Voluntary Resistance Running as a Model to Induce mTOR Activation in Mouse Skeletal Muscle
Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance r...
Saved in:
Published in | Frontiers in physiology Vol. 10; p. 1271 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
04.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-042X 1664-042X |
DOI | 10.3389/fphys.2019.01271 |
Cover
Loading…
Abstract | Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice. |
---|---|
AbstractList | Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice. Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris , but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice. Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice. |
Author | Masschelein, Evi Palmer, Andrew S. Bar-Nur, Ori De Bock, Katrien D’Hulst, Gommaar |
AuthorAffiliation | 2 Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland 1 Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland |
AuthorAffiliation_xml | – name: 2 Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland – name: 1 Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland |
Author_xml | – sequence: 1 givenname: Gommaar surname: D’Hulst fullname: D’Hulst, Gommaar – sequence: 2 givenname: Andrew S. surname: Palmer fullname: Palmer, Andrew S. – sequence: 3 givenname: Evi surname: Masschelein fullname: Masschelein, Evi – sequence: 4 givenname: Ori surname: Bar-Nur fullname: Bar-Nur, Ori – sequence: 5 givenname: Katrien surname: De Bock fullname: De Bock, Katrien |
BookMark | eNp1kcFvFCEUxompsbX27pGjl11hmIHhYtI0Vjdp02Stxnghb-HNlsrCOjBN-t_L7jbGmsgFwvvej4_3vSZHMUUk5C1ncyF6_X7Y3j3mecO4njPeKP6CnHAp2xlrm-9Hf52PyVnO96yuljWM8VfkWHApZKf4CfnxLYUpFhgf6RKzzwWiRbqcYvRxTSFToNfJYaAl0UV0Uy1ubm-W9NwW_wDFp0h9rJIpI_3yEwMWCPR6yjbgG_JygJDx7Gk_JV8vP95efJ5d3XxaXJxfzWwrdJmBWw1tLxvVKSVBA-Nt77haaWFXFp1E2YPknUKwwmnsNR9EI9ggh4ZphiBOyeLAdQnuzXb0m_obk8Cb_UUa1wbG4qsjU0kVqAfl-qFVjgOzDRess1ooqNOprA8H1nZabdBZjGWE8Az6vBL9nVmnByNVr7qOV8C7J8CYfk2Yi9n4bDEEiFiHZKpzpRot1U7KDlI7ppxHHP48w5nZJWz2CZtdwmafcG2R_7RYX_YpVDM-_L_xNxmmrXU |
CitedBy_id | crossref_primary_10_3389_fnut_2024_1362550 crossref_primary_10_1152_japplphysiol_00319_2020 crossref_primary_10_1016_j_smhs_2024_10_002 crossref_primary_10_1016_j_alcohol_2022_06_004 crossref_primary_10_1016_j_bbr_2023_114589 crossref_primary_10_1186_s13395_020_00237_2 crossref_primary_10_1002_jcsm_12588 crossref_primary_10_1152_ajpcell_00357_2021 crossref_primary_10_1186_s13395_024_00357_z |
Cites_doi | 10.1113/jphysiol.2008.163816 10.1111/jpn.12691 10.1152/japplphysiol.00272.2012 10.1083/jcb.36.3.653 10.1139/apnm-2014-0070 10.1136/bjsm.37.6.543 10.1046/J.1469-7580.1999.19430323.X 10.1152/ajpregu.00156.2016 10.1096/fj.201701422R 10.1113/jphysiol.2009.173609 10.1152/jappl.1994.76.3.1247 10.1056/NEJM199607043350101 10.1111/j.1748-1716.2010.02074.x 10.1111/j.1600-0404.1976.tb07619.x 10.3945/ajcn.2009.28256 10.1038/s41467-018-05439-3 10.1093/gerona/gln050 10.1002/mus.21764 10.1113/expphysiol.2007.041244 10.1093/geronj/49.1.M22 10.1152/ajpendo.00050.2015 10.1074/jbc.M413732200 10.1016/J.SEMCDB.2014.09.011 10.1113/jphysiol.2011.218255 10.1016/j.jneumeth.2017.05.027 10.1038/ncb1101-1014 10.1046/j.1532-5415.2002.50216.x 10.1152/jn.1965.28.3.560 10.1016/j.cmet.2017.07.001 10.1096/fj.15-273755 10.1152/ajpheart.00085.2005 10.1359/JBMR.041230 10.1111/sms.12416 10.1016/j.ab.2014.08.027 10.1152/ajpcell.1999.276.1.C120 10.1186/s13395-016-0117-3 10.1113/JP271219 10.1038/nature11083 10.1113/jphysiol.2010.192856 10.1152/jappl.1992.72.3.1205 10.1002/jcp.24542 10.1242/jeb.080705 |
ContentType | Journal Article |
Copyright | Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock |
Copyright_xml | – notice: Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. – notice: Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fphys.2019.01271 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_8a6d6e9f7d8f47d1a0c21305c937a402 PMC6787551 10_3389_fphys_2019_01271 |
GrantInformation_xml | – fundername: ETH Zurich |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c439t-adbf486275776a9a0148d17b93cbced6e68a6157eac3d9e891f3230f6f2090ea3 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:21:03 EDT 2025 Thu Aug 21 14:05:46 EDT 2025 Fri Jul 11 12:08:44 EDT 2025 Tue Jul 01 04:18:46 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-adbf486275776a9a0148d17b93cbced6e68a6157eac3d9e891f3230f6f2090ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Andrew Philp, Garvan Institute of Medical Research, Australia Reviewed by: Kunihiro Sakuma, Tokyo Institute of Technology, Japan; Craig Andrew Goodman, Victoria University, Australia This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2019.01271 |
PMID | 31636571 |
PQID | 2307729671 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a6d6e9f7d8f47d1a0c21305c937a402 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6787551 proquest_miscellaneous_2307729671 crossref_primary_10_3389_fphys_2019_01271 crossref_citationtrail_10_3389_fphys_2019_01271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-04 |
PublicationDateYYYYMMDD | 2019-10-04 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-04 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in physiology |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Burd (ref7) 2010; 588 Mobley (ref26) 2018; 102 Goldberg (ref14) 1968; 36 Konhilas (ref21) 2005; 289 Lessard (ref24) 2018; 9 Cholewa (ref9) 2014; 229 Pyka (ref30) 1994; 49 Janssen (ref20) 2002; 50 Dreyer (ref11) 2010; 199 Ogasawara (ref28) 2018; 32 Szulc (ref40) 2010; 91 White (ref43) 2016; 6 Huang (ref19) 2014; 36 Ashton-Miller (ref2) 1992; 72 Brook (ref6) 2015; 29 Bhasin (ref4) 1996; 335 Figueiredo (ref13) 2015; 309 Soffe (ref37) 2016; 26 Roach (ref33) 2012; 113 Thoreen (ref41) 2012; 485 Kubica (ref22) 2005; 280 Rahnert (ref31) 2013; 216 Roemers (ref34) 2017; 300 O’Neil (ref27) 2009; 587 Drummond (ref12) 2009; 587 Goldspink (ref15) 1999; 194 Legerlotz (ref23) 2008; 93 Scribbans (ref35) 2014; 39 Baar (ref3) 1999; 276 De Bono (ref10) 2005 Henneman (ref17) 1965; 28 Bodine (ref5) 2001; 3 Philp (ref29) 2015; 593 Rivero-Gutiérrez (ref32) 2014; 467 Szulc (ref39) 2004; 20 Staron (ref38) 1994; 76 Wolfson (ref44) 2017; 26 Call (ref8) 2010; 42 Verdijk (ref42) 2009 Abe (ref1) 2003; 37 Goodman (ref16) 2011; 589 Sher (ref36) 1976; 54 Holland (ref18) 2016; 311 Mahajan (ref25) 1994 |
References_xml | – volume: 587 start-page: 1535 year: 2009 ident: ref12 article-title: Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.163816 – volume: 102 start-page: 317 year: 2018 ident: ref26 article-title: Progressive resistance-loaded voluntary wheel running increases hypertrophy and differentially affects muscle protein synthesis, ribosome biogenesis, and proteolytic markers in rat muscle publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/jpn.12691 – volume: 113 start-page: 627 year: 2012 ident: ref33 article-title: A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00272.2012 – volume: 36 start-page: 653 year: 1968 ident: ref14 article-title: Protein synthesis during work-induced growth of skeletal muscle publication-title: J. Cell Biol. doi: 10.1083/jcb.36.3.653 – volume: 39 start-page: 1305 year: 2014 ident: ref35 article-title: Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans publication-title: Appl. Physiol. Nutr. Metab. doi: 10.1139/apnm-2014-0070 – volume: 37 start-page: 543 year: 2003 ident: ref1 article-title: Whole body muscle hypertrophy from resistance training: distribution and total mass publication-title: Br. J. Sport. Med. doi: 10.1136/bjsm.37.6.543 – volume: 194 start-page: 323 year: 1999 ident: ref15 article-title: Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload publication-title: J. Anat. doi: 10.1046/J.1469-7580.1999.19430323.X – volume: 311 start-page: R337 year: 2016 ident: ref18 article-title: Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00156.2016 – volume: 32 start-page: 5824 year: 2018 ident: ref28 article-title: Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis publication-title: FASEB J. doi: 10.1096/fj.201701422R – volume: 587 start-page: 3691 year: 2009 ident: ref27 article-title: The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.173609 – volume: 76 start-page: 1247 year: 1994 ident: ref38 article-title: Skeletal muscle adaptations during early phase of heavy-resistance training in men and women publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1994.76.3.1247 – volume: 335 start-page: 1 year: 1996 ident: ref4 article-title: The effects of Supraphysiologic doses of testosterone on muscle size and strength in normal men publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199607043350101 – volume: 199 start-page: 71 year: 2010 ident: ref11 article-title: Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex publication-title: Acta Physiol. doi: 10.1111/j.1748-1716.2010.02074.x – volume: 54 start-page: 45 year: 1976 ident: ref36 article-title: Skeletal muscle fiber types in the adult mouse publication-title: Acta Neurol. Scand. doi: 10.1111/j.1600-0404.1976.tb07619.x – volume: 91 start-page: 1227 year: 2010 ident: ref40 article-title: Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: the prospective MINOS study publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2009.28256 – volume: 9 start-page: 3030 year: 2018 ident: ref24 article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition publication-title: Nat. Commun. doi: 10.1038/s41467-018-05439-3 – start-page: 711 volume-title: Int. J. Immunopharmacol. year: 1994 ident: ref25 article-title: Modulation of transcription of rRNA genes by rapamycin – start-page: 332 year: 2009 ident: ref42 article-title: Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men publication-title: J. Gerontol. Ser. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/gln050 – volume: 42 start-page: 871 year: 2010 ident: ref8 article-title: Progressive resistance voluntary wheel running in the mdx mouse publication-title: Muscle Nerve doi: 10.1002/mus.21764 – volume: 93 start-page: 754 year: 2008 ident: ref23 article-title: Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.041244 – volume: 49 start-page: M22 year: 1994 ident: ref30 article-title: Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women publication-title: J. Gerontol. doi: 10.1093/geronj/49.1.M22 – volume: 309 start-page: E72 year: 2015 ident: ref13 article-title: Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy publication-title: Am. J. Physiol. Metab. doi: 10.1152/ajpendo.00050.2015 – start-page: R926 volume-title: Am. J. Physiol. Integr. Comp. Physiol. year: 2005 ident: ref10 article-title: Novel quantitative phenotypes of exercise training in mouse models – volume: 280 start-page: 7570 year: 2005 ident: ref22 article-title: Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bε mRNA in a mammalian target of rapamycin-dependent manner publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413732200 – volume: 36 start-page: 79 year: 2014 ident: ref19 article-title: Growing knowledge of the mTOR signaling network publication-title: Semin. Cell Dev. Biol. doi: 10.1016/J.SEMCDB.2014.09.011 – volume: 589 start-page: 5485 year: 2011 ident: ref16 article-title: The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.218255 – volume: 300 start-page: 112 year: 2017 ident: ref34 article-title: Burrowing as a novel voluntary strength training method for mice: a comparison of various voluntary strength or resistance exercise methods publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.05.027 – volume: 3 start-page: 1014 year: 2001 ident: ref5 article-title: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo publication-title: Nat. Cell Biol. doi: 10.1038/ncb1101-1014 – volume: 50 start-page: 889 year: 2002 ident: ref20 article-title: Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability publication-title: J. Am. Geriatr. Soc. doi: 10.1046/j.1532-5415.2002.50216.x – volume: 28 start-page: 560 year: 1965 ident: ref17 article-title: Functional significance of cell size in spinal motor neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1965.28.3.560 – volume: 26 start-page: 301 year: 2017 ident: ref44 article-title: The dawn of the age of amino acid sensors for the mTORC1 pathway publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.07.001 – volume: 29 start-page: 4485 year: 2015 ident: ref6 article-title: Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling publication-title: FASEB J. doi: 10.1096/fj.15-273755 – volume: 289 start-page: H455 year: 2005 ident: ref21 article-title: Loaded wheel running and muscle adaptation in the mouse publication-title: Am. J. Physiol. Circ. Physiol. doi: 10.1152/ajpheart.00085.2005 – volume: 20 start-page: 721 year: 2004 ident: ref39 article-title: Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men-the MINOS study publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.041230 – volume: 26 start-page: 172 year: 2016 ident: ref37 article-title: Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12416 – volume: 467 start-page: 1 year: 2014 ident: ref32 article-title: Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.08.027 – volume: 276 start-page: C120 year: 1999 ident: ref3 article-title: Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.1999.276.1.C120 – volume: 6 start-page: 1 year: 2016 ident: ref43 article-title: Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice publication-title: Skelet. Muscle doi: 10.1186/s13395-016-0117-3 – volume: 593 start-page: 4275 year: 2015 ident: ref29 article-title: Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise publication-title: J. Physiol. doi: 10.1113/JP271219 – volume: 485 start-page: 109 year: 2012 ident: ref41 article-title: A unifying model for mTORC1-mediated regulation of mRNA translation publication-title: Nature doi: 10.1038/nature11083 – volume: 588 start-page: 3119 year: 2010 ident: ref7 article-title: Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.192856 – volume: 72 start-page: 1205 year: 1992 ident: ref2 article-title: An apparatus to measure in vivo biomechanical behavior of dorsi- and plantarflexors of mouse ankle publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1992.72.3.1205 – volume: 229 start-page: 1148 year: 2014 ident: ref9 article-title: Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24542 – volume: 216 start-page: 2619 year: 2013 ident: ref31 article-title: High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral publication-title: J. Exp. Biol. doi: 10.1242/jeb.080705 |
SSID | ssj0000402001 |
Score | 2.2843776 |
Snippet | Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1271 |
SubjectTerms | acute load mTORC1 Physiology resistance running signaling |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYuoU5y_iCCCh7rVpklznOIQQYXpZHgJaX6guFWx3WH_ve-lm6wXvXhtU9J-7zXve8nje4ScAKsFw7o4klaIiHmeRLKbmYgjfZeZ11loB3R3z2-G7HaUjpZafWFNWC0PXAPXyTS33EkvbOaZsLHumgtYd1MDcVWzWkYSYt5SMhXWYEyLunF9LglZmOx43CnAUi55jqetcSMOBbn-BsdsVkguhZz-Blmfc0Xaq99xk6y4You0egXkyZMZPaWhejNsi7fIyzP4UFHprxkduBJJIViTDqahIxHVJdUU256NafVBsV0H3Jw8PQxozyz6m9G3AoZMS0cf3yEWASmnd9MSJt4mw_7109VNNO-bEBmgF1Wkbe5ZhvLDQnAtNW4a2ljkMjG5cYAmB1DjVMCam1jpMhn7BGzmuQcku04nO2S1-CjcLqFArlhquRROOJbnDLI1biz3kl2YlDnfJp0FisrMRcWxt8VYQXKBuKuAu0LcVcC9Tc5-nvisBTV-GXuJhvkZh1LY4QI4iJo7iPrLQdrkeGFWBb8OnofowgGcCmvgIbfgOJFo2LsxY_NO8fYaRLghyAtgm3v_8Yr7ZA0_OtQIsgOyWn1N3SFwnSo_Cm79DTNR_WQ priority: 102 providerName: Directory of Open Access Journals |
Title | Voluntary Resistance Running as a Model to Induce mTOR Activation in Mouse Skeletal Muscle |
URI | https://www.proquest.com/docview/2307729671 https://pubmed.ncbi.nlm.nih.gov/PMC6787551 https://doaj.org/article/8a6d6e9f7d8f47d1a0c21305c937a402 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELYQe-EFjRVEN1Z5EkLaQ2jTuHb8MKGCQAipIBWKKl4sxz82tJJCk0r0v-fOTdkiVZP2mMSJ5Tvb9935ch8hh4BqQbEujqQVImKeJ5HspCbiCN9l6nUa6IAG1_xyxK7GvfGf36MrARZrXTvkkxrNJsevL4sTWPA_0OMEe9v2GATALC15jAep4At9ALvEcY4PKrAf9mV0lQIfcsw5Zl90x8tzy7UfqdmpUM6_hkHrGZR_maSLj2S7wpK0v1T-Dtlw-SfS6OfgRz8t6BEN2Z0hbN4gD_cwx_JSzxZ06AoEjaBtOpwHxiKqC6op0qJNaDmlSOcBD5_uboa0b1b8Z_QxhybzwtHb32CrQF50MC-g410yuji_O7uMKl6FyAD8KCNtM89SLE8sBNdSY1DRxiKTicmMs9zxVAPQEbAnJ1a6VMY-AZ167rsd2XE62SOb-TR3-4QC-GI9y6VwwrEsY-DNcWO5l6xresz5JmmvpKhMVXQcuS8mCpwPlLsKclcodxXk3iTf3994Xhbc-EfbU1TMezsslR1uTGc_VbXyFIwFhiS9sKlnwsa6Y7pguHsGgJmGKdEk31ZqVbC08LxE5w7EqTBHHnwPjh2Jmr5rPdaf5I-_QpFuAAEC0Ojn_xjOF7KFFyFVkB2QzXI2d18B8pRZK4QKWmE-vwFO0AAJ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voluntary+Resistance+Running+as+a+Model+to+Induce+mTOR+Activation+in+Mouse+Skeletal+Muscle&rft.jtitle=Frontiers+in+physiology&rft.au=D%E2%80%99Hulst%2C+Gommaar&rft.au=Palmer%2C+Andrew+S.&rft.au=Masschelein%2C+Evi&rft.au=Bar-Nur%2C+Ori&rft.date=2019-10-04&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphys.2019.01271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphys_2019_01271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |