STRUCTURE FORMATION IN THE SYMMETRON MODEL

Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the sca...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 748; no. 1; pp. 61 - 18
Main Authors Davis, Anne-Christine, Li, Baojiu, Mota, David F., Winther, Hans A.
Format Journal Article
LanguageEnglish
Published Bristol IOP 20.03.2012
University of Chicago Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well.
AbstractList Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well. Reproduced with permission from the Astrophysical Journal. © IOP Publishing
Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated structure formation in the symmetron model by using N-body simulations and find observable signatures in both the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the scalar fifth force in high-density regions is also found to work very well.
Author Mota, David F.
Li, Baojiu
Davis, Anne-Christine
Winther, Hans A.
Author_xml – sequence: 1
  givenname: Anne-Christine
  surname: Davis
  fullname: Davis, Anne-Christine
– sequence: 2
  givenname: Baojiu
  surname: Li
  fullname: Li, Baojiu
– sequence: 3
  givenname: David F.
  surname: Mota
  fullname: Mota, David F.
– sequence: 4
  givenname: Hans A.
  surname: Winther
  fullname: Winther, Hans A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26309432$$DView record in Pascal Francis
https://www.osti.gov/biblio/22016143$$D View this record in Osti.gov
BookMark eNqN0VtLwzAUB_AgE5yXL-CLAxFEqMu1OX2U2elgF5gd6FNIsxQrXapN9-C3N2XTBx_Ep5Dw-x_OyTlGPVc7i9A5wbcEAwwxxjyKmXweSg5DMozJAeoTwSDiTMge6v-AI3Ts_Vt3pUnSRzdP2XI1ylbLdDBeLGd32WQxH0zmg-wxHTy9zGZptgwPs8V9Oj1Fh4WuvD3bnydoNU6z0WM0XTxMRnfTyHCWtFECeZHTHKRmOVBBwAhKTMJB4wIKTCRlaxNbA2RtqOUsN0asNQ4sJlrnlp2gy13d2rel8qZsrXk1tXPWtIpSTGLCWVAXO2WaMjinXN1oFT5DUCUkpjKI6514b-qPrfWt2pTe2KrSztZbr0gMQiYskfAfirkAgK7q1Z5qb3RVNNqZ0qv3ptzo5lPRmOGEMxoc_e6v9r6xxQ8huGsTVLcD1a1EhZ0pomISQvArFKbXbVm7ttFl9Vf0C3C1lac
CODEN ASJOAB
CitedBy_id crossref_primary_10_1051_0004_6361_201526611
crossref_primary_10_1103_PhysRevD_85_083512
crossref_primary_10_1088_1475_7516_2023_05_009
crossref_primary_10_1088_1361_6633_aa860e
crossref_primary_10_1093_mnras_sts072
crossref_primary_10_1051_0004_6361_201834383
crossref_primary_10_1088_1475_7516_2013_10_012
crossref_primary_10_1103_RevModPhys_93_015003
crossref_primary_10_1103_PhysRevD_89_024025
crossref_primary_10_1103_PhysRevLett_110_161101
crossref_primary_10_1051_0004_6361_201731938
crossref_primary_10_1103_PhysRevD_97_064015
crossref_primary_10_1093_mnras_stt1430
crossref_primary_10_1051_0004_6361_201322403
crossref_primary_10_1088_1475_7516_2013_01_003
crossref_primary_10_1088_1475_7516_2017_02_050
crossref_primary_10_1111_j_1365_2966_2012_21567_x
crossref_primary_10_1051_0004_6361_201628604
crossref_primary_10_1051_0004_6361_202449188
crossref_primary_10_1093_mnras_stt2207
crossref_primary_10_1088_0034_4885_79_4_046902
crossref_primary_10_1051_0004_6361_201628644
crossref_primary_10_1051_0004_6361_201833899
crossref_primary_10_1088_1475_7516_2013_04_029
crossref_primary_10_1093_mnras_stae2562
crossref_primary_10_1093_mnras_stv2253
crossref_primary_10_1111_j_1468_4004_2012_53437_x
crossref_primary_10_1016_j_physrep_2014_12_002
crossref_primary_10_1111_j_1365_2966_2012_21746_x
crossref_primary_10_1103_PhysRevD_99_064030
crossref_primary_10_1088_1475_7516_2013_10_027
crossref_primary_10_1103_PhysRevD_89_123507
crossref_primary_10_1051_0004_6361_201526606
crossref_primary_10_1088_0004_637X_779_1_39
crossref_primary_10_1051_0004_6361_201527776
crossref_primary_10_1088_1475_7516_2012_10_002
crossref_primary_10_1103_PhysRevD_92_064005
crossref_primary_10_1051_0004_6361_201322412
crossref_primary_10_1103_PhysRevD_98_124007
crossref_primary_10_1088_1475_7516_2013_08_054
crossref_primary_10_1093_mnrasl_sly021
crossref_primary_10_1088_1475_7516_2022_01_048
crossref_primary_10_1142_S0219887824300022
crossref_primary_10_1093_mnras_stv496
crossref_primary_10_1142_S0218271818300033
crossref_primary_10_1103_PhysRevD_90_124041
crossref_primary_10_3390_universe8010006
crossref_primary_10_1088_1475_7516_2014_09_031
crossref_primary_10_1088_1475_7516_2015_10_036
crossref_primary_10_1088_1475_7516_2017_01_031
crossref_primary_10_1103_PhysRevD_88_044057
crossref_primary_10_1051_0004_6361_201935213
crossref_primary_10_1111_j_1365_2966_2012_21592_x
crossref_primary_10_1051_0004_6361_201526439
crossref_primary_10_3390_universe1020123
crossref_primary_10_1103_PhysRevD_106_024007
crossref_primary_10_1103_PhysRevLett_122_091102
crossref_primary_10_1016_j_dark_2012_10_004
crossref_primary_10_1051_0004_6361_201527645
crossref_primary_10_1103_PhysRevD_106_043528
crossref_primary_10_1088_1475_7516_2021_11_050
crossref_primary_10_1103_PhysRevD_87_103511
crossref_primary_10_1103_PhysRevD_95_104027
crossref_primary_10_1103_PhysRevD_99_043539
crossref_primary_10_1093_mnras_stt1575
crossref_primary_10_1103_PhysRevD_86_044015
crossref_primary_10_1103_PhysRevD_95_024018
crossref_primary_10_1088_0004_637X_756_2_166
crossref_primary_10_1088_0004_637X_779_2_169
crossref_primary_10_1088_0264_9381_32_24_243001
crossref_primary_10_1103_PhysRevD_101_064065
crossref_primary_10_1103_PhysRevLett_129_131302
crossref_primary_10_3390_universe9070340
crossref_primary_10_1103_PhysRevD_89_023523
crossref_primary_10_1103_PhysRevD_95_064047
crossref_primary_10_1103_PhysRevD_95_103515
crossref_primary_10_1088_1475_7516_2022_05_018
crossref_primary_10_1103_PhysRevD_91_123507
crossref_primary_10_3847_1538_4357_ab6d03
crossref_primary_10_1088_1361_6382_acf63d
crossref_primary_10_1103_PhysRevD_89_084023
crossref_primary_10_1142_S0218271818480036
crossref_primary_10_1103_PhysRevD_96_023515
crossref_primary_10_1051_0004_6361_201321061
crossref_primary_10_1007_s41114_017_0010_3
crossref_primary_10_1103_PhysRevD_93_124003
crossref_primary_10_1142_S0217732316400071
crossref_primary_10_1093_mnras_stac180
Cites_doi 10.1088/2041-8205/712/2/L179
10.1086/590370
10.1111/j.1365-2966.2004.07786.x
10.1103/PhysRevD.80.083522
10.1016/j.nuclphysbps.2009.07.017
10.1103/PhysRevD.69.083512
10.1088/0004-637X/733/1/7
10.1016/0370-2693(72)90147-5
10.1103/PhysRevD.74.084007
10.1103/PhysRevD.78.123524
10.1016/S0370-2693(00)00669-9
10.1103/PhysRevD.81.103002
10.1103/PhysRevD.79.083518
10.1103/PhysRevD.84.103521
10.1142/9789812778123_0002
10.1103/PhysRevD.83.024007
10.1111/j.1365-2966.2005.08831.x
10.1103/PhysRevD.65.044026
10.1016/j.physletb.2010.04.005
10.1111/j.1365-2966.2008.14176.x
10.1111/j.1365-2966.2010.18130.x
10.1016/S0003-4916(03)00068-X
10.1046/j.1365-8711.2001.04532.x
10.1111/j.1365-2966.2004.07505.x
10.1103/PhysRevD.75.063501
10.1103/PhysRevLett.97.151102
10.1088/0004-637X/728/2/108
10.1103/PhysRevD.80.043001
10.1016/0370-2693(90)90029-6
10.1016/j.physletb.2009.10.002
10.1086/322526
10.1007/JHEP12(2010)051
10.1103/PhysRevD.84.123524
10.1103/PhysRevD.64.123517
10.1103/PhysRevD.32.3084
10.1143/PTP.123.887
10.1103/PhysRevD.76.124034
10.1103/PhysRevLett.100.251603
10.1103/PhysRevD.82.124018
10.1103/PhysRevD.82.083503
10.1103/PhysRevD.83.063503
10.1103/PhysRevD.82.103536
10.1103/PhysRevD.70.123518
10.1103/PhysRevLett.104.231301
10.1016/j.physletb.2003.12.016
10.1103/PhysRevD.83.104026
10.1103/PhysRevD.80.084044
10.1103/PhysRevD.77.025016
10.1111/j.1365-2966.2010.17758.x
10.1103/PhysRevD.82.124006
10.1007/978-3-540-74353-8
10.1103/PhysRevD.75.077101
10.1103/PhysRevD.81.043528
10.1038/nature01997
10.1103/PhysRevD.78.104021
10.1103/PhysRevD.77.043524
10.1103/PhysRevD.82.063519
10.1111/j.1365-2966.2009.15987.x
10.1103/PhysRevD.65.023512
10.1103/PhysRevD.76.085010
10.1103/PhysRevD.79.064036
10.1088/0004-637X/728/2/109
10.1103/PhysRevD.81.104047
10.1103/PhysRevD.83.044007
10.1103/PhysRevD.69.044026
ContentType Journal Article
Copyright 2015 INIST-CNRS
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2015 INIST-CNRS
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
IQODW
7TG
KL.
8FD
H8D
L7M
3HK
OTOTI
DOI 10.1088/0004-637X/748/1/61
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
NORA - Norwegian Open Research Archives
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 18
ExternalDocumentID 22016143
10852_57027
26309432
10_1088_0004_637X_748_1_61
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
6TJ
85S
AAFWJ
AAGCD
AAJIO
AALHV
AAYXX
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XOL
XSW
41~
6TS
9M8
ABDPE
ADXHL
AETEA
AI.
FA8
IQODW
MVM
OHT
VH1
WHG
YYP
ZCG
ZKB
ZY4
7TG
KL.
8FD
H8D
L7M
08R
3HK
ABPTK
ABTAH
AFDAS
G8K
RNP
RPA
VOH
XFK
OTOTI
ID FETCH-LOGICAL-c439t-98bfb2b87a3b82518c521c948a0f8f01723dc6ec81dc2e43bcc5da08c561aabe3
ISSN 0004-637X
IngestDate Fri May 19 00:35:42 EDT 2023
Sat Apr 29 05:43:11 EDT 2023
Fri Jul 11 07:34:00 EDT 2025
Fri Jul 11 10:36:43 EDT 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Jul 01 01:16:11 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Power spectra
High density
Digital simulation
large-scale structure of Universe
N body system
cosmology: miscellaneous
Strong coupling
Large-scale structure
cosmology: theory
Screening
Mass function
Cosmology
Models
Scalar fields
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-98bfb2b87a3b82518c521c948a0f8f01723dc6ec81dc2e43bcc5da08c561aabe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10852/57027
PQID 1680458887
PQPubID 23462
PageCount 18
ParticipantIDs osti_scitechconnect_22016143
cristin_nora_10852_57027
proquest_miscellaneous_1685793978
proquest_miscellaneous_1680458887
pascalfrancis_primary_26309432
crossref_primary_10_1088_0004_637X_748_1_61
crossref_citationtrail_10_1088_0004_637X_748_1_61
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-20
PublicationDateYYYYMMDD 2012-03-20
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-20
  day: 20
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle The Astrophysical journal
PublicationYear 2012
Publisher IOP
University of Chicago Press
Publisher_xml – name: IOP
– name: University of Chicago Press
References Clampitt (21) 2012
44
45
46
47
Prunet (64) 2008; 178
Li (48) 2011; 728
Khoury (43) 2010
50
51
52
53
54
55
12
56
13
14
58
15
Mota (57) 2011; 733
59
16
17
18
1
2
4
5
6
7
8
60
61
62
63
20
65
22
66
23
67
68
25
69
Bertschinger (9) 2001; 137
26
27
28
29
Brax (19) 2010; 2010
Zhao (73) 2010; 712
Winther (71) 2011
Appleby (3) 2010; 2010
70
72
Davis (24) 2011
30
31
32
33
Brax (11) 2011
34
35
36
37
38
39
Binétruy (10) 2006
40
41
Li (49) 2011; 728
42
References_xml – volume: 712
  start-page: L179
  issn: 2041-8205
  year: 2010
  ident: 73
  publication-title: ApJ
  doi: 10.1088/2041-8205/712/2/L179
– volume: 178
  start-page: 179
  issn: 0067-0049
  year: 2008
  ident: 64
  publication-title: ApJS
  doi: 10.1086/590370
– volume: 2010
  start-page: JCAP12(2010)006
  issn: 1475-7516
  year: 2010
  ident: 3
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 35
  doi: 10.1111/j.1365-2966.2004.07786.x
– ident: 36
  doi: 10.1103/PhysRevD.80.083522
– ident: 5
  doi: 10.1016/j.nuclphysbps.2009.07.017
– ident: 59
  doi: 10.1103/PhysRevD.69.083512
– volume: 733
  start-page: 7
  issn: 0004-637X
  year: 2011
  ident: 57
  publication-title: ApJ
  doi: 10.1088/0004-637X/733/1/7
– ident: 70
  doi: 10.1016/0370-2693(72)90147-5
– start-page: JCAP01(2012)030
  issn: 1475-7516
  year: 2012
  ident: 21
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 68
  doi: 10.1103/PhysRevD.74.084007
– ident: 63
  doi: 10.1103/PhysRevD.78.123524
– ident: 29
  doi: 10.1016/S0370-2693(00)00669-9
– ident: 66
  doi: 10.1103/PhysRevD.81.103002
– ident: 67
  doi: 10.1103/PhysRevD.79.083518
– ident: 39
  doi: 10.1103/PhysRevD.84.103521
– ident: 2
  doi: 10.1142/9789812778123_0002
– ident: 46
  doi: 10.1103/PhysRevD.83.024007
– year: 2011
  ident: 71
– ident: 22
  doi: 10.1111/j.1365-2966.2005.08831.x
– ident: 28
  doi: 10.1103/PhysRevD.65.044026
– ident: 25
  doi: 10.1016/j.physletb.2010.04.005
– ident: 23
  doi: 10.1111/j.1365-2966.2008.14176.x
– ident: 47
  doi: 10.1111/j.1365-2966.2010.18130.x
– ident: 4
  doi: 10.1016/S0003-4916(03)00068-X
– ident: 45
  doi: 10.1046/j.1365-8711.2001.04532.x
– ident: 52
  doi: 10.1111/j.1365-2966.2004.07505.x
– ident: 56
  doi: 10.1103/PhysRevD.75.063501
– ident: 55
  doi: 10.1103/PhysRevLett.97.151102
– volume: 728
  start-page: 108
  issn: 0004-637X
  year: 2011
  ident: 49
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/108
– ident: 65
  doi: 10.1103/PhysRevD.80.043001
– ident: 1
  doi: 10.1016/0370-2693(90)90029-6
– ident: 32
  doi: 10.1016/j.physletb.2009.10.002
– volume: 137
  start-page: 1
  issn: 0067-0049
  year: 2001
  ident: 9
  publication-title: ApJS
  doi: 10.1086/322526
– ident: 54
  doi: 10.1007/JHEP12(2010)051
– ident: 12
  doi: 10.1103/PhysRevD.84.123524
– ident: 30
  doi: 10.1103/PhysRevD.64.123517
– ident: 41
  doi: 10.1103/PhysRevD.32.3084
– ident: 58
  doi: 10.1143/PTP.123.887
– start-page: JCAP09(2011)020
  issn: 1475-7516
  year: 2011
  ident: 11
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 15
  doi: 10.1103/PhysRevD.76.124034
– ident: 26
  doi: 10.1103/PhysRevLett.100.251603
– ident: 40
  doi: 10.1103/PhysRevD.82.124018
– ident: 20
  doi: 10.1103/PhysRevD.82.083503
– ident: 31
  doi: 10.1103/PhysRevD.83.063503
– ident: 37
  doi: 10.1103/PhysRevD.82.103536
– ident: 13
  doi: 10.1103/PhysRevD.70.123518
– ident: 38
  doi: 10.1103/PhysRevLett.104.231301
– ident: 53
  doi: 10.1016/j.physletb.2003.12.016
– ident: 14
  doi: 10.1103/PhysRevD.83.104026
– year: 2011
  ident: 24
– ident: 69
  doi: 10.1103/PhysRevD.80.084044
– ident: 34
  doi: 10.1103/PhysRevD.77.025016
– ident: 6
  doi: 10.1111/j.1365-2966.2010.17758.x
– start-page: 520
  year: 2006
  ident: 10
  publication-title: Supersymmetry: Theory, Experiment, and Cosmology
– ident: 33
  doi: 10.1103/PhysRevD.82.124006
– ident: 51
  doi: 10.1007/978-3-540-74353-8
– ident: 27
  doi: 10.1103/PhysRevD.75.077101
– ident: 60
  doi: 10.1103/PhysRevD.81.043528
– ident: 8
  doi: 10.1038/nature01997
– ident: 17
  doi: 10.1103/PhysRevD.78.104021
– ident: 62
  doi: 10.1103/PhysRevD.77.043524
– ident: 18
  doi: 10.1103/PhysRevD.82.063519
– volume: 2010
  start-page: JCAP04(2010)032
  issn: 1475-7516
  year: 2010
  ident: 19
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 7
  doi: 10.1111/j.1365-2966.2009.15987.x
– ident: 42
  doi: 10.1103/PhysRevD.65.023512
– ident: 16
  doi: 10.1103/PhysRevD.76.085010
– ident: 61
  doi: 10.1103/PhysRevD.79.064036
– volume: 728
  start-page: 109
  issn: 0004-637X
  year: 2011
  ident: 48
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/109
– ident: 50
  doi: 10.1103/PhysRevD.81.104047
– ident: 72
  doi: 10.1103/PhysRevD.83.044007
– year: 2010
  ident: 43
– ident: 44
  doi: 10.1103/PhysRevD.69.044026
SSID ssj0004299
Score 2.419593
Snippet Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if they are subject to a screening mechanism....
SourceID osti
cristin
proquest
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 61
SubjectTerms Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Broken symmetry
COMPUTERIZED SIMULATION
COSMOLOGICAL MODELS
COSMOLOGY
Dynamical systems
Earth, ocean, space
Exact sciences and technology
Formations
Halos
High density
NONLINEAR PROBLEMS
Retarding
SCALAR FIELDS
Scalars
Shields
SYMMETRY BREAKING
UNIVERSE
Title STRUCTURE FORMATION IN THE SYMMETRON MODEL
URI https://www.proquest.com/docview/1680458887
https://www.proquest.com/docview/1685793978
http://hdl.handle.net/10852/57027
https://www.osti.gov/biblio/22016143
Volume 748
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagaBIvCAaogTEFCfHAlLVxnNh9rEZRh0iHtlaMJyt2HWkTSqY2feGv585OkxTG-PESWScnqfxdz3fOd3eEvBFL8Cm04QFYRx0wY0yQIU0MXOsw1zmHTRwP9NNZMl2wj5fx5bbffZ1dUqlj_f3WvJL_QRVkgCtmyf4Dss1DQQBjwBeugDBc_wrji_n54sTyFiCWS10DndOZZfFcfE3TyfwcBOnZ-8mnrg9q-zCvq1V5s8Wo-7Ju5YHxcdBWZrxynyfK66tNg1LpfM8OMR5PcIqqVoQp7INH41VRuqKs29MFpGlEAR22x39_ZIc4q8qCJLIt72FPaQ0puGL8VjMNps3xGt19MOYMJWi8XW323crYP-1YDY8QUyeojDnE1vfJAwqRApq6s-hLmxpLR3UE5F5V503BDxg0sgG8fBAOsE76nramtdjxUnoliJA0m60Bk9w1PPll77YOyfwxeVRHEv7YqcUTcq8o90nfAot5Kv5bvwPyep_sfXajp-Rdozd-ozf-6cwHvfEbvfGt3jwjiw-T-ck0qHtmBBpcyyoYCZUrqgTPIoVZyUKDf6ZHTGTDXOQY8EdLnRgNYYqmhkVK63iZDWFaEmaZMtFz0ivKwvSJHyuaUKZhQsRZorUaKa5DYzLD4qEOuUf69WrJAsyV7IDhkXC7fFLXteax5ck3aTkPQiDngUlcfAmLL0OZhB45au65cZVW7px9gKhI8BOx2LFGVpiuJKUYwrDII4c7aDVPpEmEXFrqkddb-CQYVPxKlhWm3KxlmAibvi34nXNi2NhGXLz4_SK8JA_bf9QB6VWrjXkFHmylDq2O_gB2FYxu
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STRUCTURE+FORMATION+IN+THE+SYMMETRON+MODEL&rft.jtitle=The+Astrophysical+journal&rft.au=Davis%2C+A.-C&rft.au=Li%2C+Baojiu&rft.au=Mota%2C+David&rft.au=Winther%2C+Hans+Arnold&rft.date=2012-03-20&rft.pub=University+of+Chicago+Press&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088%2F0004-637X%2F748%2F1%2F61&rft.externalDBID=n%2Fa&rft.externalDocID=10852_57027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon