Voluntary Resistance Running as a Model to Induce mTOR Activation in Mouse Skeletal Muscle

Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance r...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 10; p. 1271
Main Authors D’Hulst, Gommaar, Palmer, Andrew S., Masschelein, Evi, Bar-Nur, Ori, De Bock, Katrien
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.10.2019
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2019.01271

Cover

Loading…
Abstract Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.
AbstractList Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.
Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris , but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.
Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.
Author Masschelein, Evi
Palmer, Andrew S.
Bar-Nur, Ori
De Bock, Katrien
D’Hulst, Gommaar
AuthorAffiliation 2 Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland
1 Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland
AuthorAffiliation_xml – name: 2 Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland
– name: 1 Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland
Author_xml – sequence: 1
  givenname: Gommaar
  surname: D’Hulst
  fullname: D’Hulst, Gommaar
– sequence: 2
  givenname: Andrew S.
  surname: Palmer
  fullname: Palmer, Andrew S.
– sequence: 3
  givenname: Evi
  surname: Masschelein
  fullname: Masschelein, Evi
– sequence: 4
  givenname: Ori
  surname: Bar-Nur
  fullname: Bar-Nur, Ori
– sequence: 5
  givenname: Katrien
  surname: De Bock
  fullname: De Bock, Katrien
BookMark eNp1kcFvFCEUxompsbX27pGjl11hmIHhYtI0Vjdp02Stxnghb-HNlsrCOjBN-t_L7jbGmsgFwvvej4_3vSZHMUUk5C1ncyF6_X7Y3j3mecO4njPeKP6CnHAp2xlrm-9Hf52PyVnO96yuljWM8VfkWHApZKf4CfnxLYUpFhgf6RKzzwWiRbqcYvRxTSFToNfJYaAl0UV0Uy1ubm-W9NwW_wDFp0h9rJIpI_3yEwMWCPR6yjbgG_JygJDx7Gk_JV8vP95efJ5d3XxaXJxfzWwrdJmBWw1tLxvVKSVBA-Nt77haaWFXFp1E2YPknUKwwmnsNR9EI9ggh4ZphiBOyeLAdQnuzXb0m_obk8Cb_UUa1wbG4qsjU0kVqAfl-qFVjgOzDRess1ooqNOprA8H1nZabdBZjGWE8Az6vBL9nVmnByNVr7qOV8C7J8CYfk2Yi9n4bDEEiFiHZKpzpRot1U7KDlI7ppxHHP48w5nZJWz2CZtdwmafcG2R_7RYX_YpVDM-_L_xNxmmrXU
CitedBy_id crossref_primary_10_3389_fnut_2024_1362550
crossref_primary_10_1152_japplphysiol_00319_2020
crossref_primary_10_1016_j_smhs_2024_10_002
crossref_primary_10_1016_j_alcohol_2022_06_004
crossref_primary_10_1016_j_bbr_2023_114589
crossref_primary_10_1186_s13395_020_00237_2
crossref_primary_10_1002_jcsm_12588
crossref_primary_10_1152_ajpcell_00357_2021
crossref_primary_10_1186_s13395_024_00357_z
Cites_doi 10.1113/jphysiol.2008.163816
10.1111/jpn.12691
10.1152/japplphysiol.00272.2012
10.1083/jcb.36.3.653
10.1139/apnm-2014-0070
10.1136/bjsm.37.6.543
10.1046/J.1469-7580.1999.19430323.X
10.1152/ajpregu.00156.2016
10.1096/fj.201701422R
10.1113/jphysiol.2009.173609
10.1152/jappl.1994.76.3.1247
10.1056/NEJM199607043350101
10.1111/j.1748-1716.2010.02074.x
10.1111/j.1600-0404.1976.tb07619.x
10.3945/ajcn.2009.28256
10.1038/s41467-018-05439-3
10.1093/gerona/gln050
10.1002/mus.21764
10.1113/expphysiol.2007.041244
10.1093/geronj/49.1.M22
10.1152/ajpendo.00050.2015
10.1074/jbc.M413732200
10.1016/J.SEMCDB.2014.09.011
10.1113/jphysiol.2011.218255
10.1016/j.jneumeth.2017.05.027
10.1038/ncb1101-1014
10.1046/j.1532-5415.2002.50216.x
10.1152/jn.1965.28.3.560
10.1016/j.cmet.2017.07.001
10.1096/fj.15-273755
10.1152/ajpheart.00085.2005
10.1359/JBMR.041230
10.1111/sms.12416
10.1016/j.ab.2014.08.027
10.1152/ajpcell.1999.276.1.C120
10.1186/s13395-016-0117-3
10.1113/JP271219
10.1038/nature11083
10.1113/jphysiol.2010.192856
10.1152/jappl.1992.72.3.1205
10.1002/jcp.24542
10.1242/jeb.080705
ContentType Journal Article
Copyright Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock.
Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock
Copyright_xml – notice: Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock.
– notice: Copyright © 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock. 2019 D’Hulst, Palmer, Masschelein, Bar-Nur and De Bock
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fphys.2019.01271
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_8a6d6e9f7d8f47d1a0c21305c937a402
PMC6787551
10_3389_fphys_2019_01271
GrantInformation_xml – fundername: ETH Zurich
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-adbf486275776a9a0148d17b93cbced6e68a6157eac3d9e891f3230f6f2090ea3
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:21:03 EDT 2025
Thu Aug 21 14:05:46 EDT 2025
Fri Jul 11 12:08:44 EDT 2025
Tue Jul 01 04:18:46 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-adbf486275776a9a0148d17b93cbced6e68a6157eac3d9e891f3230f6f2090ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Andrew Philp, Garvan Institute of Medical Research, Australia
Reviewed by: Kunihiro Sakuma, Tokyo Institute of Technology, Japan; Craig Andrew Goodman, Victoria University, Australia
This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2019.01271
PMID 31636571
PQID 2307729671
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8a6d6e9f7d8f47d1a0c21305c937a402
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6787551
proquest_miscellaneous_2307729671
crossref_primary_10_3389_fphys_2019_01271
crossref_citationtrail_10_3389_fphys_2019_01271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-04
PublicationDateYYYYMMDD 2019-10-04
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-04
  day: 04
PublicationDecade 2010
PublicationTitle Frontiers in physiology
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Burd (ref7) 2010; 588
Mobley (ref26) 2018; 102
Goldberg (ref14) 1968; 36
Konhilas (ref21) 2005; 289
Lessard (ref24) 2018; 9
Cholewa (ref9) 2014; 229
Pyka (ref30) 1994; 49
Janssen (ref20) 2002; 50
Dreyer (ref11) 2010; 199
Ogasawara (ref28) 2018; 32
Szulc (ref40) 2010; 91
White (ref43) 2016; 6
Huang (ref19) 2014; 36
Ashton-Miller (ref2) 1992; 72
Brook (ref6) 2015; 29
Bhasin (ref4) 1996; 335
Figueiredo (ref13) 2015; 309
Soffe (ref37) 2016; 26
Roach (ref33) 2012; 113
Thoreen (ref41) 2012; 485
Kubica (ref22) 2005; 280
Rahnert (ref31) 2013; 216
Roemers (ref34) 2017; 300
O’Neil (ref27) 2009; 587
Drummond (ref12) 2009; 587
Goldspink (ref15) 1999; 194
Legerlotz (ref23) 2008; 93
Scribbans (ref35) 2014; 39
Baar (ref3) 1999; 276
De Bono (ref10) 2005
Henneman (ref17) 1965; 28
Bodine (ref5) 2001; 3
Philp (ref29) 2015; 593
Rivero-Gutiérrez (ref32) 2014; 467
Szulc (ref39) 2004; 20
Staron (ref38) 1994; 76
Wolfson (ref44) 2017; 26
Call (ref8) 2010; 42
Verdijk (ref42) 2009
Abe (ref1) 2003; 37
Goodman (ref16) 2011; 589
Sher (ref36) 1976; 54
Holland (ref18) 2016; 311
Mahajan (ref25) 1994
References_xml – volume: 587
  start-page: 1535
  year: 2009
  ident: ref12
  article-title: Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.163816
– volume: 102
  start-page: 317
  year: 2018
  ident: ref26
  article-title: Progressive resistance-loaded voluntary wheel running increases hypertrophy and differentially affects muscle protein synthesis, ribosome biogenesis, and proteolytic markers in rat muscle
  publication-title: J. Anim. Physiol. Anim. Nutr.
  doi: 10.1111/jpn.12691
– volume: 113
  start-page: 627
  year: 2012
  ident: ref33
  article-title: A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00272.2012
– volume: 36
  start-page: 653
  year: 1968
  ident: ref14
  article-title: Protein synthesis during work-induced growth of skeletal muscle
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.36.3.653
– volume: 39
  start-page: 1305
  year: 2014
  ident: ref35
  article-title: Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans
  publication-title: Appl. Physiol. Nutr. Metab.
  doi: 10.1139/apnm-2014-0070
– volume: 37
  start-page: 543
  year: 2003
  ident: ref1
  article-title: Whole body muscle hypertrophy from resistance training: distribution and total mass
  publication-title: Br. J. Sport. Med.
  doi: 10.1136/bjsm.37.6.543
– volume: 194
  start-page: 323
  year: 1999
  ident: ref15
  article-title: Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload
  publication-title: J. Anat.
  doi: 10.1046/J.1469-7580.1999.19430323.X
– volume: 311
  start-page: R337
  year: 2016
  ident: ref18
  article-title: Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00156.2016
– volume: 32
  start-page: 5824
  year: 2018
  ident: ref28
  article-title: Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis
  publication-title: FASEB J.
  doi: 10.1096/fj.201701422R
– volume: 587
  start-page: 3691
  year: 2009
  ident: ref27
  article-title: The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2009.173609
– volume: 76
  start-page: 1247
  year: 1994
  ident: ref38
  article-title: Skeletal muscle adaptations during early phase of heavy-resistance training in men and women
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1994.76.3.1247
– volume: 335
  start-page: 1
  year: 1996
  ident: ref4
  article-title: The effects of Supraphysiologic doses of testosterone on muscle size and strength in normal men
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199607043350101
– volume: 199
  start-page: 71
  year: 2010
  ident: ref11
  article-title: Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex
  publication-title: Acta Physiol.
  doi: 10.1111/j.1748-1716.2010.02074.x
– volume: 54
  start-page: 45
  year: 1976
  ident: ref36
  article-title: Skeletal muscle fiber types in the adult mouse
  publication-title: Acta Neurol. Scand.
  doi: 10.1111/j.1600-0404.1976.tb07619.x
– volume: 91
  start-page: 1227
  year: 2010
  ident: ref40
  article-title: Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: the prospective MINOS study
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.2009.28256
– volume: 9
  start-page: 3030
  year: 2018
  ident: ref24
  article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05439-3
– start-page: 711
  volume-title: Int. J. Immunopharmacol.
  year: 1994
  ident: ref25
  article-title: Modulation of transcription of rRNA genes by rapamycin
– start-page: 332
  year: 2009
  ident: ref42
  article-title: Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men
  publication-title: J. Gerontol. Ser. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/gln050
– volume: 42
  start-page: 871
  year: 2010
  ident: ref8
  article-title: Progressive resistance voluntary wheel running in the mdx mouse
  publication-title: Muscle Nerve
  doi: 10.1002/mus.21764
– volume: 93
  start-page: 754
  year: 2008
  ident: ref23
  article-title: Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2007.041244
– volume: 49
  start-page: M22
  year: 1994
  ident: ref30
  article-title: Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women
  publication-title: J. Gerontol.
  doi: 10.1093/geronj/49.1.M22
– volume: 309
  start-page: E72
  year: 2015
  ident: ref13
  article-title: Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy
  publication-title: Am. J. Physiol. Metab.
  doi: 10.1152/ajpendo.00050.2015
– start-page: R926
  volume-title: Am. J. Physiol. Integr. Comp. Physiol.
  year: 2005
  ident: ref10
  article-title: Novel quantitative phenotypes of exercise training in mouse models
– volume: 280
  start-page: 7570
  year: 2005
  ident: ref22
  article-title: Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bε mRNA in a mammalian target of rapamycin-dependent manner
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413732200
– volume: 36
  start-page: 79
  year: 2014
  ident: ref19
  article-title: Growing knowledge of the mTOR signaling network
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/J.SEMCDB.2014.09.011
– volume: 589
  start-page: 5485
  year: 2011
  ident: ref16
  article-title: The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.218255
– volume: 300
  start-page: 112
  year: 2017
  ident: ref34
  article-title: Burrowing as a novel voluntary strength training method for mice: a comparison of various voluntary strength or resistance exercise methods
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.05.027
– volume: 3
  start-page: 1014
  year: 2001
  ident: ref5
  article-title: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1101-1014
– volume: 50
  start-page: 889
  year: 2002
  ident: ref20
  article-title: Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1046/j.1532-5415.2002.50216.x
– volume: 28
  start-page: 560
  year: 1965
  ident: ref17
  article-title: Functional significance of cell size in spinal motor neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1965.28.3.560
– volume: 26
  start-page: 301
  year: 2017
  ident: ref44
  article-title: The dawn of the age of amino acid sensors for the mTORC1 pathway
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.07.001
– volume: 29
  start-page: 4485
  year: 2015
  ident: ref6
  article-title: Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling
  publication-title: FASEB J.
  doi: 10.1096/fj.15-273755
– volume: 289
  start-page: H455
  year: 2005
  ident: ref21
  article-title: Loaded wheel running and muscle adaptation in the mouse
  publication-title: Am. J. Physiol. Circ. Physiol.
  doi: 10.1152/ajpheart.00085.2005
– volume: 20
  start-page: 721
  year: 2004
  ident: ref39
  article-title: Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men-the MINOS study
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.041230
– volume: 26
  start-page: 172
  year: 2016
  ident: ref37
  article-title: Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12416
– volume: 467
  start-page: 1
  year: 2014
  ident: ref32
  article-title: Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.08.027
– volume: 276
  start-page: C120
  year: 1999
  ident: ref3
  article-title: Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajpcell.1999.276.1.C120
– volume: 6
  start-page: 1
  year: 2016
  ident: ref43
  article-title: Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice
  publication-title: Skelet. Muscle
  doi: 10.1186/s13395-016-0117-3
– volume: 593
  start-page: 4275
  year: 2015
  ident: ref29
  article-title: Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise
  publication-title: J. Physiol.
  doi: 10.1113/JP271219
– volume: 485
  start-page: 109
  year: 2012
  ident: ref41
  article-title: A unifying model for mTORC1-mediated regulation of mRNA translation
  publication-title: Nature
  doi: 10.1038/nature11083
– volume: 588
  start-page: 3119
  year: 2010
  ident: ref7
  article-title: Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.192856
– volume: 72
  start-page: 1205
  year: 1992
  ident: ref2
  article-title: An apparatus to measure in vivo biomechanical behavior of dorsi- and plantarflexors of mouse ankle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1992.72.3.1205
– volume: 229
  start-page: 1148
  year: 2014
  ident: ref9
  article-title: Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24542
– volume: 216
  start-page: 2619
  year: 2013
  ident: ref31
  article-title: High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.080705
SSID ssj0000402001
Score 2.2843776
Snippet Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1271
SubjectTerms acute
load
mTORC1
Physiology
resistance running
signaling
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYuoU5y_iCCCh7rVpklznOIQQYXpZHgJaX6guFWx3WH_ve-lm6wXvXhtU9J-7zXve8nje4ScAKsFw7o4klaIiHmeRLKbmYgjfZeZ11loB3R3z2-G7HaUjpZafWFNWC0PXAPXyTS33EkvbOaZsLHumgtYd1MDcVWzWkYSYt5SMhXWYEyLunF9LglZmOx43CnAUi55jqetcSMOBbn-BsdsVkguhZz-Blmfc0Xaq99xk6y4You0egXkyZMZPaWhejNsi7fIyzP4UFHprxkduBJJIViTDqahIxHVJdUU256NafVBsV0H3Jw8PQxozyz6m9G3AoZMS0cf3yEWASmnd9MSJt4mw_7109VNNO-bEBmgF1Wkbe5ZhvLDQnAtNW4a2ljkMjG5cYAmB1DjVMCam1jpMhn7BGzmuQcku04nO2S1-CjcLqFArlhquRROOJbnDLI1biz3kl2YlDnfJp0FisrMRcWxt8VYQXKBuKuAu0LcVcC9Tc5-nvisBTV-GXuJhvkZh1LY4QI4iJo7iPrLQdrkeGFWBb8OnofowgGcCmvgIbfgOJFo2LsxY_NO8fYaRLghyAtgm3v_8Yr7ZA0_OtQIsgOyWn1N3SFwnSo_Cm79DTNR_WQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Voluntary Resistance Running as a Model to Induce mTOR Activation in Mouse Skeletal Muscle
URI https://www.proquest.com/docview/2307729671
https://pubmed.ncbi.nlm.nih.gov/PMC6787551
https://doaj.org/article/8a6d6e9f7d8f47d1a0c21305c937a402
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELYQe-EFjRVEN1Z5EkLaQ2jTuHb8MKGCQAipIBWKKl4sxz82tJJCk0r0v-fOTdkiVZP2mMSJ5Tvb9935ch8hh4BqQbEujqQVImKeJ5HspCbiCN9l6nUa6IAG1_xyxK7GvfGf36MrARZrXTvkkxrNJsevL4sTWPA_0OMEe9v2GATALC15jAep4At9ALvEcY4PKrAf9mV0lQIfcsw5Zl90x8tzy7UfqdmpUM6_hkHrGZR_maSLj2S7wpK0v1T-Dtlw-SfS6OfgRz8t6BEN2Z0hbN4gD_cwx_JSzxZ06AoEjaBtOpwHxiKqC6op0qJNaDmlSOcBD5_uboa0b1b8Z_QxhybzwtHb32CrQF50MC-g410yuji_O7uMKl6FyAD8KCNtM89SLE8sBNdSY1DRxiKTicmMs9zxVAPQEbAnJ1a6VMY-AZ167rsd2XE62SOb-TR3-4QC-GI9y6VwwrEsY-DNcWO5l6xresz5JmmvpKhMVXQcuS8mCpwPlLsKclcodxXk3iTf3994Xhbc-EfbU1TMezsslR1uTGc_VbXyFIwFhiS9sKlnwsa6Y7pguHsGgJmGKdEk31ZqVbC08LxE5w7EqTBHHnwPjh2Jmr5rPdaf5I-_QpFuAAEC0Ojn_xjOF7KFFyFVkB2QzXI2d18B8pRZK4QKWmE-vwFO0AAJ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voluntary+Resistance+Running+as+a+Model+to+Induce+mTOR+Activation+in+Mouse+Skeletal+Muscle&rft.jtitle=Frontiers+in+physiology&rft.au=D%E2%80%99Hulst%2C+Gommaar&rft.au=Palmer%2C+Andrew+S.&rft.au=Masschelein%2C+Evi&rft.au=Bar-Nur%2C+Ori&rft.date=2019-10-04&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphys.2019.01271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphys_2019_01271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon