage and conversion materials and devices
  publication-title: Chem. Rev.
– volume: 132
  start-page: 18017
  year: 2010
  end-page: 18019
  ident: CR37
  article-title: Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: CR45
  article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
– volume: 2
  start-page: 52
  year: 2017
  end-page: 80
  ident: CR5
  article-title: Metal-organic frameworks for energy applications
  publication-title: Chem
– volume: 23
  start-page: 022201
  year: 2011
  ident: CR29
  article-title: Superionic state in double-layer capacitors with nanoporous electrodes
  publication-title: J. Phys. Condens. Matter
– volume: 91
  start-page: 092109
  year: 2007
  end-page: 092103
  ident: CR48
  article-title: Carrier statistics and quantum capacitance of graphene sheets and ribbons
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 7451
  year: 2014
  end-page: 7457
  ident: CR9
  article-title: Supercapacitors of nanocrystalline metal–organic frameworks
  publication-title: ACS Nano
– volume: 16
  start-page: 220
  year: 2017
  end-page: 224
  ident: CR10
  article-title: Conductive MOF electrodes for stable supercapacitors with high areal capacitance
  publication-title: Nat. Mater.
– volume: 4
  start-page: 45
  year: 2018
  end-page: 60
  ident: CR2
  article-title: Hierarchical 3D electrodes for electrochemical energy storage
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 168
  year: 2017
  end-page: 177
  ident: CR34
  article-title: A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity
  publication-title: Joule
– volume: 9
  start-page: 47
  year: 2017
  end-page: 69
  ident: CR38
  article-title: Supercapacitors utilising ionic liquids
  publication-title: Energy Storage Mater.
– volume: 16
  start-page: 1225
  year: 2017
  ident: CR30
  article-title: Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores
  publication-title: Nat. Mater.
– volume: 55
  start-page: 3566
  year: 2016
  end-page: 3579
  ident: CR6
  article-title: Electrically conductive porous metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 621
  year: 2009
  end-page: 629
  ident: CR14
  article-title: Ionic-liquid materials for the electrochemical challenges of the future
  publication-title: Nat. Mater.
– volume: 140
  start-page: 10315
  year: 2018
  end-page: 10323
  ident: CR35
  article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8859
  year: 2014
  end-page: 8862
  ident: CR32
  article-title: High electrical conductivity in Ni (2,3,6,7,10,11-hexaiminotriphenylene) , a semiconducting metal–organic graphene analogue
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 1010
  year: 2018
  end-page: 1018
  ident: CR40
  article-title: Recent development and application of conductive MOFs
  publication-title: Isr. J. Chem.
– volume: 140
  start-page: 14533
  year: 2018
  end-page: 14537
  ident: CR42
  article-title: Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal–organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 30
  year: 2018
  end-page: 36
  ident: CR8
  article-title: Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance
  publication-title: Nat. Energy
– volume: 11
  start-page: 306
  year: 2012
  end-page: 310
  ident: CR31
  article-title: On the molecular origin of supercapacitance in nanoporous carbon electrodes
  publication-title: Nat. Mater.
– volume: 4
  start-page: 505
  year: 2009
  end-page: 509
  ident: CR49
  article-title: Measurement of the quantum capacitance of graphene
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 1703614
  year: 2017
  ident: CR4
  article-title: Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion
  publication-title: Adv. Mater.
– volume: 44
  start-page: 7484
  year: 2015
  end-page: 7539
  ident: CR22
  article-title: A review of electrolyte materials and compositions for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 22297
  year: 2015
  end-page: 22303
  ident: CR50
  article-title: Quantum effects on the capacitance of graphene-based electrodes
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 445401
  year: 2017
  ident: CR24
  article-title: Graphene supercapacitor with both high power and energy density
  publication-title: Nanotechnology
– volume: 9
  start-page: 5999
  year: 2015
  end-page: 6017
  ident: CR41
  article-title: Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes
  publication-title: ACS Nano
– volume: 13
  start-page: 7910
  year: 2011
  end-page: 7920
  ident: CR33
  article-title: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 9233
  year: 2018
  end-page: 9280
  ident: CR18
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
– volume: 341
  start-page: 534
  year: 2013
  end-page: 537
  ident: CR23
  article-title: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage
  publication-title: Science
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: CR1
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
– volume: 114
  start-page: 2978
  year: 2014
  end-page: 3036
  ident: CR11
  article-title: Ionic liquids at electrified interfaces
  publication-title: Chem. Rev.
– volume: 341
  start-page: 1230444
  year: 2013
  ident: CR3
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
– volume: 3
  start-page: 2199
  year: 2009
  end-page: 2206
  ident: CR26
  article-title: Effect of temperature on the capacitance of carbon nanotube supercapacitors
  publication-title: ACS Nano
– volume: 1
  start-page: 16070
  year: 2016
  ident: CR15
  article-title: Efficient storage mechanisms for building better supercapacitors
  publication-title: Nat. Energy
– volume: 130
  start-page: 2730
  year: 2008
  end-page: 2731
  ident: CR21
  article-title: Relation between the ion size and pore size for an electric double-layer capacitor
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1700059
  year: 2017
  ident: CR17
  article-title: Computational insights into materials and interfaces for capacitive energy storage
  publication-title: Adv. Sci.
– volume: 126
  start-page: 014101
  year: 2007
  ident: CR46
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 18285
  year: 2014
  end-page: 18290
  ident: CR20
  article-title: Three-dimensional double layers
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 21049
  year: 2017
  end-page: 21076
  ident: CR16
  article-title: Charge storage at the nanoscale: understanding the trends from the molecular scale perspective
  publication-title: J. Mater. Chem. A
– volume: 500
  start-page: 178
  year: 2010
  end-page: 183
  ident: CR47
  article-title: On the Ewald summation of Gaussian charges for the simulation of metallic surfaces
  publication-title: Chem. Phys. Lett.
– volume: 46
  start-page: 6927
  year: 2017
  end-page: 6945
  ident: CR7
  article-title: Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 387
  year: 2014
  ident: 598_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3916
– volume: 23
  start-page: 022201
  year: 2011
  ident: 598_CR29
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/23/2/022201
– volume: 4
  start-page: 45
  year: 2018
  ident: 598_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0069-9
– volume: 118
  start-page: 18285
  year: 2014
  ident: 598_CR20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5047062
– volume: 11
  start-page: 306
  year: 2012
  ident: 598_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3260
– volume: 341
  start-page: 1230444
  year: 2013
  ident: 598_CR3
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 140
  start-page: 10315
  year: 2018
  ident: 598_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06020
– volume: 136
  start-page: 8859
  year: 2014
  ident: 598_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502765n
– volume: 3
  start-page: 2199
  year: 2009
  ident: 598_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn900500n
– volume: 28
  start-page: 445401
  year: 2017
  ident: 598_CR24
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa8948
– volume: 1
  start-page: 16070
  year: 2016
  ident: 598_CR15
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.70
– volume: 46
  start-page: 6927
  year: 2017
  ident: 598_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00283A
– volume: 13
  start-page: 7910
  year: 2011
  ident: 598_CR33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02778b
– volume: 5
  start-page: 21049
  year: 2017
  ident: 598_CR16
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05153K
– volume: 195
  start-page: 7484
  year: 2010
  ident: 598_CR27
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.05.043
– volume: 119
  start-page: 22297
  year: 2015
  ident: 598_CR50
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05930
– volume: 8
  start-page: 7451
  year: 2014
  ident: 598_CR9
  publication-title: ACS Nano
  doi: 10.1021/nn5027092
– volume: 341
  start-page: 534
  year: 2013
  ident: 598_CR23
  publication-title: Science
  doi: 10.1126/science.1239089
– volume: 58
  start-page: 1189
  year: 2016
  ident: 598_CR39
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.249
– volume: 29
  start-page: 1703614
  year: 2017
  ident: 598_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703614
– volume: 9
  start-page: 47
  year: 2017
  ident: 598_CR38
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.009
– volume: 126
  start-page: 014101
  year: 2007
  ident: 598_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 55
  start-page: 3566
  year: 2016
  ident: 598_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 58
  start-page: 1010
  year: 2018
  ident: 598_CR40
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201800078
– volume: 6
  start-page: 15
  year: 1996
  ident: 598_CR43
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 16
  start-page: 220
  year: 2017
  ident: 598_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4766
– volume: 2
  start-page: 52
  year: 2017
  ident: 598_CR5
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.12.002
– volume: 118
  start-page: 9233
  year: 2018
  ident: 598_CR18
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 8
  start-page: 621
  year: 2009
  ident: 598_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2448
– volume: 500
  start-page: 178
  year: 2010
  ident: 598_CR47
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.10.010
– volume: 114
  start-page: 2978
  year: 2014
  ident: 598_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/cr400374x
– volume: 7
  start-page: 845
  year: 2008
  ident: 598_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 132
  start-page: 14825
  year: 2010
  ident: 598_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104273r
– volume: 114
  start-page: 10024
  year: 1992
  ident: 598_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 132
  start-page: 18017
  year: 2010
  ident: 598_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108766y
– volume: 16
  start-page: 1225
  year: 2017
  ident: 598_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4974
– volume: 4
  start-page: 1700059
  year: 2017
  ident: 598_CR17
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700059
– volume: 130
  start-page: 2730
  year: 2008
  ident: 598_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7106178
– volume: 3
  start-page: 30
  year: 2018
  ident: 598_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0044-5
– volume: 140
  start-page: 14533
  year: 2018
  ident: 598_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06666
– volume: 91
  start-page: 092109
  year: 2007
  ident: 598_CR48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2776887
– volume: 4
  start-page: 505
  year: 2009
  ident: 598_CR49
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.177
– volume: 44
  start-page: 7484
  year: 2015
  ident: 598_CR22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00303B
– volume: 10
  start-page: 962
  year: 2018
  ident: 598_CR36
  publication-title: Polymers
  doi: 10.3390/polym10090962
– volume: 55
  start-page: 1768
  year: 2010
  ident: 598_CR28
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je900789j
– volume: 1
  start-page: 168
  year: 2017
  ident: 598_CR34
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.018
– volume: 9
  start-page: 5999
  year: 2015
  ident: 598_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00945
– volume: 117
  start-page: 7190
  year: 2017
  ident: 598_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00504
– volume: 115
  start-page: 6357
  year: 2015
  ident: 598_CR12
  publication-title: Chem. Rev.
  doi: 10.1021/cr500411q
– volume: 4
  start-page: 435
  year: 2008
  ident: 598_CR45
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
SSID ssj0021556
Score 2.7062814
Snippet We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 552
SubjectTerms 639/301/1034
639/301/299
639/301/357
639/638/161
639/638/440
Biomaterials
Charging
Chemistry and Materials Science
Computer simulation
Condensed Matter Physics
Electrochemical analysis
Electrochemistry
Electrodes
Electrolytes
Ionic liquids
Ions
Materials Science
Metal-organic frameworks
Molecular dynamics
Nanotechnology
Optical and Electronic Materials
Simulation
Supercapacitors
Transmission lines
Title Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes
URI https://link.springer.com/article/10.1038/s41563-019-0598-7
https://www.ncbi.nlm.nih.gov/pubmed/32015536
https://www.proquest.com/docview/2394520719
https://www.proquest.com/docview/2475027381
https://www.proquest.com/docview/2350905693
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX1vkgYVemoR8Uq2JZ9CNsQNhd2W0sDejDWSYGHxbuL1off-8Mz4sZuSNhcbPJYQGknzSTOaj7FPYI238bjE1S_yIgYnRalAiixNgnbaxV3i-eksvbqOv82TeX_gVvdhlcOa2C7UbgV0Rn5KFN6JRIOYna1vBLFGkXe1p9B4yvYpdRmFdOn5bsOFtrK7XaRTgbhCDl5NZU5r2rhQJFEmEGAYof-2Sw_A5gNHaWt_8gP2ogeO_LzT9Ev2xFev2PN76QRfsz_TgeuWN_fvrPBV4G1GJM8pFhJXEI6C7hOJXcdKX_NFxetm7W8BLSgsiIeH0zktn37Pec-X43zdFqZjXODLxU2zcINs-Rtx6xt2nV_-urgSPcuCAAQjG1E6UNYqCXrsQwQpuDgY0F4ZGWJAWxbZJChlZXBoyzPwUdAylNrZGBSlcnnL9qpV5d8zjugRwCQOZIZ9XqbGxyE1zpoA4wCgRywa-riAPgU5MWEsi9YVrkzRqaVAtRSklgKLfN4WWXf5Nx77-XhQXNFPxbrYDZx_i2PETHQ_aTxiH7dinGPkOCkrv2qoCoRViBQzNWLvuvGwbYySLfVSOmJfhgGyq_y_LT18vKVH7JmkfX0bWHnM9ja3jf-A4GdjT9oRjk-Tfz1h--f5ZDLD9-Ry9uPnHQgPBi4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHijdbWjASXEBWs7aTOIcKVcCypd1yaaXeQjK2pUhLdttshPbO7-E3diaPbVGht14zsWV5xjOfPfZ8jL2F3LhcDzP0foETGqwUmQIpkij0sY2tbgvPT46i8Yn-dhqerrE__VsYulbZ-8TGUdsZ0Bn5DlF4hxIDYvJxfiaINYqyqz2FRmsWB275C7ds1e7-Z9TvOylHX44_jUXHKiAAg-9CZBZUnisJ8dD5ACKw2huInTLSa0DfHeShVyqX3mLsSsAFPpY-i22uQVHpEuz3DrurlUpoRZnR19UGD2Nz-5opjgTiGNlnUZXZqWijRDeXEoGAxoj47zh4DdxeS8w28W70kG10QJXvtZb1iK258jF7cKV84RP2e9Jz6_L66hsZPvO8qcDkON29RI_FUdB-IrFdltnPAipelLyq5-4cMGJDQbw_nM6F-eT7iHf8PNZVTWM6NgY-Lc7qwvay6RJx8lN2civz_4ytl7PSvWAc0SqACS3IBOc8i4zTPjI2Nx6GHiAesKCf4xS6kufEvDFNm9S7MmmrlhTVkpJaUmzyftVk3tb7uOnnrV5xabf0q_TSUP8t1ojR6D3UcMDerMS4pilRk5VuVlMXCOMQmSZqwJ639rAajJIN1VM0YB96A7ns_L8j3bx5pK_ZvfHx5DA93D86eMnuSzpTaC51brH1xXntthF4LfJXjbVz9uO2l9cFMgBAxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcKp5loYCR4AKyNrGT2DkghCirlrKFA5X2FpKxLa20ZLfNRtXe-VX8Omby2C0q9NZrJrYsz3jms-fF2CsojCuiMEftFzgRgZUiVyBFmsReW22jtvD8-Dg5OIk-T-LJFvvd58JQWGWvExtFbedAb-RDauEdSzSI6dB3YRHf9kfvF6eCOkiRp7Vvp9GKyJFbneP1rXp3uI-8fi3l6NP3jwei6zAgAA3xUuQWVFEoCTp0PoAEbOQNaKeM9BGgHg-K2CtVSG_RjqXgAq-lz7UtIlBUxgTnvcFuahWHdMb0ZHPZQzvdZjbpRCCmkb1HVZlhRZcmimJKBYIbI_TfNvES0L3kpG1s3-gu2-lAK__QStk9tuXK--zOhVKGD9ivcd9nl9cX82X43POmGpPjFIeJ2osjof1EZLsq859TqPi05FW9cGeA1hum1AOI0xsxH38d8a5Xj3VVM5iekIHPpqf11Pa02Qox80N2ci37_4htl_PSPWYckSuAiS3IFPc8T4yLfGJsYTyEHkAPWNDvcQZd-XPqwjHLGje8MlnLlgzZkhFbMhzyZj1k0db-uOrnvZ5xWacGqmwjtP8mR4jXKDcqHLCXazKeb3La5KWb1zQFQjpEqakasN1WHtaLUbJp-5QM2NteQDaT_3elT65e6Qt2Cw9W9uXw-Ogpuy3peaGJ79xj28uz2j1DDLYsnjfCztmP6z5dfwDs5kTx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+understanding+of+charge+storage+and+charging+dynamics+in+supercapacitors+with+MOF+electrodes+and+ionic+liquid+electrolytes&rft.jtitle=Nature+materials&rft.au=Bi%2C+Sheng&rft.au=Banda%2C+Harish&rft.au=Chen%2C+Ming&rft.au=Niu%2C+Liang&rft.date=2020-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=5&rft.spage=552&rft.epage=558&rft_id=info:doi/10.1038%2Fs41563-019-0598-7&rft.externalDocID=10_1038_s41563_019_0598_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon