Desensitization of 5-HT1A Receptors by 5-HT2A Receptors in Neuroendocrine Neurons in Vivo

An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 310; no. 1; pp. 59 - 66
Main Authors Zhang, Yahong, Gray, Thackery S., D’Souza, Deborah N., Carrasco, Gonzalo A., Damjanoska, Katerina J., Dudas, Bertalan, Garcia, Francisca, Zainelli, Gina M., Sullivan Hanley, Nicole R., Battaglia, George, Muma, Nancy A., Van de Kar, Louis D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2004
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
AbstractList An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
An imbalance between serotonin-2A (5-HT 2A ) and 5-HT 1A receptors may underlie several mood disorders. The present studies determined whether 5-HT 2A receptors interact with 5-HT 1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT 1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT 1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 μg/kg s.c.). The 5-HT 2A/2C receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT 1A receptors. Microinjection of the 5-HT 2A receptor antagonist MDL100,907 [(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT 1A receptors induced by the 5-HT 2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT 1A and 5-HT 2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT 2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT 1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT 1A receptor signaling after changes in function of 5-HT 2A receptors; for example, during pharmacotherapy of mood disorders.
Author Carrasco, Gonzalo A.
Garcia, Francisca
Zhang, Yahong
Damjanoska, Katerina J.
Sullivan Hanley, Nicole R.
D’Souza, Deborah N.
Battaglia, George
Van de Kar, Louis D.
Zainelli, Gina M.
Gray, Thackery S.
Muma, Nancy A.
Dudas, Bertalan
Author_xml – sequence: 1
  givenname: Yahong
  surname: Zhang
  fullname: Zhang, Yahong
– sequence: 2
  givenname: Thackery S.
  surname: Gray
  fullname: Gray, Thackery S.
– sequence: 3
  givenname: Deborah N.
  surname: D’Souza
  fullname: D’Souza, Deborah N.
– sequence: 4
  givenname: Gonzalo A.
  surname: Carrasco
  fullname: Carrasco, Gonzalo A.
– sequence: 5
  givenname: Katerina J.
  surname: Damjanoska
  fullname: Damjanoska, Katerina J.
– sequence: 6
  givenname: Bertalan
  surname: Dudas
  fullname: Dudas, Bertalan
– sequence: 7
  givenname: Francisca
  surname: Garcia
  fullname: Garcia, Francisca
– sequence: 8
  givenname: Gina M.
  surname: Zainelli
  fullname: Zainelli, Gina M.
– sequence: 9
  givenname: Nicole R.
  surname: Sullivan Hanley
  fullname: Sullivan Hanley, Nicole R.
– sequence: 10
  givenname: George
  surname: Battaglia
  fullname: Battaglia, George
– sequence: 11
  givenname: Nancy A.
  surname: Muma
  fullname: Muma, Nancy A.
– sequence: 12
  givenname: Louis D.
  surname: Van de Kar
  fullname: Van de Kar, Louis D.
  email: lvandek@lumc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15064330$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtrGzEURkVJqJ3HOrsym2Y3tt4zswxp0xRCAiUNZCVkzbWtMJamkpzg_PrKHpeWQLMS97vn04VzhA6cd4DQGcETQiifPvWQJgSzCZaUUv4BjYmgpMQ5OkBjjCktmZBihI5ifMKYcC7ZRzQiAkvOGB6jxy8QwUWb7KtO1rvCzwtRXt-Ti-IHGOiTD7GYbXYZ_TezrriFdfDgWm-CdTCMbrd5sM_-BB3OdRfhdP8eo59XX-8vr8ubu2_fLy9uSsNZk0rdVqBlxWqgoiYG14AJ0Q0Drs2sqlphhMlbxmd1JUwNrDKiIlrLmjDWEGDH6Hz4tw_-1xpiUisbDXSdduDXUUkpBeeVzOCnPbieraBVfbArHTbqj4wMTAfABB9jgPlfBKutbrXVnQemBt25Id40jE07jylo273T-zz0lnaxfLEBVL_UYaWN7_xio9i2p0STuWbgIAt8thBUNBacgTZ3TFKtt_-98Rs8_qLx
CitedBy_id crossref_primary_10_1016_j_ygcen_2017_09_008
crossref_primary_10_1007_s10484_017_9363_3
crossref_primary_10_3389_fphar_2018_00177
crossref_primary_10_1016_j_psyneuen_2008_05_004
crossref_primary_10_1134_S1819712420040078
crossref_primary_10_1111_jsm_12742
crossref_primary_10_1016_j_intimp_2012_02_010
crossref_primary_10_1007_s00210_004_1005_7
crossref_primary_10_1016_j_bbr_2023_114819
crossref_primary_10_1016_j_brainres_2018_07_020
crossref_primary_10_1016_j_neuroscience_2008_11_028
crossref_primary_10_1111_j_1530_0277_2006_00316_x
crossref_primary_10_1089_neu_2008_0640
crossref_primary_10_1152_physrev_00031_2017
crossref_primary_10_1016_j_crneur_2021_100011
crossref_primary_10_1016_j_ejphar_2014_07_045
crossref_primary_10_1074_jbc_M111_315432
crossref_primary_10_1016_j_neubiorev_2008_04_006
crossref_primary_10_1016_j_pbb_2013_11_007
crossref_primary_10_1007_s00210_008_0323_6
crossref_primary_10_1016_j_cophys_2018_12_012
crossref_primary_10_1523_JNEUROSCI_1097_18_2018
crossref_primary_10_1016_j_psyneuen_2007_10_006
crossref_primary_10_1016_j_ygcen_2013_08_008
crossref_primary_10_1016_j_physbeh_2014_01_036
crossref_primary_10_1097_WNR_0b013e32830edd6d
crossref_primary_10_1016_j_neuropharm_2005_05_013
crossref_primary_10_1134_S0026893310050171
crossref_primary_10_1016_j_neuroscience_2023_07_028
crossref_primary_10_1523_JNEUROSCI_3223_04_2004
crossref_primary_10_1124_jpet_104_082073
crossref_primary_10_1016_j_jveb_2016_08_005
crossref_primary_10_1016_j_neuroscience_2005_05_012
crossref_primary_10_1016_j_peptides_2024_171178
crossref_primary_10_1016_j_neuropharm_2006_04_012
crossref_primary_10_1016_j_neuroscience_2009_09_078
crossref_primary_10_1016_j_brainres_2006_03_045
crossref_primary_10_1016_j_jchemneu_2010_01_003
crossref_primary_10_1111_j_1743_6109_2006_00394_x
crossref_primary_10_3390_cancers2021166
crossref_primary_10_1016_j_ibror_2018_11_008
crossref_primary_10_1016_j_brainres_2007_03_084
crossref_primary_10_1016_j_brainres_2016_04_032
crossref_primary_10_1080_10937404_2011_578559
crossref_primary_10_1177_0269881119826783
crossref_primary_10_1210_en_2009_1180
crossref_primary_10_1007_s00213_004_2103_4
crossref_primary_10_1111_j_1601_183X_2010_00581_x
crossref_primary_10_1002_syn_20187
crossref_primary_10_1016_j_brainresbull_2011_10_009
crossref_primary_10_1016_j_neuroscience_2009_09_028
crossref_primary_10_1016_j_ejphar_2009_10_021
crossref_primary_10_1124_jpet_106_116004
crossref_primary_10_1016_j_yfrne_2011_07_002
crossref_primary_10_3390_nu13020498
crossref_primary_10_1124_dmd_117_079632
crossref_primary_10_3390_biom11121914
crossref_primary_10_1016_j_regpep_2008_05_003
crossref_primary_10_1016_j_brainres_2010_03_009
crossref_primary_10_1016_j_mcn_2022_103719
crossref_primary_10_1016_j_neuroscience_2006_06_014
crossref_primary_10_1007_s43450_021_00164_3
crossref_primary_10_3390_biom10010071
crossref_primary_10_1177_0269881120913150
crossref_primary_10_1007_s11055_016_0311_0
crossref_primary_10_1016_j_ejphar_2006_01_027
Cites_doi 10.1016/S0022-3565(24)38982-7
10.1523/JNEUROSCI.22-21-09635.2002
10.1016/S0022-3565(25)23167-6
10.1016/S0022-3565(25)38429-6
10.1007/978-3-0348-8730-4_3
10.1046/j.1471-4159.2001.00154.x
10.1016/0006-3223(94)90627-0
10.1016/S0014-2999(97)01607-5
10.1016/0165-6147(88)90174-5
10.1016/S0022-3565(25)12956-X
10.1091/mbc.9.1.1
10.1016/0922-4106(95)90003-9
10.1523/JNEUROSCI.21-10-03572.2001
10.1016/0361-9230(93)90100-P
10.1074/jbc.273.40.26008
10.1016/0922-4106(90)90190-9
10.1002/cne.903510304
10.1016/S0169-328X(97)00201-5
10.1021/bi00203a023
10.1016/0006-8993(93)90521-N
10.1016/0028-3908(95)00195-6
10.1073/pnas.95.6.3281
10.1016/S0893-133X(98)00106-7
10.1016/0196-9781(86)90111-7
10.1124/jpet.103.050534
10.1016/1043-6618(94)80082-0
10.1016/S0009-9236(98)90038-8
10.1016/S0006-8993(97)00961-X
10.1016/0014-2999(94)90642-4
10.1007/BF00178722
10.1523/JNEUROSCI.21-20-07919.2001
10.1113/jphysiol.2001.012668
10.1016/0166-4328(96)00112-X
10.1016/0028-3908(93)90108-F
10.1016/0166-4328(96)00092-7
10.1016/S0006-8993(97)00693-8
10.1016/S0022-3565(25)24006-X
10.1038/sj.bjp.0702723
10.1016/S0022-3565(24)29629-4
10.1016/S0021-9258(18)98750-8
10.1016/S0169-328X(98)00295-2
10.1016/S0306-4522(98)00523-5
10.4088/JCP.v63n0202
10.1016/0163-7258(94)00075-E
10.1002/(SICI)1096-9861(19980112)390:2<194::AID-CNE3>3.0.CO;2-X
10.1126/science.1083968
10.1016/S0026-895X(25)08528-1
10.1016/S0021-9258(17)41815-1
10.1007/s002130050740
10.1126/science.278.5340.1132
10.1016/0304-3940(95)12048-9
10.1074/jbc.270.39.23119
10.1016/S0893-133X(98)00037-2
10.1016/0014-2999(88)90178-1
10.1016/S0022-3565(24)36965-4
10.1176/appi.ajp.158.1.131
10.1016/0091-3057(90)90098-3
10.1016/S0169-328X(99)00101-1
10.1016/S0021-9258(19)39437-2
10.1016/S0031-6997(25)06783-3
10.1002/(SICI)1096-9861(19960205)365:2<289::AID-CNE7>3.3.CO;2-X
10.1523/JNEUROSCI.21-24-09856.2001
10.1016/0091-3057(91)90199-C
10.1016/S0022-3565(24)37930-3
10.1016/S0006-8993(02)03637-5
ContentType Journal Article
Copyright 2004 American Society for Pharmacology and Experimental Therapeutics
Copyright_xml – notice: 2004 American Society for Pharmacology and Experimental Therapeutics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1124/jpet.103.062224
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-0103
EndPage 66
ExternalDocumentID 15064330
10_1124_jpet_103_062224
310_1_59
S0022356524314107
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH60687
– fundername: NIDA NIH HHS
  grantid: R01 DA13669
– fundername: NINDS NIH HHS
  grantid: R01 NS 34153
– fundername: NIMH NIH HHS
  grantid: R01 MH 58448
– fundername: NINDS NIH HHS
  grantid: R01 NS38059
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
3O-
4.4
53G
5GY
5RE
5VS
8WZ
A6W
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABIVO
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ACNCT
ADBBV
ADCOW
ADIYS
AENEX
AERNN
AFFNX
AFHIN
AFOSN
AGFXO
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
MJL
MVM
O9-
OHT
OK1
P2P
R.V
R0Z
RHF
RHI
RPT
TR2
UQL
VH1
W2D
W8F
WH7
WOQ
X7M
YBU
YHG
YQT
ZGI
ZXP
-
08R
0R
55
8RP
AALRV
ABFLS
ABSGY
ABZEH
ACDCL
ADACO
ADBIT
ADKFC
AETEA
AIKQT
DL
FH7
GJ
HZ
O0-
X
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
M41
ROL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c439t-ad7ea6738e2581c08e011a93e4acb77d5c5c73834b875c8e37c571aa6813391e3
ISSN 0022-3565
IngestDate Thu Jul 10 22:33:14 EDT 2025
Thu Apr 03 07:04:38 EDT 2025
Tue Jul 01 05:32:32 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Tue Jan 05 21:16:48 EST 2021
Sat Jan 25 15:58:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-ad7ea6738e2581c08e011a93e4acb77d5c5c73834b875c8e37c571aa6813391e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15064330
PQID 66654476
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_66654476
pubmed_primary_15064330
crossref_primary_10_1124_jpet_103_062224
crossref_citationtrail_10_1124_jpet_103_062224
highwire_pharmacology_310_1_59
elsevier_sciencedirect_doi_10_1124_jpet_103_062224
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2004
20040701
2004-07-00
2004-Jul
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: July 2004
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of pharmacology and experimental therapeutics
PublicationTitleAlternate J Pharmacol Exp Ther
PublicationYear 2004
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, Jacobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, et al. (2001) A novel augmentation strategy for treating resistant major depression.
receptor controlling coupling to N-type calcium channels.
fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala.
205-209.
receptor and augments its desensitization by protein kinase C in CHO-K1 cells.
receptors.
Raap DK, Evans S, Garcia F, Li Q, Muma NA, Wolf WA, Battaglia G, and Van de Kar LD (1999) Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT
1-14.
Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)
receptor blockade increases cortical DA release via 5-HT
Raymond JR, Mukhin YV, Gettys TW, and Garnovskaya MN (1999) The recombinant 5-HT
Glick JL, Meigs TE, Miron A, and Casey PJ (1998) RGSZ1, a G
3572-3579.
851-858.
receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge.
selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of G
receptor subtype increases rat plasma ACTH concentration.
Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997b) A desensitization of hypothalamic 5-HT
Raymond JR and Olsen CL (1994) Protein kinase A induces phosphorylation of the human 5-HT
157-204.
Albert PR, Zhou QY, Van Tol HH, Bunzow JR, and Civelli O (1990) Cloning, functional expression and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene.
687-689.
7919-7927.
receptors: a review of in vivo studies.
Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, and Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism.
receptor sensitivity.
Wright DE, Seroogy KB, Lundgren KH, Davis BM, and Jennes L (1995) Comparative localization of serotonin
Eison AS, Wright RN, Freeman RP, and Gylys JA (1993) 5-HT-dependent myoclonus in guinea pigs: mediation through 5-HT1A-5-HT2 receptor interaction.
receptor agonist or antagonist administration on serotonin-
354-364.
Anthony TE and Azmitia EC (1997) Molecular characterization of antipeptide antibodies against the 5-HT
receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of G
H]MDL 100,907: a novel selective 5-HT
receptor ligand.
Gilbert F, Brazell C, Tricklebank MD, and Stahl SM (1988) Activation of the 5-HT
194-210.
receptors?
428-436.
41-51.
receptor: G protein coupling and signalling pathways.
277-284.
receptors after 5-HT
843-857.
Berlin I, Warot D, Legout V, Guillemant S, Schöllnhammer G, and Puech AJ (1998) Blunted 5-HT
Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors.
141-151.
330-332.
23119-23125.
Johnson MP, Siegel BW, and Carr AA (1996)
Darmani NA, Martin BR, Pandey U, and Glennon RA (1990) Do functional relationships exist between 5-HT
Krebs-Thomson K and Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in rats.
Piekut DT and Joseph SA (1986) Co-existence of CRF and vasopressin immunore-activity in parvocellular paraventricular neurons of rat hypothalamus.
Javed A, Kamradt MC, Van de Kar LD, and Gray TS (1999)
628-639.
S]GTPgammaS binding in the anterior cingulate cortex as a result of 5-HT
Gundlah C, Pecins-Thompson M, Schutzer WE, and Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus.
Olivier B, Soudijn W, and van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function.
receptor by phospholipid-derived signaling components.
99-103.
Wu X, Kushwaha N, Albert PR, and Penington NJ (2002) A critical protein kinase C phosphorylation site on the 5-HT
Fields TA and Casey PJ (1995) Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex.
89-94.
receptor.
proteins.
receptor: evidence for state-dependent antibody binding.
Bagdy G and Kalogeras KT (1993) Stimulation of 5-HT
Pranzatelli MR and Pluchino RS (1991) The relation of central 5-HT
Tilakaratne N, Yang ZL, and Friedman E (1995) Chronic fluoxetine or desmethylimipramine treatment alters 5-HT
5825-5832.
98-106.
receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release.
receptor subtype mRNAs in rat brain.
9856-9866.
103-165.
Tu YP, Wang J, and Ross EM (1997) Inhibition of brain G
191-194.
Maswood S, Andrade M, Caldarola-Pastuszka M, and Uphouse L (1996) Protective actions of the 5-HT
9635-9642.
Cadogan AK, Marsden CA, Tulloch I, and Kendall DA (1993) Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT
Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teiteler M, and de Souza EB (1990) Autoradiographic characterization of (±)-1-(2,5-dimethoxy-4-
Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D’Souza DN, Garcia F, Battaglia G, and Muma NA (2003) Chronic fluoxetine differentially affects 5-HT2A receptor signaling in frontal cortex, oxytocin and corticotropin releasing factor (CRF)-containing neurons in rat paraventricular nucleus.
14747-14753.
26008-26013.
1581-1590.
Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D’Souza DN, Tetzlaff J, Garcia F, Hanley NR, Scripathirathan K, Petersen BR, et al. (2002) Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI.
901-906.
Saitoh K, Mikuni M, Ikeda M, Yamazaki C, Tomita U, and Takahashi K (1995) Serotonin-induced 5-HT
receptors: low dose agonist-induced selective tolerance in the rat.
249-256.
receptors in the rat central nervous system.
357-373.
Li Q, Brownfield MS, Battaglia G, Cabrera TM, Levy AD, Rittenhouse PA, and Van de Kar LD (1993) Long-term treatment with the antidepressants fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212) and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCI (DOI).
Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, and Vergé D (1996) Immunocytochemical localization of serotonin
agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats.
95-103.
receptors in the rat brain: lack of effect by repeated injections of fluoxetine.
Li Q, Brownfield MS, Levy AD, Battaglia G, Cabrera TM, and Van de Kar LD (1994) Attenuation of hormone responses to the 5-HT
1132-1135.
receptors by repeated injections of paroxetine: reduction in the levels of G
Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT
Borsini F (1994) Balance between cortical 5-HT1A and 5-HT2 receptor function: hypothesis for a faster antidepressant action.
Van Wijngaarden I, Tulp MT, and Soudijn W (1990) The concept of selectivity in 5-HT receptor research.
Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, Van Giersbergen PL, McCloskey TC, Johnson MP, et al. (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT
968-981.
17-37.
Morales J, Fishburn CS, Wilson PT, and Bourne HR (1998) Plasma membrane localization of G alpha z requires two signals.
4571-4576.
receptors induce oxytocin release in the male rat.
receptor agonist-induced corticotropin and cortisol responses after long-term ipsapirone and fluoxetine administration to healthy subjects.
α.
Zhou FC, Patel TD, Swartz D, Xu Y, and Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT
Meller E and Bohmaker K (1994) Differential receptor reserve for 5-HT
174-182.
891-898.
Evans KL, Cropper JD, Berg KA, and Clarke WP (2001) Mechanisms of regulation of agonist efficacy at the 5-HT
receptor activation.
receptors in the hypothalamus without changing the levels of G
receptors in rat brain.
300-308.
Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997c) Fluoxetine gradually increases
receptor-stimulated
and D
836-844.
Berendsen HH (1995) Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans?
563-571.
and G
1-11.
853-861.
Van de Kar LD, Javed A, Zhang YH, Serres F, Raap DK, and Gray TS (2001) 5-HT
1025-1035.
69-74.
Raymond JR (1991) Protein kinase C induces phosphorylation and desensitization of the human 5-HT
5-HT
11264-11269.
3281-3286.
289-305.
263-266.
receptors stimulate ACTH, corticosterone, oxytocin, renin and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells.
407-413.
antagonist with a favorable CNS safety profile.
277-280.
Hallak H, Brass LF, and Manning DR (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no effect on phosphorylation by protein kinase C.
receptor agonist, DOI, on 5-HT
Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.
1246-1252.
I]iodophenyl)-2-aminopropane
Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, and Newman ME (1999) 5-HT
Critchley DJ, Childs KJ, Middlefell VC, and Dourish CT (1994) Inhibition of 8-OH-DPAT-induced elevation of plasma corticotrophin by the 5-HT
proteins and neuroendocrine responses, but not in the density of 5-HT
186-201.
Eison AS and Mullins UL (1995) Regulation of central 5-HT
receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment.
and
Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, and Humphrey PP (1994) VII International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin).
1521-1531.
receptor desensitization in C6BU-1 glioma cells transfected with 5-HT
receptor function in the brain of the
10.1124/jpet.103.062224_bib7
10.1124/jpet.103.062224_bib8
10.1124/jpet.103.062224_bib5
10.1124/jpet.103.062224_bib6
10.1124/jpet.103.062224_bib3
10.1124/jpet.103.062224_bib19
10.1124/jpet.103.062224_bib4
10.1124/jpet.103.062224_bib18
10.1124/jpet.103.062224_bib1
10.1124/jpet.103.062224_bib2
10.1124/jpet.103.062224_bib26
10.1124/jpet.103.062224_bib25
10.1124/jpet.103.062224_bib28
10.1124/jpet.103.062224_bib27
10.1124/jpet.103.062224_bib22
10.1124/jpet.103.062224_bib21
10.1124/jpet.103.062224_bib65
10.1124/jpet.103.062224_bib24
10.1124/jpet.103.062224_bib23
10.1124/jpet.103.062224_bib62
10.1124/jpet.103.062224_bib61
10.1124/jpet.103.062224_bib20
10.1124/jpet.103.062224_bib64
10.1124/jpet.103.062224_bib63
10.1124/jpet.103.062224_bib60
10.1124/jpet.103.062224_bib29
10.1124/jpet.103.062224_bib37
10.1124/jpet.103.062224_bib36
10.1124/jpet.103.062224_bib39
10.1124/jpet.103.062224_bib38
10.1124/jpet.103.062224_bib33
10.1124/jpet.103.062224_bib32
10.1124/jpet.103.062224_bib35
10.1124/jpet.103.062224_bib34
10.1124/jpet.103.062224_bib31
10.1124/jpet.103.062224_bib30
10.1124/jpet.103.062224_bib48
10.1124/jpet.103.062224_bib47
10.1124/jpet.103.062224_bib49
10.1124/jpet.103.062224_bib44
10.1124/jpet.103.062224_bib43
10.1124/jpet.103.062224_bib46
10.1124/jpet.103.062224_bib45
10.1124/jpet.103.062224_bib40
10.1124/jpet.103.062224_bib42
10.1124/jpet.103.062224_bib41
10.1124/jpet.103.062224_bib15
10.1124/jpet.103.062224_bib59
10.1124/jpet.103.062224_bib14
10.1124/jpet.103.062224_bib58
10.1124/jpet.103.062224_bib17
10.1124/jpet.103.062224_bib16
10.1124/jpet.103.062224_bib11
10.1124/jpet.103.062224_bib55
10.1124/jpet.103.062224_bib10
10.1124/jpet.103.062224_bib54
10.1124/jpet.103.062224_bib9
10.1124/jpet.103.062224_bib13
10.1124/jpet.103.062224_bib57
10.1124/jpet.103.062224_bib12
10.1124/jpet.103.062224_bib56
10.1124/jpet.103.062224_bib51
10.1124/jpet.103.062224_bib50
10.1124/jpet.103.062224_bib53
10.1124/jpet.103.062224_bib52
References_xml – reference: Eison AS and Mullins UL (1995) Regulation of central 5-HT
– reference: GAP and other RGS proteins by palmitoylation of G protein α subunits.
– reference: Van de Kar LD, Javed A, Zhang YH, Serres F, Raap DK, and Gray TS (2001) 5-HT
– reference: : 261-266.
– reference: : 4571-4576.
– reference: Cadogan AK, Marsden CA, Tulloch I, and Kendall DA (1993) Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT
– reference: Fields TA and Casey PJ (1995) Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex.
– reference: : 836-844.
– reference: Glick JL, Meigs TE, Miron A, and Casey PJ (1998) RGSZ1, a G
– reference: : 325-339.
– reference: Raymond JR and Olsen CL (1994) Protein kinase A induces phosphorylation of the human 5-HT
– reference: Bagdy G and Kalogeras KT (1993) Stimulation of 5-HT
– reference: : 177-181.
– reference: : 98-106.
– reference: Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, Van Giersbergen PL, McCloskey TC, Johnson MP, et al. (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT
– reference: receptor desensitization in C6BU-1 glioma cells transfected with 5-HT
– reference: Pranzatelli MR and Pluchino RS (1991) The relation of central 5-HT
– reference: receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of G
– reference: : 9856-9866.
– reference: : 89-94.
– reference: : 131-134.
– reference: receptors in the rat central nervous system.
– reference: receptor subtype mRNAs in rat brain.
– reference: receptor and augments its desensitization by protein kinase C in CHO-K1 cells.
– reference: receptors in rat brain.
– reference: : 407-413.
– reference: , 5-HT
– reference: , receptor agonist, DOI, on 5-HT
– reference: Anthony TE and Azmitia EC (1997) Molecular characterization of antipeptide antibodies against the 5-HT
– reference: Krebs-Thomson K and Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in rats.
– reference: : 330-332.
– reference: Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, and Humphrey PP (1994) VII International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin).
– reference: receptors induce oxytocin release in the male rat.
– reference: receptor antagonist WAY100635.
– reference: : 277-284.
– reference: receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses.
– reference: : 9635-9642.
– reference: Sleight AJ, Carolo C, Petit N, Zwingeststein C, and Bourson A (1995) Identification of 5-hydroxytryptamine
– reference: : 3281-3286.
– reference: : 386-389.
– reference: Darmani NA, Martin BR, Pandey U, and Glennon RA (1990) Do functional relationships exist between 5-HT
– reference: receptors: a review of in vivo studies.
– reference: Thase ME (2002) What role do atypical antipsychotic drugs have in treatment-resistant depression?
– reference: and 5-HT
– reference: Wright DE, Seroogy KB, Lundgren KH, Davis BM, and Jennes L (1995) Comparative localization of serotonin
– reference: : 186-201.
– reference: : 354-364.
– reference: Valdez A, Burke TF, and Hensler JG (2002) Selective heterologous regulation of 5-HT
– reference: Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D’Souza DN, Garcia F, Battaglia G, and Muma NA (2003) Chronic fluoxetine differentially affects 5-HT2A receptor signaling in frontal cortex, oxytocin and corticotropin releasing factor (CRF)-containing neurons in rat paraventricular nucleus.
– reference: : 26008-26013.
– reference: receptor blockade increases cortical DA release via 5-HT
– reference: Raap DK, Evans S, Garcia F, Li Q, Muma NA, Wolf WA, Battaglia G, and Van de Kar LD (1999) Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT
– reference: Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.
– reference: : 431-439.
– reference: Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, and Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism.
– reference: receptor agonist or antagonist administration on serotonin-
– reference: receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge.
– reference: receptor.
– reference: : 7919-7927.
– reference: : 157-204.
– reference: I]DOI) binding to 5-HT
– reference: Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors.
– reference: : 41-51.
– reference: proteins.
– reference: Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, and Meltzer HY (2001) 5-HT
– reference: Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, Jacobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, et al. (2001) A novel augmentation strategy for treating resistant major depression.
– reference: receptors after 5-HT
– reference: receptor gene.
– reference: : 5825-5832.
– reference: Raymond JR (1991) Protein kinase C induces phosphorylation and desensitization of the human 5-HT
– reference: : 263-266.
– reference: Maswood S, Andrade M, Caldarola-Pastuszka M, and Uphouse L (1996) Protective actions of the 5-HT
– reference: Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT
– reference: and D
– reference: -proteins.
– reference: receptors in the hypothalamus without changing the levels of G
– reference: Tilakaratne N, Yang ZL, and Friedman E (1995) Chronic fluoxetine or desmethylimipramine treatment alters 5-HT
– reference: : 23119-23125.
– reference: : 428-436.
– reference: : 194-210.
– reference: receptor: evidence for state-dependent antibody binding.
– reference: : 249-256.
– reference: Van Wijngaarden I, Tulp MT, and Soudijn W (1990) The concept of selectivity in 5-HT receptor research.
– reference: Morales J, Fishburn CS, Wilson PT, and Bourne HR (1998) Plasma membrane localization of G alpha z requires two signals.
– reference: Borsini F (1994) Balance between cortical 5-HT1A and 5-HT2 receptor function: hypothesis for a faster antidepressant action.
– reference: : 103-165.
– reference: receptor-mediated regulation of plasma neuroendocrine hormones.
– reference: : 1246-1252.
– reference: Li Q, Battaglia G, and Van de Kar LD (1997a) Autoradiographic evidence for differential G-protein coupling of 5-HT
– reference: : 277-280.
– reference: Berendsen HH (1995) Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans?
– reference: S]GTPgammaS binding in the anterior cingulate cortex as a result of 5-HT
– reference: receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release.
– reference: : 1132-1135.
– reference: : 968-981.
– reference: Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D’Souza DN, Tetzlaff J, Garcia F, Hanley NR, Scripathirathan K, Petersen BR, et al. (2002) Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI.
– reference: : 1-11.
– reference: : 99-103.
– reference: Li Q, Brownfield MS, Battaglia G, Cabrera TM, Levy AD, Rittenhouse PA, and Van de Kar LD (1993) Long-term treatment with the antidepressants fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212) and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCI (DOI).
– reference: and
– reference: : 853-861.
– reference: Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997c) Fluoxetine gradually increases [
– reference: Olivier B, Soudijn W, and van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function.
– reference: : 1-14.
– reference: Johnson MP, Siegel BW, and Carr AA (1996) [
– reference: : 687-689.
– reference: I]DOI-labelled 5-HT
– reference: : 225-228.
– reference: Eison AS, Wright RN, Freeman RP, and Gylys JA (1993) 5-HT-dependent myoclonus in guinea pigs: mediation through 5-HT1A-5-HT2 receptor interaction.
– reference: : 497-501.
– reference: -selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of G
– reference: : 3572-3579.
– reference: : 300-308.
– reference: : 851-858.
– reference: : 357-373.
– reference: Albert PR, Zhou QY, Van Tol HH, Bunzow JR, and Civelli O (1990) Cloning, functional expression and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene.
– reference: agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats.
– reference: : 628-639.
– reference: antagonist with a favorable CNS safety profile.
– reference: : 843-857.
– reference: Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)
– reference: receptors: low dose agonist-induced selective tolerance in the rat.
– reference: : 205-209.
– reference: Li Q, Muma NA, Battaglia G, and Van de Kar LD (1997b) A desensitization of hypothalamic 5-HT
– reference: proteins and neuroendocrine responses, but not in the density of 5-HT
– reference: : 11264-11269.
– reference: Gundlah C, Pecins-Thompson M, Schutzer WE, and Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus.
– reference: receptor subtype increases rat plasma ACTH concentration.
– reference: receptor-stimulated [
– reference: : 901-906.
– reference: receptor by phospholipid-derived signaling components.
– reference: : 95-97.
– reference: Hensler JG and Truett KA (1998) Effect of chronic serotonin-
– reference: Tu YP, Wang J, and Ross EM (1997) Inhibition of brain G
– reference: receptor ligand.
– reference: Piekut DT and Joseph SA (1986) Co-existence of CRF and vasopressin immunore-activity in parvocellular paraventricular neurons of rat hypothalamus.
– reference: : 1751-1764.
– reference: receptor activation.
– reference: receptor function in the brain of the guinea pig.
– reference: H]MDL 100,907: a novel selective 5-HT
– reference: : 141-151.
– reference: Wu X, Kushwaha N, Albert PR, and Penington NJ (2002) A critical protein kinase C phosphorylation site on the 5-HT
– reference: Zhang Y, D’Souza D, Raap DK, Garcia F, Battaglia G, Muma NA, and Van de Kar LD (2001) Characterization of the functional heterologous desensitization of hypothalamic 5-HT
– reference: : 174-182.
– reference: Critchley DJ, Childs KJ, Middlefell VC, and Dourish CT (1994) Inhibition of 8-OH-DPAT-induced elevation of plasma corticotrophin by the 5-HT
– reference: Vicentic A, Li Q, Battaglia G, and Van de Kar LD (1998) WAY-100635 inhibits 8-OH-DPAT stimulated oxytocin, ACTH and corticosterone, but not prolactin secretion.
– reference: I]iodophenyl)-2-aminopropane ([
– reference: and 5-HT
– reference: -receptor agonist-induced corticotropin and cortisol responses after long-term ipsapirone and fluoxetine administration to healthy subjects.
– reference: Gilbert F, Brazell C, Tricklebank MD, and Stahl SM (1988) Activation of the 5-HT
– reference: α.
– reference: and G
– reference: receptor controlling coupling to N-type calcium channels.
– reference: : 191-194.
– reference: receptor-mediated inhibition of lordosis behavior.
– reference: : 14747-14753.
– reference: Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, and Newman ME (1999) 5-HT
– reference: receptors?
– reference: : 17-37.
– reference: : 1521-1531.
– reference: receptor sensitivity.
– reference: Meller E and Bohmaker K (1994) Differential receptor reserve for 5-HT
– reference: - and G
– reference: : 563-571.
– reference: : 69-74.
– reference: Berlin I, Warot D, Legout V, Guillemant S, Schöllnhammer G, and Puech AJ (1998) Blunted 5-HT
– reference: Javed A, Kamradt MC, Van de Kar LD, and Gray TS (1999)
– reference: Fritschy JM, Weinmann O, Wenzel A, and Benke D (1998) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry.
– reference: receptors by repeated injections of paroxetine: reduction in the levels of G
– reference: receptors stimulate ACTH, corticosterone, oxytocin, renin and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells.
– reference: Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teiteler M, and de Souza EB (1990) Autoradiographic characterization of (±)-1-(2,5-dimethoxy-4-[
– reference: Alves SE, Lopez V, McEwen BS, and Weiland NG (1998) Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study.
– reference: Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, and Vergé D (1996) Immunocytochemical localization of serotonin
– reference: Saitoh K, Mikuni M, Ikeda M, Yamazaki C, Tomita U, and Takahashi K (1995) Serotonin-induced 5-HT
– reference: Zhou FC, Patel TD, Swartz D, Xu Y, and Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT
– reference: receptors in the rat brain: lack of effect by repeated injections of fluoxetine.
– reference: : 95-103.
– reference: : 1581-1590.
– reference: : 1025-1035.
– reference: Raymond JR, Mukhin YV, Gettys TW, and Garnovskaya MN (1999) The recombinant 5-HT
– reference: : 891-898.
– reference: receptor mediated c-fos gene expression.
– reference: receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment.
– reference: binding sites.
– reference: Li Q, Brownfield MS, Levy AD, Battaglia G, Cabrera TM, and Van de Kar LD (1994) Attenuation of hormone responses to the 5-HT
– reference: /5-HT
– reference: -fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala.
– reference: receptors.
– reference: Hallak H, Brass LF, and Manning DR (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no effect on phosphorylation by protein kinase C.
– reference: : 301-312.
– reference: Evans KL, Cropper JD, Berg KA, and Clarke WP (2001) Mechanisms of regulation of agonist efficacy at the 5-HT
– reference: receptor: G protein coupling and signalling pathways.
– reference: : 289-305.
– ident: 10.1124/jpet.103.062224_bib42
  doi: 10.1016/S0022-3565(24)38982-7
– ident: 10.1124/jpet.103.062224_bib64
  doi: 10.1523/JNEUROSCI.22-21-09635.2002
– ident: 10.1124/jpet.103.062224_bib4
  doi: 10.1016/S0022-3565(25)23167-6
– ident: 10.1124/jpet.103.062224_bib35
  doi: 10.1016/S0022-3565(25)38429-6
– ident: 10.1124/jpet.103.062224_bib44
  doi: 10.1007/978-3-0348-8730-4_3
– ident: 10.1124/jpet.103.062224_bib27
  doi: 10.1046/j.1471-4159.2001.00154.x
– ident: 10.1124/jpet.103.062224_bib36
  doi: 10.1016/0006-3223(94)90627-0
– ident: 10.1124/jpet.103.062224_bib60
  doi: 10.1016/S0014-2999(97)01607-5
– ident: 10.1124/jpet.103.062224_bib25
  doi: 10.1016/0165-6147(88)90174-5
– ident: 10.1124/jpet.103.062224_bib30
  doi: 10.1016/S0022-3565(25)12956-X
– ident: 10.1124/jpet.103.062224_bib43
  doi: 10.1091/mbc.9.1.1
– ident: 10.1124/jpet.103.062224_bib55
  doi: 10.1016/0922-4106(95)90003-9
– ident: 10.1124/jpet.103.062224_bib58
  doi: 10.1523/JNEUROSCI.21-10-03572.2001
– ident: 10.1124/jpet.103.062224_bib16
  doi: 10.1016/0361-9230(93)90100-P
– ident: 10.1124/jpet.103.062224_bib21
  doi: 10.1074/jbc.273.40.26008
– ident: 10.1124/jpet.103.062224_bib59
  doi: 10.1016/0922-4106(90)90190-9
– ident: 10.1124/jpet.103.062224_bib61
  doi: 10.1002/cne.903510304
– ident: 10.1124/jpet.103.062224_bib3
  doi: 10.1016/S0169-328X(97)00201-5
– ident: 10.1124/jpet.103.062224_bib50
  doi: 10.1021/bi00203a023
– ident: 10.1124/jpet.103.062224_bib6
  doi: 10.1016/0006-8993(93)90521-N
– ident: 10.1124/jpet.103.062224_bib40
  doi: 10.1016/0028-3908(95)00195-6
– ident: 10.1124/jpet.103.062224_bib2
  doi: 10.1073/pnas.95.6.3281
– ident: 10.1124/jpet.103.062224_bib33
  doi: 10.1016/S0893-133X(98)00106-7
– ident: 10.1124/jpet.103.062224_bib45
  doi: 10.1016/0196-9781(86)90111-7
– ident: 10.1124/jpet.103.062224_bib13
  doi: 10.1124/jpet.103.050534
– ident: 10.1124/jpet.103.062224_bib9
  doi: 10.1016/1043-6618(94)80082-0
– ident: 10.1124/jpet.103.062224_bib8
  doi: 10.1016/S0009-9236(98)90038-8
– ident: 10.1124/jpet.103.062224_bib38
  doi: 10.1016/S0006-8993(97)00961-X
– ident: 10.1124/jpet.103.062224_bib12
  doi: 10.1016/0014-2999(94)90642-4
– ident: 10.1124/jpet.103.062224_bib29
  doi: 10.1007/BF00178722
– ident: 10.1124/jpet.103.062224_bib63
  doi: 10.1523/JNEUROSCI.21-20-07919.2001
– ident: 10.1124/jpet.103.062224_bib62
  doi: 10.1113/jphysiol.2001.012668
– ident: 10.1124/jpet.103.062224_bib5
  doi: 10.1016/0166-4328(96)00112-X
– ident: 10.1124/jpet.103.062224_bib10
  doi: 10.1016/0028-3908(93)90108-F
– ident: 10.1124/jpet.103.062224_bib15
  doi: 10.1016/0166-4328(96)00092-7
– ident: 10.1124/jpet.103.062224_bib34
  doi: 10.1016/S0006-8993(97)00693-8
– ident: 10.1124/jpet.103.062224_bib41
  doi: 10.1016/S0022-3565(25)24006-X
– ident: 10.1124/jpet.103.062224_bib49
  doi: 10.1038/sj.bjp.0702723
– ident: 10.1124/jpet.103.062224_bib17
  doi: 10.1016/S0022-3565(24)29629-4
– ident: 10.1124/jpet.103.062224_bib48
  doi: 10.1016/S0021-9258(18)98750-8
– ident: 10.1124/jpet.103.062224_bib22
  doi: 10.1016/S0169-328X(98)00295-2
– ident: 10.1124/jpet.103.062224_bib28
  doi: 10.1016/S0306-4522(98)00523-5
– ident: 10.1124/jpet.103.062224_bib54
  doi: 10.4088/JCP.v63n0202
– ident: 10.1124/jpet.103.062224_bib7
  doi: 10.1016/0163-7258(94)00075-E
– ident: 10.1124/jpet.103.062224_bib19
  doi: 10.1002/(SICI)1096-9861(19980112)390:2<194::AID-CNE3>3.0.CO;2-X
– ident: 10.1124/jpet.103.062224_bib11
  doi: 10.1126/science.1083968
– ident: 10.1124/jpet.103.062224_bib53
  doi: 10.1016/S0026-895X(25)08528-1
– ident: 10.1124/jpet.103.062224_bib23
  doi: 10.1016/S0021-9258(17)41815-1
– ident: 10.1124/jpet.103.062224_bib32
  doi: 10.1007/s002130050740
– ident: 10.1124/jpet.103.062224_bib56
  doi: 10.1126/science.278.5340.1132
– ident: 10.1124/jpet.103.062224_bib51
  doi: 10.1016/0304-3940(95)12048-9
– ident: 10.1124/jpet.103.062224_bib18
  doi: 10.1074/jbc.270.39.23119
– ident: 10.1124/jpet.103.062224_bib24
  doi: 10.1016/S0893-133X(98)00037-2
– ident: 10.1124/jpet.103.062224_bib20
  doi: 10.1016/0014-2999(88)90178-1
– ident: 10.1124/jpet.103.062224_bib37
  doi: 10.1016/S0022-3565(24)36965-4
– ident: 10.1124/jpet.103.062224_bib52
  doi: 10.1176/appi.ajp.158.1.131
– ident: 10.1124/jpet.103.062224_bib14
  doi: 10.1016/0091-3057(90)90098-3
– ident: 10.1124/jpet.103.062224_bib65
  doi: 10.1016/S0169-328X(99)00101-1
– ident: 10.1124/jpet.103.062224_bib1
  doi: 10.1016/S0021-9258(19)39437-2
– ident: 10.1124/jpet.103.062224_bib26
  doi: 10.1016/S0031-6997(25)06783-3
– ident: 10.1124/jpet.103.062224_bib31
  doi: 10.1002/(SICI)1096-9861(19960205)365:2<289::AID-CNE7>3.3.CO;2-X
– ident: 10.1124/jpet.103.062224_bib39
  doi: 10.1523/JNEUROSCI.21-24-09856.2001
– ident: 10.1124/jpet.103.062224_bib46
  doi: 10.1016/0091-3057(91)90199-C
– ident: 10.1124/jpet.103.062224_bib47
  doi: 10.1016/S0022-3565(24)37930-3
– ident: 10.1124/jpet.103.062224_bib57
  doi: 10.1016/S0006-8993(02)03637-5
SSID ssj0014463
Score 2.064834
Snippet An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors...
An imbalance between serotonin-2A (5-HT 2A ) and 5-HT 1A receptors may underlie several mood disorders. The present studies determined whether 5-HT 2A...
SourceID proquest
pubmed
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms 8-Hydroxy-2-(di-n-propylamino)tetralin - pharmacology
Adrenocorticotropic Hormone - metabolism
Amphetamines - pharmacology
Animals
Antibody Specificity
Corticotropin-Releasing Hormone - metabolism
Fluorobenzenes - pharmacology
Microinjections
Neurons - drug effects
Neurons - metabolism
Neurosecretory Systems - cytology
Oxytocin - metabolism
Paraventricular Hypothalamic Nucleus - cytology
Piperidines - pharmacology
Rats
Rats, Sprague-Dawley
Receptor, Serotonin, 5-HT1A - immunology
Receptor, Serotonin, 5-HT1A - metabolism
Receptor, Serotonin, 5-HT2A - immunology
Receptor, Serotonin, 5-HT2A - metabolism
Serotonin Antagonists - pharmacology
Serotonin Receptor Agonists - pharmacology
Title Desensitization of 5-HT1A Receptors by 5-HT2A Receptors in Neuroendocrine Neurons in Vivo
URI https://dx.doi.org/10.1124/jpet.103.062224
http://jpet.aspetjournals.org/content/310/1/59.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15064330
https://www.proquest.com/docview/66654476
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaq8cIL4k6BDT-gCalLaGLn9jiNSwViGqJD25PlOI5WaUqmrp3U_hv-KefEjpMOKsFeosZxLup3cvzZOec7hLyNUTVdqtwr0oR7POWZlzEdeAUvwxzlvlmJycnfjuPJKf9yFp0NBr96UUvLRe6r9V_zSu6CKrQBrpgl-x_IuotCA_wGfGELCMP2nzD-gKlDGHS1dsQv8ibTAGPcMFwFC-kAvcS2sN82q0aNKIeuilph-p_ZNTHlP2c3dZ-ydsljDW296rSujXTTRo2AXjqXI-tuTfpcXtR2oDQ52isToiQxtAN8mO9YdRuCkf2ol2vZ84ujY9fpSM7n8lo1S72f62otL-vRob-xisFdxKtdWmvTazaiP22qgSkm0bprZsNg-3ZpnK-VFjfDuKnl8ucAEXIcIGBGgnID_jgGfsS7sdBFKOJH7BBvHQLD4gHqFdwLYSaCrvTr9-5DFcymmROkh-5WPQpu8_7WTbYRH6dLvX2O03Cd6UPywKJND43FPSIDXT0m-ycG-dUBnfZQPqD79KRnE0_I-S2zpHVJjVlSZ4I0X1Fjlr22WUU3zZJas8QjaJZPyemnj9OjiWcreHgKiO7Ck0WiJdaV1WGUBmqcahhOJDgDDu4hSYpIRQqOMp7DtFmlmiUqSgIp4zRgLAs0e0Z2qrrSLwgNoGc5LpNMBTkvilgqvISMCh4V-ViHQ-K3f69QVt4eq6xcimaaG3KBeMAOEwaPIXnnTrgyyi7bu4YtXsISU0M4BZjV9pP2WmRF_9UUDE8QUTYkb1q8Bfh0_FAnK10vr0WMJcF5Eg_Jc2MG3QOiviRj45d3eaJX5H736r0mO4v5Uu8CpV7ke41R_wZ2YMsd
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desensitization+of+5-HT1A+Receptors+by+5-HT2A+Receptors+in+Neuroendocrine+Neurons+in+Vivo&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Zhang%2C+Yahong&rft.au=Gray%2C+Thackery+S.&rft.au=D%E2%80%99Souza%2C+Deborah+N.&rft.au=Carrasco%2C+Gonzalo+A.&rft.date=2004-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-3565&rft.volume=310&rft.issue=1&rft.spage=59&rft.epage=66&rft_id=info:doi/10.1124%2Fjpet.103.062224&rft.externalDocID=S0022356524314107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon