Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes
We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside...
Saved in:
Published in | Nature materials Vol. 19; no. 5; pp. 552 - 558 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.
The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes. |
---|---|
AbstractList | We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes. We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes. We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. |
Author | Wu, Taizheng Bi, Sheng Wang, Jiasheng Niu, Liang Chen, Tianyang Dincă, Mircea Feng, Guang Chen, Mingyu Wang, Runxi Chen, Ming Feng, Jiamao Banda, Harish Kornyshev, Alexei A. |
Author_xml | – sequence: 1 givenname: Sheng orcidid: 0000-0001-8804-7353 surname: Bi fullname: Bi, Sheng organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Department of Chemistry, Faculty of Natural Sciences, Imperial College London – sequence: 2 givenname: Harish surname: Banda fullname: Banda, Harish organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 3 givenname: Ming orcidid: 0000-0002-2188-5472 surname: Chen fullname: Chen, Ming organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Shenzhen Research Institute of HUST – sequence: 4 givenname: Liang orcidid: 0000-0001-8810-1305 surname: Niu fullname: Niu, Liang organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Mingyu orcidid: 0000-0001-7985-8103 surname: Chen fullname: Chen, Mingyu organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Taizheng surname: Wu fullname: Wu, Taizheng organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 7 givenname: Jiasheng orcidid: 0000-0002-8013-0723 surname: Wang fullname: Wang, Jiasheng organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 8 givenname: Runxi surname: Wang fullname: Wang, Runxi organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Jiamao surname: Feng fullname: Feng, Jiamao organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) – sequence: 10 givenname: Tianyang surname: Chen fullname: Chen, Tianyang organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 11 givenname: Mircea orcidid: 0000-0002-1262-1264 surname: Dincă fullname: Dincă, Mircea organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 12 givenname: Alexei A. orcidid: 0000-0002-3157-8791 surname: Kornyshev fullname: Kornyshev, Alexei A. email: a.kornyshev@imperial.ac.uk organization: Department of Chemistry, Faculty of Natural Sciences, Imperial College London – sequence: 13 givenname: Guang orcidid: 0000-0001-6659-9181 surname: Feng fullname: Feng, Guang email: gfeng@hust.edu.cn organization: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32015536$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctqHDEQRYWxiR_JB3gTBNlk07He6l4GE9sBG2-StVDrMZbpkcaSmjB7f3g06XEChnhVRdW5VUXdU3AYU3QAnGP0BSPaXxSGuaAdwkOH-NB38gCcYCZFx4RAh_scY0KOwWkpjwgRzLl4B44pQS2j4gQ836XJmXnSGc7RulyqjjbEFUwemgedVw6WmrJusTWW0q5tt1GvgykwRFjmjctGb7QJDS3wV6gP8O7-Cro2uuZkXfkjDikGA6fwNAf70pu21ZX34MjrqbgP-3gGfl59-3F5093eX3-__HrbGUaH2mlr6DhSYiR2HhlhLPO9kY72xDMjZI9G7ikdibdC4ME45CXxWtqRGYrFQM_A52XuJqen2ZWq1qEYN006ujQXRShHA-KNbOinV-hjmnNs1ynCJEdE0h6_SdGBcYIk3q39uKfmce2s2uSw1nmrXlxoAF4Ak1Mp2fm_CEZq57RanFbNabVzWsmmka807fu6th_XrMP0ppIsytK2xJXL_47-v-g3PlG-GQ |
CitedBy_id | crossref_primary_10_3390_molecules26092631 crossref_primary_10_1016_j_cej_2021_128920 crossref_primary_10_1021_acsenergylett_0c01750 crossref_primary_10_1063_5_0195325 crossref_primary_10_1039_D3CE00883E crossref_primary_10_1021_acs_accounts_3c00788 crossref_primary_10_1016_j_apsusc_2021_150324 crossref_primary_10_1073_pnas_2401656121 crossref_primary_10_1002_cssc_202401176 crossref_primary_10_1002_cjoc_202000543 crossref_primary_10_2139_ssrn_4057607 crossref_primary_10_1016_j_ccr_2022_214967 crossref_primary_10_1021_acsenergylett_4c03296 crossref_primary_10_1021_acs_cgd_2c01305 crossref_primary_10_1002_admt_202000941 crossref_primary_10_1002_smll_202308453 crossref_primary_10_1002_sstr_202100115 crossref_primary_10_1021_acs_energyfuels_3c03735 crossref_primary_10_1016_j_apsusc_2025_162670 crossref_primary_10_1098_rspa_2023_0044 crossref_primary_10_1039_D1DT01729B crossref_primary_10_1039_D4NH00007B crossref_primary_10_1038_s41467_024_45900_0 crossref_primary_10_1039_D0TA06643E crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1016_j_electacta_2020_137181 crossref_primary_10_2139_ssrn_4126724 crossref_primary_10_1016_j_xcrp_2022_100919 crossref_primary_10_1002_ange_202413115 crossref_primary_10_1016_j_electacta_2022_141808 crossref_primary_10_1002_adma_202302280 crossref_primary_10_1039_D1DT03113A crossref_primary_10_3390_electronics12112465 crossref_primary_10_1016_j_nanoen_2021_106630 crossref_primary_10_1021_acs_jctc_3c00359 crossref_primary_10_1002_anie_202112811 crossref_primary_10_1021_acs_jpclett_1c00156 crossref_primary_10_1016_j_cej_2023_143739 crossref_primary_10_1039_D4CP00695J crossref_primary_10_1016_j_chempr_2020_12_007 crossref_primary_10_1021_acs_chemrev_1c00925 crossref_primary_10_1021_jacs_4c05330 crossref_primary_10_1021_jacs_1c03748 crossref_primary_10_1021_acsenergylett_2c01853 crossref_primary_10_1002_smll_202308147 crossref_primary_10_1103_PhysRevLett_128_206001 crossref_primary_10_1016_j_ensm_2022_05_040 crossref_primary_10_1515_gps_2022_8127 crossref_primary_10_1016_j_cej_2022_135301 crossref_primary_10_1039_D4TA06293K crossref_primary_10_1039_D4TA00701H crossref_primary_10_1016_j_electacta_2021_138403 crossref_primary_10_1016_j_est_2022_104225 crossref_primary_10_1002_eom2_12106 crossref_primary_10_1016_j_jcis_2024_02_041 crossref_primary_10_1039_D3CS00906H crossref_primary_10_1039_D4TA04514A crossref_primary_10_1063_5_0091322 crossref_primary_10_1021_acs_jpcc_3c08105 crossref_primary_10_1021_acsphyschemau_4c00104 crossref_primary_10_1039_D2TA03074H crossref_primary_10_1002_aic_18189 crossref_primary_10_1016_j_nanoen_2024_109559 crossref_primary_10_1039_D1CP03888E crossref_primary_10_1002_adma_202404232 crossref_primary_10_1021_jacs_3c04625 crossref_primary_10_1016_j_jallcom_2021_160423 crossref_primary_10_1016_j_ensm_2022_05_020 crossref_primary_10_1002_celc_202100286 crossref_primary_10_1016_j_cej_2022_140905 crossref_primary_10_1021_acsanm_2c00306 crossref_primary_10_1002_smll_202303911 crossref_primary_10_1016_j_jiec_2022_10_006 crossref_primary_10_1039_D2CP01840C crossref_primary_10_1039_D0TB01352H crossref_primary_10_1360_SSC_2021_0250 crossref_primary_10_1021_acs_chemmater_4c00229 crossref_primary_10_3390_batteries9030160 crossref_primary_10_1021_acs_inorgchem_2c01285 crossref_primary_10_1021_acs_inorgchem_2c03226 crossref_primary_10_1039_D3CE00622K crossref_primary_10_1002_advs_201903109 crossref_primary_10_1039_D3TA04708C crossref_primary_10_1002_anie_202317413 crossref_primary_10_1016_j_jallcom_2022_167100 crossref_primary_10_1016_j_carbon_2023_118090 crossref_primary_10_1016_j_cej_2023_148260 crossref_primary_10_1021_acsnano_3c03886 crossref_primary_10_2139_ssrn_4095295 crossref_primary_10_1016_j_recm_2024_03_001 crossref_primary_10_1038_s41467_023_40590_6 crossref_primary_10_2139_ssrn_4100151 crossref_primary_10_1002_anie_202413115 crossref_primary_10_1021_acsomega_2c07187 crossref_primary_10_1002_smtd_202200806 crossref_primary_10_1016_j_mtcomm_2022_104657 crossref_primary_10_1016_j_cej_2022_138052 crossref_primary_10_1002_admi_202100642 crossref_primary_10_1021_jacs_1c00666 crossref_primary_10_1088_1674_4926_41_9_091707 crossref_primary_10_1016_j_cej_2024_154665 crossref_primary_10_1021_acs_chemrev_2c00728 crossref_primary_10_1021_acsami_3c12270 crossref_primary_10_1002_adfm_202110223 crossref_primary_10_1021_acs_jpclett_1c03900 crossref_primary_10_1016_j_jcis_2020_11_037 crossref_primary_10_1021_acs_chemmater_1c04285 crossref_primary_10_1016_j_chemosphere_2021_130913 crossref_primary_10_1021_acs_jpcc_1c10956 crossref_primary_10_1002_anie_202006102 crossref_primary_10_1039_D4QI02314E crossref_primary_10_1103_PRXEnergy_2_043006 crossref_primary_10_1002_smll_202200602 crossref_primary_10_1002_sstr_202100195 crossref_primary_10_20517_energymater_2023_20 crossref_primary_10_1016_j_jallcom_2023_169285 crossref_primary_10_1007_s12274_022_4307_5 crossref_primary_10_1016_j_joule_2024_01_014 crossref_primary_10_1002_adfm_202008422 crossref_primary_10_1021_acsnano_4c12712 crossref_primary_10_1002_smll_202309256 crossref_primary_10_1007_s11664_023_10507_6 crossref_primary_10_1016_j_ccr_2022_214670 crossref_primary_10_1088_2632_959X_ad0446 crossref_primary_10_1002_adma_202006147 crossref_primary_10_1016_j_est_2025_115297 crossref_primary_10_1016_j_ccr_2024_216098 crossref_primary_10_1016_j_electacta_2023_143302 crossref_primary_10_1016_j_apsusc_2022_152847 crossref_primary_10_1039_D2QM00503D crossref_primary_10_1021_acs_jctc_0c00607 crossref_primary_10_3390_batteries10100339 crossref_primary_10_1016_j_est_2024_110673 crossref_primary_10_1039_D0TA06195F crossref_primary_10_3390_inorganics12070186 crossref_primary_10_1016_j_ces_2023_118718 crossref_primary_10_1016_j_est_2022_105727 crossref_primary_10_1002_adfm_202414229 crossref_primary_10_1016_j_mtsust_2024_100775 crossref_primary_10_1021_acs_jpcc_1c06578 crossref_primary_10_1039_D4RA01324G crossref_primary_10_1016_j_enchem_2020_100029 crossref_primary_10_1016_j_ensm_2021_02_027 crossref_primary_10_1002_adfm_202101303 crossref_primary_10_1002_chem_202001211 crossref_primary_10_1002_adfm_202308497 crossref_primary_10_2139_ssrn_4007274 crossref_primary_10_1002_adma_202101216 crossref_primary_10_1016_j_scitotenv_2023_163478 crossref_primary_10_1021_acsaelm_3c00022 crossref_primary_10_1002_anie_202303903 crossref_primary_10_1002_adfm_202110258 crossref_primary_10_1016_j_surfin_2024_105174 crossref_primary_10_2139_ssrn_3985234 crossref_primary_10_1016_j_est_2021_102289 crossref_primary_10_1016_j_molstruc_2021_132184 crossref_primary_10_1016_S1872_5805_21_60038_0 crossref_primary_10_1039_D4SC02699C crossref_primary_10_1016_j_jechem_2021_12_041 crossref_primary_10_1016_j_jtice_2020_12_020 crossref_primary_10_1016_j_xcrp_2022_100979 crossref_primary_10_1039_D0DT04363J crossref_primary_10_1039_D2CC07081B crossref_primary_10_1016_j_mser_2022_100713 crossref_primary_10_6023_A22120494 crossref_primary_10_1002_adma_202403202 crossref_primary_10_1016_j_cej_2025_161555 crossref_primary_10_1021_acsaelm_2c00388 crossref_primary_10_1016_j_est_2022_105700 crossref_primary_10_1038_s43588_021_00153_5 crossref_primary_10_1016_j_carbon_2024_119736 crossref_primary_10_1039_D2SC03389E crossref_primary_10_1016_j_ensm_2024_103368 crossref_primary_10_1016_j_trechm_2023_03_002 crossref_primary_10_1021_acsaem_0c02758 crossref_primary_10_1002_anie_202106055 crossref_primary_10_1016_j_ccr_2024_216020 crossref_primary_10_1021_acssensors_3c00715 crossref_primary_10_1016_j_ccr_2021_214300 crossref_primary_10_1039_D0SC01762K crossref_primary_10_1016_j_xcrp_2022_100866 crossref_primary_10_1021_acsami_3c04454 crossref_primary_10_1016_j_esci_2023_100092 crossref_primary_10_3390_polym12040918 crossref_primary_10_1016_j_est_2023_110320 crossref_primary_10_1021_acsnano_2c07272 crossref_primary_10_1063_5_0094553 crossref_primary_10_1149_1945_7111_ac4841 crossref_primary_10_1002_smll_202001987 crossref_primary_10_1039_D4TA08063G crossref_primary_10_1039_D0CS01160F crossref_primary_10_1002_anie_202402526 crossref_primary_10_1016_j_jelechem_2020_114915 crossref_primary_10_1016_j_recm_2023_03_004 crossref_primary_10_1007_s11581_023_04906_2 crossref_primary_10_1016_j_seppur_2022_120736 crossref_primary_10_1002_admt_202200258 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1111_nyas_14906 crossref_primary_10_1021_acs_iecr_0c05190 crossref_primary_10_1021_acs_jpcc_1c10629 crossref_primary_10_1002_aenm_202003994 crossref_primary_10_1039_D2TA06006J crossref_primary_10_1002_adsu_202100152 crossref_primary_10_1016_j_electacta_2023_143500 crossref_primary_10_1002_cphc_202400569 crossref_primary_10_1016_j_cej_2022_134750 crossref_primary_10_1007_s11581_022_04557_9 crossref_primary_10_1021_jacs_4c00508 crossref_primary_10_1002_aelm_202000944 crossref_primary_10_1039_D4TA04301D crossref_primary_10_1016_j_cej_2022_135607 crossref_primary_10_1002_wcms_70009 crossref_primary_10_1002_advs_202104753 crossref_primary_10_1016_j_mtnano_2020_100105 crossref_primary_10_1016_j_cej_2020_127520 crossref_primary_10_1016_j_est_2024_110529 crossref_primary_10_1002_adma_202500943 crossref_primary_10_1039_D4TA02137A crossref_primary_10_1016_j_ensm_2022_03_042 crossref_primary_10_1007_s12274_020_2874_x crossref_primary_10_1016_j_jallcom_2021_159702 crossref_primary_10_1002_smll_202104649 crossref_primary_10_1016_j_cej_2022_137919 crossref_primary_10_1016_j_apsusc_2021_151888 crossref_primary_10_1016_j_ccr_2023_215304 crossref_primary_10_1002_celc_202200274 crossref_primary_10_1002_aenm_202402795 crossref_primary_10_1021_acsami_1c15754 crossref_primary_10_1021_acs_jctc_3c00940 crossref_primary_10_1016_j_molliq_2023_122542 crossref_primary_10_1002_adma_202307151 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1021_envhealth_4c00088 crossref_primary_10_1088_1361_648X_ad386f crossref_primary_10_1002_adma_202204272 crossref_primary_10_1002_smll_202301153 crossref_primary_10_3390_coatings11070854 crossref_primary_10_1002_aic_18313 crossref_primary_10_1016_j_jclepro_2022_131161 crossref_primary_10_1039_D0SC03429K crossref_primary_10_1016_j_jcis_2022_01_137 crossref_primary_10_1016_j_memsci_2021_119407 crossref_primary_10_1016_j_nanoen_2022_107571 crossref_primary_10_1002_admt_202201828 crossref_primary_10_1016_j_electacta_2024_145130 crossref_primary_10_1021_acs_jpclett_3c03248 crossref_primary_10_1016_j_ijbiomac_2023_127989 crossref_primary_10_1039_D0TA03547E crossref_primary_10_1016_j_electacta_2022_141694 crossref_primary_10_1016_j_cclet_2023_108354 crossref_primary_10_1021_acsnano_4c01787 crossref_primary_10_1016_j_jallcom_2021_160074 crossref_primary_10_1016_j_jcis_2021_08_087 crossref_primary_10_1021_jacs_4c11782 crossref_primary_10_1039_D1TA00652E crossref_primary_10_1016_j_ccr_2021_213804 crossref_primary_10_1021_acsaem_1c01694 crossref_primary_10_1016_j_cej_2022_138347 crossref_primary_10_1021_acsami_0c19212 crossref_primary_10_1016_j_renene_2021_08_103 crossref_primary_10_1039_D2SE00092J crossref_primary_10_1007_s11581_020_03899_6 crossref_primary_10_1016_j_jpowsour_2024_235170 crossref_primary_10_1021_acsaem_4c03246 crossref_primary_10_1021_acs_inorgchem_1c02174 crossref_primary_10_1016_j_ssnmr_2022_101811 crossref_primary_10_1021_jacs_4c03827 crossref_primary_10_1016_j_est_2024_110953 crossref_primary_10_1103_PhysRevLett_134_046201 crossref_primary_10_3390_inorganics11040169 crossref_primary_10_1016_j_jpowsour_2022_231163 crossref_primary_10_1016_j_jelechem_2022_117096 crossref_primary_10_1016_j_envpol_2021_118076 crossref_primary_10_1016_j_fuel_2024_131504 crossref_primary_10_1007_s40820_023_01178_3 crossref_primary_10_1007_s41918_022_00131_z crossref_primary_10_1016_j_cej_2021_131328 crossref_primary_10_1039_D0CS00721H crossref_primary_10_1021_acs_langmuir_4c01431 crossref_primary_10_1039_D2DT02857C crossref_primary_10_1063_5_0176346 crossref_primary_10_1016_j_scib_2023_08_042 crossref_primary_10_1007_s42114_023_00765_7 crossref_primary_10_1021_acs_energyfuels_1c01722 crossref_primary_10_1002_ange_202006102 crossref_primary_10_1039_D3DT02354K crossref_primary_10_1002_smtd_202300808 crossref_primary_10_1016_j_est_2021_102310 crossref_primary_10_1039_D1NR07915H crossref_primary_10_1016_j_jpowsour_2020_228698 crossref_primary_10_1088_2515_7655_acfe9b crossref_primary_10_1002_advs_202205760 crossref_primary_10_1021_acsaelm_1c00297 crossref_primary_10_1039_D4CP02487G crossref_primary_10_1039_D2SC04898A crossref_primary_10_1002_adma_202209652 crossref_primary_10_1021_acs_langmuir_4c02651 crossref_primary_10_1016_j_snb_2021_129885 crossref_primary_10_1016_j_synthmet_2024_117627 crossref_primary_10_1002_ange_202317413 crossref_primary_10_1021_acs_nanolett_4c02678 crossref_primary_10_1016_j_electacta_2021_139057 crossref_primary_10_1021_acsenergylett_4c00544 crossref_primary_10_1002_elsa_202100038 crossref_primary_10_1007_s11426_024_2277_2 crossref_primary_10_1002_zaac_202200115 crossref_primary_10_1063_5_0028232 crossref_primary_10_1039_D3ME00007A crossref_primary_10_1002_adfm_202310270 crossref_primary_10_1021_acsnano_1c07339 crossref_primary_10_1016_j_cej_2020_126810 crossref_primary_10_1016_j_gce_2020_10_006 crossref_primary_10_1039_D1NR00593F crossref_primary_10_1126_sciadv_adk9752 crossref_primary_10_2139_ssrn_4002361 crossref_primary_10_1002_adfm_202008900 crossref_primary_10_1016_j_vacuum_2022_111731 crossref_primary_10_1039_D1SC05431G crossref_primary_10_1002_cnma_202400011 crossref_primary_10_1007_s10008_020_04762_4 crossref_primary_10_1021_acsnano_4c01590 crossref_primary_10_1016_j_jechem_2021_01_003 crossref_primary_10_1007_s40843_024_3109_5 crossref_primary_10_1515_nanoph_2023_0053 crossref_primary_10_1039_D4YA00332B crossref_primary_10_1016_j_snb_2021_130760 crossref_primary_10_1103_PhysRevLett_128_086001 crossref_primary_10_1021_acs_jpcc_4c00619 crossref_primary_10_1021_acsami_1c15734 crossref_primary_10_1039_D3EE03819J crossref_primary_10_1039_D0NR09167G crossref_primary_10_1002_slct_202304973 crossref_primary_10_1088_1361_6528_abdf8e crossref_primary_10_1021_acsami_1c01339 crossref_primary_10_1021_jacs_4c11372 crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1002_idm2_12108 crossref_primary_10_1021_acs_langmuir_1c02922 crossref_primary_10_1016_j_surfcoat_2020_126679 crossref_primary_10_1039_D1TA04026J crossref_primary_10_1016_j_nantod_2024_102154 crossref_primary_10_1002_smsc_202200042 crossref_primary_10_1021_acsami_1c14537 crossref_primary_10_1021_acs_energyfuels_1c00321 crossref_primary_10_1016_j_electacta_2021_139192 crossref_primary_10_1039_D0TA12624A crossref_primary_10_1021_jacs_4c11243 crossref_primary_10_1021_acs_chemrev_9b00693 crossref_primary_10_1016_j_est_2021_102528 crossref_primary_10_1021_acs_energyfuels_3c00092 crossref_primary_10_1016_j_ensm_2020_12_013 crossref_primary_10_1039_D2SC05090K crossref_primary_10_1016_j_ensm_2024_103859 crossref_primary_10_1016_j_coelec_2022_101030 crossref_primary_10_1016_j_apt_2021_02_030 crossref_primary_10_1016_j_chemosphere_2022_133670 crossref_primary_10_1016_j_electacta_2024_145543 crossref_primary_10_3390_nano12040587 crossref_primary_10_1002_ange_202402526 crossref_primary_10_1016_j_cej_2021_128767 crossref_primary_10_1002_adma_202200999 crossref_primary_10_3390_ma14112942 crossref_primary_10_1021_acs_jpcc_3c03814 crossref_primary_10_1016_j_cej_2022_140804 crossref_primary_10_1016_j_mtphys_2024_101498 crossref_primary_10_1016_j_electacta_2021_138289 crossref_primary_10_1016_j_conbuildmat_2024_136167 crossref_primary_10_1007_s40544_021_0566_5 crossref_primary_10_1016_j_cej_2022_137409 crossref_primary_10_1002_cnma_202300171 crossref_primary_10_1002_adma_202004654 crossref_primary_10_1016_j_apsusc_2022_154241 crossref_primary_10_1063_5_0053253 crossref_primary_10_1021_acs_jpcb_0c09332 crossref_primary_10_1002_aesr_202100024 crossref_primary_10_1126_sciadv_add9627 crossref_primary_10_1002_adfm_202310902 crossref_primary_10_1002_ange_202112811 crossref_primary_10_1021_acssuschemeng_2c06191 crossref_primary_10_1016_j_ijoes_2024_100691 crossref_primary_10_1055_s_0044_1786500 crossref_primary_10_1002_smll_202107778 crossref_primary_10_1021_acs_jpclett_3c02561 crossref_primary_10_1016_j_radphyschem_2024_111580 crossref_primary_10_1002_adma_202406178 crossref_primary_10_1021_jacs_4c06935 crossref_primary_10_1021_acs_jpcb_3c01559 crossref_primary_10_1002_adma_202301118 crossref_primary_10_2174_0118779468279377240318035448 crossref_primary_10_1002_eem2_12124 crossref_primary_10_1021_acs_inorgchem_2c02866 crossref_primary_10_1021_acs_inorgchem_0c00060 crossref_primary_10_1039_D4TA01820F crossref_primary_10_1002_slct_202200092 crossref_primary_10_1016_j_electacta_2022_140555 crossref_primary_10_1016_j_est_2025_115731 crossref_primary_10_1016_j_cej_2022_136452 crossref_primary_10_1016_j_jcis_2021_05_149 crossref_primary_10_1002_ange_202303903 crossref_primary_10_1002_aesr_202100042 crossref_primary_10_1039_D1CP05355H crossref_primary_10_1063_5_0166034 crossref_primary_10_1016_j_jcis_2023_12_026 crossref_primary_10_1021_jacs_0c05130 crossref_primary_10_1021_acsami_3c12913 crossref_primary_10_1063_5_0081827 crossref_primary_10_1016_j_molliq_2022_120116 crossref_primary_10_1039_D1DT02323C crossref_primary_10_1021_acs_nanolett_4c00408 crossref_primary_10_1021_jacs_0c10849 crossref_primary_10_1063_5_0160729 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1016_j_jallcom_2021_159348 crossref_primary_10_1002_adfm_202002664 crossref_primary_10_1016_j_micromeso_2022_112089 crossref_primary_10_1002_batt_202300536 crossref_primary_10_1007_s12598_022_02016_y crossref_primary_10_2139_ssrn_4052322 crossref_primary_10_1021_acsnano_4c14258 crossref_primary_10_1021_acs_chemrev_2c00097 crossref_primary_10_2139_ssrn_4003181 crossref_primary_10_1021_acs_jpclett_1c01131 crossref_primary_10_1039_D1CS00992C crossref_primary_10_1016_j_mtphys_2023_101174 crossref_primary_10_1016_j_memsci_2021_119682 crossref_primary_10_1002_adfm_202313027 crossref_primary_10_2139_ssrn_4051664 crossref_primary_10_3390_molecules29061246 crossref_primary_10_1002_adma_202301011 crossref_primary_10_1007_s11705_021_2036_z crossref_primary_10_1007_s11467_023_1258_6 crossref_primary_10_1002_adma_202405079 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1021_acs_iecr_2c03667 crossref_primary_10_1002_chem_202100768 crossref_primary_10_1002_adma_202312382 crossref_primary_10_1007_s11630_022_1716_4 crossref_primary_10_1515_ntrev_2022_0042 crossref_primary_10_1002_smll_202205936 crossref_primary_10_3390_chemosensors11070402 crossref_primary_10_1016_j_seppur_2024_128056 crossref_primary_10_1002_ange_202106055 crossref_primary_10_1039_D0QM00936A crossref_primary_10_1007_s12598_022_02115_w crossref_primary_10_1021_acscentsci_3c00027 crossref_primary_10_1002_eem2_12521 crossref_primary_10_1021_acs_jpcc_2c01121 crossref_primary_10_1016_j_ensm_2022_08_035 crossref_primary_10_1515_revic_2024_0137 crossref_primary_10_1039_D2NR02812C crossref_primary_10_1039_D2DT02624D crossref_primary_10_1002_smll_202203307 crossref_primary_10_1039_D1TA01818C crossref_primary_10_1002_chem_202400157 crossref_primary_10_1021_acsami_1c23885 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1021_jacs_1c03039 crossref_primary_10_1021_acs_langmuir_3c03397 crossref_primary_10_1002_adma_202300064 crossref_primary_10_1016_j_est_2022_105378 crossref_primary_10_1038_s41467_025_57893_5 crossref_primary_10_1021_acs_jpclett_2c03330 crossref_primary_10_1039_D0EE02649B crossref_primary_10_6023_A22010024 crossref_primary_10_1016_j_cej_2023_141910 crossref_primary_10_2139_ssrn_4102608 crossref_primary_10_1002_tcr_202300141 crossref_primary_10_1016_j_ces_2024_120321 crossref_primary_10_1021_acs_jpcb_0c02643 crossref_primary_10_1016_j_diamond_2022_108912 crossref_primary_10_1088_1402_4896_ad8320 crossref_primary_10_1360_SSC_2022_0073 crossref_primary_10_1021_acsaem_0c02062 crossref_primary_10_1007_s40843_022_2341_2 crossref_primary_10_1002_cey2_45 crossref_primary_10_1002_smll_202303189 crossref_primary_10_1002_cey2_504 crossref_primary_10_1002_aenm_202300401 crossref_primary_10_1038_s41563_020_0747_z |
Cites_doi | 10.1038/nmat3916 10.1088/0953-8984/23/2/022201 10.1038/s41578-018-0069-9 10.1021/jp5047062 10.1038/nmat3260 10.1126/science.1230444 10.1021/jacs.8b06020 10.1021/ja502765n 10.1021/nn900500n 10.1088/1361-6528/aa8948 10.1038/nenergy.2016.70 10.1039/C7CS00283A 10.1039/c0cp02778b 10.1039/C7TA05153K 10.1016/j.jpowsour.2010.05.043 10.1021/acs.jpcc.5b05930 10.1021/nn5027092 10.1126/science.1239089 10.1016/j.rser.2015.12.249 10.1002/adma.201703614 10.1016/j.ensm.2017.06.009 10.1063/1.2408420 10.1002/anie.201506219 10.1002/ijch.201800078 10.1016/0927-0256(96)00008-0 10.1038/nmat4766 10.1016/j.chempr.2016.12.002 10.1021/acs.chemrev.8b00252 10.1038/nmat2448 10.1016/j.cplett.2010.10.010 10.1021/cr400374x 10.1038/nmat2297 10.1021/ja104273r 10.1021/ja00051a040 10.1021/ja108766y 10.1038/nmat4974 10.1002/advs.201700059 10.1021/ja7106178 10.1038/s41560-017-0044-5 10.1021/jacs.8b06666 10.1063/1.2776887 10.1038/nnano.2009.177 10.1039/C5CS00303B 10.3390/polym10090962 10.1021/je900789j 10.1016/j.joule.2017.07.018 10.1021/acsnano.5b00945 10.1021/acs.chemrev.6b00504 10.1021/cr500411q 10.1021/ct700301q |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-019-0598-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 558 |
ExternalDocumentID | 32015536 10_1038_s41563_019_0598_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shenzhen Basic Research Project (JCYJ20170307171511292) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51876072, 51836003; 51876072, 51836003; 51876072, 51836003 funderid: https://doi.org/10.13039/501100001809 – fundername: Leverhulme Trust grantid: RPG-2016-223 funderid: https://doi.org/10.13039/501100000275 – fundername: the Army Research Office (W911NF-17-1-0174) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51876072, 51836003 – fundername: Leverhulme Trust grantid: RPG-2016-223 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c439t-adc3bb32c71ef0c6cd4f8c7e382f4c6780b5f33b2fd6619ce0f72fa7db4c31693 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu Jul 10 18:21:18 EDT 2025 Fri Jul 25 09:01:47 EDT 2025 Sat Aug 23 14:59:42 EDT 2025 Wed Feb 19 02:29:51 EST 2025 Thu Apr 24 22:58:48 EDT 2025 Tue Jul 01 02:14:00 EDT 2025 Fri Feb 21 02:40:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-adc3bb32c71ef0c6cd4f8c7e382f4c6780b5f33b2fd6619ce0f72fa7db4c31693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8013-0723 0000-0002-1262-1264 0000-0001-8804-7353 0000-0001-7985-8103 0000-0002-3157-8791 0000-0002-2188-5472 0000-0001-8810-1305 0000-0001-6659-9181 |
PMID | 32015536 |
PQID | 2394520719 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2350905693 proquest_journals_2475027381 proquest_journals_2394520719 pubmed_primary_32015536 crossref_primary_10_1038_s41563_019_0598_7 crossref_citationtrail_10_1038_s41563_019_0598_7 springer_journals_10_1038_s41563_019_0598_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sheberla (CR32) 2014; 136 Largeot (CR21) 2008; 130 Xia, Chen, Li, Tao (CR49) 2009; 4 Vatamanu, Vatamanu, Bedrov (CR41) 2015; 9 Simon, Gogotsi (CR1) 2008; 7 Sun (CR2) 2018; 4 Sheberla (CR10) 2017; 16 Hess, Kutzner, van der Spoel, Lindahl (CR45) 2008; 4 Choi (CR9) 2014; 8 Nonoguchi, Sato, Kawai (CR36) 2018; 10 Furukawa, Cordova, O’Keeffe, Yaghi (CR3) 2013; 341 Park (CR35) 2018; 140 Yang, Cheng, Wang, Qiu, Li (CR23) 2013; 341 Wang, Zhu, Zou, Xu (CR5) 2017; 2 Fletcher (CR27) 2010; 195 Guan, Yu, Wu, Lou (CR4) 2017; 29 Watanabe (CR13) 2017; 117 Eftekhari (CR38) 2017; 9 Merlet (CR31) 2012; 11 Feng (CR8) 2018; 3 Rappe, Casewit, Colwell, Goddard, Skiff (CR44) 1992; 114 Zhan, Neal, Wu, Jiang (CR50) 2015; 119 Sun (CR34) 2017; 1 Li, Wang (CR40) 2018; 58 Bussi, Donadio, Parrinello (CR46) 2007; 126 Zhou, Wang (CR7) 2017; 46 Zhan (CR17) 2017; 4 Kondrat, Kornyshev (CR29) 2011; 23 Armand, Endres, MacFarlane, Ohno, Scrosati (CR14) 2009; 8 Salanne (CR15) 2016; 1 Stoppa, Zech, Kunz, Buchner (CR28) 2010; 55 Sun, Campbell, Dincă (CR6) 2016; 55 Izadi-Najafabadi, Futaba, Iijima, Hata (CR37) 2010; 132 Kresse, Furthmüller (CR43) 1996; 6 González, Goikolea, Barrena, Mysyk (CR39) 2016; 58 Chaban, Voroshylova, Kalugin (CR33) 2011; 13 Gingrich, Wilson (CR47) 2010; 500 Vatamanu, Borodin, Olguin, Yushin, Bedrov (CR16) 2017; 5 Yang (CR24) 2017; 28 Zhong (CR22) 2015; 44 Kornyshev, Qiao (CR20) 2014; 118 Futamura (CR30) 2017; 16 Kondrat, Wu, Qiao, Kornyshev (CR25) 2014; 13 Masarapu, Zeng, Hung, Wei (CR26) 2009; 3 Vatamanu, Borodin, Smith (CR19) 2010; 132 Hayes, Warr, Atkin (CR12) 2015; 115 Park (CR42) 2018; 140 Fang, Konar, Xing, Jena (CR48) 2007; 91 Fedorov, Kornyshev (CR11) 2014; 114 Shao (CR18) 2018; 118 Y Nonoguchi (598_CR36) 2018; 10 J Xia (598_CR49) 2009; 4 A González (598_CR39) 2016; 58 AA Kornyshev (598_CR20) 2014; 118 M Armand (598_CR14) 2009; 8 C Masarapu (598_CR26) 2009; 3 S Kondrat (598_CR29) 2011; 23 J Vatamanu (598_CR19) 2010; 132 H Wang (598_CR5) 2017; 2 MV Fedorov (598_CR11) 2014; 114 J Vatamanu (598_CR41) 2015; 9 R Futamura (598_CR30) 2017; 16 AK Rappe (598_CR44) 1992; 114 A Stoppa (598_CR28) 2010; 55 C Largeot (598_CR21) 2008; 130 P Li (598_CR40) 2018; 58 BY Guan (598_CR4) 2017; 29 D Sheberla (598_CR32) 2014; 136 L Sun (598_CR6) 2016; 55 L Sun (598_CR34) 2017; 1 H Sun (598_CR2) 2018; 4 A Izadi-Najafabadi (598_CR37) 2010; 132 TR Gingrich (598_CR47) 2010; 500 C Zhan (598_CR50) 2015; 119 P Simon (598_CR1) 2008; 7 G Bussi (598_CR46) 2007; 126 D Sheberla (598_CR10) 2017; 16 KM Choi (598_CR9) 2014; 8 J Park (598_CR42) 2018; 140 D Feng (598_CR8) 2018; 3 R Hayes (598_CR12) 2015; 115 M Salanne (598_CR15) 2016; 1 S Kondrat (598_CR25) 2014; 13 VV Chaban (598_CR33) 2011; 13 C Zhong (598_CR22) 2015; 44 M Watanabe (598_CR13) 2017; 117 H Yang (598_CR24) 2017; 28 B Hess (598_CR45) 2008; 4 H Furukawa (598_CR3) 2013; 341 SI Fletcher (598_CR27) 2010; 195 C Merlet (598_CR31) 2012; 11 J Zhou (598_CR7) 2017; 46 G Kresse (598_CR43) 1996; 6 J Vatamanu (598_CR16) 2017; 5 J Park (598_CR35) 2018; 140 X Yang (598_CR23) 2013; 341 A Eftekhari (598_CR38) 2017; 9 T Fang (598_CR48) 2007; 91 C Zhan (598_CR17) 2017; 4 Y Shao (598_CR18) 2018; 118 |
References_xml | – volume: 115 start-page: 6357 year: 2015 end-page: 6426 ident: CR12 article-title: Structure and nanostructure in ionic liquids publication-title: Chem. Rev. – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: CR39 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sustain. Energy Rev. – volume: 55 start-page: 1768 year: 2010 end-page: 1773 ident: CR28 article-title: The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of cation’s alkyl chain publication-title: J. Chem. Eng. Data – volume: 13 start-page: 387 year: 2014 end-page: 393 ident: CR25 article-title: Accelerating charging dynamics in subnanometre pores publication-title: Nat. Mater. – volume: 195 start-page: 7484 year: 2010 end-page: 7488 ident: CR27 article-title: The effects of temperature on the performance of electrochemical double layer capacitors publication-title: J. Power Sources – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR43 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 10 start-page: 962 year: 2018 ident: CR36 article-title: Crystallinity-dependent thermoelectric properties of a two-dimensional coordination polymer: Ni (2,3,6,7,10,11-hexaiminotriphenylene) publication-title: Polymers – volume: 114 start-page: 10024 year: 1992 end-page: 10035 ident: CR44 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 14825 year: 2010 end-page: 14833 ident: CR19 article-title: Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 7190 year: 2017 end-page: 7239 ident: CR13 article-title: Application of ionic liquids to energy storage and conversion materials and devices publication-title: Chem. Rev. – volume: 132 start-page: 18017 year: 2010 end-page: 18019 ident: CR37 article-title: Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: CR45 article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. – volume: 2 start-page: 52 year: 2017 end-page: 80 ident: CR5 article-title: Metal-organic frameworks for energy applications publication-title: Chem – volume: 23 start-page: 022201 year: 2011 ident: CR29 article-title: Superionic state in double-layer capacitors with nanoporous electrodes publication-title: J. Phys. Condens. Matter – volume: 91 start-page: 092109 year: 2007 end-page: 092103 ident: CR48 article-title: Carrier statistics and quantum capacitance of graphene sheets and ribbons publication-title: Appl. Phys. Lett. – volume: 8 start-page: 7451 year: 2014 end-page: 7457 ident: CR9 article-title: Supercapacitors of nanocrystalline metal–organic frameworks publication-title: ACS Nano – volume: 16 start-page: 220 year: 2017 end-page: 224 ident: CR10 article-title: Conductive MOF electrodes for stable supercapacitors with high areal capacitance publication-title: Nat. Mater. – volume: 4 start-page: 45 year: 2018 end-page: 60 ident: CR2 article-title: Hierarchical 3D electrodes for electrochemical energy storage publication-title: Nat. Rev. Mater. – volume: 1 start-page: 168 year: 2017 end-page: 177 ident: CR34 article-title: A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity publication-title: Joule – volume: 9 start-page: 47 year: 2017 end-page: 69 ident: CR38 article-title: Supercapacitors utilising ionic liquids publication-title: Energy Storage Mater. – volume: 16 start-page: 1225 year: 2017 ident: CR30 article-title: Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores publication-title: Nat. Mater. – volume: 55 start-page: 3566 year: 2016 end-page: 3579 ident: CR6 article-title: Electrically conductive porous metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 621 year: 2009 end-page: 629 ident: CR14 article-title: Ionic-liquid materials for the electrochemical challenges of the future publication-title: Nat. Mater. – volume: 140 start-page: 10315 year: 2018 end-page: 10323 ident: CR35 article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8859 year: 2014 end-page: 8862 ident: CR32 article-title: High electrical conductivity in Ni (2,3,6,7,10,11-hexaiminotriphenylene) , a semiconducting metal–organic graphene analogue publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 1010 year: 2018 end-page: 1018 ident: CR40 article-title: Recent development and application of conductive MOFs publication-title: Isr. J. Chem. – volume: 140 start-page: 14533 year: 2018 end-page: 14537 ident: CR42 article-title: Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal–organic framework publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 30 year: 2018 end-page: 36 ident: CR8 article-title: Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance publication-title: Nat. Energy – volume: 11 start-page: 306 year: 2012 end-page: 310 ident: CR31 article-title: On the molecular origin of supercapacitance in nanoporous carbon electrodes publication-title: Nat. Mater. – volume: 4 start-page: 505 year: 2009 end-page: 509 ident: CR49 article-title: Measurement of the quantum capacitance of graphene publication-title: Nat. Nanotechnol. – volume: 29 start-page: 1703614 year: 2017 ident: CR4 article-title: Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion publication-title: Adv. Mater. – volume: 44 start-page: 7484 year: 2015 end-page: 7539 ident: CR22 article-title: A review of electrolyte materials and compositions for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 119 start-page: 22297 year: 2015 end-page: 22303 ident: CR50 article-title: Quantum effects on the capacitance of graphene-based electrodes publication-title: J. Phys. Chem. C – volume: 28 start-page: 445401 year: 2017 ident: CR24 article-title: Graphene supercapacitor with both high power and energy density publication-title: Nanotechnology – volume: 9 start-page: 5999 year: 2015 end-page: 6017 ident: CR41 article-title: Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes publication-title: ACS Nano – volume: 13 start-page: 7910 year: 2011 end-page: 7920 ident: CR33 article-title: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 9233 year: 2018 end-page: 9280 ident: CR18 article-title: Design and mechanisms of asymmetric supercapacitors publication-title: Chem. Rev. – volume: 341 start-page: 534 year: 2013 end-page: 537 ident: CR23 article-title: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage publication-title: Science – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: CR1 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. – volume: 114 start-page: 2978 year: 2014 end-page: 3036 ident: CR11 article-title: Ionic liquids at electrified interfaces publication-title: Chem. Rev. – volume: 341 start-page: 1230444 year: 2013 ident: CR3 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science – volume: 3 start-page: 2199 year: 2009 end-page: 2206 ident: CR26 article-title: Effect of temperature on the capacitance of carbon nanotube supercapacitors publication-title: ACS Nano – volume: 1 start-page: 16070 year: 2016 ident: CR15 article-title: Efficient storage mechanisms for building better supercapacitors publication-title: Nat. Energy – volume: 130 start-page: 2730 year: 2008 end-page: 2731 ident: CR21 article-title: Relation between the ion size and pore size for an electric double-layer capacitor publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1700059 year: 2017 ident: CR17 article-title: Computational insights into materials and interfaces for capacitive energy storage publication-title: Adv. Sci. – volume: 126 start-page: 014101 year: 2007 ident: CR46 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. – volume: 118 start-page: 18285 year: 2014 end-page: 18290 ident: CR20 article-title: Three-dimensional double layers publication-title: J. Phys. Chem. C – volume: 5 start-page: 21049 year: 2017 end-page: 21076 ident: CR16 article-title: Charge storage at the nanoscale: understanding the trends from the molecular scale perspective publication-title: J. Mater. Chem. A – volume: 500 start-page: 178 year: 2010 end-page: 183 ident: CR47 article-title: On the Ewald summation of Gaussian charges for the simulation of metallic surfaces publication-title: Chem. Phys. Lett. – volume: 46 start-page: 6927 year: 2017 end-page: 6945 ident: CR7 article-title: Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage publication-title: Chem. Soc. Rev. – volume: 13 start-page: 387 year: 2014 ident: 598_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat3916 – volume: 23 start-page: 022201 year: 2011 ident: 598_CR29 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/23/2/022201 – volume: 4 start-page: 45 year: 2018 ident: 598_CR2 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0069-9 – volume: 118 start-page: 18285 year: 2014 ident: 598_CR20 publication-title: J. Phys. Chem. C doi: 10.1021/jp5047062 – volume: 11 start-page: 306 year: 2012 ident: 598_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat3260 – volume: 341 start-page: 1230444 year: 2013 ident: 598_CR3 publication-title: Science doi: 10.1126/science.1230444 – volume: 140 start-page: 10315 year: 2018 ident: 598_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06020 – volume: 136 start-page: 8859 year: 2014 ident: 598_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502765n – volume: 3 start-page: 2199 year: 2009 ident: 598_CR26 publication-title: ACS Nano doi: 10.1021/nn900500n – volume: 28 start-page: 445401 year: 2017 ident: 598_CR24 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa8948 – volume: 1 start-page: 16070 year: 2016 ident: 598_CR15 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.70 – volume: 46 start-page: 6927 year: 2017 ident: 598_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00283A – volume: 13 start-page: 7910 year: 2011 ident: 598_CR33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02778b – volume: 5 start-page: 21049 year: 2017 ident: 598_CR16 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05153K – volume: 195 start-page: 7484 year: 2010 ident: 598_CR27 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.05.043 – volume: 119 start-page: 22297 year: 2015 ident: 598_CR50 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05930 – volume: 8 start-page: 7451 year: 2014 ident: 598_CR9 publication-title: ACS Nano doi: 10.1021/nn5027092 – volume: 341 start-page: 534 year: 2013 ident: 598_CR23 publication-title: Science doi: 10.1126/science.1239089 – volume: 58 start-page: 1189 year: 2016 ident: 598_CR39 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.249 – volume: 29 start-page: 1703614 year: 2017 ident: 598_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201703614 – volume: 9 start-page: 47 year: 2017 ident: 598_CR38 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.009 – volume: 126 start-page: 014101 year: 2007 ident: 598_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 55 start-page: 3566 year: 2016 ident: 598_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506219 – volume: 58 start-page: 1010 year: 2018 ident: 598_CR40 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201800078 – volume: 6 start-page: 15 year: 1996 ident: 598_CR43 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 16 start-page: 220 year: 2017 ident: 598_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat4766 – volume: 2 start-page: 52 year: 2017 ident: 598_CR5 publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 118 start-page: 9233 year: 2018 ident: 598_CR18 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00252 – volume: 8 start-page: 621 year: 2009 ident: 598_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat2448 – volume: 500 start-page: 178 year: 2010 ident: 598_CR47 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.10.010 – volume: 114 start-page: 2978 year: 2014 ident: 598_CR11 publication-title: Chem. Rev. doi: 10.1021/cr400374x – volume: 7 start-page: 845 year: 2008 ident: 598_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 132 start-page: 14825 year: 2010 ident: 598_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104273r – volume: 114 start-page: 10024 year: 1992 ident: 598_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 132 start-page: 18017 year: 2010 ident: 598_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108766y – volume: 16 start-page: 1225 year: 2017 ident: 598_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat4974 – volume: 4 start-page: 1700059 year: 2017 ident: 598_CR17 publication-title: Adv. Sci. doi: 10.1002/advs.201700059 – volume: 130 start-page: 2730 year: 2008 ident: 598_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7106178 – volume: 3 start-page: 30 year: 2018 ident: 598_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-017-0044-5 – volume: 140 start-page: 14533 year: 2018 ident: 598_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06666 – volume: 91 start-page: 092109 year: 2007 ident: 598_CR48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2776887 – volume: 4 start-page: 505 year: 2009 ident: 598_CR49 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.177 – volume: 44 start-page: 7484 year: 2015 ident: 598_CR22 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00303B – volume: 10 start-page: 962 year: 2018 ident: 598_CR36 publication-title: Polymers doi: 10.3390/polym10090962 – volume: 55 start-page: 1768 year: 2010 ident: 598_CR28 publication-title: J. Chem. Eng. Data doi: 10.1021/je900789j – volume: 1 start-page: 168 year: 2017 ident: 598_CR34 publication-title: Joule doi: 10.1016/j.joule.2017.07.018 – volume: 9 start-page: 5999 year: 2015 ident: 598_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.5b00945 – volume: 117 start-page: 7190 year: 2017 ident: 598_CR13 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00504 – volume: 115 start-page: 6357 year: 2015 ident: 598_CR12 publication-title: Chem. Rev. doi: 10.1021/cr500411q – volume: 4 start-page: 435 year: 2008 ident: 598_CR45 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q |
SSID | ssj0021556 |
Score | 2.7062814 |
Snippet | We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 552 |
SubjectTerms | 639/301/1034 639/301/299 639/301/357 639/638/161 639/638/440 Biomaterials Charging Chemistry and Materials Science Computer simulation Condensed Matter Physics Electrochemical analysis Electrochemistry Electrodes Electrolytes Ionic liquids Ions Materials Science Metal-organic frameworks Molecular dynamics Nanotechnology Optical and Electronic Materials Simulation Supercapacitors Transmission lines |
Title | Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes |
URI | https://link.springer.com/article/10.1038/s41563-019-0598-7 https://www.ncbi.nlm.nih.gov/pubmed/32015536 https://www.proquest.com/docview/2394520719 https://www.proquest.com/docview/2475027381 https://www.proquest.com/docview/2350905693 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX1vkgYVemoR8Uq2JZ9CNsQNhd2W0sDejDWSYGHxbuL1off-8Mz4sZuSNhcbPJYQGknzSTOaj7FPYI238bjE1S_yIgYnRalAiixNgnbaxV3i-eksvbqOv82TeX_gVvdhlcOa2C7UbgV0Rn5KFN6JRIOYna1vBLFGkXe1p9B4yvYpdRmFdOn5bsOFtrK7XaRTgbhCDl5NZU5r2rhQJFEmEGAYof-2Sw_A5gNHaWt_8gP2ogeO_LzT9Ev2xFev2PN76QRfsz_TgeuWN_fvrPBV4G1GJM8pFhJXEI6C7hOJXcdKX_NFxetm7W8BLSgsiIeH0zktn37Pec-X43zdFqZjXODLxU2zcINs-Rtx6xt2nV_-urgSPcuCAAQjG1E6UNYqCXrsQwQpuDgY0F4ZGWJAWxbZJChlZXBoyzPwUdAylNrZGBSlcnnL9qpV5d8zjugRwCQOZIZ9XqbGxyE1zpoA4wCgRywa-riAPgU5MWEsi9YVrkzRqaVAtRSklgKLfN4WWXf5Nx77-XhQXNFPxbrYDZx_i2PETHQ_aTxiH7dinGPkOCkrv2qoCoRViBQzNWLvuvGwbYySLfVSOmJfhgGyq_y_LT18vKVH7JmkfX0bWHnM9ja3jf-A4GdjT9oRjk-Tfz1h--f5ZDLD9-Ry9uPnHQgPBi4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHijdbWjASXEBWs7aTOIcKVcCypd1yaaXeQjK2pUhLdttshPbO7-E3diaPbVGht14zsWV5xjOfPfZ8jL2F3LhcDzP0foETGqwUmQIpkij0sY2tbgvPT46i8Yn-dhqerrE__VsYulbZ-8TGUdsZ0Bn5DlF4hxIDYvJxfiaINYqyqz2FRmsWB275C7ds1e7-Z9TvOylHX44_jUXHKiAAg-9CZBZUnisJ8dD5ACKw2huInTLSa0DfHeShVyqX3mLsSsAFPpY-i22uQVHpEuz3DrurlUpoRZnR19UGD2Nz-5opjgTiGNlnUZXZqWijRDeXEoGAxoj47zh4DdxeS8w28W70kG10QJXvtZb1iK258jF7cKV84RP2e9Jz6_L66hsZPvO8qcDkON29RI_FUdB-IrFdltnPAipelLyq5-4cMGJDQbw_nM6F-eT7iHf8PNZVTWM6NgY-Lc7qwvay6RJx8lN2civz_4ytl7PSvWAc0SqACS3IBOc8i4zTPjI2Nx6GHiAesKCf4xS6kufEvDFNm9S7MmmrlhTVkpJaUmzyftVk3tb7uOnnrV5xabf0q_TSUP8t1ojR6D3UcMDerMS4pilRk5VuVlMXCOMQmSZqwJ639rAajJIN1VM0YB96A7ns_L8j3bx5pK_ZvfHx5DA93D86eMnuSzpTaC51brH1xXntthF4LfJXjbVz9uO2l9cFMgBAxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcKp5loYCR4AKyNrGT2DkghCirlrKFA5X2FpKxLa20ZLfNRtXe-VX8Omby2C0q9NZrJrYsz3jms-fF2CsojCuiMEftFzgRgZUiVyBFmsReW22jtvD8-Dg5OIk-T-LJFvvd58JQWGWvExtFbedAb-RDauEdSzSI6dB3YRHf9kfvF6eCOkiRp7Vvp9GKyJFbneP1rXp3uI-8fi3l6NP3jwei6zAgAA3xUuQWVFEoCTp0PoAEbOQNaKeM9BGgHg-K2CtVSG_RjqXgAq-lz7UtIlBUxgTnvcFuahWHdMb0ZHPZQzvdZjbpRCCmkb1HVZlhRZcmimJKBYIbI_TfNvES0L3kpG1s3-gu2-lAK__QStk9tuXK--zOhVKGD9ivcd9nl9cX82X43POmGpPjFIeJ2osjof1EZLsq859TqPi05FW9cGeA1hum1AOI0xsxH38d8a5Xj3VVM5iekIHPpqf11Pa02Qox80N2ci37_4htl_PSPWYckSuAiS3IFPc8T4yLfGJsYTyEHkAPWNDvcQZd-XPqwjHLGje8MlnLlgzZkhFbMhzyZj1k0db-uOrnvZ5xWacGqmwjtP8mR4jXKDcqHLCXazKeb3La5KWb1zQFQjpEqakasN1WHtaLUbJp-5QM2NteQDaT_3elT65e6Qt2Cw9W9uXw-Ogpuy3peaGJ79xj28uz2j1DDLYsnjfCztmP6z5dfwDs5kTx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+understanding+of+charge+storage+and+charging+dynamics+in+supercapacitors+with+MOF+electrodes+and+ionic+liquid+electrolytes&rft.jtitle=Nature+materials&rft.au=Bi%2C+Sheng&rft.au=Banda%2C+Harish&rft.au=Chen%2C+Ming&rft.au=Niu%2C+Liang&rft.date=2020-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=5&rft.spage=552&rft.epage=558&rft_id=info:doi/10.1038%2Fs41563-019-0598-7&rft.externalDocID=10_1038_s41563_019_0598_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |