STRUCTURE FORMATION IN THE SYMMETRON MODEL
Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the sca...
Saved in:
Published in | The Astrophysical journal Vol. 748; no. 1; pp. 61 - 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP
20.03.2012
University of Chicago Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well. |
---|---|
AbstractList | Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well.
Reproduced with permission from the Astrophysical Journal. © IOP Publishing Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well. |
Author | Mota, David F. Li, Baojiu Davis, Anne-Christine Winther, Hans A. |
Author_xml | – sequence: 1 givenname: Anne-Christine surname: Davis fullname: Davis, Anne-Christine – sequence: 2 givenname: Baojiu surname: Li fullname: Li, Baojiu – sequence: 3 givenname: David F. surname: Mota fullname: Mota, David F. – sequence: 4 givenname: Hans A. surname: Winther fullname: Winther, Hans A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26309432$$DView record in Pascal Francis https://www.osti.gov/biblio/22016143$$D View this record in Osti.gov |
BookMark | eNqN0VtLwzAUB_AgE5yXL-CLAxFEqMu1OX2U2elgF5gd6FNIsxQrXapN9-C3N2XTBx_Ep5Dw-x_OyTlGPVc7i9A5wbcEAwwxxjyKmXweSg5DMozJAeoTwSDiTMge6v-AI3Ts_Vt3pUnSRzdP2XI1ylbLdDBeLGd32WQxH0zmg-wxHTy9zGZptgwPs8V9Oj1Fh4WuvD3bnydoNU6z0WM0XTxMRnfTyHCWtFECeZHTHKRmOVBBwAhKTMJB4wIKTCRlaxNbA2RtqOUsN0asNQ4sJlrnlp2gy13d2rel8qZsrXk1tXPWtIpSTGLCWVAXO2WaMjinXN1oFT5DUCUkpjKI6514b-qPrfWt2pTe2KrSztZbr0gMQiYskfAfirkAgK7q1Z5qb3RVNNqZ0qv3ptzo5lPRmOGEMxoc_e6v9r6xxQ8huGsTVLcD1a1EhZ0pomISQvArFKbXbVm7ttFl9Vf0C3C1lac |
CODEN | ASJOAB |
CitedBy_id | crossref_primary_10_1051_0004_6361_201526611 crossref_primary_10_1103_PhysRevD_85_083512 crossref_primary_10_1088_1475_7516_2023_05_009 crossref_primary_10_1088_1361_6633_aa860e crossref_primary_10_1093_mnras_sts072 crossref_primary_10_1051_0004_6361_201834383 crossref_primary_10_1088_1475_7516_2013_10_012 crossref_primary_10_1103_RevModPhys_93_015003 crossref_primary_10_1103_PhysRevD_89_024025 crossref_primary_10_1103_PhysRevLett_110_161101 crossref_primary_10_1051_0004_6361_201731938 crossref_primary_10_1103_PhysRevD_97_064015 crossref_primary_10_1093_mnras_stt1430 crossref_primary_10_1051_0004_6361_201322403 crossref_primary_10_1088_1475_7516_2013_01_003 crossref_primary_10_1088_1475_7516_2017_02_050 crossref_primary_10_1111_j_1365_2966_2012_21567_x crossref_primary_10_1051_0004_6361_201628604 crossref_primary_10_1051_0004_6361_202449188 crossref_primary_10_1093_mnras_stt2207 crossref_primary_10_1088_0034_4885_79_4_046902 crossref_primary_10_1051_0004_6361_201628644 crossref_primary_10_1051_0004_6361_201833899 crossref_primary_10_1088_1475_7516_2013_04_029 crossref_primary_10_1093_mnras_stae2562 crossref_primary_10_1093_mnras_stv2253 crossref_primary_10_1111_j_1468_4004_2012_53437_x crossref_primary_10_1016_j_physrep_2014_12_002 crossref_primary_10_1111_j_1365_2966_2012_21746_x crossref_primary_10_1103_PhysRevD_99_064030 crossref_primary_10_1088_1475_7516_2013_10_027 crossref_primary_10_1103_PhysRevD_89_123507 crossref_primary_10_1051_0004_6361_201526606 crossref_primary_10_1088_0004_637X_779_1_39 crossref_primary_10_1051_0004_6361_201527776 crossref_primary_10_1088_1475_7516_2012_10_002 crossref_primary_10_1103_PhysRevD_92_064005 crossref_primary_10_1051_0004_6361_201322412 crossref_primary_10_1103_PhysRevD_98_124007 crossref_primary_10_1088_1475_7516_2013_08_054 crossref_primary_10_1093_mnrasl_sly021 crossref_primary_10_1088_1475_7516_2022_01_048 crossref_primary_10_1142_S0219887824300022 crossref_primary_10_1093_mnras_stv496 crossref_primary_10_1142_S0218271818300033 crossref_primary_10_1103_PhysRevD_90_124041 crossref_primary_10_3390_universe8010006 crossref_primary_10_1088_1475_7516_2014_09_031 crossref_primary_10_1088_1475_7516_2015_10_036 crossref_primary_10_1088_1475_7516_2017_01_031 crossref_primary_10_1103_PhysRevD_88_044057 crossref_primary_10_1051_0004_6361_201935213 crossref_primary_10_1111_j_1365_2966_2012_21592_x crossref_primary_10_1051_0004_6361_201526439 crossref_primary_10_3390_universe1020123 crossref_primary_10_1103_PhysRevD_106_024007 crossref_primary_10_1103_PhysRevLett_122_091102 crossref_primary_10_1016_j_dark_2012_10_004 crossref_primary_10_1051_0004_6361_201527645 crossref_primary_10_1103_PhysRevD_106_043528 crossref_primary_10_1088_1475_7516_2021_11_050 crossref_primary_10_1103_PhysRevD_87_103511 crossref_primary_10_1103_PhysRevD_95_104027 crossref_primary_10_1103_PhysRevD_99_043539 crossref_primary_10_1093_mnras_stt1575 crossref_primary_10_1103_PhysRevD_86_044015 crossref_primary_10_1103_PhysRevD_95_024018 crossref_primary_10_1088_0004_637X_756_2_166 crossref_primary_10_1088_0004_637X_779_2_169 crossref_primary_10_1088_0264_9381_32_24_243001 crossref_primary_10_1103_PhysRevD_101_064065 crossref_primary_10_1103_PhysRevLett_129_131302 crossref_primary_10_3390_universe9070340 crossref_primary_10_1103_PhysRevD_89_023523 crossref_primary_10_1103_PhysRevD_95_064047 crossref_primary_10_1103_PhysRevD_95_103515 crossref_primary_10_1088_1475_7516_2022_05_018 crossref_primary_10_1103_PhysRevD_91_123507 crossref_primary_10_3847_1538_4357_ab6d03 crossref_primary_10_1088_1361_6382_acf63d crossref_primary_10_1103_PhysRevD_89_084023 crossref_primary_10_1142_S0218271818480036 crossref_primary_10_1103_PhysRevD_96_023515 crossref_primary_10_1051_0004_6361_201321061 crossref_primary_10_1007_s41114_017_0010_3 crossref_primary_10_1103_PhysRevD_93_124003 crossref_primary_10_1142_S0217732316400071 crossref_primary_10_1093_mnras_stac180 |
Cites_doi | 10.1088/2041-8205/712/2/L179 10.1086/590370 10.1111/j.1365-2966.2004.07786.x 10.1103/PhysRevD.80.083522 10.1016/j.nuclphysbps.2009.07.017 10.1103/PhysRevD.69.083512 10.1088/0004-637X/733/1/7 10.1016/0370-2693(72)90147-5 10.1103/PhysRevD.74.084007 10.1103/PhysRevD.78.123524 10.1016/S0370-2693(00)00669-9 10.1103/PhysRevD.81.103002 10.1103/PhysRevD.79.083518 10.1103/PhysRevD.84.103521 10.1142/9789812778123_0002 10.1103/PhysRevD.83.024007 10.1111/j.1365-2966.2005.08831.x 10.1103/PhysRevD.65.044026 10.1016/j.physletb.2010.04.005 10.1111/j.1365-2966.2008.14176.x 10.1111/j.1365-2966.2010.18130.x 10.1016/S0003-4916(03)00068-X 10.1046/j.1365-8711.2001.04532.x 10.1111/j.1365-2966.2004.07505.x 10.1103/PhysRevD.75.063501 10.1103/PhysRevLett.97.151102 10.1088/0004-637X/728/2/108 10.1103/PhysRevD.80.043001 10.1016/0370-2693(90)90029-6 10.1016/j.physletb.2009.10.002 10.1086/322526 10.1007/JHEP12(2010)051 10.1103/PhysRevD.84.123524 10.1103/PhysRevD.64.123517 10.1103/PhysRevD.32.3084 10.1143/PTP.123.887 10.1103/PhysRevD.76.124034 10.1103/PhysRevLett.100.251603 10.1103/PhysRevD.82.124018 10.1103/PhysRevD.82.083503 10.1103/PhysRevD.83.063503 10.1103/PhysRevD.82.103536 10.1103/PhysRevD.70.123518 10.1103/PhysRevLett.104.231301 10.1016/j.physletb.2003.12.016 10.1103/PhysRevD.83.104026 10.1103/PhysRevD.80.084044 10.1103/PhysRevD.77.025016 10.1111/j.1365-2966.2010.17758.x 10.1103/PhysRevD.82.124006 10.1007/978-3-540-74353-8 10.1103/PhysRevD.75.077101 10.1103/PhysRevD.81.043528 10.1038/nature01997 10.1103/PhysRevD.78.104021 10.1103/PhysRevD.77.043524 10.1103/PhysRevD.82.063519 10.1111/j.1365-2966.2009.15987.x 10.1103/PhysRevD.65.023512 10.1103/PhysRevD.76.085010 10.1103/PhysRevD.79.064036 10.1088/0004-637X/728/2/109 10.1103/PhysRevD.81.104047 10.1103/PhysRevD.83.044007 10.1103/PhysRevD.69.044026 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION IQODW 7TG KL. 8FD H8D L7M 3HK OTOTI |
DOI | 10.1088/0004-637X/748/1/61 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace NORA - Norwegian Open Research Archives OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
EndPage | 18 |
ExternalDocumentID | 22016143 10852_57027 26309432 10_1088_0004_637X_748_1_61 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 6TJ 85S AAFWJ AAGCD AAJIO AALHV AAYXX ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CITATION CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XOL XSW 41~ 6TS 9M8 ABDPE ADXHL AETEA AI. FA8 IQODW MVM OHT VH1 WHG YYP ZCG ZKB ZY4 7TG KL. 8FD H8D L7M 08R 3HK ABPTK ABTAH AFDAS G8K RNP RPA VOH XFK OTOTI |
ID | FETCH-LOGICAL-c439t-98bfb2b87a3b82518c521c948a0f8f01723dc6ec81dc2e43bcc5da08c561aabe3 |
ISSN | 0004-637X |
IngestDate | Fri May 19 00:35:42 EDT 2023 Sat Apr 29 05:43:11 EDT 2023 Fri Jul 11 07:34:00 EDT 2025 Fri Jul 11 10:36:43 EDT 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Jul 01 01:16:11 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Power spectra High density Digital simulation large-scale structure of Universe N body system cosmology: miscellaneous Strong coupling Large-scale structure cosmology: theory Screening Mass function Cosmology Models Scalar fields |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-98bfb2b87a3b82518c521c948a0f8f01723dc6ec81dc2e43bcc5da08c561aabe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10852/57027 |
PQID | 1680458887 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | osti_scitechconnect_22016143 cristin_nora_10852_57027 proquest_miscellaneous_1685793978 proquest_miscellaneous_1680458887 pascalfrancis_primary_26309432 crossref_primary_10_1088_0004_637X_748_1_61 crossref_citationtrail_10_1088_0004_637X_748_1_61 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-20 |
PublicationDateYYYYMMDD | 2012-03-20 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2012 |
Publisher | IOP University of Chicago Press |
Publisher_xml | – name: IOP – name: University of Chicago Press |
References | Clampitt (21) 2012 44 45 46 47 Prunet (64) 2008; 178 Li (48) 2011; 728 Khoury (43) 2010 50 51 52 53 54 55 12 56 13 14 58 15 Mota (57) 2011; 733 59 16 17 18 1 2 4 5 6 7 8 60 61 62 63 20 65 22 66 23 67 68 25 69 Bertschinger (9) 2001; 137 26 27 28 29 Brax (19) 2010; 2010 Zhao (73) 2010; 712 Winther (71) 2011 Appleby (3) 2010; 2010 70 72 Davis (24) 2011 30 31 32 33 Brax (11) 2011 34 35 36 37 38 39 Binétruy (10) 2006 40 41 Li (49) 2011; 728 42 |
References_xml | – volume: 712 start-page: L179 issn: 2041-8205 year: 2010 ident: 73 publication-title: ApJ doi: 10.1088/2041-8205/712/2/L179 – volume: 178 start-page: 179 issn: 0067-0049 year: 2008 ident: 64 publication-title: ApJS doi: 10.1086/590370 – volume: 2010 start-page: JCAP12(2010)006 issn: 1475-7516 year: 2010 ident: 3 publication-title: J. Cosmol. Astropart. Phys. – ident: 35 doi: 10.1111/j.1365-2966.2004.07786.x – ident: 36 doi: 10.1103/PhysRevD.80.083522 – ident: 5 doi: 10.1016/j.nuclphysbps.2009.07.017 – ident: 59 doi: 10.1103/PhysRevD.69.083512 – volume: 733 start-page: 7 issn: 0004-637X year: 2011 ident: 57 publication-title: ApJ doi: 10.1088/0004-637X/733/1/7 – ident: 70 doi: 10.1016/0370-2693(72)90147-5 – start-page: JCAP01(2012)030 issn: 1475-7516 year: 2012 ident: 21 publication-title: J. Cosmol. Astropart. Phys. – ident: 68 doi: 10.1103/PhysRevD.74.084007 – ident: 63 doi: 10.1103/PhysRevD.78.123524 – ident: 29 doi: 10.1016/S0370-2693(00)00669-9 – ident: 66 doi: 10.1103/PhysRevD.81.103002 – ident: 67 doi: 10.1103/PhysRevD.79.083518 – ident: 39 doi: 10.1103/PhysRevD.84.103521 – ident: 2 doi: 10.1142/9789812778123_0002 – ident: 46 doi: 10.1103/PhysRevD.83.024007 – year: 2011 ident: 71 – ident: 22 doi: 10.1111/j.1365-2966.2005.08831.x – ident: 28 doi: 10.1103/PhysRevD.65.044026 – ident: 25 doi: 10.1016/j.physletb.2010.04.005 – ident: 23 doi: 10.1111/j.1365-2966.2008.14176.x – ident: 47 doi: 10.1111/j.1365-2966.2010.18130.x – ident: 4 doi: 10.1016/S0003-4916(03)00068-X – ident: 45 doi: 10.1046/j.1365-8711.2001.04532.x – ident: 52 doi: 10.1111/j.1365-2966.2004.07505.x – ident: 56 doi: 10.1103/PhysRevD.75.063501 – ident: 55 doi: 10.1103/PhysRevLett.97.151102 – volume: 728 start-page: 108 issn: 0004-637X year: 2011 ident: 49 publication-title: ApJ doi: 10.1088/0004-637X/728/2/108 – ident: 65 doi: 10.1103/PhysRevD.80.043001 – ident: 1 doi: 10.1016/0370-2693(90)90029-6 – ident: 32 doi: 10.1016/j.physletb.2009.10.002 – volume: 137 start-page: 1 issn: 0067-0049 year: 2001 ident: 9 publication-title: ApJS doi: 10.1086/322526 – ident: 54 doi: 10.1007/JHEP12(2010)051 – ident: 12 doi: 10.1103/PhysRevD.84.123524 – ident: 30 doi: 10.1103/PhysRevD.64.123517 – ident: 41 doi: 10.1103/PhysRevD.32.3084 – ident: 58 doi: 10.1143/PTP.123.887 – start-page: JCAP09(2011)020 issn: 1475-7516 year: 2011 ident: 11 publication-title: J. Cosmol. Astropart. Phys. – ident: 15 doi: 10.1103/PhysRevD.76.124034 – ident: 26 doi: 10.1103/PhysRevLett.100.251603 – ident: 40 doi: 10.1103/PhysRevD.82.124018 – ident: 20 doi: 10.1103/PhysRevD.82.083503 – ident: 31 doi: 10.1103/PhysRevD.83.063503 – ident: 37 doi: 10.1103/PhysRevD.82.103536 – ident: 13 doi: 10.1103/PhysRevD.70.123518 – ident: 38 doi: 10.1103/PhysRevLett.104.231301 – ident: 53 doi: 10.1016/j.physletb.2003.12.016 – ident: 14 doi: 10.1103/PhysRevD.83.104026 – year: 2011 ident: 24 – ident: 69 doi: 10.1103/PhysRevD.80.084044 – ident: 34 doi: 10.1103/PhysRevD.77.025016 – ident: 6 doi: 10.1111/j.1365-2966.2010.17758.x – start-page: 520 year: 2006 ident: 10 publication-title: Supersymmetry: Theory, Experiment, and Cosmology – ident: 33 doi: 10.1103/PhysRevD.82.124006 – ident: 51 doi: 10.1007/978-3-540-74353-8 – ident: 27 doi: 10.1103/PhysRevD.75.077101 – ident: 60 doi: 10.1103/PhysRevD.81.043528 – ident: 8 doi: 10.1038/nature01997 – ident: 17 doi: 10.1103/PhysRevD.78.104021 – ident: 62 doi: 10.1103/PhysRevD.77.043524 – ident: 18 doi: 10.1103/PhysRevD.82.063519 – volume: 2010 start-page: JCAP04(2010)032 issn: 1475-7516 year: 2010 ident: 19 publication-title: J. Cosmol. Astropart. Phys. – ident: 7 doi: 10.1111/j.1365-2966.2009.15987.x – ident: 42 doi: 10.1103/PhysRevD.65.023512 – ident: 16 doi: 10.1103/PhysRevD.76.085010 – ident: 61 doi: 10.1103/PhysRevD.79.064036 – volume: 728 start-page: 109 issn: 0004-637X year: 2011 ident: 48 publication-title: ApJ doi: 10.1088/0004-637X/728/2/109 – ident: 50 doi: 10.1103/PhysRevD.81.104047 – ident: 72 doi: 10.1103/PhysRevD.83.044007 – year: 2010 ident: 43 – ident: 44 doi: 10.1103/PhysRevD.69.044026 |
SSID | ssj0004299 |
Score | 2.419593 |
Snippet | Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism.... |
SourceID | osti cristin proquest pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 61 |
SubjectTerms | Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Broken symmetry COMPUTERIZED SIMULATION COSMOLOGICAL MODELS COSMOLOGY Dynamical systems Earth, ocean, space Exact sciences and technology Formations Halos High density NONLINEAR PROBLEMS Retarding SCALAR FIELDS Scalars Shields SYMMETRY BREAKING UNIVERSE |
Title | STRUCTURE FORMATION IN THE SYMMETRON MODEL |
URI | https://www.proquest.com/docview/1680458887 https://www.proquest.com/docview/1685793978 http://hdl.handle.net/10852/57027 https://www.osti.gov/biblio/22016143 |
Volume | 748 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagaBIvCAaogTEFCfHAlLVxnNh9rEZRh0iHtlaMJyt2HWkTSqY2feGv585OkxTG-PESWScnqfxdz3fOd3eEvBFL8Cm04QFYRx0wY0yQIU0MXOsw1zmHTRwP9NNZMl2wj5fx5bbffZ1dUqlj_f3WvJL_QRVkgCtmyf4Dss1DQQBjwBeugDBc_wrji_n54sTyFiCWS10DndOZZfFcfE3TyfwcBOnZ-8mnrg9q-zCvq1V5s8Wo-7Ju5YHxcdBWZrxynyfK66tNg1LpfM8OMR5PcIqqVoQp7INH41VRuqKs29MFpGlEAR22x39_ZIc4q8qCJLIt72FPaQ0puGL8VjMNps3xGt19MOYMJWi8XW323crYP-1YDY8QUyeojDnE1vfJAwqRApq6s-hLmxpLR3UE5F5V503BDxg0sgG8fBAOsE76nramtdjxUnoliJA0m60Bk9w1PPll77YOyfwxeVRHEv7YqcUTcq8o90nfAot5Kv5bvwPyep_sfXajp-Rdozd-ozf-6cwHvfEbvfGt3jwjiw-T-ck0qHtmBBpcyyoYCZUrqgTPIoVZyUKDf6ZHTGTDXOQY8EdLnRgNYYqmhkVK63iZDWFaEmaZMtFz0ivKwvSJHyuaUKZhQsRZorUaKa5DYzLD4qEOuUf69WrJAsyV7IDhkXC7fFLXteax5ck3aTkPQiDngUlcfAmLL0OZhB45au65cZVW7px9gKhI8BOx2LFGVpiuJKUYwrDII4c7aDVPpEmEXFrqkddb-CQYVPxKlhWm3KxlmAibvi34nXNi2NhGXLz4_SK8JA_bf9QB6VWrjXkFHmylDq2O_gB2FYxu |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STRUCTURE+FORMATION+IN+THE+SYMMETRON+MODEL&rft.jtitle=The+Astrophysical+journal&rft.au=Davis%2C+A.-C&rft.au=Li%2C+Baojiu&rft.au=Mota%2C+David&rft.au=Winther%2C+Hans+Arnold&rft.date=2012-03-20&rft.pub=University+of+Chicago+Press&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088%2F0004-637X%2F748%2F1%2F61&rft.externalDBID=n%2Fa&rft.externalDocID=10852_57027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |