Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols hav...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 10; no. 5; p. 642
Main Authors Kujawska, Małgorzata, Jodynis-Liebert, Jadwiga
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.05.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease.
AbstractList Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease.
Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease.Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease.
Author Kujawska, Małgorzata
Jodynis-Liebert, Jadwiga
AuthorAffiliation Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; liebert@ump.edu.pl
AuthorAffiliation_xml – name: Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; liebert@ump.edu.pl
Author_xml – sequence: 1
  givenname: Małgorzata
  orcidid: 0000-0002-5306-9904
  surname: Kujawska
  fullname: Kujawska, Małgorzata
– sequence: 2
  givenname: Jadwiga
  surname: Jodynis-Liebert
  fullname: Jodynis-Liebert, Jadwiga
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29783725$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtOHDEQhi1ExCtsOEBkKRuENMFtt19ZICEggDQSKCRsLdtdHUx67KHdPWh2XCPX4yT0iEcAZZHaVEn11a-q-tfRckwRENoqyBfGNNmNfUEIJ6KkS2iNEklHQpRs-VW9ijZzviaLkEQKtoJWqZaKScrX0Pg8NfPpFcTUZBwiPrft7xBzivd3fzI-DBlshq94H1_McwcT2wWPv8MswC1ONT6N-DLMEr7o-ipA_og-1LbJsPmUN9DPb0c_Dk5G47Pj04P98ciXTHcjW3ivvYOyZtbWrio4pU5xVzoQkspKOWs9KKiAu9ozJ6XnVmtOrFZOioptoL1H3WnvJlB5iF1rGzNtw8S2c5NsMG87MVyZX2lmuFaC02IQ2H4SaNNND7kzk5A9NI2NkPpsKFVCl1yS_0BJSSXnpZAD-vkdep36Ng6fGCgumOKKioH69Hr5l62fPRkA8gj4NuXcQm186IbHp8UtoTEFMQvnzV_nh5GddyPPqv-AHwCF5q8r
CitedBy_id crossref_primary_10_1111_jfbc_13637
crossref_primary_10_1038_s41598_021_03194_y
crossref_primary_10_2174_1568026620666200416085330
crossref_primary_10_3390_pharmaceutics15102420
crossref_primary_10_1080_1028415X_2022_2073107
crossref_primary_10_3390_cimb45120613
crossref_primary_10_3390_nu14102014
crossref_primary_10_1016_j_bmcl_2024_129752
crossref_primary_10_1007_s11011_024_01479_5
crossref_primary_10_1016_j_cbpc_2023_109630
crossref_primary_10_1016_j_nut_2019_04_006
crossref_primary_10_3390_antiox9070572
crossref_primary_10_3390_antiox9111128
crossref_primary_10_1080_1028415X_2022_2080792
crossref_primary_10_1080_10408398_2020_1815644
crossref_primary_10_1155_2022_5262677
crossref_primary_10_3390_ijms20071538
crossref_primary_10_3390_molecules30010043
crossref_primary_10_3390_pharmaceutics15030839
crossref_primary_10_1016_j_jep_2018_11_025
crossref_primary_10_1016_j_jchemneu_2020_101752
crossref_primary_10_2174_1389450120666191017120505
crossref_primary_10_1016_j_neuint_2019_104612
crossref_primary_10_1186_s12906_022_03524_1
crossref_primary_10_3390_foods12224048
crossref_primary_10_1021_jacs_2c13315
crossref_primary_10_1016_j_nutres_2023_10_004
crossref_primary_10_3389_fphar_2024_1348127
crossref_primary_10_3390_molecules28207188
crossref_primary_10_3390_brainsci11121573
crossref_primary_10_1016_j_ejmech_2022_114529
crossref_primary_10_1080_10408398_2022_2155106
crossref_primary_10_3390_ph15121554
crossref_primary_10_1039_D2FO00552B
crossref_primary_10_3390_ijms23136923
crossref_primary_10_1007_s00115_023_01538_9
crossref_primary_10_2174_1574885518666230818105848
crossref_primary_10_1111_ejn_15810
crossref_primary_10_3390_ijms21072501
crossref_primary_10_4103_ijnpnd_ijnpnd_74_22
crossref_primary_10_3390_ijms25031641
crossref_primary_10_3390_ijms24010462
crossref_primary_10_1016_j_focha_2022_100065
crossref_primary_10_3389_fphar_2022_977521
crossref_primary_10_1007_s00018_022_04304_3
crossref_primary_10_1016_j_heliyon_2024_e35637
crossref_primary_10_3390_metabo12121222
crossref_primary_10_1080_15376516_2023_2288198
crossref_primary_10_1093_nutrit_nuae208
crossref_primary_10_1002_slct_201904059
crossref_primary_10_1016_j_fshw_2019_03_006
crossref_primary_10_3390_ijms25021037
crossref_primary_10_1079_fsncases_2024_0005
crossref_primary_10_1007_s11033_023_08409_1
crossref_primary_10_1212_WNL_0000000000009400
crossref_primary_10_3390_molecules26195985
crossref_primary_10_3390_pharmaceutics15030770
crossref_primary_10_1016_j_mad_2024_111942
crossref_primary_10_3390_antiox12071479
crossref_primary_10_3390_molecules24183310
crossref_primary_10_1016_j_bmc_2022_116818
crossref_primary_10_3390_ijms23063110
crossref_primary_10_3390_molecules25133097
crossref_primary_10_4162_nrp_2020_14_1_3
crossref_primary_10_1016_j_ejphar_2024_176906
crossref_primary_10_1007_s11064_020_03058_3
crossref_primary_10_3390_nu11081896
crossref_primary_10_1016_j_fct_2020_111626
crossref_primary_10_1007_s00253_022_11801_9
crossref_primary_10_1186_s43042_019_0023_4
crossref_primary_10_1016_j_foodres_2020_110066
crossref_primary_10_1016_j_molmed_2020_01_005
crossref_primary_10_1080_1028415X_2021_2017662
crossref_primary_10_3390_ijms21010202
crossref_primary_10_1016_j_bbih_2020_100037
crossref_primary_10_1016_j_neuropharm_2019_107794
crossref_primary_10_29328_journal_jnnd_1001026
crossref_primary_10_1080_00207454_2022_2089136
crossref_primary_10_1093_jpp_rgab038
crossref_primary_10_1016_j_ejmech_2024_116198
crossref_primary_10_3389_fnins_2022_1084493
crossref_primary_10_3389_fneur_2019_01245
crossref_primary_10_3390_ijms222212570
crossref_primary_10_3389_fnagi_2025_1496112
crossref_primary_10_1007_s42250_022_00430_4
crossref_primary_10_1016_j_biopsych_2020_09_025
crossref_primary_10_3389_fnagi_2023_1149143
crossref_primary_10_3390_ph17080975
crossref_primary_10_1016_j_scienta_2023_112510
crossref_primary_10_1007_s10753_024_02139_7
crossref_primary_10_1007_s42451_021_00352_4
crossref_primary_10_3389_fnins_2024_1351718
crossref_primary_10_1021_acs_nanolett_4c01235
crossref_primary_10_1016_j_bmcl_2023_129564
crossref_primary_10_3233_JAD_220793
crossref_primary_10_1016_j_fbio_2025_106141
crossref_primary_10_1186_s43556_024_00240_9
crossref_primary_10_3390_md21050261
crossref_primary_10_1007_s12640_022_00528_0
crossref_primary_10_1021_acschemneuro_0c00381
crossref_primary_10_1016_j_fct_2021_112433
crossref_primary_10_2478_jvetres_2021_0064
crossref_primary_10_1016_j_neuint_2024_105829
crossref_primary_10_1016_j_eclinm_2022_101615
crossref_primary_10_1016_j_phanu_2019_100171
crossref_primary_10_3390_ijms20123056
crossref_primary_10_3233_JPD_212679
crossref_primary_10_1016_j_physbeh_2021_113510
crossref_primary_10_1016_j_biopha_2021_111253
crossref_primary_10_1016_j_foodchem_2024_139068
crossref_primary_10_1111_cbdd_14619
crossref_primary_10_1016_j_jff_2025_106717
crossref_primary_10_1007_s12035_023_03800_2
crossref_primary_10_1590_0004_282x20190079
crossref_primary_10_3390_ph17111535
crossref_primary_10_1007_s12010_023_04362_8
crossref_primary_10_1007_s12035_023_03706_z
crossref_primary_10_3390_antiox14010088
crossref_primary_10_1021_acs_jafc_9b06574
crossref_primary_10_5812_ipmn_117170
crossref_primary_10_2174_1871527322666230718105358
crossref_primary_10_3390_nu11020424
crossref_primary_10_3389_fphar_2023_1117337
crossref_primary_10_1007_s11064_021_03363_5
crossref_primary_10_1016_j_neuint_2019_104514
crossref_primary_10_1007_s11064_019_02835_z
crossref_primary_10_1007_s13205_023_03574_3
crossref_primary_10_1186_s13765_024_00876_9
crossref_primary_10_3390_biom9070269
crossref_primary_10_1080_10408398_2020_1865870
Cites_doi 10.1007/s12263-009-0143-4
10.1016/S0891-5849(03)00385-X
10.1515/BC.2002.052
10.1039/C5FO01285F
10.1080/10715760500233113
10.1248/bpb.b12-00127
10.1016/j.freeradbiomed.2015.02.030
10.1016/j.fitote.2013.07.009
10.1515/revneuro-2016-0004
10.1021/jf050565k
10.1016/j.neuropharm.2013.11.026
10.1055/s-0030-1249976
10.1073/pnas.0804373105
10.1021/acschemneuro.5b00051
10.1016/j.neuroscience.2013.11.051
10.1016/j.neuint.2015.08.005
10.1080/07315724.2007.10719621
10.1039/C7FO01820G
10.1155/2013/946298
10.1111/j.1600-079X.2010.00819.x
10.1007/s11011-014-9604-6
10.1016/j.bcp.2017.04.033
10.3892/mmr.2015.4657
10.1007/s12263-008-0091-4
10.1038/aps.2010.77
10.1080/10284150500078117
10.1159/000265946
10.1016/j.jns.2003.07.006
10.3109/13880209.2014.993041
10.1016/j.neuroscience.2012.05.039
10.1016/j.pbb.2011.09.002
10.1016/j.neuroscience.2014.12.003
10.1097/WNR.0b013e32821c51fe
10.1111/j.1749-6632.2000.tb06192.x
10.1111/j.1745-7254.2005.00019.x
10.1002/ptr.2564
10.1007/s11064-008-9900-9
10.3390/ijms17010108
10.1016/S0378-4347(98)00204-7
10.1016/j.tins.2017.01.002
10.1248/bpb.34.1291
10.1016/j.nut.2014.03.024
10.1016/j.freeradbiomed.2003.09.011
10.3945/jn.117.255034
10.1016/j.brainres.2008.01.089
10.1093/carcin/19.10.1771
10.1016/j.freeradbiomed.2004.04.012
10.1186/1750-1326-10-4
10.1155/2013/514095
10.1007/s12264-012-1238-2
10.1152/ajpcell.00388.2006
10.1007/s12640-016-9600-1
10.1016/j.fct.2017.10.023
10.1007/s11481-012-9363-2
10.1016/j.brainresbull.2010.06.004
10.1111/j.1471-4159.2005.03000.x
10.1007/s11064-015-1796-6
10.1016/j.jnutbio.2013.05.001
10.1002/mnfr.200500156
10.1073/pnas.0913572107
10.1046/j.1471-4159.2001.00490.x
10.1016/j.cbi.2014.11.011
10.1016/S0891-5849(02)01137-1
10.1016/j.jnutbio.2015.10.013
10.1089/jmf.2013.2926
10.3389/fmicb.2017.01521
10.1002/jnr.23544
10.1016/j.nbd.2004.11.009
10.1016/j.celrep.2017.02.023
10.2165/00002512-200320100-00001
10.1080/1028415X.2017.1360558
10.1007/s12035-014-8769-7
10.1016/j.freeradbiomed.2004.08.002
10.1046/j.1471-4159.2003.01652.x
10.1016/j.freeradbiomed.2003.11.023
10.1016/j.pbb.2013.12.008
10.1016/j.neulet.2011.06.021
10.1016/j.neuroscience.2013.01.032
10.1007/s00018-003-3080-1
10.1016/j.pbb.2005.09.004
10.1111/j.1440-1681.2012.05673.x
10.1016/j.jep.2015.01.042
10.1007/s12031-012-9727-3
10.1007/s00702-010-0434-3
10.1016/j.brainresbull.2009.08.013
10.1111/j.1365-2125.2012.04425.x
10.1038/nm.4132
10.1079/BJN20051596
10.1016/j.jocn.2010.01.042
10.1093/aje/kwm338
10.1002/mnfr.201500224
10.1016/j.ejphar.2017.03.002
10.1097/00001756-200112040-00053
10.1016/j.neuint.2015.07.023
10.1016/j.lfs.2012.05.005
10.1016/j.brainres.2011.11.021
10.1016/S0161-813X(02)00079-7
10.1100/2012/923464
10.1093/jn/135.7.1718
10.1016/j.biopsych.2007.04.020
10.1016/j.tox.2014.02.009
10.1016/j.bbr.2017.10.021
10.1016/j.ejphar.2008.10.005
10.1385/JMN:24:3:401
10.1002/jnr.23307
10.1016/j.neuroscience.2013.09.029
10.1007/s12640-012-9332-9
10.1211/0022357023222
10.1002/mnfr.201000525
10.1016/j.brainresbull.2014.02.004
10.1093/aje/155.8.732
10.1021/jf050145v
10.1016/j.neuropharm.2014.07.012
10.1096/fasebj.21.6.A1081
10.1089/jmf.2017.4078
10.1016/j.brainres.2010.02.031
10.1016/j.jnutbio.2014.03.006
10.1016/j.pneurobio.2015.10.004
10.1002/ptr.1486
10.1007/s12640-011-9295-2
10.1007/s00702-010-0464-x
10.1016/S0024-3205(99)00232-5
10.1021/jf071998l
10.1016/j.biomag.2014.02.004
10.1212/WNL.0b013e31824f7fc4
10.1089/jmf.2014.3241
10.1111/j.1460-9568.2011.07626.x
10.1016/j.jns.2011.02.025
10.1016/j.parkreldis.2008.02.011
10.3390/nu7063959
10.1007/s10787-007-1614-0
10.1016/S0967-5868(03)00014-6
10.1039/C4FO00538D
10.1021/acschemneuro.5b00260
10.1089/jmf.2015.3581
10.1038/onc.2008.301
10.1155/2012/928643
10.1016/j.neures.2007.10.005
10.1007/s00401-017-1788-5
10.1523/JNEUROSCI.6437-11.2012
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.3390/nu10050642
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

CrossRef
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2072-6643
ExternalDocumentID PMC5986521
29783725
10_3390_nu10050642
Genre Systematic Review
Journal Article
GroupedDBID ---
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAWTL
AAYXX
ABUWG
ACIWK
ACPRK
ADRAZ
AENEX
AFKRA
AFRAH
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ECGQY
EIHBH
ESTFP
EYRJQ
F5P
FYUFA
GX1
HMCUK
HYE
IPNFZ
KQ8
LK8
M1P
M48
MODMG
M~E
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c439t-a1cc9cbe4f3aafbd1522b85b4be6727d8baace8ede5bfc3b77c5a9950a98b76d3
IEDL.DBID M48
ISSN 2072-6643
IngestDate Thu Aug 21 18:16:50 EDT 2025
Fri Jul 11 12:24:50 EDT 2025
Fri Jul 11 06:58:01 EDT 2025
Fri Jul 25 20:03:51 EDT 2025
Mon Jul 21 06:02:05 EDT 2025
Tue Jul 01 02:30:20 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords rotenone
behavioral tests
urolithins
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-a1cc9cbe4f3aafbd1522b85b4be6727d8baace8ede5bfc3b77c5a9950a98b76d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0002-5306-9904
OpenAccessLink https://www.proquest.com/docview/2056385826?pq-origsite=%requestingapplication%
PMID 29783725
PQID 2056385826
PQPubID 2032353
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986521
proquest_miscellaneous_2286945701
proquest_miscellaneous_2042755467
proquest_journals_2056385826
pubmed_primary_29783725
crossref_citationtrail_10_3390_nu10050642
crossref_primary_10_3390_nu10050642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-19
PublicationDateYYYYMMDD 2018-05-19
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nutrients
PublicationTitleAlternate Nutrients
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mandel (ref_3) 2004; 37
Zare (ref_37) 2015; 30
Liu (ref_140) 2014; 5
Kiasalari (ref_18) 2016; 41
ref_13
Nagarajan (ref_64) 2015; 53
Yu (ref_26) 2012; 91
Peng (ref_121) 1998; 714
Takano (ref_51) 2007; 292
Chen (ref_69) 2005; 26
Zhang (ref_108) 2015; 84
Thakur (ref_147) 2015; 51
Checkoway (ref_111) 2002; 155
Sarkar (ref_78) 2013; 254
Ahmad (ref_99) 2005; 93
Zhang (ref_57) 2010; 31
He (ref_86) 2003; 35
Tripanichkul (ref_35) 2013; 17
Karuppagounder (ref_75) 2013; 236
Wang (ref_125) 2012; 32
Lee (ref_49) 2014; 92
Baluchnejadmojarad (ref_22) 2017; 801
Lv (ref_88) 2011; 118
Mansouri (ref_80) 2012; 47
Ryu (ref_143) 2016; 22
Costa (ref_4) 2017; 110
Wang (ref_31) 2011; 304
Galli (ref_127) 2005; 8
Gao (ref_109) 2012; 78
Chan (ref_110) 2003; 10
Tan (ref_113) 2008; 167
Kandinov (ref_114) 2009; 15
Piltonen (ref_19) 2008; 1203
Ma (ref_23) 2007; 18
Patil (ref_73) 2014; 86
Yuan (ref_138) 2016; 7
Wang (ref_63) 2015; 164
Shahpiri (ref_82) 2016; 27
Lau (ref_89) 2011; 33
Zaitone (ref_90) 2012; 100
Anandhan (ref_71) 2012; 218
Roghani (ref_29) 2010; 82
Kim (ref_45) 2010; 17
Baluchnejadmojarad (ref_24) 2009; 23
Lou (ref_15) 2014; 79
Mandel (ref_41) 2004; 24
Datla (ref_105) 2007; 26
Ojha (ref_68) 2012; 7
Rekha (ref_74) 2014; 4
Mak (ref_115) 2012; 39
Tsai (ref_122) 2000; 8
Yang (ref_98) 2001; 22
Kumar (ref_62) 2013; 2013
Jin (ref_30) 2008; 600
Li (ref_116) 2012; 2012
(ref_135) 2017; 139
(ref_102) 2014; 319
Salazar (ref_87) 2008; 105
Wahlqvist (ref_93) 2016; 7
Du (ref_34) 2012; 28
Lv (ref_56) 2012; 2012
Anandhan (ref_72) 2013; 23
Wu (ref_94) 1999; 65
Jung (ref_59) 2014; 17
ref_85
ref_146
Reznichenko (ref_44) 2010; 7
Pan (ref_6) 2003; 20
Zhao (ref_10) 2009; 34
Xia (ref_83) 2017; 18
Kalt (ref_128) 2008; 56
Haleagrahara (ref_20) 2011; 500
Yabuki (ref_53) 2014; 259
Kerr (ref_142) 2017; 40
Passamonti (ref_131) 2005; 53
Reglodi (ref_1) 2017; 155
Mandel (ref_12) 2006; 50
Datla (ref_95) 2004; 56
Kuhnle (ref_124) 2002; 33
Liu (ref_61) 2008; 60
Zhou (ref_46) 2018; 17
Moosavi (ref_5) 2016; 10
Vauzour (ref_9) 2008; 3
Xu (ref_43) 2017; 147
Zbarsky (ref_14) 2005; 39
Chen (ref_33) 2015; 10
Leem (ref_54) 2014; 25
Li (ref_104) 2005; 82
Youdim (ref_118) 2003; 85
Rajeswari (ref_67) 2008; 16
Dihal (ref_120) 2005; 135
Singhal (ref_103) 2011; 50
Antunes (ref_17) 2014; 30
Kim (ref_16) 2016; 28
Gasperotti (ref_144) 2015; 6
Chen (ref_130) 2015; 59
Datla (ref_27) 2001; 12
Guo (ref_100) 2007; 62
Dutta (ref_117) 2015; 89
Zhao (ref_129) 2015; 89
Khan (ref_32) 2010; 1328
Lee (ref_58) 2015; 93
Li (ref_55) 2011; 34
Xu (ref_65) 2013; 90
Dhanasekaran (ref_148) 2008; 27
Kim (ref_84) 2016; 19
Weinreb (ref_11) 2009; 4
Seeram (ref_145) 2007; 21
Zhu (ref_25) 2010; 76
Wu (ref_36) 2015; 225
Verzelloni (ref_139) 2011; 55
Marks (ref_132) 2006; 95
Xue (ref_48) 2014; 103
Felgines (ref_126) 2005; 53
Geed (ref_60) 2014; 117
Chen (ref_101) 2015; 286
Hagras (ref_79) 2013; 51
Selma (ref_137) 2017; 8
Vajragupta (ref_66) 2003; 35
Kim (ref_97) 2004; 18
Levites (ref_40) 2001; 78
Youdim (ref_7) 2004; 37
Suganuma (ref_123) 1998; 19
Requena (ref_136) 2018; 9
Khan (ref_21) 2012; 22
Ahlemeyer (ref_96) 2003; 60
Tan (ref_112) 2003; 216
Koutsos (ref_133) 2015; 7
Jang (ref_50) 2010; 107
Rein (ref_92) 2013; 75
Youdim (ref_8) 2002; 383
Choi (ref_42) 2002; 23
Cardona (ref_134) 2013; 24
Leaver (ref_28) 2009; 80
ref_107
Farbood (ref_38) 2015; 6
Ramos (ref_39) 2005; 19
Anandhan (ref_70) 2012; 1433
Kim (ref_47) 2012; 35
Ojha (ref_77) 2015; 9
Costa (ref_2) 2016; 30
Cui (ref_76) 2016; 13
Jiang (ref_91) 2018; 135
Jeong (ref_52) 2015; 18
Bookheimer (ref_141) 2013; 2013
Moreira (ref_106) 2010; 117
Youdim (ref_119) 2004; 36
Mandel (ref_81) 2000; 899
References_xml – volume: 4
  start-page: 283
  year: 2009
  ident: ref_11
  article-title: Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties
  publication-title: Genes Nutr.
  doi: 10.1007/s12263-009-0143-4
– volume: 35
  start-page: 540
  year: 2003
  ident: ref_86
  article-title: Dopaminergic cell death precedes iron elevation in mptp-injected monkeys
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(03)00385-X
– volume: 383
  start-page: 503
  year: 2002
  ident: ref_8
  article-title: Dietary flavonoids as potential neuroprotectants
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2002.052
– volume: 7
  start-page: 1245
  year: 2016
  ident: ref_93
  article-title: Food structure is critical for optimal health
  publication-title: Food Funct.
  doi: 10.1039/C5FO01285F
– volume: 39
  start-page: 1119
  year: 2005
  ident: ref_14
  article-title: Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-ohda model of parkinson’s disease
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760500233113
– volume: 35
  start-page: 1287
  year: 2012
  ident: ref_47
  article-title: Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b12-00127
– volume: 84
  start-page: 331
  year: 2015
  ident: ref_108
  article-title: Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.02.030
– volume: 90
  start-page: 112
  year: 2013
  ident: ref_65
  article-title: Neuroprotective effects of madecassoside in early stage of parkinson’s disease induced by mptp in rats
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.07.009
– volume: 27
  start-page: 651
  year: 2016
  ident: ref_82
  article-title: Phytochemicals as future drugs for parkinson’s disease: A comprehensive review
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2016-0004
– volume: 53
  start-page: 7029
  year: 2005
  ident: ref_131
  article-title: Fast access of some grape pigments to the brain
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf050565k
– volume: 79
  start-page: 380
  year: 2014
  ident: ref_15
  article-title: Naringenin protects against 6-ohda-induced neurotoxicity via activation of the nrf2/are signaling pathway
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.11.026
– volume: 76
  start-page: 1820
  year: 2010
  ident: ref_25
  article-title: Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of parkinson’s disease
  publication-title: Planta Med.
  doi: 10.1055/s-0030-1249976
– volume: 8
  start-page: 331
  year: 2000
  ident: ref_122
  article-title: Determination of unbound hesperetin in rat blood and brain by microdialysis coupled to microbore liquid chromatography
  publication-title: J. Food Drug Anal.
– volume: 105
  start-page: 18578
  year: 2008
  ident: ref_87
  article-title: Divalent metal transporter 1 (dmt1) contributes to neurodegeneration in animal models of parkinson’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804373105
– volume: 6
  start-page: 1341
  year: 2015
  ident: ref_144
  article-title: Fate of microbial metabolites of dietary polyphenols in rats: Is the brain their target destination?
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.5b00051
– volume: 259
  start-page: 126
  year: 2014
  ident: ref_53
  article-title: Nobiletin treatment improves motor and cognitive deficits seen in mptp-induced parkinson model mice
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.11.051
– volume: 89
  start-page: 181
  year: 2015
  ident: ref_117
  article-title: Tea and parkinson’s disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2015.08.005
– volume: 51
  start-page: 357
  year: 2013
  ident: ref_79
  article-title: Effect of epigallocatechin-3-gallate on inflammatory mediators release in lps-induced parkinson’s disease in rats
  publication-title: Indian J. Exp. Biol.
– volume: 26
  start-page: 341
  year: 2007
  ident: ref_105
  article-title: Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of parkinson’s disease
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2007.10719621
– volume: 9
  start-page: 688
  year: 2018
  ident: ref_136
  article-title: Diet and microbiota linked in health and disease
  publication-title: Food Funct.
  doi: 10.1039/C7FO01820G
– volume: 2013
  start-page: 946298
  year: 2013
  ident: ref_141
  article-title: Pomegranate juice augments memory and fmri activity in middle-aged and older adults with mild memory complaints
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1155/2013/946298
– volume: 50
  start-page: 97
  year: 2011
  ident: ref_103
  article-title: Melatonin or silymarin reduces maneb- and paraquat-induced parkinson’s disease phenotype in the mouse
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2010.00819.x
– volume: 17
  start-page: 4883
  year: 2018
  ident: ref_46
  article-title: (-)-epigallocatechin-3-gallate modulates peripheral immunity in the mptp-induced mouse model of parkinson’s disease
  publication-title: Mol. Med. Rep.
– volume: 30
  start-page: 205
  year: 2015
  ident: ref_37
  article-title: The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-014-9604-6
– volume: 139
  start-page: 82
  year: 2017
  ident: ref_135
  article-title: The gut microbiota: A key factor in the therapeutic effects of (poly)phenols
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2017.04.033
– volume: 13
  start-page: 1381
  year: 2016
  ident: ref_76
  article-title: Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the akt/nrf2 pathway
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.4657
– volume: 3
  start-page: 115
  year: 2008
  ident: ref_9
  article-title: The neuroprotective potential of flavonoids: A multiplicity of effects
  publication-title: Genes Nutr.
  doi: 10.1007/s12263-008-0091-4
– volume: 31
  start-page: 900
  year: 2010
  ident: ref_57
  article-title: Morin exerts neuroprotective actions in parkinson disease models in vitro and in vivo
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2010.77
– volume: 8
  start-page: 111
  year: 2005
  ident: ref_127
  article-title: Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory
  publication-title: Nutr. Neurosci.
  doi: 10.1080/10284150500078117
– volume: 7
  start-page: 219
  year: 2010
  ident: ref_44
  article-title: Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in mptp-induced parkinsonism
  publication-title: Neurodegener. Dis.
  doi: 10.1159/000265946
– volume: 216
  start-page: 163
  year: 2003
  ident: ref_112
  article-title: Dose-dependent protective effect of coffee, tea, and smoking in parkinson’s disease: A study in ethnic chinese
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2003.07.006
– volume: 53
  start-page: 1591
  year: 2015
  ident: ref_64
  article-title: Ferulic acid pretreatment mitigates mptp-induced motor impairment and histopathological alterations in c57bl/6 mice
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2014.993041
– volume: 218
  start-page: 257
  year: 2012
  ident: ref_71
  article-title: Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (mptp)-induced mouse model of parkinson’s disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.05.039
– volume: 100
  start-page: 347
  year: 2012
  ident: ref_90
  article-title: Acetyl-l-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for parkinson’s disease therapy
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2011.09.002
– volume: 286
  start-page: 383
  year: 2015
  ident: ref_101
  article-title: Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in mptp-intoxicated parkinsonian monkeys
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.12.003
– volume: 18
  start-page: 1181
  year: 2007
  ident: ref_23
  article-title: Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32821c51fe
– volume: 899
  start-page: 262
  year: 2000
  ident: ref_81
  article-title: Neuroprotective strategies in parkinson’s disease using the models of 6-hydroxydopamine and mptp
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2000.tb06192.x
– volume: 26
  start-page: 56
  year: 2005
  ident: ref_69
  article-title: Ginsenoside rg1 reduces mptp-induced substantia nigra neuron loss by suppressing oxidative stress
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1111/j.1745-7254.2005.00019.x
– volume: 23
  start-page: 132
  year: 2009
  ident: ref_24
  article-title: Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.2564
– volume: 34
  start-page: 630
  year: 2009
  ident: ref_10
  article-title: Natural antioxidants protect neurons in alzheimer’s disease and parkinson’s disease
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-008-9900-9
– ident: ref_107
  doi: 10.3390/ijms17010108
– volume: 714
  start-page: 369
  year: 1998
  ident: ref_121
  article-title: Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
  doi: 10.1016/S0378-4347(98)00204-7
– volume: 40
  start-page: 151
  year: 2017
  ident: ref_142
  article-title: Mitophagy and alzheimer’s disease: Cellular and molecular mechanisms
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.01.002
– volume: 9
  start-page: 5499
  year: 2015
  ident: ref_77
  article-title: Neuroprotective potential of ferulic acid in the rotenone model of parkinson’s disease
  publication-title: Drug Des. Dev. Ther.
– volume: 34
  start-page: 1291
  year: 2011
  ident: ref_55
  article-title: Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of parkinson’s disease
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.34.1291
– volume: 30
  start-page: 1415
  year: 2014
  ident: ref_17
  article-title: Protective effect of hesperidin in a model of parkinson’s disease induced by 6-hydroxydopamine in aged mice
  publication-title: Nutrition
  doi: 10.1016/j.nut.2014.03.024
– volume: 35
  start-page: 1632
  year: 2003
  ident: ref_66
  article-title: Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2003.09.011
– volume: 147
  start-page: 1926
  year: 2017
  ident: ref_43
  article-title: Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease
  publication-title: J. Nutr.
  doi: 10.3945/jn.117.255034
– volume: 1203
  start-page: 149
  year: 2008
  ident: ref_19
  article-title: Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.01.089
– volume: 19
  start-page: 1771
  year: 1998
  ident: ref_123
  article-title: Wide distribution of (3h)(-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/19.10.1771
– volume: 37
  start-page: 304
  year: 2004
  ident: ref_3
  article-title: Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.04.012
– volume: 10
  start-page: 4
  year: 2015
  ident: ref_33
  article-title: Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of parkinson’s disease
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-10-4
– volume: 17
  start-page: 1360
  year: 2013
  ident: ref_35
  article-title: Ameliorating effects of curcumin on 6-ohda-induced dopaminergic denervation, glial response, and sod1 reduction in the striatum of hemiparkinsonian mice
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 2013
  start-page: 514095
  year: 2013
  ident: ref_62
  article-title: Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced parkinson’s disease model
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1155/2013/514095
– volume: 28
  start-page: 253
  year: 2012
  ident: ref_34
  article-title: Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of parkinson’s disease
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-012-1238-2
– volume: 292
  start-page: C353
  year: 2007
  ident: ref_51
  article-title: Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00388.2006
– volume: 30
  start-page: 41
  year: 2016
  ident: ref_2
  article-title: Impact of plant-derived flavonoids on neurodegenerative diseases
  publication-title: Neurotox. Res.
  doi: 10.1007/s12640-016-9600-1
– volume: 110
  start-page: 286
  year: 2017
  ident: ref_4
  article-title: Current evidence on the effect of dietary polyphenols intake on chronic diseases
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2017.10.023
– volume: 7
  start-page: 609
  year: 2012
  ident: ref_68
  article-title: Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the mptp model of parkinson’s disease
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-012-9363-2
– volume: 82
  start-page: 279
  year: 2010
  ident: ref_29
  article-title: Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2010.06.004
– volume: 93
  start-page: 94
  year: 2005
  ident: ref_99
  article-title: Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03000.x
– volume: 41
  start-page: 1065
  year: 2016
  ident: ref_18
  article-title: Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-015-1796-6
– volume: 24
  start-page: 1415
  year: 2013
  ident: ref_134
  article-title: Benefits of polyphenols on gut microbiota and implications in human health
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2013.05.001
– volume: 50
  start-page: 229
  year: 2006
  ident: ref_12
  article-title: Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200500156
– volume: 107
  start-page: 2687
  year: 2010
  ident: ref_50
  article-title: A selective trkb agonist with potent neurotrophic activities by 7,8-dihydroxyflavone
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913572107
– volume: 78
  start-page: 1073
  year: 2001
  ident: ref_40
  article-title: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00490.x
– volume: 225
  start-page: 40
  year: 2015
  ident: ref_36
  article-title: Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of parkinson’s disease: Involvement of antioxidative enzymes induction
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2014.11.011
– volume: 33
  start-page: 1693
  year: 2002
  ident: ref_124
  article-title: Uptake and metabolism of epicatechin and its access to the brain after oral ingestion
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)01137-1
– volume: 28
  start-page: 140
  year: 2016
  ident: ref_16
  article-title: Naringin treatment induces neuroprotective effects in a mouse model of parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2015.10.013
– volume: 17
  start-page: 599
  year: 2014
  ident: ref_59
  article-title: Silibinin attenuates mpp⁺-induced neurotoxicity in the substantia nigra in vivo
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2013.2926
– volume: 8
  start-page: 1521
  year: 2017
  ident: ref_137
  article-title: Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01521
– volume: 93
  start-page: 755
  year: 2015
  ident: ref_58
  article-title: Silibinin prevents dopaminergic neuronal loss in a mouse model of parkinson’s disease via mitochondrial stabilization
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23544
– volume: 19
  start-page: 96
  year: 2005
  ident: ref_39
  article-title: Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to parkinson’s disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2004.11.009
– volume: 18
  start-page: 2533
  year: 2017
  ident: ref_83
  article-title: A knockin reporter allows purification and characterization of mda neurons from heterogeneous populations
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.02.023
– volume: 20
  start-page: 711
  year: 2003
  ident: ref_6
  article-title: Potential therapeutic properties of green tea polyphenols in parkinson’s disease
  publication-title: Drugs Aging
  doi: 10.2165/00002512-200320100-00001
– ident: ref_146
  doi: 10.1080/1028415X.2017.1360558
– volume: 51
  start-page: 209
  year: 2015
  ident: ref_147
  article-title: Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of parkinson’s disease
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-8769-7
– volume: 37
  start-page: 1683
  year: 2004
  ident: ref_7
  article-title: Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.08.002
– volume: 85
  start-page: 180
  year: 2003
  ident: ref_118
  article-title: Interaction between flavonoids and the blood-brain barrier: In vitro studies
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.01652.x
– volume: 36
  start-page: 592
  year: 2004
  ident: ref_119
  article-title: Flavonoid permeability across an in situ model of the blood-brain barrier
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2003.11.023
– volume: 117
  start-page: 92
  year: 2014
  ident: ref_60
  article-title: Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal mpp+ injection in rats
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2013.12.008
– volume: 500
  start-page: 139
  year: 2011
  ident: ref_20
  article-title: Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.06.021
– volume: 236
  start-page: 136
  year: 2013
  ident: ref_75
  article-title: Quercetin up-regulates mitochondrial complex-i activity to protect against programmed cell death in rotenone model of parkinson’s disease in rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.01.032
– volume: 60
  start-page: 1779
  year: 2003
  ident: ref_96
  article-title: Neuroprotective effects of ginkgo biloba extract
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-003-3080-1
– volume: 82
  start-page: 345
  year: 2005
  ident: ref_104
  article-title: Neuroprotective effects of polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2005.09.004
– volume: 39
  start-page: 265
  year: 2012
  ident: ref_115
  article-title: Potential role of green tea catechins in various disease therapies: Progress and promise
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.2012.05673.x
– volume: 164
  start-page: 247
  year: 2015
  ident: ref_63
  article-title: Tanshinone i selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of parkinson’s disease
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.01.042
– volume: 10
  start-page: 23
  year: 2016
  ident: ref_5
  article-title: Modulation of neurotrophic signaling pathways by polyphenols
  publication-title: Drug Des. Dev. Ther.
– volume: 47
  start-page: 234
  year: 2012
  ident: ref_80
  article-title: Curcumin has neuroprotection effect on homocysteine rat model of parkinson
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-012-9727-3
– volume: 118
  start-page: 361
  year: 2011
  ident: ref_88
  article-title: Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in parkinson’s disease
  publication-title: J. Neural Transm (Vienna)
  doi: 10.1007/s00702-010-0434-3
– volume: 80
  start-page: 397
  year: 2009
  ident: ref_28
  article-title: Oral pre-treatment with epigallocatechin gallate in 6-ohda lesioned rats produces subtle symptomatic relief but not neuroprotection
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2009.08.013
– volume: 75
  start-page: 588
  year: 2013
  ident: ref_92
  article-title: Bioavailability of bioactive food compounds: A challenging journey to bioefficacy
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2012.04425.x
– volume: 22
  start-page: 879
  year: 2016
  ident: ref_143
  article-title: Urolithin a induces mitophagy and prolongs lifespan in c. Elegans and increases muscle function in rodents
  publication-title: Nat. Med.
  doi: 10.1038/nm.4132
– volume: 95
  start-page: 51
  year: 2006
  ident: ref_132
  article-title: Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN20051596
– volume: 17
  start-page: 1165
  year: 2010
  ident: ref_45
  article-title: Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of parkinson’s disease
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2010.01.042
– volume: 167
  start-page: 553
  year: 2008
  ident: ref_113
  article-title: Differential effects of black versus green tea on risk of parkinson’s disease in the singapore chinese health study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwm338
– volume: 22
  start-page: 1089
  year: 2001
  ident: ref_98
  article-title: Protective effect and mechanism of ginkgo biloba leaf extracts for parkinson disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  publication-title: Acta Pharmacol. Sin.
– volume: 59
  start-page: 2432
  year: 2015
  ident: ref_130
  article-title: Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201500224
– volume: 801
  start-page: 72
  year: 2017
  ident: ref_22
  article-title: Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of parkinson’s disease: Possible involvement of pi3k/erβ signaling
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2017.03.002
– volume: 12
  start-page: 3871
  year: 2001
  ident: ref_27
  article-title: Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of parkinson’s disease
  publication-title: Neuroreport
  doi: 10.1097/00001756-200112040-00053
– volume: 89
  start-page: 191
  year: 2015
  ident: ref_129
  article-title: Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2015.07.023
– volume: 91
  start-page: 5
  year: 2012
  ident: ref_26
  article-title: Assessment of the treatment effect of baicalein on a model of parkinsonian tremor and elucidation of the mechanism
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2012.05.005
– volume: 1433
  start-page: 104
  year: 2012
  ident: ref_70
  article-title: Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic mptp/probenecid induced parkinson’s disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2011.11.021
– volume: 23
  start-page: 367
  year: 2002
  ident: ref_42
  article-title: Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate
  publication-title: Neurotoxicology
  doi: 10.1016/S0161-813X(02)00079-7
– volume: 2012
  start-page: 923464
  year: 2012
  ident: ref_116
  article-title: A meta-analysis of tea drinking and risk of parkinson’s disease
  publication-title: Sci. World J.
  doi: 10.1100/2012/923464
– volume: 135
  start-page: 1718
  year: 2005
  ident: ref_120
  article-title: Tissue distribution of quercetin in rats and pigs
  publication-title: J. Nutr.
  doi: 10.1093/jn/135.7.1718
– volume: 62
  start-page: 1353
  year: 2007
  ident: ref_100
  article-title: Protective effects of green tea polyphenols in the 6-ohda rat model of parkinson’s disease through inhibition of ros-no pathway
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.04.020
– volume: 319
  start-page: 38
  year: 2014
  ident: ref_102
  article-title: Neuroprotective effect of silymarin in a mptp mouse model of parkinson’s disease
  publication-title: Toxicology
  doi: 10.1016/j.tox.2014.02.009
– ident: ref_13
  doi: 10.1016/j.bbr.2017.10.021
– volume: 600
  start-page: 78
  year: 2008
  ident: ref_30
  article-title: Neuroprotective effect of resveratrol on 6-ohda-induced parkinson’s disease in rats
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2008.10.005
– volume: 24
  start-page: 401
  year: 2004
  ident: ref_41
  article-title: Iron and alpha-synuclein in the substantia nigra of mptp-treated mice: Effect of neuroprotective drugs r-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate
  publication-title: J. Mol. Neurosci.
  doi: 10.1385/JMN:24:3:401
– volume: 92
  start-page: 130
  year: 2014
  ident: ref_49
  article-title: Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced parkinson’s disease model by downregulating the activations of nuclear factor-κb, erk, and jnk
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23307
– volume: 254
  start-page: 379
  year: 2013
  ident: ref_78
  article-title: Sesamol and naringenin reverse the effect of rotenone-induced pd rat model
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.09.029
– volume: 23
  start-page: 166
  year: 2013
  ident: ref_72
  article-title: Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic mptp/probenecid model of parkinson’s disease
  publication-title: Neurotox. Res.
  doi: 10.1007/s12640-012-9332-9
– volume: 56
  start-page: 649
  year: 2004
  ident: ref_95
  article-title: The antioxidant drink effective microorganism-x (em-x) pre-treatment attenuates the loss of nigrostriatal dopaminergic neurons in 6-hydroxydopamine-lesion rat model of parkinson’s disease
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/0022357023222
– volume: 55
  start-page: S35
  year: 2011
  ident: ref_139
  article-title: Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201000525
– volume: 103
  start-page: 54
  year: 2014
  ident: ref_48
  article-title: Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of parkinson’s disease
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2014.02.004
– volume: 155
  start-page: 732
  year: 2002
  ident: ref_111
  article-title: Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/155.8.732
– volume: 53
  start-page: 3902
  year: 2005
  ident: ref_126
  article-title: Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf050145v
– volume: 86
  start-page: 192
  year: 2014
  ident: ref_73
  article-title: Neuroprotective and neurotrophic effects of apigenin and luteolin in mptp induced parkinsonism in mice
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2014.07.012
– volume: 21
  start-page: A1081
  year: 2007
  ident: ref_145
  article-title: Pharmacokinetics and tissue disposition of urolithin a, an ellagitannin-derived metabolite, in mice
  publication-title: FASEB J.
  doi: 10.1096/fasebj.21.6.A1081
– ident: ref_85
  doi: 10.1089/jmf.2017.4078
– volume: 1328
  start-page: 139
  year: 2010
  ident: ref_32
  article-title: Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of parkinson’s disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.02.031
– volume: 25
  start-page: 801
  year: 2014
  ident: ref_54
  article-title: Naringin protects the nigrostriatal dopaminergic projection through induction of gdnf in a neurotoxin model of parkinson’s disease
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2014.03.006
– volume: 155
  start-page: 120
  year: 2017
  ident: ref_1
  article-title: Novel tactics for neuroprotection in parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2015.10.004
– volume: 18
  start-page: 663
  year: 2004
  ident: ref_97
  article-title: Neuroprotective effect of ginkgo biloba l. Extract in a rat model of parkinson’s disease
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.1486
– volume: 22
  start-page: 1
  year: 2012
  ident: ref_21
  article-title: Rutin protects dopaminergic neurons from oxidative stress in an animal model of parkinson’s disease
  publication-title: Neurotox. Res.
  doi: 10.1007/s12640-011-9295-2
– volume: 117
  start-page: 1337
  year: 2010
  ident: ref_106
  article-title: Proanthocyanidin-rich fraction from croton celtidifolius baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of parkinson’s disease
  publication-title: J. Neural Transm (Vienna)
  doi: 10.1007/s00702-010-0464-x
– volume: 65
  start-page: 157
  year: 1999
  ident: ref_94
  article-title: Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of ginkgo biloba extract against mptp-induced nigrostriatal dopaminergic toxicity in c57 mice
  publication-title: Life Sci.
  doi: 10.1016/S0024-3205(99)00232-5
– volume: 56
  start-page: 705
  year: 2008
  ident: ref_128
  article-title: Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf071998l
– volume: 4
  start-page: 95
  year: 2014
  ident: ref_74
  article-title: Effects of syringic acid on chronic mptp/probenecid induced motor dysfunction, dopaminergic markers expression and neuroinflammation in c57bl/6 mice
  publication-title: Biomed. Aging Pathol.
  doi: 10.1016/j.biomag.2014.02.004
– volume: 78
  start-page: 1138
  year: 2012
  ident: ref_109
  article-title: Habitual intake of dietary flavonoids and risk of parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31824f7fc4
– volume: 18
  start-page: 409
  year: 2015
  ident: ref_52
  article-title: Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of parkinson’s disease
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2014.3241
– volume: 33
  start-page: 1264
  year: 2011
  ident: ref_89
  article-title: Neuroprotective effects and mechanisms of exercise in a chronic mouse model of parkinson’s disease with moderate neurodegeneration
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2011.07626.x
– volume: 304
  start-page: 29
  year: 2011
  ident: ref_31
  article-title: Protective effect of resveratrol derived from polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2011.02.025
– volume: 6
  start-page: 83
  year: 2015
  ident: ref_38
  article-title: Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of parkinson’s disease
  publication-title: Basic Clin. Neurosci.
– volume: 15
  start-page: 41
  year: 2009
  ident: ref_114
  article-title: Smoking and tea consumption delay onset of parkinson’s disease
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2008.02.011
– volume: 7
  start-page: 3959
  year: 2015
  ident: ref_133
  article-title: Apples and cardiovascular health—Is the gut microbiota a core consideration?
  publication-title: Nutrients
  doi: 10.3390/nu7063959
– volume: 16
  start-page: 96
  year: 2008
  ident: ref_67
  article-title: Inhibition of monoamine oxidase-b by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of parkinson’s disease induced by mptp neurodegeneration in mice
  publication-title: Inflammopharmacology
  doi: 10.1007/s10787-007-1614-0
– volume: 10
  start-page: 313
  year: 2003
  ident: ref_110
  article-title: Genetic and environmental risk factors and their interactions for parkinson’s disease in a chinese population
  publication-title: J. Clin Neurosci.
  doi: 10.1016/S0967-5868(03)00014-6
– volume: 5
  start-page: 2996
  year: 2014
  ident: ref_140
  article-title: Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species
  publication-title: Food Funct.
  doi: 10.1039/C4FO00538D
– volume: 7
  start-page: 26
  year: 2016
  ident: ref_138
  article-title: Pomegranate’s neuroprotective effects against alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.5b00260
– volume: 19
  start-page: 374
  year: 2016
  ident: ref_84
  article-title: Myricitrin ameliorates 6-hydroxydopamine-induced dopaminergic neuronal loss in the substantia nigra of mouse brain
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2015.3581
– volume: 27
  start-page: 6245
  year: 2008
  ident: ref_148
  article-title: Jnk signaling in apoptosis
  publication-title: Oncogene
  doi: 10.1038/onc.2008.301
– volume: 2012
  start-page: 928643
  year: 2012
  ident: ref_56
  article-title: Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of parkinson’s disease
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1155/2012/928643
– volume: 60
  start-page: 156
  year: 2008
  ident: ref_61
  article-title: Neuroprotective effects of genistein on dopaminergic neurons in the mice model of parkinson’s disease
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2007.10.005
– volume: 135
  start-page: 13
  year: 2018
  ident: ref_91
  article-title: Parkinson’s disease: Experimental models and reality
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-017-1788-5
– volume: 32
  start-page: 5144
  year: 2012
  ident: ref_125
  article-title: Brain-targeted proanthocyanidin metabolites for alzheimer’s disease treatment
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6437-11.2012
SSID ssj0000070763
Score 2.5346344
SecondaryResourceType review_article
Snippet Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing....
Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 642
SubjectTerms animal models
Animals
Antiparkinson Agents - adverse effects
Antiparkinson Agents - metabolism
Antiparkinson Agents - therapeutic use
Behavior, Animal - drug effects
blood-brain barrier
brain
Brain - drug effects
Brain - metabolism
Brain - physiopathology
cognition
Disease Models, Animal
dopamine
histopathology
Humans
immunohistochemistry
in vivo studies
iron
metabolites
Mice
Motor Activity - drug effects
neurons
Neuroprotective Agents - adverse effects
Neuroprotective Agents - metabolism
Neuroprotective Agents - therapeutic use
neuroprotective effect
oxidative stress
Parkinson disease
Parkinson Disease - diagnosis
Parkinson Disease - drug therapy
Parkinson Disease - physiopathology
Parkinson Disease - psychology
Parkinson's disease
Permeability
Polyphenols
Polyphenols - adverse effects
Polyphenols - metabolism
Polyphenols - therapeutic use
Rats
Review
signal transduction
Systematic review
therapeutics
Treatment Outcome
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeukFlVdJecgVCIlD1I0T23EvaMVDtAKEBFR7i2zHESttnS27i8Stf4O_xy_Bk2QDSxG3SB5Fzoxjz-PzNwA7UZzTWOYq1CzRYaKkf5JGh5FRsVSiY-peBGfn_OQ6-dVjvSbhNmpgldM9sdqo89JgjtwH6YxjEYvy_eHfELtGYXW1aaExBx-RugwhXaIn2hxLxWXD45qVNPbR_Xc3iZDxhCd09hz6z7l8jZF8cegcf4aFxlsk3dq8i_DBuiVY7jofKf-5J7ukwm9WifFlOL0oB_eI2CoHI9J3BO8zV1e7Hv89jMhhXYj5QbrksiVvJnVlgJQF-enI7_5dSRpc4QpcHx9dHZyETa-E0HiXYhyqyBivY5sUsVKFzv2xTHXKdKIt1lrzVCtlbGpzy3RhYi2EYUpK1lEy1YLn8SrMu9LZNSBSy4SlEacyR6YeKRVWN5kq_Ms5Z0UAe1PNZaYhEsd-FoPMBxSo5exZywFst7LDmj7jTamNqQGy5hcaZc8GD-BbO-wXP1Y0lLPlBGUSKhBnJ96RoSn3HyQ6UQBfapu2U6GY-BKUBSBmrN0KIPn27Ijr31Qk3Mhr712fr-9PfR0-eQ8rRbhBJDdgfnw7sZveixnrrWqpPgHjQfVK
  priority: 102
  providerName: ProQuest
Title Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/29783725
https://www.proquest.com/docview/2056385826
https://www.proquest.com/docview/2042755467
https://www.proquest.com/docview/2286945701
https://pubmed.ncbi.nlm.nih.gov/PMC5986521
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t44UXBBsfgVF5AoF4CDROHMeT0FT2wZi0aQKK-hbZjiMqFQfWFq3_PXdJGtYxId4S-RLZZ1v3O9_5dwAvorjgsSp0aERiwkQrfFLWhJHVsdKyb5taBGfn6ckwOR2J0Ros63e2Cpze6tpRPanh5eTN1c_FPm74d-Rxosv-1s8jojFBJL0Om2iRJG3QsxbmNzBYortOwWbelzxM0Qo3TKU3Pl-1TX8Bzpt5k9cM0fE9uNsiSDZopvw-rDm_BdsDj97z9wV7yeqczvqwfBtOL6rJgrK4qsmUjT2jO871da9XU3bYhGb22IB97uicWRMrYFXJPnr2dfyrYm2m4QMYHh99OTgJ2-oJoUWQMQt1ZC1q3SVlrHVpCjTU3GTCJMZR9LXIjNbWZa5wwpQ2NlJaoZUSfa0yI9MifggbvvLuMTBlVCKyKOWqIO4epTTFO4Uu8edpKsoAXi_1ltuWWpwqXExydDFIx_kfHQfwvJP90RBq3Cq1s1R_vlwTOUewRnFMngaw2zXjdqAYh_aumpNMwiVl3sl_yPAsxQHJfhTAo2ZGu65wOgqTXAQgV-a6EyA67tUWP_5W03IT0z2CoSf_0bencAeBV0ZZCJHagY3Z5dw9Q3AzMz1YlyPZg833R-cXn_Dtwyjq1av5N02X_JE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuqFAeaQsY8ZA4RGzs2ImREFpoq126XVXQot6C7ThipW3SdndBe-Nv8Cf4UfwSPHmVBdRbb5E8shzP2PP0NwBPA5ZSJlPlax5qP1TSfUmj_cAoJlXUNVUvgv2R6B-F74_58Qr8bN7CYFllcyeWF3VaGIyROyedC0xiUfHm9MzHrlGYXW1aaFRisWcX35zLNn092Hb8fUbp7s7hu75fdxXwjVO-M18FxrjV2DBjSmU6dQqM6pjrUFvMSqaxVsrY2KaW68wwHUWGKyl5V8lYRyJlbt5rsBoy58p0YPXtzujgQxvVKdFzBKtwUBmT3Zf5PECMFRHSZc33jzn7d1XmH2pudw1u1vYp6VUCdQtWbH4b1nu5881PFuQ5KStGy1D8OgwPiskCa8SKyZSMc4IvqMvHZL--_5iS7Sr184r0yMcWLppUuQhSZGSQk0_jrwWpKxnvwNGV7ONd6ORFbu8DkVqGPA4ElSliA0mpMJ_KVeYmF4JnHrxodi4xNXQ5dtCYJM6FwV1OLnbZgyct7WkF2PFfqq2GAUl9aKfJhYh58LgddscNcygqt8UcaUIaYWVfdAkNjYX7oagbeHCv4mm7FIqhtohyD6IlbrcECPe9PJKPv5Sw34ik74ytjcuX_giu9w_3h8lwMNrbhBvOvoux2CGQW9CZnc_tA2dDzfTDWnAJfL7qs_IbD1M3LA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuiFJ-Ai0Y8SNxiLqxYzuuhNCKZdWlpaoERXtLbccRKy1JYXdBe-M1-io8Dk-CJ39lAfXWWySPLGfsscczn78BeBqxjDKV6dDw2ISxVv5LWRNGVjOlZc_WtQjeHYq94_jtmI_X4Gf7FgZhle2eWG3UWWkxRu4v6VxgEouKnbyBRRwNhq9Ov4RYQQozrW05jXqJ7Lvld399m70cDfxcP6N0-ObD672wqTAQWn8Qz0MdWetH5uKcaZ2bzB9m1CTcxMZhhjJLjNbWJS5z3OSWGSkt10rxnlaJkSJjvt8rcFUyHqGNybHs4jsVj45gNSMqY6q3UywiZFsRMV09A_9xbP_GZ_5x4A1vwo3GUyX9emltwJorbsFmv_C39M9L8pxU2NEqKL8JB0fldIlosXI6I5OC4Fvq6lnZrx9nMzKok0C7pE_ed8TRpM5KkDIno4J8nHwrSYNpvA3Hl6LFO7BelIW7B0QZFfMkElRlyBKklMbMKte571wIngfwotVcahsSc6ylMU39ZQa1nJ5rOYAnnexpTd3xX6mtdgLSxnxn6fliC-Bx1-wND7MpunDlAmViKhHjJy-QoYnwPyR7UQB36znthkIx6CYpD0CuzHYngMTfqy3F5FNFAI6c-t7tun_x0B_BNW8h6cHocP8BXPeOXoKoh0htwfr868Jte2dqbh5Wq5bAyWWbyW_Etjn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphenols+in+Parkinson%27s+Disease%3A+A+Systematic+Review+of+In+Vivo+Studies&rft.jtitle=Nutrients&rft.au=Kujawska%2C+Ma%C5%82gorzata&rft.au=Jodynis-Liebert%2C+Jadwiga&rft.date=2018-05-19&rft.issn=2072-6643&rft.eissn=2072-6643&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fnu10050642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon