Desensitization of 5-HT1A Receptors by 5-HT2A Receptors in Neuroendocrine Neurons in Vivo
An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 310; no. 1; pp. 59 - 66 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2004
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders. |
---|---|
AbstractList | An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders. An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders. An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders. An imbalance between serotonin-2A (5-HT 2A ) and 5-HT 1A receptors may underlie several mood disorders. The present studies determined whether 5-HT 2A receptors interact with 5-HT 1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT 1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT 1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT 2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT 1A receptors. Microinjection of the 5-HT 2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT 1A receptors induced by the 5-HT 2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT 1A and 5-HT 2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT 2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT 1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT 1A receptor signaling after changes in function of 5-HT 2A receptors; for example, during pharmacotherapy of mood disorders. |
Author | Carrasco, Gonzalo A. Garcia, Francisca Zhang, Yahong Damjanoska, Katerina J. Sullivan Hanley, Nicole R. D’Souza, Deborah N. Battaglia, George Van de Kar, Louis D. Zainelli, Gina M. Gray, Thackery S. Muma, Nancy A. Dudas, Bertalan |
Author_xml | – sequence: 1 givenname: Yahong surname: Zhang fullname: Zhang, Yahong – sequence: 2 givenname: Thackery S. surname: Gray fullname: Gray, Thackery S. – sequence: 3 givenname: Deborah N. surname: D’Souza fullname: D’Souza, Deborah N. – sequence: 4 givenname: Gonzalo A. surname: Carrasco fullname: Carrasco, Gonzalo A. – sequence: 5 givenname: Katerina J. surname: Damjanoska fullname: Damjanoska, Katerina J. – sequence: 6 givenname: Bertalan surname: Dudas fullname: Dudas, Bertalan – sequence: 7 givenname: Francisca surname: Garcia fullname: Garcia, Francisca – sequence: 8 givenname: Gina M. surname: Zainelli fullname: Zainelli, Gina M. – sequence: 9 givenname: Nicole R. surname: Sullivan Hanley fullname: Sullivan Hanley, Nicole R. – sequence: 10 givenname: George surname: Battaglia fullname: Battaglia, George – sequence: 11 givenname: Nancy A. surname: Muma fullname: Muma, Nancy A. – sequence: 12 givenname: Louis D. surname: Van de Kar fullname: Van de Kar, Louis D. email: lvandek@lumc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15064330$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtrGzEURkVJqJ3HOrsym2Y3tt4zswxp0xRCAiUNZCVkzbWtMJamkpzg_PrKHpeWQLMS97vn04VzhA6cd4DQGcETQiifPvWQJgSzCZaUUv4BjYmgpMQ5OkBjjCktmZBihI5ifMKYcC7ZRzQiAkvOGB6jxy8QwUWb7KtO1rvCzwtRXt-Ti-IHGOiTD7GYbXYZ_TezrriFdfDgWm-CdTCMbrd5sM_-BB3OdRfhdP8eo59XX-8vr8ubu2_fLy9uSsNZk0rdVqBlxWqgoiYG14AJ0Q0Drs2sqlphhMlbxmd1JUwNrDKiIlrLmjDWEGDH6Hz4tw_-1xpiUisbDXSdduDXUUkpBeeVzOCnPbieraBVfbArHTbqj4wMTAfABB9jgPlfBKutbrXVnQemBt25Id40jE07jylo273T-zz0lnaxfLEBVL_UYaWN7_xio9i2p0STuWbgIAt8thBUNBacgTZ3TFKtt_-98Rs8_qLx |
CitedBy_id | crossref_primary_10_1016_j_ygcen_2017_09_008 crossref_primary_10_1007_s10484_017_9363_3 crossref_primary_10_3389_fphar_2018_00177 crossref_primary_10_1016_j_psyneuen_2008_05_004 crossref_primary_10_1134_S1819712420040078 crossref_primary_10_1111_jsm_12742 crossref_primary_10_1016_j_intimp_2012_02_010 crossref_primary_10_1007_s00210_004_1005_7 crossref_primary_10_1016_j_bbr_2023_114819 crossref_primary_10_1016_j_brainres_2018_07_020 crossref_primary_10_1016_j_neuroscience_2008_11_028 crossref_primary_10_1111_j_1530_0277_2006_00316_x crossref_primary_10_1089_neu_2008_0640 crossref_primary_10_1152_physrev_00031_2017 crossref_primary_10_1016_j_crneur_2021_100011 crossref_primary_10_1016_j_ejphar_2014_07_045 crossref_primary_10_1074_jbc_M111_315432 crossref_primary_10_1016_j_neubiorev_2008_04_006 crossref_primary_10_1016_j_pbb_2013_11_007 crossref_primary_10_1007_s00210_008_0323_6 crossref_primary_10_1016_j_cophys_2018_12_012 crossref_primary_10_1523_JNEUROSCI_1097_18_2018 crossref_primary_10_1016_j_psyneuen_2007_10_006 crossref_primary_10_1016_j_ygcen_2013_08_008 crossref_primary_10_1016_j_physbeh_2014_01_036 crossref_primary_10_1097_WNR_0b013e32830edd6d crossref_primary_10_1016_j_neuropharm_2005_05_013 crossref_primary_10_1134_S0026893310050171 crossref_primary_10_1016_j_neuroscience_2023_07_028 crossref_primary_10_1523_JNEUROSCI_3223_04_2004 crossref_primary_10_1124_jpet_104_082073 crossref_primary_10_1016_j_jveb_2016_08_005 crossref_primary_10_1016_j_neuroscience_2005_05_012 crossref_primary_10_1016_j_peptides_2024_171178 crossref_primary_10_1016_j_neuropharm_2006_04_012 crossref_primary_10_1016_j_neuroscience_2009_09_078 crossref_primary_10_1016_j_brainres_2006_03_045 crossref_primary_10_1016_j_jchemneu_2010_01_003 crossref_primary_10_1111_j_1743_6109_2006_00394_x crossref_primary_10_3390_cancers2021166 crossref_primary_10_1016_j_ibror_2018_11_008 crossref_primary_10_1016_j_brainres_2007_03_084 crossref_primary_10_1016_j_brainres_2016_04_032 crossref_primary_10_1080_10937404_2011_578559 crossref_primary_10_1177_0269881119826783 crossref_primary_10_1210_en_2009_1180 crossref_primary_10_1007_s00213_004_2103_4 crossref_primary_10_1111_j_1601_183X_2010_00581_x crossref_primary_10_1002_syn_20187 crossref_primary_10_1016_j_brainresbull_2011_10_009 crossref_primary_10_1016_j_neuroscience_2009_09_028 crossref_primary_10_1016_j_ejphar_2009_10_021 crossref_primary_10_1124_jpet_106_116004 crossref_primary_10_1016_j_yfrne_2011_07_002 crossref_primary_10_3390_nu13020498 crossref_primary_10_1124_dmd_117_079632 crossref_primary_10_3390_biom11121914 crossref_primary_10_1016_j_regpep_2008_05_003 crossref_primary_10_1016_j_brainres_2010_03_009 crossref_primary_10_1016_j_mcn_2022_103719 crossref_primary_10_1016_j_neuroscience_2006_06_014 crossref_primary_10_1007_s43450_021_00164_3 crossref_primary_10_3390_biom10010071 crossref_primary_10_1177_0269881120913150 crossref_primary_10_1007_s11055_016_0311_0 crossref_primary_10_1016_j_ejphar_2006_01_027 |
Cites_doi | 10.1016/S0022-3565(24)38982-7 10.1523/JNEUROSCI.22-21-09635.2002 10.1016/S0022-3565(25)23167-6 10.1016/S0022-3565(25)38429-6 10.1007/978-3-0348-8730-4_3 10.1046/j.1471-4159.2001.00154.x 10.1016/0006-3223(94)90627-0 10.1016/S0014-2999(97)01607-5 10.1016/0165-6147(88)90174-5 10.1016/S0022-3565(25)12956-X 10.1091/mbc.9.1.1 10.1016/0922-4106(95)90003-9 10.1523/JNEUROSCI.21-10-03572.2001 10.1016/0361-9230(93)90100-P 10.1074/jbc.273.40.26008 10.1016/0922-4106(90)90190-9 10.1002/cne.903510304 10.1016/S0169-328X(97)00201-5 10.1021/bi00203a023 10.1016/0006-8993(93)90521-N 10.1016/0028-3908(95)00195-6 10.1073/pnas.95.6.3281 10.1016/S0893-133X(98)00106-7 10.1016/0196-9781(86)90111-7 10.1124/jpet.103.050534 10.1016/1043-6618(94)80082-0 10.1016/S0009-9236(98)90038-8 10.1016/S0006-8993(97)00961-X 10.1016/0014-2999(94)90642-4 10.1007/BF00178722 10.1523/JNEUROSCI.21-20-07919.2001 10.1113/jphysiol.2001.012668 10.1016/0166-4328(96)00112-X 10.1016/0028-3908(93)90108-F 10.1016/0166-4328(96)00092-7 10.1016/S0006-8993(97)00693-8 10.1016/S0022-3565(25)24006-X 10.1038/sj.bjp.0702723 10.1016/S0022-3565(24)29629-4 10.1016/S0021-9258(18)98750-8 10.1016/S0169-328X(98)00295-2 10.1016/S0306-4522(98)00523-5 10.4088/JCP.v63n0202 10.1016/0163-7258(94)00075-E 10.1002/(SICI)1096-9861(19980112)390:2<194::AID-CNE3>3.0.CO;2-X 10.1126/science.1083968 10.1016/S0026-895X(25)08528-1 10.1016/S0021-9258(17)41815-1 10.1007/s002130050740 10.1126/science.278.5340.1132 10.1016/0304-3940(95)12048-9 10.1074/jbc.270.39.23119 10.1016/S0893-133X(98)00037-2 10.1016/0014-2999(88)90178-1 10.1016/S0022-3565(24)36965-4 10.1176/appi.ajp.158.1.131 10.1016/0091-3057(90)90098-3 10.1016/S0169-328X(99)00101-1 10.1016/S0021-9258(19)39437-2 10.1016/S0031-6997(25)06783-3 10.1002/(SICI)1096-9861(19960205)365:2<289::AID-CNE7>3.3.CO;2-X 10.1523/JNEUROSCI.21-24-09856.2001 10.1016/0091-3057(91)90199-C 10.1016/S0022-3565(24)37930-3 10.1016/S0006-8993(02)03637-5 |
ContentType | Journal Article |
Copyright | 2004 American Society for Pharmacology and Experimental Therapeutics |
Copyright_xml | – notice: 2004 American Society for Pharmacology and Experimental Therapeutics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1124/jpet.103.062224 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-0103 |
EndPage | 66 |
ExternalDocumentID | 15064330 10_1124_jpet_103_062224 310_1_59 S0022356524314107 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH60687 – fundername: NIDA NIH HHS grantid: R01 DA13669 – fundername: NINDS NIH HHS grantid: R01 NS 34153 – fundername: NIMH NIH HHS grantid: R01 MH 58448 – fundername: NINDS NIH HHS grantid: R01 NS38059 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 2WC 3O- 4.4 53G 5GY 5RE 5VS 8WZ A6W AAJMC AALRI AAXUO AAYOK ABCQX ABIVO ABJNI ABOCM ABSQV ACGFO ACGFS ACNCT ADBBV ADCOW ADIYS AENEX AERNN AFFNX AFHIN AFOSN AGFXO AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ INIJC KQ8 L7B LSO MJL MVM O9- OHT OK1 P2P R.V R0Z RHF RHI RPT TR2 UQL VH1 W2D W8F WH7 WOQ X7M YBU YHG YQT ZGI ZXP - 08R 0R 55 8RP AALRV ABFLS ABSGY ABZEH ACDCL ADACO ADBIT ADKFC AETEA AIKQT DL FH7 GJ HZ O0- X AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION M41 ROL CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c439t-ad7ea6738e2581c08e011a93e4acb77d5c5c73834b875c8e37c571aa6813391e3 |
ISSN | 0022-3565 |
IngestDate | Thu Jul 10 22:33:14 EDT 2025 Thu Apr 03 07:04:38 EDT 2025 Tue Jul 01 05:32:32 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Tue Jan 05 21:16:48 EST 2021 Sat Jan 25 15:58:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-ad7ea6738e2581c08e011a93e4acb77d5c5c73834b875c8e37c571aa6813391e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15064330 |
PQID | 66654476 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66654476 pubmed_primary_15064330 crossref_primary_10_1124_jpet_103_062224 crossref_citationtrail_10_1124_jpet_103_062224 highwire_pharmacology_310_1_59 elsevier_sciencedirect_doi_10_1124_jpet_103_062224 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2004 20040701 2004-07-00 2004-Jul |
PublicationDateYYYYMMDD | 2004-07-01 |
PublicationDate_xml | – month: 07 year: 2004 text: July 2004 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of pharmacology and experimental therapeutics |
PublicationTitleAlternate | J Pharmacol Exp Ther |
PublicationYear | 2004 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics |
References | Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, Jacobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, et al. (2001) A novel augmentation strategy for treating resistant major depression. receptor controlling coupling to N-type calcium channels. fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala. 205-209. receptor and augments its desensitization by protein kinase C in CHO-K1 cells. receptors. Raap DK, Evans S, Garcia F, Li Q, Muma NA, Wolf WA, Battaglia G, and Van de Kar LD (1999) Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT 1-14. Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT) receptor blockade increases cortical DA release via 5-HT Raymond JR, Mukhin YV, Gettys TW, and Garnovskaya MN (1999) The recombinant 5-HT Glick JL, Meigs TE, Miron A, and Casey PJ (1998) RGSZ1, a G 3572-3579. 851-858. receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of G receptor subtype increases rat plasma ACTH concentration. Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997b) A desensitization of hypothalamic 5-HT Raymond JR and Olsen CL (1994) Protein kinase A induces phosphorylation of the human 5-HT 157-204. Albert PR, Zhou QY, Van Tol HH, Bunzow JR, and Civelli O (1990) Cloning, functional expression and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. 687-689. 7919-7927. receptors: a review of in vivo studies. Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, and Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. receptor sensitivity. Wright DE, Seroogy KB, Lundgren KH, Davis BM, and Jennes L (1995) Comparative localization of serotonin Eison AS, Wright RN, Freeman RP, and Gylys JA (1993) 5-HT-dependent myoclonus in guinea pigs: mediation through 5-HT1A-5-HT2 receptor interaction. receptor agonist or antagonist administration on serotonin- 354-364. Anthony TE and Azmitia EC (1997) Molecular characterization of antipeptide antibodies against the 5-HT receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of G H]MDL 100,907: a novel selective 5-HT receptor ligand. Gilbert F, Brazell C, Tricklebank MD, and Stahl SM (1988) Activation of the 5-HT 194-210. receptors? 428-436. 41-51. receptor: G protein coupling and signalling pathways. 277-284. receptors after 5-HT 843-857. Berlin I, Warot D, Legout V, Guillemant S, Schöllnhammer G, and Puech AJ (1998) Blunted 5-HT Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors. 141-151. 330-332. 23119-23125. Johnson MP, Siegel BW, and Carr AA (1996) Darmani NA, Martin BR, Pandey U, and Glennon RA (1990) Do functional relationships exist between 5-HT Krebs-Thomson K and Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in rats. Piekut DT and Joseph SA (1986) Co-existence of CRF and vasopressin immunore-activity in parvocellular paraventricular neurons of rat hypothalamus. Javed A, Kamradt MC, Van de Kar LD, and Gray TS (1999) 628-639. S]GTPgammaS binding in the anterior cingulate cortex as a result of 5-HT Gundlah C, Pecins-Thompson M, Schutzer WE, and Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Olivier B, Soudijn W, and van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function. receptor by phospholipid-derived signaling components. 99-103. Wu X, Kushwaha N, Albert PR, and Penington NJ (2002) A critical protein kinase C phosphorylation site on the 5-HT Fields TA and Casey PJ (1995) Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. 89-94. receptor. proteins. receptor: evidence for state-dependent antibody binding. Bagdy G and Kalogeras KT (1993) Stimulation of 5-HT Pranzatelli MR and Pluchino RS (1991) The relation of central 5-HT Tilakaratne N, Yang ZL, and Friedman E (1995) Chronic fluoxetine or desmethylimipramine treatment alters 5-HT 5825-5832. 98-106. receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. receptor subtype mRNAs in rat brain. 9856-9866. 103-165. Tu YP, Wang J, and Ross EM (1997) Inhibition of brain G 191-194. Maswood S, Andrade M, Caldarola-Pastuszka M, and Uphouse L (1996) Protective actions of the 5-HT 9635-9642. Cadogan AK, Marsden CA, Tulloch I, and Kendall DA (1993) Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teiteler M, and de Souza EB (1990) Autoradiographic characterization of (±)-1-(2,5-dimethoxy-4- Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D’Souza DN, Garcia F, Battaglia G, and Muma NA (2003) Chronic fluoxetine differentially affects 5-HT2A receptor signaling in frontal cortex, oxytocin and corticotropin releasing factor (CRF)-containing neurons in rat paraventricular nucleus. 14747-14753. 26008-26013. 1581-1590. Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D’Souza DN, Tetzlaff J, Garcia F, Hanley NR, Scripathirathan K, Petersen BR, et al. (2002) Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. 901-906. Saitoh K, Mikuni M, Ikeda M, Yamazaki C, Tomita U, and Takahashi K (1995) Serotonin-induced 5-HT receptors: low dose agonist-induced selective tolerance in the rat. 249-256. receptors in the rat central nervous system. 357-373. Li Q, Brownfield MS, Battaglia G, Cabrera TM, Levy AD, Rittenhouse PA, and Van de Kar LD (1993) Long-term treatment with the antidepressants fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212) and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCI (DOI). Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, and Vergé D (1996) Immunocytochemical localization of serotonin agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. 95-103. receptors in the rat brain: lack of effect by repeated injections of fluoxetine. Li Q, Brownfield MS, Levy AD, Battaglia G, Cabrera TM, and Van de Kar LD (1994) Attenuation of hormone responses to the 5-HT 1132-1135. receptors by repeated injections of paroxetine: reduction in the levels of G Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT Borsini F (1994) Balance between cortical 5-HT1A and 5-HT2 receptor function: hypothesis for a faster antidepressant action. Van Wijngaarden I, Tulp MT, and Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, Van Giersbergen PL, McCloskey TC, Johnson MP, et al. (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT 968-981. 17-37. Morales J, Fishburn CS, Wilson PT, and Bourne HR (1998) Plasma membrane localization of G alpha z requires two signals. 4571-4576. receptors induce oxytocin release in the male rat. receptor agonist-induced corticotropin and cortisol responses after long-term ipsapirone and fluoxetine administration to healthy subjects. α. Zhou FC, Patel TD, Swartz D, Xu Y, and Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT Meller E and Bohmaker K (1994) Differential receptor reserve for 5-HT 174-182. 891-898. Evans KL, Cropper JD, Berg KA, and Clarke WP (2001) Mechanisms of regulation of agonist efficacy at the 5-HT receptor activation. receptors in the hypothalamus without changing the levels of G receptors in rat brain. 300-308. Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997c) Fluoxetine gradually increases receptor-stimulated and D 836-844. Berendsen HH (1995) Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans? 563-571. and G 1-11. 853-861. Van de Kar LD, Javed A, Zhang YH, Serres F, Raap DK, and Gray TS (2001) 5-HT 1025-1035. 69-74. Raymond JR (1991) Protein kinase C induces phosphorylation and desensitization of the human 5-HT 5-HT 11264-11269. 3281-3286. 289-305. 263-266. receptors stimulate ACTH, corticosterone, oxytocin, renin and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. 407-413. antagonist with a favorable CNS safety profile. 277-280. Hallak H, Brass LF, and Manning DR (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no effect on phosphorylation by protein kinase C. receptor agonist, DOI, on 5-HT Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. 1246-1252. I]iodophenyl)-2-aminopropane Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, and Newman ME (1999) 5-HT Critchley DJ, Childs KJ, Middlefell VC, and Dourish CT (1994) Inhibition of 8-OH-DPAT-induced elevation of plasma corticotrophin by the 5-HT proteins and neuroendocrine responses, but not in the density of 5-HT 186-201. Eison AS and Mullins UL (1995) Regulation of central 5-HT receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. and Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, and Humphrey PP (1994) VII International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). 1521-1531. receptor desensitization in C6BU-1 glioma cells transfected with 5-HT receptor function in the brain of the 10.1124/jpet.103.062224_bib7 10.1124/jpet.103.062224_bib8 10.1124/jpet.103.062224_bib5 10.1124/jpet.103.062224_bib6 10.1124/jpet.103.062224_bib3 10.1124/jpet.103.062224_bib19 10.1124/jpet.103.062224_bib4 10.1124/jpet.103.062224_bib18 10.1124/jpet.103.062224_bib1 10.1124/jpet.103.062224_bib2 10.1124/jpet.103.062224_bib26 10.1124/jpet.103.062224_bib25 10.1124/jpet.103.062224_bib28 10.1124/jpet.103.062224_bib27 10.1124/jpet.103.062224_bib22 10.1124/jpet.103.062224_bib21 10.1124/jpet.103.062224_bib65 10.1124/jpet.103.062224_bib24 10.1124/jpet.103.062224_bib23 10.1124/jpet.103.062224_bib62 10.1124/jpet.103.062224_bib61 10.1124/jpet.103.062224_bib20 10.1124/jpet.103.062224_bib64 10.1124/jpet.103.062224_bib63 10.1124/jpet.103.062224_bib60 10.1124/jpet.103.062224_bib29 10.1124/jpet.103.062224_bib37 10.1124/jpet.103.062224_bib36 10.1124/jpet.103.062224_bib39 10.1124/jpet.103.062224_bib38 10.1124/jpet.103.062224_bib33 10.1124/jpet.103.062224_bib32 10.1124/jpet.103.062224_bib35 10.1124/jpet.103.062224_bib34 10.1124/jpet.103.062224_bib31 10.1124/jpet.103.062224_bib30 10.1124/jpet.103.062224_bib48 10.1124/jpet.103.062224_bib47 10.1124/jpet.103.062224_bib49 10.1124/jpet.103.062224_bib44 10.1124/jpet.103.062224_bib43 10.1124/jpet.103.062224_bib46 10.1124/jpet.103.062224_bib45 10.1124/jpet.103.062224_bib40 10.1124/jpet.103.062224_bib42 10.1124/jpet.103.062224_bib41 10.1124/jpet.103.062224_bib15 10.1124/jpet.103.062224_bib59 10.1124/jpet.103.062224_bib14 10.1124/jpet.103.062224_bib58 10.1124/jpet.103.062224_bib17 10.1124/jpet.103.062224_bib16 10.1124/jpet.103.062224_bib11 10.1124/jpet.103.062224_bib55 10.1124/jpet.103.062224_bib10 10.1124/jpet.103.062224_bib54 10.1124/jpet.103.062224_bib9 10.1124/jpet.103.062224_bib13 10.1124/jpet.103.062224_bib57 10.1124/jpet.103.062224_bib12 10.1124/jpet.103.062224_bib56 10.1124/jpet.103.062224_bib51 10.1124/jpet.103.062224_bib50 10.1124/jpet.103.062224_bib53 10.1124/jpet.103.062224_bib52 |
References_xml | – reference: Eison AS and Mullins UL (1995) Regulation of central 5-HT – reference: GAP and other RGS proteins by palmitoylation of G protein α subunits. – reference: Van de Kar LD, Javed A, Zhang YH, Serres F, Raap DK, and Gray TS (2001) 5-HT – reference: : 261-266. – reference: : 4571-4576. – reference: Cadogan AK, Marsden CA, Tulloch I, and Kendall DA (1993) Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT – reference: Fields TA and Casey PJ (1995) Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. – reference: : 836-844. – reference: Glick JL, Meigs TE, Miron A, and Casey PJ (1998) RGSZ1, a G – reference: : 325-339. – reference: Raymond JR and Olsen CL (1994) Protein kinase A induces phosphorylation of the human 5-HT – reference: Bagdy G and Kalogeras KT (1993) Stimulation of 5-HT – reference: : 177-181. – reference: : 98-106. – reference: Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, Van Giersbergen PL, McCloskey TC, Johnson MP, et al. (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT – reference: receptor desensitization in C6BU-1 glioma cells transfected with 5-HT – reference: Pranzatelli MR and Pluchino RS (1991) The relation of central 5-HT – reference: receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of G – reference: : 9856-9866. – reference: : 89-94. – reference: : 131-134. – reference: receptors in the rat central nervous system. – reference: receptor subtype mRNAs in rat brain. – reference: receptor and augments its desensitization by protein kinase C in CHO-K1 cells. – reference: receptors in rat brain. – reference: : 407-413. – reference: , 5-HT – reference: , receptor agonist, DOI, on 5-HT – reference: Anthony TE and Azmitia EC (1997) Molecular characterization of antipeptide antibodies against the 5-HT – reference: Krebs-Thomson K and Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in rats. – reference: : 330-332. – reference: Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, and Humphrey PP (1994) VII International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). – reference: receptors induce oxytocin release in the male rat. – reference: receptor antagonist WAY100635. – reference: : 277-284. – reference: receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. – reference: : 9635-9642. – reference: Sleight AJ, Carolo C, Petit N, Zwingeststein C, and Bourson A (1995) Identification of 5-hydroxytryptamine – reference: : 3281-3286. – reference: : 386-389. – reference: Darmani NA, Martin BR, Pandey U, and Glennon RA (1990) Do functional relationships exist between 5-HT – reference: receptors: a review of in vivo studies. – reference: Thase ME (2002) What role do atypical antipsychotic drugs have in treatment-resistant depression? – reference: and 5-HT – reference: Wright DE, Seroogy KB, Lundgren KH, Davis BM, and Jennes L (1995) Comparative localization of serotonin – reference: : 186-201. – reference: : 354-364. – reference: Valdez A, Burke TF, and Hensler JG (2002) Selective heterologous regulation of 5-HT – reference: Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D’Souza DN, Garcia F, Battaglia G, and Muma NA (2003) Chronic fluoxetine differentially affects 5-HT2A receptor signaling in frontal cortex, oxytocin and corticotropin releasing factor (CRF)-containing neurons in rat paraventricular nucleus. – reference: : 26008-26013. – reference: receptor blockade increases cortical DA release via 5-HT – reference: Raap DK, Evans S, Garcia F, Li Q, Muma NA, Wolf WA, Battaglia G, and Van de Kar LD (1999) Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT – reference: Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. – reference: : 431-439. – reference: Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, and Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. – reference: receptor agonist or antagonist administration on serotonin- – reference: receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. – reference: receptor. – reference: : 7919-7927. – reference: : 157-204. – reference: I]DOI) binding to 5-HT – reference: Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors. – reference: : 41-51. – reference: proteins. – reference: Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, and Meltzer HY (2001) 5-HT – reference: Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, Jacobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, et al. (2001) A novel augmentation strategy for treating resistant major depression. – reference: receptors after 5-HT – reference: receptor gene. – reference: : 5825-5832. – reference: Raymond JR (1991) Protein kinase C induces phosphorylation and desensitization of the human 5-HT – reference: : 263-266. – reference: Maswood S, Andrade M, Caldarola-Pastuszka M, and Uphouse L (1996) Protective actions of the 5-HT – reference: Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT – reference: and D – reference: -proteins. – reference: receptors in the hypothalamus without changing the levels of G – reference: Tilakaratne N, Yang ZL, and Friedman E (1995) Chronic fluoxetine or desmethylimipramine treatment alters 5-HT – reference: : 23119-23125. – reference: : 428-436. – reference: : 194-210. – reference: receptor: evidence for state-dependent antibody binding. – reference: : 249-256. – reference: Van Wijngaarden I, Tulp MT, and Soudijn W (1990) The concept of selectivity in 5-HT receptor research. – reference: Morales J, Fishburn CS, Wilson PT, and Bourne HR (1998) Plasma membrane localization of G alpha z requires two signals. – reference: Borsini F (1994) Balance between cortical 5-HT1A and 5-HT2 receptor function: hypothesis for a faster antidepressant action. – reference: : 103-165. – reference: receptor-mediated regulation of plasma neuroendocrine hormones. – reference: : 1246-1252. – reference: Li Q, Battaglia G, and Van de Kar LD (1997a) Autoradiographic evidence for differential G-protein coupling of 5-HT – reference: : 277-280. – reference: Berendsen HH (1995) Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans? – reference: S]GTPgammaS binding in the anterior cingulate cortex as a result of 5-HT – reference: receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. – reference: : 1132-1135. – reference: : 968-981. – reference: Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D’Souza DN, Tetzlaff J, Garcia F, Hanley NR, Scripathirathan K, Petersen BR, et al. (2002) Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. – reference: : 1-11. – reference: : 99-103. – reference: Li Q, Brownfield MS, Battaglia G, Cabrera TM, Levy AD, Rittenhouse PA, and Van de Kar LD (1993) Long-term treatment with the antidepressants fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212) and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCI (DOI). – reference: and – reference: : 853-861. – reference: Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997c) Fluoxetine gradually increases [ – reference: Olivier B, Soudijn W, and van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function. – reference: : 1-14. – reference: Johnson MP, Siegel BW, and Carr AA (1996) [ – reference: : 687-689. – reference: I]DOI-labelled 5-HT – reference: : 225-228. – reference: Eison AS, Wright RN, Freeman RP, and Gylys JA (1993) 5-HT-dependent myoclonus in guinea pigs: mediation through 5-HT1A-5-HT2 receptor interaction. – reference: : 497-501. – reference: -selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of G – reference: : 3572-3579. – reference: : 300-308. – reference: : 851-858. – reference: : 357-373. – reference: Albert PR, Zhou QY, Van Tol HH, Bunzow JR, and Civelli O (1990) Cloning, functional expression and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. – reference: agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. – reference: : 628-639. – reference: antagonist with a favorable CNS safety profile. – reference: : 843-857. – reference: Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT) – reference: receptors: low dose agonist-induced selective tolerance in the rat. – reference: : 205-209. – reference: Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997b) A desensitization of hypothalamic 5-HT – reference: proteins and neuroendocrine responses, but not in the density of 5-HT – reference: : 11264-11269. – reference: Gundlah C, Pecins-Thompson M, Schutzer WE, and Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. – reference: receptor subtype increases rat plasma ACTH concentration. – reference: receptor-stimulated [ – reference: : 901-906. – reference: receptor by phospholipid-derived signaling components. – reference: : 95-97. – reference: Hensler JG and Truett KA (1998) Effect of chronic serotonin- – reference: Tu YP, Wang J, and Ross EM (1997) Inhibition of brain G – reference: receptor ligand. – reference: Piekut DT and Joseph SA (1986) Co-existence of CRF and vasopressin immunore-activity in parvocellular paraventricular neurons of rat hypothalamus. – reference: : 1751-1764. – reference: receptor activation. – reference: receptor function in the brain of the guinea pig. – reference: H]MDL 100,907: a novel selective 5-HT – reference: : 141-151. – reference: Wu X, Kushwaha N, Albert PR, and Penington NJ (2002) A critical protein kinase C phosphorylation site on the 5-HT – reference: Zhang Y, D’Souza D, Raap DK, Garcia F, Battaglia G, Muma NA, and Van de Kar LD (2001) Characterization of the functional heterologous desensitization of hypothalamic 5-HT – reference: : 174-182. – reference: Critchley DJ, Childs KJ, Middlefell VC, and Dourish CT (1994) Inhibition of 8-OH-DPAT-induced elevation of plasma corticotrophin by the 5-HT – reference: Vicentic A, Li Q, Battaglia G, and Van de Kar LD (1998) WAY-100635 inhibits 8-OH-DPAT stimulated oxytocin, ACTH and corticosterone, but not prolactin secretion. – reference: I]iodophenyl)-2-aminopropane ([ – reference: and 5-HT – reference: -receptor agonist-induced corticotropin and cortisol responses after long-term ipsapirone and fluoxetine administration to healthy subjects. – reference: Gilbert F, Brazell C, Tricklebank MD, and Stahl SM (1988) Activation of the 5-HT – reference: α. – reference: and G – reference: receptor controlling coupling to N-type calcium channels. – reference: : 191-194. – reference: receptor-mediated inhibition of lordosis behavior. – reference: : 14747-14753. – reference: Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, and Newman ME (1999) 5-HT – reference: receptors? – reference: : 17-37. – reference: : 1521-1531. – reference: receptor sensitivity. – reference: Meller E and Bohmaker K (1994) Differential receptor reserve for 5-HT – reference: - and G – reference: : 563-571. – reference: : 69-74. – reference: Berlin I, Warot D, Legout V, Guillemant S, Schöllnhammer G, and Puech AJ (1998) Blunted 5-HT – reference: Javed A, Kamradt MC, Van de Kar LD, and Gray TS (1999) – reference: Fritschy JM, Weinmann O, Wenzel A, and Benke D (1998) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. – reference: receptors by repeated injections of paroxetine: reduction in the levels of G – reference: receptors stimulate ACTH, corticosterone, oxytocin, renin and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. – reference: Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teiteler M, and de Souza EB (1990) Autoradiographic characterization of (±)-1-(2,5-dimethoxy-4-[ – reference: Alves SE, Lopez V, McEwen BS, and Weiland NG (1998) Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study. – reference: Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, and Vergé D (1996) Immunocytochemical localization of serotonin – reference: Saitoh K, Mikuni M, Ikeda M, Yamazaki C, Tomita U, and Takahashi K (1995) Serotonin-induced 5-HT – reference: Zhou FC, Patel TD, Swartz D, Xu Y, and Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT – reference: receptors in the rat brain: lack of effect by repeated injections of fluoxetine. – reference: : 95-103. – reference: : 1581-1590. – reference: : 1025-1035. – reference: Raymond JR, Mukhin YV, Gettys TW, and Garnovskaya MN (1999) The recombinant 5-HT – reference: : 891-898. – reference: receptor mediated c-fos gene expression. – reference: receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. – reference: binding sites. – reference: Li Q, Brownfield MS, Levy AD, Battaglia G, Cabrera TM, and Van de Kar LD (1994) Attenuation of hormone responses to the 5-HT – reference: /5-HT – reference: -fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala. – reference: receptors. – reference: Hallak H, Brass LF, and Manning DR (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no effect on phosphorylation by protein kinase C. – reference: : 301-312. – reference: Evans KL, Cropper JD, Berg KA, and Clarke WP (2001) Mechanisms of regulation of agonist efficacy at the 5-HT – reference: receptor: G protein coupling and signalling pathways. – reference: : 289-305. – ident: 10.1124/jpet.103.062224_bib42 doi: 10.1016/S0022-3565(24)38982-7 – ident: 10.1124/jpet.103.062224_bib64 doi: 10.1523/JNEUROSCI.22-21-09635.2002 – ident: 10.1124/jpet.103.062224_bib4 doi: 10.1016/S0022-3565(25)23167-6 – ident: 10.1124/jpet.103.062224_bib35 doi: 10.1016/S0022-3565(25)38429-6 – ident: 10.1124/jpet.103.062224_bib44 doi: 10.1007/978-3-0348-8730-4_3 – ident: 10.1124/jpet.103.062224_bib27 doi: 10.1046/j.1471-4159.2001.00154.x – ident: 10.1124/jpet.103.062224_bib36 doi: 10.1016/0006-3223(94)90627-0 – ident: 10.1124/jpet.103.062224_bib60 doi: 10.1016/S0014-2999(97)01607-5 – ident: 10.1124/jpet.103.062224_bib25 doi: 10.1016/0165-6147(88)90174-5 – ident: 10.1124/jpet.103.062224_bib30 doi: 10.1016/S0022-3565(25)12956-X – ident: 10.1124/jpet.103.062224_bib43 doi: 10.1091/mbc.9.1.1 – ident: 10.1124/jpet.103.062224_bib55 doi: 10.1016/0922-4106(95)90003-9 – ident: 10.1124/jpet.103.062224_bib58 doi: 10.1523/JNEUROSCI.21-10-03572.2001 – ident: 10.1124/jpet.103.062224_bib16 doi: 10.1016/0361-9230(93)90100-P – ident: 10.1124/jpet.103.062224_bib21 doi: 10.1074/jbc.273.40.26008 – ident: 10.1124/jpet.103.062224_bib59 doi: 10.1016/0922-4106(90)90190-9 – ident: 10.1124/jpet.103.062224_bib61 doi: 10.1002/cne.903510304 – ident: 10.1124/jpet.103.062224_bib3 doi: 10.1016/S0169-328X(97)00201-5 – ident: 10.1124/jpet.103.062224_bib50 doi: 10.1021/bi00203a023 – ident: 10.1124/jpet.103.062224_bib6 doi: 10.1016/0006-8993(93)90521-N – ident: 10.1124/jpet.103.062224_bib40 doi: 10.1016/0028-3908(95)00195-6 – ident: 10.1124/jpet.103.062224_bib2 doi: 10.1073/pnas.95.6.3281 – ident: 10.1124/jpet.103.062224_bib33 doi: 10.1016/S0893-133X(98)00106-7 – ident: 10.1124/jpet.103.062224_bib45 doi: 10.1016/0196-9781(86)90111-7 – ident: 10.1124/jpet.103.062224_bib13 doi: 10.1124/jpet.103.050534 – ident: 10.1124/jpet.103.062224_bib9 doi: 10.1016/1043-6618(94)80082-0 – ident: 10.1124/jpet.103.062224_bib8 doi: 10.1016/S0009-9236(98)90038-8 – ident: 10.1124/jpet.103.062224_bib38 doi: 10.1016/S0006-8993(97)00961-X – ident: 10.1124/jpet.103.062224_bib12 doi: 10.1016/0014-2999(94)90642-4 – ident: 10.1124/jpet.103.062224_bib29 doi: 10.1007/BF00178722 – ident: 10.1124/jpet.103.062224_bib63 doi: 10.1523/JNEUROSCI.21-20-07919.2001 – ident: 10.1124/jpet.103.062224_bib62 doi: 10.1113/jphysiol.2001.012668 – ident: 10.1124/jpet.103.062224_bib5 doi: 10.1016/0166-4328(96)00112-X – ident: 10.1124/jpet.103.062224_bib10 doi: 10.1016/0028-3908(93)90108-F – ident: 10.1124/jpet.103.062224_bib15 doi: 10.1016/0166-4328(96)00092-7 – ident: 10.1124/jpet.103.062224_bib34 doi: 10.1016/S0006-8993(97)00693-8 – ident: 10.1124/jpet.103.062224_bib41 doi: 10.1016/S0022-3565(25)24006-X – ident: 10.1124/jpet.103.062224_bib49 doi: 10.1038/sj.bjp.0702723 – ident: 10.1124/jpet.103.062224_bib17 doi: 10.1016/S0022-3565(24)29629-4 – ident: 10.1124/jpet.103.062224_bib48 doi: 10.1016/S0021-9258(18)98750-8 – ident: 10.1124/jpet.103.062224_bib22 doi: 10.1016/S0169-328X(98)00295-2 – ident: 10.1124/jpet.103.062224_bib28 doi: 10.1016/S0306-4522(98)00523-5 – ident: 10.1124/jpet.103.062224_bib54 doi: 10.4088/JCP.v63n0202 – ident: 10.1124/jpet.103.062224_bib7 doi: 10.1016/0163-7258(94)00075-E – ident: 10.1124/jpet.103.062224_bib19 doi: 10.1002/(SICI)1096-9861(19980112)390:2<194::AID-CNE3>3.0.CO;2-X – ident: 10.1124/jpet.103.062224_bib11 doi: 10.1126/science.1083968 – ident: 10.1124/jpet.103.062224_bib53 doi: 10.1016/S0026-895X(25)08528-1 – ident: 10.1124/jpet.103.062224_bib23 doi: 10.1016/S0021-9258(17)41815-1 – ident: 10.1124/jpet.103.062224_bib32 doi: 10.1007/s002130050740 – ident: 10.1124/jpet.103.062224_bib56 doi: 10.1126/science.278.5340.1132 – ident: 10.1124/jpet.103.062224_bib51 doi: 10.1016/0304-3940(95)12048-9 – ident: 10.1124/jpet.103.062224_bib18 doi: 10.1074/jbc.270.39.23119 – ident: 10.1124/jpet.103.062224_bib24 doi: 10.1016/S0893-133X(98)00037-2 – ident: 10.1124/jpet.103.062224_bib20 doi: 10.1016/0014-2999(88)90178-1 – ident: 10.1124/jpet.103.062224_bib37 doi: 10.1016/S0022-3565(24)36965-4 – ident: 10.1124/jpet.103.062224_bib52 doi: 10.1176/appi.ajp.158.1.131 – ident: 10.1124/jpet.103.062224_bib14 doi: 10.1016/0091-3057(90)90098-3 – ident: 10.1124/jpet.103.062224_bib65 doi: 10.1016/S0169-328X(99)00101-1 – ident: 10.1124/jpet.103.062224_bib1 doi: 10.1016/S0021-9258(19)39437-2 – ident: 10.1124/jpet.103.062224_bib26 doi: 10.1016/S0031-6997(25)06783-3 – ident: 10.1124/jpet.103.062224_bib31 doi: 10.1002/(SICI)1096-9861(19960205)365:2<289::AID-CNE7>3.3.CO;2-X – ident: 10.1124/jpet.103.062224_bib39 doi: 10.1523/JNEUROSCI.21-24-09856.2001 – ident: 10.1124/jpet.103.062224_bib46 doi: 10.1016/0091-3057(91)90199-C – ident: 10.1124/jpet.103.062224_bib47 doi: 10.1016/S0022-3565(24)37930-3 – ident: 10.1124/jpet.103.062224_bib57 doi: 10.1016/S0006-8993(02)03637-5 |
SSID | ssj0014463 |
Score | 2.064834 |
Snippet | An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors... An imbalance between serotonin-2A (5-HT 2A ) and 5-HT 1A receptors may underlie several mood disorders. The present studies determined whether 5-HT 2A... |
SourceID | proquest pubmed crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 59 |
SubjectTerms | 8-Hydroxy-2-(di-n-propylamino)tetralin - pharmacology Adrenocorticotropic Hormone - metabolism Amphetamines - pharmacology Animals Antibody Specificity Corticotropin-Releasing Hormone - metabolism Fluorobenzenes - pharmacology Microinjections Neurons - drug effects Neurons - metabolism Neurosecretory Systems - cytology Oxytocin - metabolism Paraventricular Hypothalamic Nucleus - cytology Piperidines - pharmacology Rats Rats, Sprague-Dawley Receptor, Serotonin, 5-HT1A - immunology Receptor, Serotonin, 5-HT1A - metabolism Receptor, Serotonin, 5-HT2A - immunology Receptor, Serotonin, 5-HT2A - metabolism Serotonin Antagonists - pharmacology Serotonin Receptor Agonists - pharmacology |
Title | Desensitization of 5-HT1A Receptors by 5-HT2A Receptors in Neuroendocrine Neurons in Vivo |
URI | https://dx.doi.org/10.1124/jpet.103.062224 http://jpet.aspetjournals.org/content/310/1/59.abstract https://www.ncbi.nlm.nih.gov/pubmed/15064330 https://www.proquest.com/docview/66654476 |
Volume | 310 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaq8cIL4k6BDT-gCalLaGLn9jiNSwViGqJD25PlOI5WaUqmrp3U_hv-KefEjpMOKsFeosZxLup3cvzZOec7hLyNUTVdqtwr0oR7POWZlzEdeAUvwxzlvlmJycnfjuPJKf9yFp0NBr96UUvLRe6r9V_zSu6CKrQBrpgl-x_IuotCA_wGfGELCMP2nzD-gKlDGHS1dsQv8ibTAGPcMFwFC-kAvcS2sN82q0aNKIeuilph-p_ZNTHlP2c3dZ-ydsljDW296rSujXTTRo2AXjqXI-tuTfpcXtR2oDQ52isToiQxtAN8mO9YdRuCkf2ol2vZ84ujY9fpSM7n8lo1S72f62otL-vRob-xisFdxKtdWmvTazaiP22qgSkm0bprZsNg-3ZpnK-VFjfDuKnl8ucAEXIcIGBGgnID_jgGfsS7sdBFKOJH7BBvHQLD4gHqFdwLYSaCrvTr9-5DFcymmROkh-5WPQpu8_7WTbYRH6dLvX2O03Cd6UPywKJND43FPSIDXT0m-ycG-dUBnfZQPqD79KRnE0_I-S2zpHVJjVlSZ4I0X1Fjlr22WUU3zZJas8QjaJZPyemnj9OjiWcreHgKiO7Ck0WiJdaV1WGUBmqcahhOJDgDDu4hSYpIRQqOMp7DtFmlmiUqSgIp4zRgLAs0e0Z2qrrSLwgNoGc5LpNMBTkvilgqvISMCh4V-ViHQ-K3f69QVt4eq6xcimaaG3KBeMAOEwaPIXnnTrgyyi7bu4YtXsISU0M4BZjV9pP2WmRF_9UUDE8QUTYkb1q8Bfh0_FAnK10vr0WMJcF5Eg_Jc2MG3QOiviRj45d3eaJX5H736r0mO4v5Uu8CpV7ke41R_wZ2YMsd |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desensitization+of+5-HT1A+Receptors+by+5-HT2A+Receptors+in+Neuroendocrine+Neurons+in+Vivo&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Zhang%2C+Yahong&rft.au=Gray%2C+Thackery+S.&rft.au=D%E2%80%99Souza%2C+Deborah+N.&rft.au=Carrasco%2C+Gonzalo+A.&rft.date=2004-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-3565&rft.volume=310&rft.issue=1&rft.spage=59&rft.epage=66&rft_id=info:doi/10.1124%2Fjpet.103.062224&rft.externalDocID=S0022356524314107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon |