Nanoporous Nonprecious High‐Entropy Alloys as Multisite Electrocatalysts for Ampere‐Level Current‐Density Hydrogen Evolution
Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite ele...
Saved in:
Published in | Small structures Vol. 4; no. 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.09.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm
−2
, along with exceptional stability for more than 240 h, in 1
m
KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts. |
---|---|
AbstractList | Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm
−2
, along with exceptional stability for more than 240 h, in 1
m
KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts. Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via electrochemical water splitting. Herein, surface high‐entropy NiFeCoCuTi alloy on column‐nanostructured nanoporous Ni skeleton is reported as multisite electrocatalyst for highly efficient hydrogen evolution in nonacidic environments by making use of surface heterogeneous atoms with distinct hydrogen and hydroxyl adsorption behaviors to accelerate water dissociation and mediate adsorption of hydrogen intermediates for combination into molecules. Associated with the column‐nanostructured nanoporous Ni skeleton that facilitates electron transfer/mass transportation and enables highly accessible and abundant electroactive sites, self‐supported monolithic nanoporous high‐entropy NiFeCoCuTi alloy electrode exhibits superior nonacidic hydrogen evolution reaction (HER) electrocatalysis, with low onset overpotentials and Tafel slopes. It only takes overpotential of as low as ≈209 mV to deliver ultrahigh current density of 2 A cm−2, along with exceptional stability for more than 240 h, in 1 m KOH electrolyte. These outstanding properties make nanoporous NiFeCoCuTi high‐entropy alloy (HEA) electrode attractive candidate as cathode material in the water electrolysis for large‐scale hydrogen production and suggest HEAs as ideal platform to develop multisite electrocatalysts. |
Author | Lang, Xing-You Sun, Xin-Ying Fang, Qian-Rong Shi, Hang Han, Gao-Feng Wen, Zi Liu, Yang Jiang, Qing Zeng, Shu-Pei Wang, Tong-Hui |
Author_xml | – sequence: 1 givenname: Hang surname: Shi fullname: Shi, Hang organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 2 givenname: Xin-Ying surname: Sun fullname: Sun, Xin-Ying organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 3 givenname: Shu-Pei surname: Zeng fullname: Zeng, Shu-Pei organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 5 givenname: Gao-Feng surname: Han fullname: Han, Gao-Feng organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 6 givenname: Tong-Hui surname: Wang fullname: Wang, Tong-Hui organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 7 givenname: Zi surname: Wen fullname: Wen, Zi organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 8 givenname: Qian-Rong surname: Fang fullname: Fang, Qian-Rong organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China – sequence: 9 givenname: Xing-You surname: Lang fullname: Lang, Xing-You organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China – sequence: 10 givenname: Qing orcidid: 0000-0003-0660-596X surname: Jiang fullname: Jiang, Qing organization: Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130022 China |
BookMark | eNp1kcFu3CAQhlGVSknTXHNG6nk3GBsbH1fbbTfSJr20ZzTG4y0rAi7gSL5FfYI-Y58kbLaKqkq9wDD838-I_x05c94hIdcFWxaM8ZsYU1hyxkvGWMXfkAteS7moWM3P_qrPyVWMhyzhoiiatrkgP-_B-dEHP0V6790YUJtjvTX777-ffm1cCn6c6cpaP0cKkd5NNploEtKNRZ1vNSSwc0yRDj7Q1cOIATO5w0e0dD2FgC7l80d0mZrpdu6D36Ojm0dvp2S8e0_eDmAjXv3ZL8m3T5uv6-1i9-Xz7Xq1W-iqbNMCRI-ylx1qBnUNUjSiwxLLQRYDCgFiAAmMSaFr3YDOqxhKyZE1XScL3ZaX5Pbk23s4qDGYBwiz8mDUS8OHvYKQjLaoWlG3okHBGuCV6EvQEnCAoelYJZuyyl4fTl5j8D8mjEkd_BRcHl9xWVeykFyyrFqeVDr4GAMOr68WTB1jU8fY1GtsGaj-AbRJcPykFMDY_2HPzCGkyQ |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160417 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1016_j_ijhydene_2024_11_422 crossref_primary_10_1002_adfm_202423760 crossref_primary_10_1002_sus2_168 crossref_primary_10_1039_D4DT00619D crossref_primary_10_1002_advs_202406008 crossref_primary_10_1016_j_apsusc_2024_159464 crossref_primary_10_1039_D4CY01449A crossref_primary_10_1007_s12598_024_03065_1 crossref_primary_10_1039_D4TA01193G crossref_primary_10_1002_admi_202301020 crossref_primary_10_1016_j_ijhydene_2023_07_064 crossref_primary_10_1039_D4TA07090A crossref_primary_10_1002_cjoc_202300718 crossref_primary_10_1002_celc_202400084 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1039_D3NR06065A crossref_primary_10_1039_D4TA00272E crossref_primary_10_1002_smtd_202400729 crossref_primary_10_1002_smll_202311929 crossref_primary_10_1002_smll_202311509 crossref_primary_10_1039_D3SC06784J crossref_primary_10_1039_D4SE00685B crossref_primary_10_1016_j_apcatb_2024_124585 crossref_primary_10_1039_D4TA00690A crossref_primary_10_1039_D4CC06087C crossref_primary_10_1002_adfm_202316296 crossref_primary_10_1039_D4TA02120G crossref_primary_10_1021_acs_nanolett_4c05376 crossref_primary_10_1016_j_ijhydene_2025_02_310 crossref_primary_10_1016_j_scriptamat_2024_116344 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_3390_nano14141172 crossref_primary_10_1016_j_apsusc_2024_160621 crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1016_j_cej_2024_156990 crossref_primary_10_3390_met14030289 crossref_primary_10_1002_smll_202410304 crossref_primary_10_1039_D3SE01393F crossref_primary_10_1016_j_jelechem_2024_118313 crossref_primary_10_1002_adfm_202414554 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_ijhydene_2023_12_007 |
Cites_doi | 10.1002/adfm.202104951 10.1038/s41467-022-29875-4 10.1002/adma.202006292 10.1038/s41467-022-32768-1 10.1038/s41929-022-00846-8 10.1002/adfm.202102285 10.1039/D2EE01478E 10.1126/sciadv.abg1600 10.1038/nature11475 10.1038/nmat4738 10.1002/sstr.202200283 10.1039/D0CS00575D 10.1038/s41929-022-00851-x 10.1016/j.nanoen.2016.04.017 10.1039/D1EE00505G 10.1002/adma.202106781 10.1002/adfm.202009613 10.1038/s41563-020-0788-3 10.1002/adma.202110631 10.1002/adma.202107053 10.1002/sstr.202200133 10.1002/adfm.202214412 10.1021/jacs.1c07643 10.1038/s41467-020-16769-6 10.1002/adma.202003846 10.1002/adma.202108133 10.1126/science.1211934 10.1021/acs.chemrev.2c00289 10.1016/j.mtener.2021.100638 10.1002/aenm.202200928 10.1021/jacs.2c01200 10.1002/adfm.202106715 10.1002/sstr.202100155 10.1038/nmat4834 10.1038/s41467-020-19277-9 10.1039/D0EE03635H 10.1038/s41560-018-0296-8 10.1002/adfm.202101586 10.1002/sstr.202100076 10.1039/D0CS01079K 10.1038/s41467-022-30379-4 10.1002/sstr.202200130 10.1038/ncomms7567 10.1002/adma.202007100 10.1002/adfm.202100883 10.1002/adfm.202207536 10.1126/science.1103197 10.1002/adma.202000385 10.1021/jacs.0c11285 10.1002/anie.202206077 10.1038/s41467-020-17121-8 |
ContentType | Journal Article |
Copyright | Copyright John Wiley & Sons, Inc. 2023 |
Copyright_xml | – notice: Copyright John Wiley & Sons, Inc. 2023 |
DBID | AAYXX CITATION 7SR 8FD JG9 DOA |
DOI | 10.1002/sstr.202300042 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2688-4062 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734 10_1002_sstr_202300042 |
GroupedDBID | 0R~ 1OC 24P 33P AAFWJ AAHHS AAYXX ABCUV ABDBF ABJNI ACCFJ ACCMX ACCZN ACPOU ACXQS ADKYN ADZMN AEEZP AEQDE AFPKN AFWVQ AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU CITATION DCZOG EBS GROUPED_DOAJ LATKE LEEKS M~E OK1 SUPJJ 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c439t-a5de8d8bec0a66a8575be3e3f81fe55a5fa8a0085c6c7acc6c5f382e07bb81c93 |
IEDL.DBID | DOA |
ISSN | 2688-4062 |
IngestDate | Wed Aug 27 01:26:54 EDT 2025 Sat Jul 26 02:47:42 EDT 2025 Tue Jul 01 01:54:50 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-a5de8d8bec0a66a8575be3e3f81fe55a5fa8a0085c6c7acc6c5f382e07bb81c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0660-596X |
OpenAccessLink | https://doaj.org/article/956957e507a245d3ac8aefaf7b048734 |
PQID | 2864818280 |
PQPubID | 5014762 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734 proquest_journals_2864818280 crossref_primary_10_1002_sstr_202300042 crossref_citationtrail_10_1002_sstr_202300042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small structures |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Wang L. Q. (e_1_2_8_54_1) 2022; 32 e_1_2_8_3_1 e_1_2_8_5_1 Shi H. (e_1_2_8_39_1) 2020; 2020 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 She Z. W. (e_1_2_8_25_1) 2017; 355 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_49_1 doi: 10.1002/adfm.202104951 – ident: e_1_2_8_43_1 doi: 10.1038/s41467-022-29875-4 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202006292 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-022-32768-1 – ident: e_1_2_8_23_1 doi: 10.1038/s41929-022-00846-8 – ident: e_1_2_8_40_1 doi: 10.1002/adfm.202102285 – ident: e_1_2_8_46_1 doi: 10.1039/D2EE01478E – ident: e_1_2_8_27_1 doi: 10.1126/sciadv.abg1600 – ident: e_1_2_8_2_1 doi: 10.1038/nature11475 – ident: e_1_2_8_4_1 doi: 10.1038/nmat4738 – ident: e_1_2_8_15_1 doi: 10.1002/sstr.202200283 – ident: e_1_2_8_22_1 doi: 10.1039/D0CS00575D – ident: e_1_2_8_18_1 doi: 10.1038/s41929-022-00851-x – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2016.04.017 – ident: e_1_2_8_30_1 doi: 10.1039/D1EE00505G – ident: e_1_2_8_50_1 doi: 10.1002/adma.202106781 – volume: 355 start-page: 6321 year: 2017 ident: e_1_2_8_25_1 publication-title: Science – ident: e_1_2_8_41_1 doi: 10.1002/adfm.202009613 – ident: e_1_2_8_7_1 doi: 10.1038/s41563-020-0788-3 – ident: e_1_2_8_55_1 doi: 10.1002/adma.202110631 – ident: e_1_2_8_51_1 doi: 10.1002/adma.202107053 – volume: 32 start-page: 2210322 year: 2022 ident: e_1_2_8_54_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_20_1 doi: 10.1002/sstr.202200133 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202214412 – ident: e_1_2_8_34_1 doi: 10.1021/jacs.1c07643 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-020-16769-6 – ident: e_1_2_8_45_1 doi: 10.1002/adma.202003846 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202108133 – ident: e_1_2_8_21_1 doi: 10.1126/science.1211934 – ident: e_1_2_8_6_1 doi: 10.1021/acs.chemrev.2c00289 – ident: e_1_2_8_33_1 doi: 10.1016/j.mtener.2021.100638 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202200928 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.2c01200 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202106715 – ident: e_1_2_8_14_1 doi: 10.1002/sstr.202100155 – volume: 2020 start-page: 2987234 year: 2020 ident: e_1_2_8_39_1 publication-title: Research – ident: e_1_2_8_5_1 doi: 10.1038/nmat4834 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-020-19277-9 – ident: e_1_2_8_11_1 doi: 10.1039/D0EE03635H – ident: e_1_2_8_16_1 doi: 10.1038/s41560-018-0296-8 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202101586 – ident: e_1_2_8_37_1 doi: 10.1002/sstr.202100076 – ident: e_1_2_8_8_1 doi: 10.1039/D0CS01079K – ident: e_1_2_8_32_1 doi: 10.1038/s41467-022-30379-4 – ident: e_1_2_8_10_1 doi: 10.1002/sstr.202200130 – ident: e_1_2_8_48_1 doi: 10.1038/ncomms7567 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202007100 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.202100883 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202207536 – ident: e_1_2_8_3_1 doi: 10.1126/science.1103197 – ident: e_1_2_8_31_1 doi: 10.1002/adma.202000385 – ident: e_1_2_8_44_1 doi: 10.1021/jacs.0c11285 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202206077 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-020-17121-8 |
SSID | ssj0002511797 |
Score | 2.4637153 |
Snippet | Developing robust nonprecious metal‐based electrocatalysts toward hydrogen evolution reaction is crucial for large‐scale hydrogen production via... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | Adsorption Alloys Electrocatalysts Electrode materials Electrodes Electrolysis Electron transfer Entropy High entropy alloys Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production nanoporous metals Nanostructure Surface chemistry Water splitting |
Title | Nanoporous Nonprecious High‐Entropy Alloys as Multisite Electrocatalysts for Ampere‐Level Current‐Density Hydrogen Evolution |
URI | https://www.proquest.com/docview/2864818280 https://doaj.org/article/956957e507a245d3ac8aefaf7b048734 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA7iRS_iJ06n5CB4KutX0vQ4Z8cQt5OD3UqSpqfRjrUKvYj4C_yN_hLftx9jIuLFS2hLQkPeJ3mftG-el5Abzpj2gCdYiunU8l3pWOAUEgu8k8NDzZIwxPPO0xmfzP2HBVtspfrCmLBGHrgZuAHw95AFBmiLdH2WeFILaVKZBgqwF3i1Eij4vK3NFK7BSJyDMOhUGm13UBQlyn8C40acfvNCtVj_j7W4djDjQ3LQMkM6bHp0RHZMdkz2Rl1CthPyDithDnQZ9up0lmcr1KXAawzV-Hz7iDDmfFXR4XKZVwWVBa0P1-LfYRo1yW7qbzVVURYUqCodAmNeG2j5iIFDtFVqgvt7DGovKzqpknUOAKPRSwvQUzIfR0-jidWmULA0MI3SkiwxIhFgKFtyLjEdpzKe8VLhpIYxyVIpJNIuzXUgNZQs9YRr7EAp4ejQOyO7WZ6Zc0KV7RmTKhlKR_nCwEQPA5cbaMKZSmTSI1Y3pLFu9cUxzcUybpSR3RhNEG9M0CO3m_qrRlnj15p3aKFNLVTErh8ATuIWJ_FfOOmRfmffuJ2mRewK7gNjcYV98R_vuCT72OkmBK1Pdsv1s7kCzlKq6xqeUE5foy-SdPHW |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Nonprecious+High%E2%80%90Entropy+Alloys+as+Multisite+Electrocatalysts+for+Ampere%E2%80%90Level+Current%E2%80%90Density+Hydrogen+Evolution&rft.jtitle=Small+structures&rft.au=Hang+Shi&rft.au=Xin-Ying+Sun&rft.au=Shu-Pei+Zeng&rft.au=Yang+Liu&rft.date=2023-09-01&rft.pub=Wiley-VCH&rft.eissn=2688-4062&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsstr.202300042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_956957e507a245d3ac8aefaf7b048734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon |