Nanoporous Nonprecious High‐Entropy Alloys as Multisite Electrocatalysts for Ampere‐Level Current‐Density Hydrogen Evolution

Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite ele...

Full description

Saved in:
Bibliographic Details
Published inSmall structures Vol. 4; no. 9
Main Authors Shi, Hang, Sun, Xin-Ying, Zeng, Shu-Pei, Liu, Yang, Han, Gao-Feng, Wang, Tong-Hui, Wen, Zi, Fang, Qian-Rong, Lang, Xing-You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.09.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm −2 , along with exceptional stability for more than 240 h, in 1  m KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts.
AbstractList Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm −2 , along with exceptional stability for more than 240 h, in 1  m KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts.
Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm−2, along with exceptional stability for more than 240 h, in 1 m KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts.
Author Lang, Xing-You
Sun, Xin-Ying
Fang, Qian-Rong
Shi, Hang
Han, Gao-Feng
Wen, Zi
Liu, Yang
Jiang, Qing
Zeng, Shu-Pei
Wang, Tong-Hui
Author_xml – sequence: 1
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 2
  givenname: Xin-Ying
  surname: Sun
  fullname: Sun, Xin-Ying
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 3
  givenname: Shu-Pei
  surname: Zeng
  fullname: Zeng, Shu-Pei
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 5
  givenname: Gao-Feng
  surname: Han
  fullname: Han, Gao-Feng
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 6
  givenname: Tong-Hui
  surname: Wang
  fullname: Wang, Tong-Hui
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 7
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 8
  givenname: Qian-Rong
  surname: Fang
  fullname: Fang, Qian-Rong
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
– sequence: 9
  givenname: Xing-You
  surname: Lang
  fullname: Lang, Xing-You
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
– sequence: 10
  givenname: Qing
  orcidid: 0000-0003-0660-596X
  surname: Jiang
  fullname: Jiang, Qing
  organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China
BookMark eNp1kcFu3CAQhlGVSknTXHNG6nk3GBsbH1fbbTfSJr20ZzTG4y0rAi7gSL5FfYI-Y58kbLaKqkq9wDD838-I_x05c94hIdcFWxaM8ZsYU1hyxkvGWMXfkAteS7moWM3P_qrPyVWMhyzhoiiatrkgP-_B-dEHP0V6790YUJtjvTX777-ffm1cCn6c6cpaP0cKkd5NNploEtKNRZ1vNSSwc0yRDj7Q1cOIATO5w0e0dD2FgC7l80d0mZrpdu6D36Ojm0dvp2S8e0_eDmAjXv3ZL8m3T5uv6-1i9-Xz7Xq1W-iqbNMCRI-ylx1qBnUNUjSiwxLLQRYDCgFiAAmMSaFr3YDOqxhKyZE1XScL3ZaX5Pbk23s4qDGYBwiz8mDUS8OHvYKQjLaoWlG3okHBGuCV6EvQEnCAoelYJZuyyl4fTl5j8D8mjEkd_BRcHl9xWVeykFyyrFqeVDr4GAMOr68WTB1jU8fY1GtsGaj-AbRJcPykFMDY_2HPzCGkyQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160417
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1016_j_ijhydene_2024_11_422
crossref_primary_10_1002_adfm_202423760
crossref_primary_10_1002_sus2_168
crossref_primary_10_1039_D4DT00619D
crossref_primary_10_1002_advs_202406008
crossref_primary_10_1016_j_apsusc_2024_159464
crossref_primary_10_1039_D4CY01449A
crossref_primary_10_1007_s12598_024_03065_1
crossref_primary_10_1039_D4TA01193G
crossref_primary_10_1002_admi_202301020
crossref_primary_10_1016_j_ijhydene_2023_07_064
crossref_primary_10_1039_D4TA07090A
crossref_primary_10_1002_cjoc_202300718
crossref_primary_10_1002_celc_202400084
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1039_D3NR06065A
crossref_primary_10_1039_D4TA00272E
crossref_primary_10_1002_smtd_202400729
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1002_smll_202311509
crossref_primary_10_1039_D3SC06784J
crossref_primary_10_1039_D4SE00685B
crossref_primary_10_1016_j_apcatb_2024_124585
crossref_primary_10_1039_D4TA00690A
crossref_primary_10_1039_D4CC06087C
crossref_primary_10_1002_adfm_202316296
crossref_primary_10_1039_D4TA02120G
crossref_primary_10_1021_acs_nanolett_4c05376
crossref_primary_10_1016_j_ijhydene_2025_02_310
crossref_primary_10_1016_j_scriptamat_2024_116344
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_3390_nano14141172
crossref_primary_10_1016_j_apsusc_2024_160621
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1016_j_cej_2024_156990
crossref_primary_10_3390_met14030289
crossref_primary_10_1002_smll_202410304
crossref_primary_10_1039_D3SE01393F
crossref_primary_10_1016_j_jelechem_2024_118313
crossref_primary_10_1002_adfm_202414554
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_ijhydene_2023_12_007
Cites_doi 10.1002/adfm.202104951
10.1038/s41467-022-29875-4
10.1002/adma.202006292
10.1038/s41467-022-32768-1
10.1038/s41929-022-00846-8
10.1002/adfm.202102285
10.1039/D2EE01478E
10.1126/sciadv.abg1600
10.1038/nature11475
10.1038/nmat4738
10.1002/sstr.202200283
10.1039/D0CS00575D
10.1038/s41929-022-00851-x
10.1016/j.nanoen.2016.04.017
10.1039/D1EE00505G
10.1002/adma.202106781
10.1002/adfm.202009613
10.1038/s41563-020-0788-3
10.1002/adma.202110631
10.1002/adma.202107053
10.1002/sstr.202200133
10.1002/adfm.202214412
10.1021/jacs.1c07643
10.1038/s41467-020-16769-6
10.1002/adma.202003846
10.1002/adma.202108133
10.1126/science.1211934
10.1021/acs.chemrev.2c00289
10.1016/j.mtener.2021.100638
10.1002/aenm.202200928
10.1021/jacs.2c01200
10.1002/adfm.202106715
10.1002/sstr.202100155
10.1038/nmat4834
10.1038/s41467-020-19277-9
10.1039/D0EE03635H
10.1038/s41560-018-0296-8
10.1002/adfm.202101586
10.1002/sstr.202100076
10.1039/D0CS01079K
10.1038/s41467-022-30379-4
10.1002/sstr.202200130
10.1038/ncomms7567
10.1002/adma.202007100
10.1002/adfm.202100883
10.1002/adfm.202207536
10.1126/science.1103197
10.1002/adma.202000385
10.1021/jacs.0c11285
10.1002/anie.202206077
10.1038/s41467-020-17121-8
ContentType Journal Article
Copyright Copyright John Wiley & Sons, Inc. 2023
Copyright_xml – notice: Copyright John Wiley & Sons, Inc. 2023
DBID AAYXX
CITATION
7SR
8FD
JG9
DOA
DOI 10.1002/sstr.202300042
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2688-4062
EndPage n/a
ExternalDocumentID oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734
10_1002_sstr_202300042
GroupedDBID 0R~
1OC
24P
33P
AAFWJ
AAHHS
AAYXX
ABCUV
ABDBF
ABJNI
ACCFJ
ACCMX
ACCZN
ACPOU
ACXQS
ADKYN
ADZMN
AEEZP
AEQDE
AFPKN
AFWVQ
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
CITATION
DCZOG
EBS
GROUPED_DOAJ
LATKE
LEEKS
M~E
OK1
SUPJJ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c439t-a5de8d8bec0a66a8575be3e3f81fe55a5fa8a0085c6c7acc6c5f382e07bb81c93
IEDL.DBID DOA
ISSN 2688-4062
IngestDate Wed Aug 27 01:26:54 EDT 2025
Sat Jul 26 02:47:42 EDT 2025
Tue Jul 01 01:54:50 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-a5de8d8bec0a66a8575be3e3f81fe55a5fa8a0085c6c7acc6c5f382e07bb81c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0660-596X
OpenAccessLink https://doaj.org/article/956957e507a245d3ac8aefaf7b048734
PQID 2864818280
PQPubID 5014762
ParticipantIDs doaj_primary_oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734
proquest_journals_2864818280
crossref_primary_10_1002_sstr_202300042
crossref_citationtrail_10_1002_sstr_202300042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small structures
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Wang L. Q. (e_1_2_8_54_1) 2022; 32
e_1_2_8_3_1
e_1_2_8_5_1
Shi H. (e_1_2_8_39_1) 2020; 2020
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
She Z. W. (e_1_2_8_25_1) 2017; 355
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_49_1
  doi: 10.1002/adfm.202104951
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-022-29875-4
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202006292
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-022-32768-1
– ident: e_1_2_8_23_1
  doi: 10.1038/s41929-022-00846-8
– ident: e_1_2_8_40_1
  doi: 10.1002/adfm.202102285
– ident: e_1_2_8_46_1
  doi: 10.1039/D2EE01478E
– ident: e_1_2_8_27_1
  doi: 10.1126/sciadv.abg1600
– ident: e_1_2_8_2_1
  doi: 10.1038/nature11475
– ident: e_1_2_8_4_1
  doi: 10.1038/nmat4738
– ident: e_1_2_8_15_1
  doi: 10.1002/sstr.202200283
– ident: e_1_2_8_22_1
  doi: 10.1039/D0CS00575D
– ident: e_1_2_8_18_1
  doi: 10.1038/s41929-022-00851-x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2016.04.017
– ident: e_1_2_8_30_1
  doi: 10.1039/D1EE00505G
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202106781
– volume: 355
  start-page: 6321
  year: 2017
  ident: e_1_2_8_25_1
  publication-title: Science
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.202009613
– ident: e_1_2_8_7_1
  doi: 10.1038/s41563-020-0788-3
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.202110631
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.202107053
– volume: 32
  start-page: 2210322
  year: 2022
  ident: e_1_2_8_54_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_20_1
  doi: 10.1002/sstr.202200133
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202214412
– ident: e_1_2_8_34_1
  doi: 10.1021/jacs.1c07643
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-020-16769-6
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.202003846
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202108133
– ident: e_1_2_8_21_1
  doi: 10.1126/science.1211934
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.chemrev.2c00289
– ident: e_1_2_8_33_1
  doi: 10.1016/j.mtener.2021.100638
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202200928
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.2c01200
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202106715
– ident: e_1_2_8_14_1
  doi: 10.1002/sstr.202100155
– volume: 2020
  start-page: 2987234
  year: 2020
  ident: e_1_2_8_39_1
  publication-title: Research
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat4834
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-020-19277-9
– ident: e_1_2_8_11_1
  doi: 10.1039/D0EE03635H
– ident: e_1_2_8_16_1
  doi: 10.1038/s41560-018-0296-8
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202101586
– ident: e_1_2_8_37_1
  doi: 10.1002/sstr.202100076
– ident: e_1_2_8_8_1
  doi: 10.1039/D0CS01079K
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-022-30379-4
– ident: e_1_2_8_10_1
  doi: 10.1002/sstr.202200130
– ident: e_1_2_8_48_1
  doi: 10.1038/ncomms7567
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202007100
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.202100883
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202207536
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1103197
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.202000385
– ident: e_1_2_8_44_1
  doi: 10.1021/jacs.0c11285
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202206077
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-020-17121-8
SSID ssj0002511797
Score 2.4637153
Snippet Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Adsorption
Alloys
Electrocatalysts
Electrode materials
Electrodes
Electrolysis
Electron transfer
Entropy
High entropy alloys
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
nanoporous metals
Nanostructure
Surface chemistry
Water splitting
Title Nanoporous Nonprecious High‐Entropy Alloys as Multisite Electrocatalysts for Ampere‐Level Current‐Density Hydrogen Evolution
URI https://www.proquest.com/docview/2864818280
https://doaj.org/article/956957e507a245d3ac8aefaf7b048734
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA7iRS_iJ06n5CB4KutX0vQ4Z8cQt5OD3UqSpqfRjrUKvYj4C_yN_hLftx9jIuLFS2hLQkPeJ3mftG-el5Abzpj2gCdYiunU8l3pWOAUEgu8k8NDzZIwxPPO0xmfzP2HBVtspfrCmLBGHrgZuAHw95AFBmiLdH2WeFILaVKZBgqwF3i1Eij4vK3NFK7BSJyDMOhUGm13UBQlyn8C40acfvNCtVj_j7W4djDjQ3LQMkM6bHp0RHZMdkz2Rl1CthPyDithDnQZ9up0lmcr1KXAawzV-Hz7iDDmfFXR4XKZVwWVBa0P1-LfYRo1yW7qbzVVURYUqCodAmNeG2j5iIFDtFVqgvt7DGovKzqpknUOAKPRSwvQUzIfR0-jidWmULA0MI3SkiwxIhFgKFtyLjEdpzKe8VLhpIYxyVIpJNIuzXUgNZQs9YRr7EAp4ejQOyO7WZ6Zc0KV7RmTKhlKR_nCwEQPA5cbaMKZSmTSI1Y3pLFu9cUxzcUybpSR3RhNEG9M0CO3m_qrRlnj15p3aKFNLVTErh8ATuIWJ_FfOOmRfmffuJ2mRewK7gNjcYV98R_vuCT72OkmBK1Pdsv1s7kCzlKq6xqeUE5foy-SdPHW
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Nonprecious+High%E2%80%90Entropy+Alloys+as+Multisite+Electrocatalysts+for+Ampere%E2%80%90Level+Current%E2%80%90Density+Hydrogen+Evolution&rft.jtitle=Small+structures&rft.au=Hang+Shi&rft.au=Xin-Ying+Sun&rft.au=Shu-Pei+Zeng&rft.au=Yang+Liu&rft.date=2023-09-01&rft.pub=Wiley-VCH&rft.eissn=2688-4062&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsstr.202300042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon