Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols hav...
Saved in:
Published in | Nutrients Vol. 10; no. 5; p. 642 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.05.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease. |
---|---|
AbstractList | Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease. Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease.Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease. |
Author | Kujawska, Małgorzata Jodynis-Liebert, Jadwiga |
AuthorAffiliation | Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; liebert@ump.edu.pl |
AuthorAffiliation_xml | – name: Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; liebert@ump.edu.pl |
Author_xml | – sequence: 1 givenname: Małgorzata orcidid: 0000-0002-5306-9904 surname: Kujawska fullname: Kujawska, Małgorzata – sequence: 2 givenname: Jadwiga surname: Jodynis-Liebert fullname: Jodynis-Liebert, Jadwiga |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29783725$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtOHDEQhi1ExCtsOEBkKRuENMFtt19ZICEggDQSKCRsLdtdHUx67KHdPWh2XCPX4yT0iEcAZZHaVEn11a-q-tfRckwRENoqyBfGNNmNfUEIJ6KkS2iNEklHQpRs-VW9ijZzviaLkEQKtoJWqZaKScrX0Pg8NfPpFcTUZBwiPrft7xBzivd3fzI-DBlshq94H1_McwcT2wWPv8MswC1ONT6N-DLMEr7o-ipA_og-1LbJsPmUN9DPb0c_Dk5G47Pj04P98ciXTHcjW3ivvYOyZtbWrio4pU5xVzoQkspKOWs9KKiAu9ozJ6XnVmtOrFZOioptoL1H3WnvJlB5iF1rGzNtw8S2c5NsMG87MVyZX2lmuFaC02IQ2H4SaNNND7kzk5A9NI2NkPpsKFVCl1yS_0BJSSXnpZAD-vkdep36Ng6fGCgumOKKioH69Hr5l62fPRkA8gj4NuXcQm186IbHp8UtoTEFMQvnzV_nh5GddyPPqv-AHwCF5q8r |
CitedBy_id | crossref_primary_10_1111_jfbc_13637 crossref_primary_10_1038_s41598_021_03194_y crossref_primary_10_2174_1568026620666200416085330 crossref_primary_10_3390_pharmaceutics15102420 crossref_primary_10_1080_1028415X_2022_2073107 crossref_primary_10_3390_cimb45120613 crossref_primary_10_3390_nu14102014 crossref_primary_10_1016_j_bmcl_2024_129752 crossref_primary_10_1007_s11011_024_01479_5 crossref_primary_10_1016_j_cbpc_2023_109630 crossref_primary_10_1016_j_nut_2019_04_006 crossref_primary_10_3390_antiox9070572 crossref_primary_10_3390_antiox9111128 crossref_primary_10_1080_1028415X_2022_2080792 crossref_primary_10_1080_10408398_2020_1815644 crossref_primary_10_1155_2022_5262677 crossref_primary_10_3390_ijms20071538 crossref_primary_10_3390_molecules30010043 crossref_primary_10_3390_pharmaceutics15030839 crossref_primary_10_1016_j_jep_2018_11_025 crossref_primary_10_1016_j_jchemneu_2020_101752 crossref_primary_10_2174_1389450120666191017120505 crossref_primary_10_1016_j_neuint_2019_104612 crossref_primary_10_1186_s12906_022_03524_1 crossref_primary_10_3390_foods12224048 crossref_primary_10_1021_jacs_2c13315 crossref_primary_10_1016_j_nutres_2023_10_004 crossref_primary_10_3389_fphar_2024_1348127 crossref_primary_10_3390_molecules28207188 crossref_primary_10_3390_brainsci11121573 crossref_primary_10_1016_j_ejmech_2022_114529 crossref_primary_10_1080_10408398_2022_2155106 crossref_primary_10_3390_ph15121554 crossref_primary_10_1039_D2FO00552B crossref_primary_10_3390_ijms23136923 crossref_primary_10_1007_s00115_023_01538_9 crossref_primary_10_2174_1574885518666230818105848 crossref_primary_10_1111_ejn_15810 crossref_primary_10_3390_ijms21072501 crossref_primary_10_4103_ijnpnd_ijnpnd_74_22 crossref_primary_10_3390_ijms25031641 crossref_primary_10_3390_ijms24010462 crossref_primary_10_1016_j_focha_2022_100065 crossref_primary_10_3389_fphar_2022_977521 crossref_primary_10_1007_s00018_022_04304_3 crossref_primary_10_1016_j_heliyon_2024_e35637 crossref_primary_10_3390_metabo12121222 crossref_primary_10_1080_15376516_2023_2288198 crossref_primary_10_1093_nutrit_nuae208 crossref_primary_10_1002_slct_201904059 crossref_primary_10_1016_j_fshw_2019_03_006 crossref_primary_10_3390_ijms25021037 crossref_primary_10_1079_fsncases_2024_0005 crossref_primary_10_1007_s11033_023_08409_1 crossref_primary_10_1212_WNL_0000000000009400 crossref_primary_10_3390_molecules26195985 crossref_primary_10_3390_pharmaceutics15030770 crossref_primary_10_1016_j_mad_2024_111942 crossref_primary_10_3390_antiox12071479 crossref_primary_10_3390_molecules24183310 crossref_primary_10_1016_j_bmc_2022_116818 crossref_primary_10_3390_ijms23063110 crossref_primary_10_3390_molecules25133097 crossref_primary_10_4162_nrp_2020_14_1_3 crossref_primary_10_1016_j_ejphar_2024_176906 crossref_primary_10_1007_s11064_020_03058_3 crossref_primary_10_3390_nu11081896 crossref_primary_10_1016_j_fct_2020_111626 crossref_primary_10_1007_s00253_022_11801_9 crossref_primary_10_1186_s43042_019_0023_4 crossref_primary_10_1016_j_foodres_2020_110066 crossref_primary_10_1016_j_molmed_2020_01_005 crossref_primary_10_1080_1028415X_2021_2017662 crossref_primary_10_3390_ijms21010202 crossref_primary_10_1016_j_bbih_2020_100037 crossref_primary_10_1016_j_neuropharm_2019_107794 crossref_primary_10_29328_journal_jnnd_1001026 crossref_primary_10_1080_00207454_2022_2089136 crossref_primary_10_1093_jpp_rgab038 crossref_primary_10_1016_j_ejmech_2024_116198 crossref_primary_10_3389_fnins_2022_1084493 crossref_primary_10_3389_fneur_2019_01245 crossref_primary_10_3390_ijms222212570 crossref_primary_10_3389_fnagi_2025_1496112 crossref_primary_10_1007_s42250_022_00430_4 crossref_primary_10_1016_j_biopsych_2020_09_025 crossref_primary_10_3389_fnagi_2023_1149143 crossref_primary_10_3390_ph17080975 crossref_primary_10_1016_j_scienta_2023_112510 crossref_primary_10_1007_s10753_024_02139_7 crossref_primary_10_1007_s42451_021_00352_4 crossref_primary_10_3389_fnins_2024_1351718 crossref_primary_10_1021_acs_nanolett_4c01235 crossref_primary_10_1016_j_bmcl_2023_129564 crossref_primary_10_3233_JAD_220793 crossref_primary_10_1016_j_fbio_2025_106141 crossref_primary_10_1186_s43556_024_00240_9 crossref_primary_10_3390_md21050261 crossref_primary_10_1007_s12640_022_00528_0 crossref_primary_10_1021_acschemneuro_0c00381 crossref_primary_10_1016_j_fct_2021_112433 crossref_primary_10_2478_jvetres_2021_0064 crossref_primary_10_1016_j_neuint_2024_105829 crossref_primary_10_1016_j_eclinm_2022_101615 crossref_primary_10_1016_j_phanu_2019_100171 crossref_primary_10_3390_ijms20123056 crossref_primary_10_3233_JPD_212679 crossref_primary_10_1016_j_physbeh_2021_113510 crossref_primary_10_1016_j_biopha_2021_111253 crossref_primary_10_1016_j_foodchem_2024_139068 crossref_primary_10_1111_cbdd_14619 crossref_primary_10_1016_j_jff_2025_106717 crossref_primary_10_1007_s12035_023_03800_2 crossref_primary_10_1590_0004_282x20190079 crossref_primary_10_3390_ph17111535 crossref_primary_10_1007_s12010_023_04362_8 crossref_primary_10_1007_s12035_023_03706_z crossref_primary_10_3390_antiox14010088 crossref_primary_10_1021_acs_jafc_9b06574 crossref_primary_10_5812_ipmn_117170 crossref_primary_10_2174_1871527322666230718105358 crossref_primary_10_3390_nu11020424 crossref_primary_10_3389_fphar_2023_1117337 crossref_primary_10_1007_s11064_021_03363_5 crossref_primary_10_1016_j_neuint_2019_104514 crossref_primary_10_1007_s11064_019_02835_z crossref_primary_10_1007_s13205_023_03574_3 crossref_primary_10_1186_s13765_024_00876_9 crossref_primary_10_3390_biom9070269 crossref_primary_10_1080_10408398_2020_1865870 |
Cites_doi | 10.1007/s12263-009-0143-4 10.1016/S0891-5849(03)00385-X 10.1515/BC.2002.052 10.1039/C5FO01285F 10.1080/10715760500233113 10.1248/bpb.b12-00127 10.1016/j.freeradbiomed.2015.02.030 10.1016/j.fitote.2013.07.009 10.1515/revneuro-2016-0004 10.1021/jf050565k 10.1016/j.neuropharm.2013.11.026 10.1055/s-0030-1249976 10.1073/pnas.0804373105 10.1021/acschemneuro.5b00051 10.1016/j.neuroscience.2013.11.051 10.1016/j.neuint.2015.08.005 10.1080/07315724.2007.10719621 10.1039/C7FO01820G 10.1155/2013/946298 10.1111/j.1600-079X.2010.00819.x 10.1007/s11011-014-9604-6 10.1016/j.bcp.2017.04.033 10.3892/mmr.2015.4657 10.1007/s12263-008-0091-4 10.1038/aps.2010.77 10.1080/10284150500078117 10.1159/000265946 10.1016/j.jns.2003.07.006 10.3109/13880209.2014.993041 10.1016/j.neuroscience.2012.05.039 10.1016/j.pbb.2011.09.002 10.1016/j.neuroscience.2014.12.003 10.1097/WNR.0b013e32821c51fe 10.1111/j.1749-6632.2000.tb06192.x 10.1111/j.1745-7254.2005.00019.x 10.1002/ptr.2564 10.1007/s11064-008-9900-9 10.3390/ijms17010108 10.1016/S0378-4347(98)00204-7 10.1016/j.tins.2017.01.002 10.1248/bpb.34.1291 10.1016/j.nut.2014.03.024 10.1016/j.freeradbiomed.2003.09.011 10.3945/jn.117.255034 10.1016/j.brainres.2008.01.089 10.1093/carcin/19.10.1771 10.1016/j.freeradbiomed.2004.04.012 10.1186/1750-1326-10-4 10.1155/2013/514095 10.1007/s12264-012-1238-2 10.1152/ajpcell.00388.2006 10.1007/s12640-016-9600-1 10.1016/j.fct.2017.10.023 10.1007/s11481-012-9363-2 10.1016/j.brainresbull.2010.06.004 10.1111/j.1471-4159.2005.03000.x 10.1007/s11064-015-1796-6 10.1016/j.jnutbio.2013.05.001 10.1002/mnfr.200500156 10.1073/pnas.0913572107 10.1046/j.1471-4159.2001.00490.x 10.1016/j.cbi.2014.11.011 10.1016/S0891-5849(02)01137-1 10.1016/j.jnutbio.2015.10.013 10.1089/jmf.2013.2926 10.3389/fmicb.2017.01521 10.1002/jnr.23544 10.1016/j.nbd.2004.11.009 10.1016/j.celrep.2017.02.023 10.2165/00002512-200320100-00001 10.1080/1028415X.2017.1360558 10.1007/s12035-014-8769-7 10.1016/j.freeradbiomed.2004.08.002 10.1046/j.1471-4159.2003.01652.x 10.1016/j.freeradbiomed.2003.11.023 10.1016/j.pbb.2013.12.008 10.1016/j.neulet.2011.06.021 10.1016/j.neuroscience.2013.01.032 10.1007/s00018-003-3080-1 10.1016/j.pbb.2005.09.004 10.1111/j.1440-1681.2012.05673.x 10.1016/j.jep.2015.01.042 10.1007/s12031-012-9727-3 10.1007/s00702-010-0434-3 10.1016/j.brainresbull.2009.08.013 10.1111/j.1365-2125.2012.04425.x 10.1038/nm.4132 10.1079/BJN20051596 10.1016/j.jocn.2010.01.042 10.1093/aje/kwm338 10.1002/mnfr.201500224 10.1016/j.ejphar.2017.03.002 10.1097/00001756-200112040-00053 10.1016/j.neuint.2015.07.023 10.1016/j.lfs.2012.05.005 10.1016/j.brainres.2011.11.021 10.1016/S0161-813X(02)00079-7 10.1100/2012/923464 10.1093/jn/135.7.1718 10.1016/j.biopsych.2007.04.020 10.1016/j.tox.2014.02.009 10.1016/j.bbr.2017.10.021 10.1016/j.ejphar.2008.10.005 10.1385/JMN:24:3:401 10.1002/jnr.23307 10.1016/j.neuroscience.2013.09.029 10.1007/s12640-012-9332-9 10.1211/0022357023222 10.1002/mnfr.201000525 10.1016/j.brainresbull.2014.02.004 10.1093/aje/155.8.732 10.1021/jf050145v 10.1016/j.neuropharm.2014.07.012 10.1096/fasebj.21.6.A1081 10.1089/jmf.2017.4078 10.1016/j.brainres.2010.02.031 10.1016/j.jnutbio.2014.03.006 10.1016/j.pneurobio.2015.10.004 10.1002/ptr.1486 10.1007/s12640-011-9295-2 10.1007/s00702-010-0464-x 10.1016/S0024-3205(99)00232-5 10.1021/jf071998l 10.1016/j.biomag.2014.02.004 10.1212/WNL.0b013e31824f7fc4 10.1089/jmf.2014.3241 10.1111/j.1460-9568.2011.07626.x 10.1016/j.jns.2011.02.025 10.1016/j.parkreldis.2008.02.011 10.3390/nu7063959 10.1007/s10787-007-1614-0 10.1016/S0967-5868(03)00014-6 10.1039/C4FO00538D 10.1021/acschemneuro.5b00260 10.1089/jmf.2015.3581 10.1038/onc.2008.301 10.1155/2012/928643 10.1016/j.neures.2007.10.005 10.1007/s00401-017-1788-5 10.1523/JNEUROSCI.6437-11.2012 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.3390/nu10050642 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2072-6643 |
ExternalDocumentID | PMC5986521 29783725 10_3390_nu10050642 |
Genre | Systematic Review Journal Article |
GroupedDBID | --- 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAWTL AAYXX ABUWG ACIWK ACPRK ADRAZ AENEX AFKRA AFRAH AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS BENPR BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ECGQY EIHBH ESTFP EYRJQ F5P FYUFA GX1 HMCUK HYE IPNFZ KQ8 LK8 M1P M48 MODMG M~E OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7TS 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c439t-a1cc9cbe4f3aafbd1522b85b4be6727d8baace8ede5bfc3b77c5a9950a98b76d3 |
IEDL.DBID | M48 |
ISSN | 2072-6643 |
IngestDate | Thu Aug 21 18:16:50 EDT 2025 Fri Jul 11 12:24:50 EDT 2025 Fri Jul 11 06:58:01 EDT 2025 Fri Jul 25 20:03:51 EDT 2025 Mon Jul 21 06:02:05 EDT 2025 Tue Jul 01 02:30:20 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | rotenone behavioral tests urolithins |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-a1cc9cbe4f3aafbd1522b85b4be6727d8baace8ede5bfc3b77c5a9950a98b76d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
ORCID | 0000-0002-5306-9904 |
OpenAccessLink | https://www.proquest.com/docview/2056385826?pq-origsite=%requestingapplication% |
PMID | 29783725 |
PQID | 2056385826 |
PQPubID | 2032353 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986521 proquest_miscellaneous_2286945701 proquest_miscellaneous_2042755467 proquest_journals_2056385826 pubmed_primary_29783725 crossref_citationtrail_10_3390_nu10050642 crossref_primary_10_3390_nu10050642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-19 |
PublicationDateYYYYMMDD | 2018-05-19 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nutrients |
PublicationTitleAlternate | Nutrients |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Mandel (ref_3) 2004; 37 Zare (ref_37) 2015; 30 Liu (ref_140) 2014; 5 Kiasalari (ref_18) 2016; 41 ref_13 Nagarajan (ref_64) 2015; 53 Yu (ref_26) 2012; 91 Peng (ref_121) 1998; 714 Takano (ref_51) 2007; 292 Chen (ref_69) 2005; 26 Zhang (ref_108) 2015; 84 Thakur (ref_147) 2015; 51 Checkoway (ref_111) 2002; 155 Sarkar (ref_78) 2013; 254 Ahmad (ref_99) 2005; 93 Zhang (ref_57) 2010; 31 He (ref_86) 2003; 35 Tripanichkul (ref_35) 2013; 17 Karuppagounder (ref_75) 2013; 236 Wang (ref_125) 2012; 32 Lee (ref_49) 2014; 92 Baluchnejadmojarad (ref_22) 2017; 801 Lv (ref_88) 2011; 118 Mansouri (ref_80) 2012; 47 Ryu (ref_143) 2016; 22 Costa (ref_4) 2017; 110 Wang (ref_31) 2011; 304 Galli (ref_127) 2005; 8 Gao (ref_109) 2012; 78 Chan (ref_110) 2003; 10 Tan (ref_113) 2008; 167 Kandinov (ref_114) 2009; 15 Piltonen (ref_19) 2008; 1203 Ma (ref_23) 2007; 18 Patil (ref_73) 2014; 86 Yuan (ref_138) 2016; 7 Wang (ref_63) 2015; 164 Shahpiri (ref_82) 2016; 27 Lau (ref_89) 2011; 33 Zaitone (ref_90) 2012; 100 Anandhan (ref_71) 2012; 218 Roghani (ref_29) 2010; 82 Kim (ref_45) 2010; 17 Baluchnejadmojarad (ref_24) 2009; 23 Lou (ref_15) 2014; 79 Mandel (ref_41) 2004; 24 Datla (ref_105) 2007; 26 Ojha (ref_68) 2012; 7 Rekha (ref_74) 2014; 4 Mak (ref_115) 2012; 39 Tsai (ref_122) 2000; 8 Yang (ref_98) 2001; 22 Kumar (ref_62) 2013; 2013 Jin (ref_30) 2008; 600 Li (ref_116) 2012; 2012 (ref_135) 2017; 139 (ref_102) 2014; 319 Salazar (ref_87) 2008; 105 Wahlqvist (ref_93) 2016; 7 Du (ref_34) 2012; 28 Lv (ref_56) 2012; 2012 Anandhan (ref_72) 2013; 23 Wu (ref_94) 1999; 65 Jung (ref_59) 2014; 17 ref_85 ref_146 Reznichenko (ref_44) 2010; 7 Pan (ref_6) 2003; 20 Zhao (ref_10) 2009; 34 Xia (ref_83) 2017; 18 Kalt (ref_128) 2008; 56 Haleagrahara (ref_20) 2011; 500 Yabuki (ref_53) 2014; 259 Kerr (ref_142) 2017; 40 Passamonti (ref_131) 2005; 53 Reglodi (ref_1) 2017; 155 Mandel (ref_12) 2006; 50 Datla (ref_95) 2004; 56 Kuhnle (ref_124) 2002; 33 Liu (ref_61) 2008; 60 Zhou (ref_46) 2018; 17 Moosavi (ref_5) 2016; 10 Vauzour (ref_9) 2008; 3 Xu (ref_43) 2017; 147 Zbarsky (ref_14) 2005; 39 Chen (ref_33) 2015; 10 Leem (ref_54) 2014; 25 Li (ref_104) 2005; 82 Youdim (ref_118) 2003; 85 Rajeswari (ref_67) 2008; 16 Dihal (ref_120) 2005; 135 Singhal (ref_103) 2011; 50 Antunes (ref_17) 2014; 30 Kim (ref_16) 2016; 28 Gasperotti (ref_144) 2015; 6 Chen (ref_130) 2015; 59 Datla (ref_27) 2001; 12 Guo (ref_100) 2007; 62 Dutta (ref_117) 2015; 89 Zhao (ref_129) 2015; 89 Khan (ref_32) 2010; 1328 Lee (ref_58) 2015; 93 Li (ref_55) 2011; 34 Xu (ref_65) 2013; 90 Dhanasekaran (ref_148) 2008; 27 Kim (ref_84) 2016; 19 Weinreb (ref_11) 2009; 4 Seeram (ref_145) 2007; 21 Zhu (ref_25) 2010; 76 Wu (ref_36) 2015; 225 Verzelloni (ref_139) 2011; 55 Marks (ref_132) 2006; 95 Xue (ref_48) 2014; 103 Felgines (ref_126) 2005; 53 Geed (ref_60) 2014; 117 Chen (ref_101) 2015; 286 Hagras (ref_79) 2013; 51 Selma (ref_137) 2017; 8 Vajragupta (ref_66) 2003; 35 Kim (ref_97) 2004; 18 Levites (ref_40) 2001; 78 Youdim (ref_7) 2004; 37 Suganuma (ref_123) 1998; 19 Requena (ref_136) 2018; 9 Khan (ref_21) 2012; 22 Ahlemeyer (ref_96) 2003; 60 Tan (ref_112) 2003; 216 Koutsos (ref_133) 2015; 7 Jang (ref_50) 2010; 107 Rein (ref_92) 2013; 75 Youdim (ref_8) 2002; 383 Choi (ref_42) 2002; 23 Cardona (ref_134) 2013; 24 Leaver (ref_28) 2009; 80 ref_107 Farbood (ref_38) 2015; 6 Ramos (ref_39) 2005; 19 Anandhan (ref_70) 2012; 1433 Kim (ref_47) 2012; 35 Ojha (ref_77) 2015; 9 Costa (ref_2) 2016; 30 Cui (ref_76) 2016; 13 Jiang (ref_91) 2018; 135 Jeong (ref_52) 2015; 18 Bookheimer (ref_141) 2013; 2013 Moreira (ref_106) 2010; 117 Youdim (ref_119) 2004; 36 Mandel (ref_81) 2000; 899 |
References_xml | – volume: 4 start-page: 283 year: 2009 ident: ref_11 article-title: Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties publication-title: Genes Nutr. doi: 10.1007/s12263-009-0143-4 – volume: 35 start-page: 540 year: 2003 ident: ref_86 article-title: Dopaminergic cell death precedes iron elevation in mptp-injected monkeys publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(03)00385-X – volume: 383 start-page: 503 year: 2002 ident: ref_8 article-title: Dietary flavonoids as potential neuroprotectants publication-title: Biol. Chem. doi: 10.1515/BC.2002.052 – volume: 7 start-page: 1245 year: 2016 ident: ref_93 article-title: Food structure is critical for optimal health publication-title: Food Funct. doi: 10.1039/C5FO01285F – volume: 39 start-page: 1119 year: 2005 ident: ref_14 article-title: Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-ohda model of parkinson’s disease publication-title: Free Radic. Res. doi: 10.1080/10715760500233113 – volume: 35 start-page: 1287 year: 2012 ident: ref_47 article-title: Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b12-00127 – volume: 84 start-page: 331 year: 2015 ident: ref_108 article-title: Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.02.030 – volume: 90 start-page: 112 year: 2013 ident: ref_65 article-title: Neuroprotective effects of madecassoside in early stage of parkinson’s disease induced by mptp in rats publication-title: Fitoterapia doi: 10.1016/j.fitote.2013.07.009 – volume: 27 start-page: 651 year: 2016 ident: ref_82 article-title: Phytochemicals as future drugs for parkinson’s disease: A comprehensive review publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2016-0004 – volume: 53 start-page: 7029 year: 2005 ident: ref_131 article-title: Fast access of some grape pigments to the brain publication-title: J. Agric. Food Chem. doi: 10.1021/jf050565k – volume: 79 start-page: 380 year: 2014 ident: ref_15 article-title: Naringenin protects against 6-ohda-induced neurotoxicity via activation of the nrf2/are signaling pathway publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.11.026 – volume: 76 start-page: 1820 year: 2010 ident: ref_25 article-title: Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of parkinson’s disease publication-title: Planta Med. doi: 10.1055/s-0030-1249976 – volume: 8 start-page: 331 year: 2000 ident: ref_122 article-title: Determination of unbound hesperetin in rat blood and brain by microdialysis coupled to microbore liquid chromatography publication-title: J. Food Drug Anal. – volume: 105 start-page: 18578 year: 2008 ident: ref_87 article-title: Divalent metal transporter 1 (dmt1) contributes to neurodegeneration in animal models of parkinson’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804373105 – volume: 6 start-page: 1341 year: 2015 ident: ref_144 article-title: Fate of microbial metabolites of dietary polyphenols in rats: Is the brain their target destination? publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.5b00051 – volume: 259 start-page: 126 year: 2014 ident: ref_53 article-title: Nobiletin treatment improves motor and cognitive deficits seen in mptp-induced parkinson model mice publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.11.051 – volume: 89 start-page: 181 year: 2015 ident: ref_117 article-title: Tea and parkinson’s disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2015.08.005 – volume: 51 start-page: 357 year: 2013 ident: ref_79 article-title: Effect of epigallocatechin-3-gallate on inflammatory mediators release in lps-induced parkinson’s disease in rats publication-title: Indian J. Exp. Biol. – volume: 26 start-page: 341 year: 2007 ident: ref_105 article-title: Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of parkinson’s disease publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2007.10719621 – volume: 9 start-page: 688 year: 2018 ident: ref_136 article-title: Diet and microbiota linked in health and disease publication-title: Food Funct. doi: 10.1039/C7FO01820G – volume: 2013 start-page: 946298 year: 2013 ident: ref_141 article-title: Pomegranate juice augments memory and fmri activity in middle-aged and older adults with mild memory complaints publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2013/946298 – volume: 50 start-page: 97 year: 2011 ident: ref_103 article-title: Melatonin or silymarin reduces maneb- and paraquat-induced parkinson’s disease phenotype in the mouse publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2010.00819.x – volume: 17 start-page: 4883 year: 2018 ident: ref_46 article-title: (-)-epigallocatechin-3-gallate modulates peripheral immunity in the mptp-induced mouse model of parkinson’s disease publication-title: Mol. Med. Rep. – volume: 30 start-page: 205 year: 2015 ident: ref_37 article-title: The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat publication-title: Metab. Brain Dis. doi: 10.1007/s11011-014-9604-6 – volume: 139 start-page: 82 year: 2017 ident: ref_135 article-title: The gut microbiota: A key factor in the therapeutic effects of (poly)phenols publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.04.033 – volume: 13 start-page: 1381 year: 2016 ident: ref_76 article-title: Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the akt/nrf2 pathway publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4657 – volume: 3 start-page: 115 year: 2008 ident: ref_9 article-title: The neuroprotective potential of flavonoids: A multiplicity of effects publication-title: Genes Nutr. doi: 10.1007/s12263-008-0091-4 – volume: 31 start-page: 900 year: 2010 ident: ref_57 article-title: Morin exerts neuroprotective actions in parkinson disease models in vitro and in vivo publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2010.77 – volume: 8 start-page: 111 year: 2005 ident: ref_127 article-title: Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory publication-title: Nutr. Neurosci. doi: 10.1080/10284150500078117 – volume: 7 start-page: 219 year: 2010 ident: ref_44 article-title: Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in mptp-induced parkinsonism publication-title: Neurodegener. Dis. doi: 10.1159/000265946 – volume: 216 start-page: 163 year: 2003 ident: ref_112 article-title: Dose-dependent protective effect of coffee, tea, and smoking in parkinson’s disease: A study in ethnic chinese publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2003.07.006 – volume: 53 start-page: 1591 year: 2015 ident: ref_64 article-title: Ferulic acid pretreatment mitigates mptp-induced motor impairment and histopathological alterations in c57bl/6 mice publication-title: Pharm. Biol. doi: 10.3109/13880209.2014.993041 – volume: 218 start-page: 257 year: 2012 ident: ref_71 article-title: Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (mptp)-induced mouse model of parkinson’s disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.05.039 – volume: 100 start-page: 347 year: 2012 ident: ref_90 article-title: Acetyl-l-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for parkinson’s disease therapy publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2011.09.002 – volume: 286 start-page: 383 year: 2015 ident: ref_101 article-title: Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in mptp-intoxicated parkinsonian monkeys publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.12.003 – volume: 18 start-page: 1181 year: 2007 ident: ref_23 article-title: Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats publication-title: Neuroreport doi: 10.1097/WNR.0b013e32821c51fe – volume: 899 start-page: 262 year: 2000 ident: ref_81 article-title: Neuroprotective strategies in parkinson’s disease using the models of 6-hydroxydopamine and mptp publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2000.tb06192.x – volume: 26 start-page: 56 year: 2005 ident: ref_69 article-title: Ginsenoside rg1 reduces mptp-induced substantia nigra neuron loss by suppressing oxidative stress publication-title: Acta Pharmacol. Sin. doi: 10.1111/j.1745-7254.2005.00019.x – volume: 23 start-page: 132 year: 2009 ident: ref_24 article-title: Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model publication-title: Phytother. Res. doi: 10.1002/ptr.2564 – volume: 34 start-page: 630 year: 2009 ident: ref_10 article-title: Natural antioxidants protect neurons in alzheimer’s disease and parkinson’s disease publication-title: Neurochem. Res. doi: 10.1007/s11064-008-9900-9 – ident: ref_107 doi: 10.3390/ijms17010108 – volume: 714 start-page: 369 year: 1998 ident: ref_121 article-title: Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(98)00204-7 – volume: 40 start-page: 151 year: 2017 ident: ref_142 article-title: Mitophagy and alzheimer’s disease: Cellular and molecular mechanisms publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.01.002 – volume: 9 start-page: 5499 year: 2015 ident: ref_77 article-title: Neuroprotective potential of ferulic acid in the rotenone model of parkinson’s disease publication-title: Drug Des. Dev. Ther. – volume: 34 start-page: 1291 year: 2011 ident: ref_55 article-title: Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of parkinson’s disease publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.34.1291 – volume: 30 start-page: 1415 year: 2014 ident: ref_17 article-title: Protective effect of hesperidin in a model of parkinson’s disease induced by 6-hydroxydopamine in aged mice publication-title: Nutrition doi: 10.1016/j.nut.2014.03.024 – volume: 35 start-page: 1632 year: 2003 ident: ref_66 article-title: Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2003.09.011 – volume: 147 start-page: 1926 year: 2017 ident: ref_43 article-title: Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease publication-title: J. Nutr. doi: 10.3945/jn.117.255034 – volume: 1203 start-page: 149 year: 2008 ident: ref_19 article-title: Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures publication-title: Brain Res. doi: 10.1016/j.brainres.2008.01.089 – volume: 19 start-page: 1771 year: 1998 ident: ref_123 article-title: Wide distribution of (3h)(-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue publication-title: Carcinogenesis doi: 10.1093/carcin/19.10.1771 – volume: 37 start-page: 304 year: 2004 ident: ref_3 article-title: Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.04.012 – volume: 10 start-page: 4 year: 2015 ident: ref_33 article-title: Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of parkinson’s disease publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-10-4 – volume: 17 start-page: 1360 year: 2013 ident: ref_35 article-title: Ameliorating effects of curcumin on 6-ohda-induced dopaminergic denervation, glial response, and sod1 reduction in the striatum of hemiparkinsonian mice publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 2013 start-page: 514095 year: 2013 ident: ref_62 article-title: Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced parkinson’s disease model publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2013/514095 – volume: 28 start-page: 253 year: 2012 ident: ref_34 article-title: Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of parkinson’s disease publication-title: Neurosci. Bull. doi: 10.1007/s12264-012-1238-2 – volume: 292 start-page: C353 year: 2007 ident: ref_51 article-title: Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00388.2006 – volume: 30 start-page: 41 year: 2016 ident: ref_2 article-title: Impact of plant-derived flavonoids on neurodegenerative diseases publication-title: Neurotox. Res. doi: 10.1007/s12640-016-9600-1 – volume: 110 start-page: 286 year: 2017 ident: ref_4 article-title: Current evidence on the effect of dietary polyphenols intake on chronic diseases publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2017.10.023 – volume: 7 start-page: 609 year: 2012 ident: ref_68 article-title: Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the mptp model of parkinson’s disease publication-title: J. Neuroimmune Pharmacol. doi: 10.1007/s11481-012-9363-2 – volume: 82 start-page: 279 year: 2010 ident: ref_29 article-title: Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2010.06.004 – volume: 93 start-page: 94 year: 2005 ident: ref_99 article-title: Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03000.x – volume: 41 start-page: 1065 year: 2016 ident: ref_18 article-title: Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1796-6 – volume: 24 start-page: 1415 year: 2013 ident: ref_134 article-title: Benefits of polyphenols on gut microbiota and implications in human health publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2013.05.001 – volume: 50 start-page: 229 year: 2006 ident: ref_12 article-title: Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200500156 – volume: 107 start-page: 2687 year: 2010 ident: ref_50 article-title: A selective trkb agonist with potent neurotrophic activities by 7,8-dihydroxyflavone publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913572107 – volume: 78 start-page: 1073 year: 2001 ident: ref_40 article-title: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2001.00490.x – volume: 225 start-page: 40 year: 2015 ident: ref_36 article-title: Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of parkinson’s disease: Involvement of antioxidative enzymes induction publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2014.11.011 – volume: 33 start-page: 1693 year: 2002 ident: ref_124 article-title: Uptake and metabolism of epicatechin and its access to the brain after oral ingestion publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)01137-1 – volume: 28 start-page: 140 year: 2016 ident: ref_16 article-title: Naringin treatment induces neuroprotective effects in a mouse model of parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2015.10.013 – volume: 17 start-page: 599 year: 2014 ident: ref_59 article-title: Silibinin attenuates mpp⁺-induced neurotoxicity in the substantia nigra in vivo publication-title: J. Med. Food doi: 10.1089/jmf.2013.2926 – volume: 8 start-page: 1521 year: 2017 ident: ref_137 article-title: Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01521 – volume: 93 start-page: 755 year: 2015 ident: ref_58 article-title: Silibinin prevents dopaminergic neuronal loss in a mouse model of parkinson’s disease via mitochondrial stabilization publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23544 – volume: 19 start-page: 96 year: 2005 ident: ref_39 article-title: Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to parkinson’s disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2004.11.009 – volume: 18 start-page: 2533 year: 2017 ident: ref_83 article-title: A knockin reporter allows purification and characterization of mda neurons from heterogeneous populations publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.02.023 – volume: 20 start-page: 711 year: 2003 ident: ref_6 article-title: Potential therapeutic properties of green tea polyphenols in parkinson’s disease publication-title: Drugs Aging doi: 10.2165/00002512-200320100-00001 – ident: ref_146 doi: 10.1080/1028415X.2017.1360558 – volume: 51 start-page: 209 year: 2015 ident: ref_147 article-title: Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of parkinson’s disease publication-title: Mol. Neurobiol. doi: 10.1007/s12035-014-8769-7 – volume: 37 start-page: 1683 year: 2004 ident: ref_7 article-title: Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.08.002 – volume: 85 start-page: 180 year: 2003 ident: ref_118 article-title: Interaction between flavonoids and the blood-brain barrier: In vitro studies publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01652.x – volume: 36 start-page: 592 year: 2004 ident: ref_119 article-title: Flavonoid permeability across an in situ model of the blood-brain barrier publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2003.11.023 – volume: 117 start-page: 92 year: 2014 ident: ref_60 article-title: Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal mpp+ injection in rats publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2013.12.008 – volume: 500 start-page: 139 year: 2011 ident: ref_20 article-title: Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.06.021 – volume: 236 start-page: 136 year: 2013 ident: ref_75 article-title: Quercetin up-regulates mitochondrial complex-i activity to protect against programmed cell death in rotenone model of parkinson’s disease in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.01.032 – volume: 60 start-page: 1779 year: 2003 ident: ref_96 article-title: Neuroprotective effects of ginkgo biloba extract publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-003-3080-1 – volume: 82 start-page: 345 year: 2005 ident: ref_104 article-title: Neuroprotective effects of polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2005.09.004 – volume: 39 start-page: 265 year: 2012 ident: ref_115 article-title: Potential role of green tea catechins in various disease therapies: Progress and promise publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2012.05673.x – volume: 164 start-page: 247 year: 2015 ident: ref_63 article-title: Tanshinone i selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of parkinson’s disease publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.01.042 – volume: 10 start-page: 23 year: 2016 ident: ref_5 article-title: Modulation of neurotrophic signaling pathways by polyphenols publication-title: Drug Des. Dev. Ther. – volume: 47 start-page: 234 year: 2012 ident: ref_80 article-title: Curcumin has neuroprotection effect on homocysteine rat model of parkinson publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-012-9727-3 – volume: 118 start-page: 361 year: 2011 ident: ref_88 article-title: Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in parkinson’s disease publication-title: J. Neural Transm (Vienna) doi: 10.1007/s00702-010-0434-3 – volume: 80 start-page: 397 year: 2009 ident: ref_28 article-title: Oral pre-treatment with epigallocatechin gallate in 6-ohda lesioned rats produces subtle symptomatic relief but not neuroprotection publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2009.08.013 – volume: 75 start-page: 588 year: 2013 ident: ref_92 article-title: Bioavailability of bioactive food compounds: A challenging journey to bioefficacy publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2012.04425.x – volume: 22 start-page: 879 year: 2016 ident: ref_143 article-title: Urolithin a induces mitophagy and prolongs lifespan in c. Elegans and increases muscle function in rodents publication-title: Nat. Med. doi: 10.1038/nm.4132 – volume: 95 start-page: 51 year: 2006 ident: ref_132 article-title: Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats publication-title: Br. J. Nutr. doi: 10.1079/BJN20051596 – volume: 17 start-page: 1165 year: 2010 ident: ref_45 article-title: Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of parkinson’s disease publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2010.01.042 – volume: 167 start-page: 553 year: 2008 ident: ref_113 article-title: Differential effects of black versus green tea on risk of parkinson’s disease in the singapore chinese health study publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwm338 – volume: 22 start-page: 1089 year: 2001 ident: ref_98 article-title: Protective effect and mechanism of ginkgo biloba leaf extracts for parkinson disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine publication-title: Acta Pharmacol. Sin. – volume: 59 start-page: 2432 year: 2015 ident: ref_130 article-title: Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201500224 – volume: 801 start-page: 72 year: 2017 ident: ref_22 article-title: Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of parkinson’s disease: Possible involvement of pi3k/erβ signaling publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2017.03.002 – volume: 12 start-page: 3871 year: 2001 ident: ref_27 article-title: Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of parkinson’s disease publication-title: Neuroreport doi: 10.1097/00001756-200112040-00053 – volume: 89 start-page: 191 year: 2015 ident: ref_129 article-title: Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2015.07.023 – volume: 91 start-page: 5 year: 2012 ident: ref_26 article-title: Assessment of the treatment effect of baicalein on a model of parkinsonian tremor and elucidation of the mechanism publication-title: Life Sci. doi: 10.1016/j.lfs.2012.05.005 – volume: 1433 start-page: 104 year: 2012 ident: ref_70 article-title: Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic mptp/probenecid induced parkinson’s disease publication-title: Brain Res. doi: 10.1016/j.brainres.2011.11.021 – volume: 23 start-page: 367 year: 2002 ident: ref_42 article-title: Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate publication-title: Neurotoxicology doi: 10.1016/S0161-813X(02)00079-7 – volume: 2012 start-page: 923464 year: 2012 ident: ref_116 article-title: A meta-analysis of tea drinking and risk of parkinson’s disease publication-title: Sci. World J. doi: 10.1100/2012/923464 – volume: 135 start-page: 1718 year: 2005 ident: ref_120 article-title: Tissue distribution of quercetin in rats and pigs publication-title: J. Nutr. doi: 10.1093/jn/135.7.1718 – volume: 62 start-page: 1353 year: 2007 ident: ref_100 article-title: Protective effects of green tea polyphenols in the 6-ohda rat model of parkinson’s disease through inhibition of ros-no pathway publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.04.020 – volume: 319 start-page: 38 year: 2014 ident: ref_102 article-title: Neuroprotective effect of silymarin in a mptp mouse model of parkinson’s disease publication-title: Toxicology doi: 10.1016/j.tox.2014.02.009 – ident: ref_13 doi: 10.1016/j.bbr.2017.10.021 – volume: 600 start-page: 78 year: 2008 ident: ref_30 article-title: Neuroprotective effect of resveratrol on 6-ohda-induced parkinson’s disease in rats publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2008.10.005 – volume: 24 start-page: 401 year: 2004 ident: ref_41 article-title: Iron and alpha-synuclein in the substantia nigra of mptp-treated mice: Effect of neuroprotective drugs r-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate publication-title: J. Mol. Neurosci. doi: 10.1385/JMN:24:3:401 – volume: 92 start-page: 130 year: 2014 ident: ref_49 article-title: Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced parkinson’s disease model by downregulating the activations of nuclear factor-κb, erk, and jnk publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23307 – volume: 254 start-page: 379 year: 2013 ident: ref_78 article-title: Sesamol and naringenin reverse the effect of rotenone-induced pd rat model publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.09.029 – volume: 23 start-page: 166 year: 2013 ident: ref_72 article-title: Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic mptp/probenecid model of parkinson’s disease publication-title: Neurotox. Res. doi: 10.1007/s12640-012-9332-9 – volume: 56 start-page: 649 year: 2004 ident: ref_95 article-title: The antioxidant drink effective microorganism-x (em-x) pre-treatment attenuates the loss of nigrostriatal dopaminergic neurons in 6-hydroxydopamine-lesion rat model of parkinson’s disease publication-title: J. Pharm. Pharmacol. doi: 10.1211/0022357023222 – volume: 55 start-page: S35 year: 2011 ident: ref_139 article-title: Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201000525 – volume: 103 start-page: 54 year: 2014 ident: ref_48 article-title: Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of parkinson’s disease publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2014.02.004 – volume: 155 start-page: 732 year: 2002 ident: ref_111 article-title: Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake publication-title: Am. J. Epidemiol. doi: 10.1093/aje/155.8.732 – volume: 53 start-page: 3902 year: 2005 ident: ref_126 article-title: Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain publication-title: J. Agric. Food Chem. doi: 10.1021/jf050145v – volume: 86 start-page: 192 year: 2014 ident: ref_73 article-title: Neuroprotective and neurotrophic effects of apigenin and luteolin in mptp induced parkinsonism in mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2014.07.012 – volume: 21 start-page: A1081 year: 2007 ident: ref_145 article-title: Pharmacokinetics and tissue disposition of urolithin a, an ellagitannin-derived metabolite, in mice publication-title: FASEB J. doi: 10.1096/fasebj.21.6.A1081 – ident: ref_85 doi: 10.1089/jmf.2017.4078 – volume: 1328 start-page: 139 year: 2010 ident: ref_32 article-title: Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of parkinson’s disease publication-title: Brain Res. doi: 10.1016/j.brainres.2010.02.031 – volume: 25 start-page: 801 year: 2014 ident: ref_54 article-title: Naringin protects the nigrostriatal dopaminergic projection through induction of gdnf in a neurotoxin model of parkinson’s disease publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2014.03.006 – volume: 155 start-page: 120 year: 2017 ident: ref_1 article-title: Novel tactics for neuroprotection in parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2015.10.004 – volume: 18 start-page: 663 year: 2004 ident: ref_97 article-title: Neuroprotective effect of ginkgo biloba l. Extract in a rat model of parkinson’s disease publication-title: Phytother. Res. doi: 10.1002/ptr.1486 – volume: 22 start-page: 1 year: 2012 ident: ref_21 article-title: Rutin protects dopaminergic neurons from oxidative stress in an animal model of parkinson’s disease publication-title: Neurotox. Res. doi: 10.1007/s12640-011-9295-2 – volume: 117 start-page: 1337 year: 2010 ident: ref_106 article-title: Proanthocyanidin-rich fraction from croton celtidifolius baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of parkinson’s disease publication-title: J. Neural Transm (Vienna) doi: 10.1007/s00702-010-0464-x – volume: 65 start-page: 157 year: 1999 ident: ref_94 article-title: Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of ginkgo biloba extract against mptp-induced nigrostriatal dopaminergic toxicity in c57 mice publication-title: Life Sci. doi: 10.1016/S0024-3205(99)00232-5 – volume: 56 start-page: 705 year: 2008 ident: ref_128 article-title: Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs publication-title: J. Agric. Food Chem. doi: 10.1021/jf071998l – volume: 4 start-page: 95 year: 2014 ident: ref_74 article-title: Effects of syringic acid on chronic mptp/probenecid induced motor dysfunction, dopaminergic markers expression and neuroinflammation in c57bl/6 mice publication-title: Biomed. Aging Pathol. doi: 10.1016/j.biomag.2014.02.004 – volume: 78 start-page: 1138 year: 2012 ident: ref_109 article-title: Habitual intake of dietary flavonoids and risk of parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e31824f7fc4 – volume: 18 start-page: 409 year: 2015 ident: ref_52 article-title: Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of parkinson’s disease publication-title: J. Med. Food doi: 10.1089/jmf.2014.3241 – volume: 33 start-page: 1264 year: 2011 ident: ref_89 article-title: Neuroprotective effects and mechanisms of exercise in a chronic mouse model of parkinson’s disease with moderate neurodegeneration publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2011.07626.x – volume: 304 start-page: 29 year: 2011 ident: ref_31 article-title: Protective effect of resveratrol derived from polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2011.02.025 – volume: 6 start-page: 83 year: 2015 ident: ref_38 article-title: Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of parkinson’s disease publication-title: Basic Clin. Neurosci. – volume: 15 start-page: 41 year: 2009 ident: ref_114 article-title: Smoking and tea consumption delay onset of parkinson’s disease publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2008.02.011 – volume: 7 start-page: 3959 year: 2015 ident: ref_133 article-title: Apples and cardiovascular health—Is the gut microbiota a core consideration? publication-title: Nutrients doi: 10.3390/nu7063959 – volume: 16 start-page: 96 year: 2008 ident: ref_67 article-title: Inhibition of monoamine oxidase-b by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of parkinson’s disease induced by mptp neurodegeneration in mice publication-title: Inflammopharmacology doi: 10.1007/s10787-007-1614-0 – volume: 10 start-page: 313 year: 2003 ident: ref_110 article-title: Genetic and environmental risk factors and their interactions for parkinson’s disease in a chinese population publication-title: J. Clin Neurosci. doi: 10.1016/S0967-5868(03)00014-6 – volume: 5 start-page: 2996 year: 2014 ident: ref_140 article-title: Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species publication-title: Food Funct. doi: 10.1039/C4FO00538D – volume: 7 start-page: 26 year: 2016 ident: ref_138 article-title: Pomegranate’s neuroprotective effects against alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.5b00260 – volume: 19 start-page: 374 year: 2016 ident: ref_84 article-title: Myricitrin ameliorates 6-hydroxydopamine-induced dopaminergic neuronal loss in the substantia nigra of mouse brain publication-title: J. Med. Food doi: 10.1089/jmf.2015.3581 – volume: 27 start-page: 6245 year: 2008 ident: ref_148 article-title: Jnk signaling in apoptosis publication-title: Oncogene doi: 10.1038/onc.2008.301 – volume: 2012 start-page: 928643 year: 2012 ident: ref_56 article-title: Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of parkinson’s disease publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2012/928643 – volume: 60 start-page: 156 year: 2008 ident: ref_61 article-title: Neuroprotective effects of genistein on dopaminergic neurons in the mice model of parkinson’s disease publication-title: Neurosci. Res. doi: 10.1016/j.neures.2007.10.005 – volume: 135 start-page: 13 year: 2018 ident: ref_91 article-title: Parkinson’s disease: Experimental models and reality publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1788-5 – volume: 32 start-page: 5144 year: 2012 ident: ref_125 article-title: Brain-targeted proanthocyanidin metabolites for alzheimer’s disease treatment publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6437-11.2012 |
SSID | ssj0000070763 |
Score | 2.5346344 |
SecondaryResourceType | review_article |
Snippet | Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing.... Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 642 |
SubjectTerms | animal models Animals Antiparkinson Agents - adverse effects Antiparkinson Agents - metabolism Antiparkinson Agents - therapeutic use Behavior, Animal - drug effects blood-brain barrier brain Brain - drug effects Brain - metabolism Brain - physiopathology cognition Disease Models, Animal dopamine histopathology Humans immunohistochemistry in vivo studies iron metabolites Mice Motor Activity - drug effects neurons Neuroprotective Agents - adverse effects Neuroprotective Agents - metabolism Neuroprotective Agents - therapeutic use neuroprotective effect oxidative stress Parkinson disease Parkinson Disease - diagnosis Parkinson Disease - drug therapy Parkinson Disease - physiopathology Parkinson Disease - psychology Parkinson's disease Permeability Polyphenols Polyphenols - adverse effects Polyphenols - metabolism Polyphenols - therapeutic use Rats Review signal transduction Systematic review therapeutics Treatment Outcome |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeukFlVdJecgVCIlD1I0T23EvaMVDtAKEBFR7i2zHESttnS27i8Stf4O_xy_Bk2QDSxG3SB5Fzoxjz-PzNwA7UZzTWOYq1CzRYaKkf5JGh5FRsVSiY-peBGfn_OQ6-dVjvSbhNmpgldM9sdqo89JgjtwH6YxjEYvy_eHfELtGYXW1aaExBx-RugwhXaIn2hxLxWXD45qVNPbR_Xc3iZDxhCd09hz6z7l8jZF8cegcf4aFxlsk3dq8i_DBuiVY7jofKf-5J7ukwm9WifFlOL0oB_eI2CoHI9J3BO8zV1e7Hv89jMhhXYj5QbrksiVvJnVlgJQF-enI7_5dSRpc4QpcHx9dHZyETa-E0HiXYhyqyBivY5sUsVKFzv2xTHXKdKIt1lrzVCtlbGpzy3RhYi2EYUpK1lEy1YLn8SrMu9LZNSBSy4SlEacyR6YeKRVWN5kq_Ms5Z0UAe1PNZaYhEsd-FoPMBxSo5exZywFst7LDmj7jTamNqQGy5hcaZc8GD-BbO-wXP1Y0lLPlBGUSKhBnJ96RoSn3HyQ6UQBfapu2U6GY-BKUBSBmrN0KIPn27Ijr31Qk3Mhr712fr-9PfR0-eQ8rRbhBJDdgfnw7sZveixnrrWqpPgHjQfVK priority: 102 providerName: ProQuest |
Title | Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29783725 https://www.proquest.com/docview/2056385826 https://www.proquest.com/docview/2042755467 https://www.proquest.com/docview/2286945701 https://pubmed.ncbi.nlm.nih.gov/PMC5986521 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t44UXBBsfgVF5AoF4CDROHMeT0FT2wZi0aQKK-hbZjiMqFQfWFq3_PXdJGtYxId4S-RLZZ1v3O9_5dwAvorjgsSp0aERiwkQrfFLWhJHVsdKyb5taBGfn6ckwOR2J0Ros63e2Cpze6tpRPanh5eTN1c_FPm74d-Rxosv-1s8jojFBJL0Om2iRJG3QsxbmNzBYortOwWbelzxM0Qo3TKU3Pl-1TX8Bzpt5k9cM0fE9uNsiSDZopvw-rDm_BdsDj97z9wV7yeqczvqwfBtOL6rJgrK4qsmUjT2jO871da9XU3bYhGb22IB97uicWRMrYFXJPnr2dfyrYm2m4QMYHh99OTgJ2-oJoUWQMQt1ZC1q3SVlrHVpCjTU3GTCJMZR9LXIjNbWZa5wwpQ2NlJaoZUSfa0yI9MifggbvvLuMTBlVCKyKOWqIO4epTTFO4Uu8edpKsoAXi_1ltuWWpwqXExydDFIx_kfHQfwvJP90RBq3Cq1s1R_vlwTOUewRnFMngaw2zXjdqAYh_aumpNMwiVl3sl_yPAsxQHJfhTAo2ZGu65wOgqTXAQgV-a6EyA67tUWP_5W03IT0z2CoSf_0bencAeBV0ZZCJHagY3Z5dw9Q3AzMz1YlyPZg833R-cXn_Dtwyjq1av5N02X_JE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuqFAeaQsY8ZA4RGzs2ImREFpoq126XVXQot6C7ThipW3SdndBe-Nv8Cf4UfwSPHmVBdRbb5E8shzP2PP0NwBPA5ZSJlPlax5qP1TSfUmj_cAoJlXUNVUvgv2R6B-F74_58Qr8bN7CYFllcyeWF3VaGIyROyedC0xiUfHm9MzHrlGYXW1aaFRisWcX35zLNn092Hb8fUbp7s7hu75fdxXwjVO-M18FxrjV2DBjSmU6dQqM6pjrUFvMSqaxVsrY2KaW68wwHUWGKyl5V8lYRyJlbt5rsBoy58p0YPXtzujgQxvVKdFzBKtwUBmT3Zf5PECMFRHSZc33jzn7d1XmH2pudw1u1vYp6VUCdQtWbH4b1nu5881PFuQ5KStGy1D8OgwPiskCa8SKyZSMc4IvqMvHZL--_5iS7Sr184r0yMcWLppUuQhSZGSQk0_jrwWpKxnvwNGV7ONd6ORFbu8DkVqGPA4ElSliA0mpMJ_KVeYmF4JnHrxodi4xNXQ5dtCYJM6FwV1OLnbZgyct7WkF2PFfqq2GAUl9aKfJhYh58LgddscNcygqt8UcaUIaYWVfdAkNjYX7oagbeHCv4mm7FIqhtohyD6IlbrcECPe9PJKPv5Sw34ik74ytjcuX_giu9w_3h8lwMNrbhBvOvoux2CGQW9CZnc_tA2dDzfTDWnAJfL7qs_IbD1M3LA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuiFJ-Ai0Y8SNxiLqxYzuuhNCKZdWlpaoERXtLbccRKy1JYXdBe-M1-io8Dk-CJ39lAfXWWySPLGfsscczn78BeBqxjDKV6dDw2ISxVv5LWRNGVjOlZc_WtQjeHYq94_jtmI_X4Gf7FgZhle2eWG3UWWkxRu4v6VxgEouKnbyBRRwNhq9Ov4RYQQozrW05jXqJ7Lvld399m70cDfxcP6N0-ObD672wqTAQWn8Qz0MdWetH5uKcaZ2bzB9m1CTcxMZhhjJLjNbWJS5z3OSWGSkt10rxnlaJkSJjvt8rcFUyHqGNybHs4jsVj45gNSMqY6q3UywiZFsRMV09A_9xbP_GZ_5x4A1vwo3GUyX9emltwJorbsFmv_C39M9L8pxU2NEqKL8JB0fldIlosXI6I5OC4Fvq6lnZrx9nMzKok0C7pE_ed8TRpM5KkDIno4J8nHwrSYNpvA3Hl6LFO7BelIW7B0QZFfMkElRlyBKklMbMKte571wIngfwotVcahsSc6ylMU39ZQa1nJ5rOYAnnexpTd3xX6mtdgLSxnxn6fliC-Bx1-wND7MpunDlAmViKhHjJy-QoYnwPyR7UQB36znthkIx6CYpD0CuzHYngMTfqy3F5FNFAI6c-t7tun_x0B_BNW8h6cHocP8BXPeOXoKoh0htwfr868Jte2dqbh5Wq5bAyWWbyW_Etjn8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphenols+in+Parkinson%27s+Disease%3A+A+Systematic+Review+of+In+Vivo+Studies&rft.jtitle=Nutrients&rft.au=Kujawska%2C+Ma%C5%82gorzata&rft.au=Jodynis-Liebert%2C+Jadwiga&rft.date=2018-05-19&rft.issn=2072-6643&rft.eissn=2072-6643&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fnu10050642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon |