The effects of radiation on the density of an aluminoborosilicate glass

Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some boros...

Full description

Saved in:
Bibliographic Details
Published inJournal of non-crystalline solids Vol. 289; no. 1; pp. 175 - 184
Main Authors Prado, M.O., Messi, N.B., Plivelic, T.S., Torriani, I.L., Bevilacqua, A.M., Arribére, M.A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2001
Elsevier
Subjects
Online AccessGet full text
ISSN0022-3093
1873-4812
DOI10.1016/S0022-3093(01)00707-4

Cover

Loading…
Abstract Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the 10B (n,α) 7Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 Å in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM [1] computer code. The number of displacements produced by each 10B(n,α) 7Li reaction was estimated at 580 and involved distances of up to 15 Å. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction 10B (n,α) 7Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change.
AbstractList Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the 10B (n,α) 7Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 Å in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM [1] computer code. The number of displacements produced by each 10B(n,α) 7Li reaction was estimated at 580 and involved distances of up to 15 Å. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction 10B (n,α) 7Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change.
Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the exp 10 B (n, alpha ) exp 7 Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 A in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM [1] computer code. The number of displacements produced by each exp 10 B(n, alpha ) exp 7 Li reaction was estimated at 580 and involved distances of up to 15 A . An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction exp 10 B (n, alpha ) exp 7 Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change.
Authors irradiated an Al borosilicate glass. Authors studied the effects of alpha irradiation on its microstructure, using several experimental techniques and correlated the results. SAXS measurements revealed the presence of inhomogeneities of about 10 angstroms in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and He pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM computer code. The number of displacements produced by each 10B(n,a) 7Li reaction was estimated at 580 and involved distances of up to 15 angstroms. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction 10B (n,a) 7Li, in the scenario of pre-existing phase separation in the samples. In the case of the Al borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure are responsible for a density decrease. The final effect is due to the sum of all contributions described. 23 refs.
Author Prado, M.O.
Bevilacqua, A.M.
Torriani, I.L.
Messi, N.B.
Plivelic, T.S.
Arribére, M.A.
Author_xml – sequence: 1
  givenname: M.O.
  surname: Prado
  fullname: Prado, M.O.
  email: pradom@cab.cnea.gov.ar
  organization: Departmento de Engenharia de Mat. (LAMAV), Universidade Federal de São Carlos, Via Washington Luiz km 235, Caixa Postal 676, 13565-905 São Carlos-SP, CEP, Brazil
– sequence: 2
  givenname: N.B.
  surname: Messi
  fullname: Messi, N.B.
  organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina
– sequence: 3
  givenname: T.S.
  surname: Plivelic
  fullname: Plivelic, T.S.
  organization: Laboratorio Nacional de Luz Sı́ncrotron, Campinas, SP, Brazil
– sequence: 4
  givenname: I.L.
  surname: Torriani
  fullname: Torriani, I.L.
  organization: Laboratorio Nacional de Luz Sı́ncrotron, Campinas, SP, Brazil
– sequence: 5
  givenname: A.M.
  surname: Bevilacqua
  fullname: Bevilacqua, A.M.
  organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina
– sequence: 6
  givenname: M.A.
  surname: Arribére
  fullname: Arribére, M.A.
  organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1100334$$DView record in Pascal Francis
BookMark eNqNkcFrVDEQxoNUcFv9E4R3KFIPT5OX7CahhyJFW6HgwXoOk2TSprxNapIt9L83u1sUvLTDwBzm9w3M9x2Sg5QTEvKe0U-MstXnn5RO08ip5ieUfaRUUjmKV2TBlOSjUGw6IIu_yBtyWOsd7SW5WpCL61scMAR0rQ45DAV8hBZzGnq3vvOYamyP2x2kAebNOqZsc8k1ztFBw-FmhlrfktcB5orvnuYR-fXt6_X55Xj14-L7-Zer0Qmu26iFVUFaiZZq5aeA0i7RBsGdEn6S1mtvgQnlltJ5YOjAMcWtDnoCpZeSH5EP-7v3Jf_eYG1mHavDeYaEeVPNtNKKM7F6ASgnJSjv4PETCNXBHAokF6u5L3EN5dEwRjskOrbcY66_XguGfwQ12xjMLgaz9dhQZnYxmK3u9D-di23ncCsQ52fVZ3s1dk8fIhZTXcTk0MfSIzM-x2cu_AHMXqN_
CODEN JNCSBJ
CitedBy_id crossref_primary_10_1016_j_nucengdes_2012_03_019
crossref_primary_10_1007_s12633_018_9949_2
crossref_primary_10_1039_b601593j
crossref_primary_10_1016_S0022_3093_03_00307_7
crossref_primary_10_1007_s10870_018_00767_0
crossref_primary_10_1016_j_anucene_2014_01_026
crossref_primary_10_1016_j_jnoncrysol_2006_11_049
crossref_primary_10_1016_j_jallcom_2016_11_299
crossref_primary_10_1016_j_radphyschem_2015_01_034
crossref_primary_10_1016_j_jallcom_2016_01_098
crossref_primary_10_1016_j_jnoncrysol_2003_09_031
crossref_primary_10_1016_j_nimb_2023_06_010
crossref_primary_10_1088_2053_1591_aad7ac
crossref_primary_10_1016_j_radphyschem_2016_05_002
crossref_primary_10_1515_ract_2016_2658
crossref_primary_10_1016_j_jlumin_2018_03_016
crossref_primary_10_1007_s00339_019_2574_0
crossref_primary_10_1016_j_apradiso_2014_02_008
crossref_primary_10_1016_j_physb_2009_05_018
crossref_primary_10_1080_10420150_2014_958746
crossref_primary_10_1002_pssa_200622124
Cites_doi 10.1007/978-1-4615-8103-1_3
10.1107/S0021889897001829
10.1107/S0021889871006228
10.1107/S0021889892001663
10.1016/B978-0-12-509701-7.50006-7
10.1107/S0021889873008204
10.1016/0168-583X(88)90258-3
10.1063/1.1681714
10.1146/annurev.ms.06.080176.002133
10.1016/0022-3115(88)90335-2
10.1103/PhysRevB.50.118
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
2001 INIST-CNRS
Copyright_xml – notice: 2001 Elsevier Science B.V.
– notice: 2001 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
8FD
JG9
7SR
DOI 10.1016/S0022-3093(01)00707-4
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Technology Research Database
Materials Research Database
Engineered Materials Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Ceramic Abstracts
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4812
EndPage 184
ExternalDocumentID 1100334
10_1016_S0022_3093_01_00707_4
S0022309301007074
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QQ
8FD
JG9
7SR
ID FETCH-LOGICAL-c439t-94b8f7b7eb098d2fe7b5ebf43c84d27bd9dba148c57cda1ecac183b9f92a89573
IEDL.DBID .~1
ISSN 0022-3093
IngestDate Thu Sep 04 22:11:14 EDT 2025
Fri Sep 05 09:30:27 EDT 2025
Mon Jul 21 09:14:48 EDT 2025
Tue Jul 01 00:24:08 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Fri Feb 23 02:26:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords R100
P120
B160
Alpha beams
X-ray scattering
Physical radiation effects
Phase separation
Aluminium compounds
Calcium compounds
Experimental study
Microstructure
Density
Magnesium compounds
Borosilicate glass
Sodium compounds
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-94b8f7b7eb098d2fe7b5ebf43c84d27bd9dba148c57cda1ecac183b9f92a89573
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26728403
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_26983146
proquest_miscellaneous_26728403
pascalfrancis_primary_1100334
crossref_primary_10_1016_S0022_3093_01_00707_4
crossref_citationtrail_10_1016_S0022_3093_01_00707_4
elsevier_sciencedirect_doi_10_1016_S0022_3093_01_00707_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-08-01
PublicationDateYYYYMMDD 2001-08-01
PublicationDate_xml – month: 08
  year: 2001
  text: 2001-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of non-crystalline solids
PublicationYear 2001
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bates, Hendricks, Shaffer (BIB3) 1974; 61
N. Messi de Bernasconi, M. Prado, A. Bevilacqua, M. Arribere, Daño por radiación alfa en bloques vı́treos sinterizados, Congresso Geral de Energı́a Nuclear, Brasil, 1998
Svergun (BIB19) 1992; 25
Varsshneya (BIB21) 1994
Firestone, Shirley (BIB12) 1996
Kellerman, Vicentin, Tamura, Rocha, Tolentino, Barbosa, Craievich, Torriani (BIB16) 1997; 30
J.F. Ziegler, J.P. Biersack, O. Littmark, in: J.F. Ziegler (Ed.), The Stopping and Range of Ions in Solids, vol. 1, Pergamon, New York, 1985 (Chapter 4)
Sato, Furuya, Kozaka, Inagaki, Tamai (BIB6) 1988; 152
Porai Koshits (BIB25) 1976; 6
Varsshneya (BIB23) 1994
BIB9
M. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. I, Part A Z=1–60, Academic Press, New York, 1981
Jesús Rincón, Alicia Durán, Separación de Fases en Vidrios, Monograph of the Sociedad Española de Cerámica y Vidrio, Artes Gráficas Ibarra, Madrid, 1982 (Chapter 5)
M.A. Arribére, A.J. Kestelman, in: Selected topics about applications of the k-sub-zero and other parametric methods in Neutron Activation Analysis, Report of the International Atomic Energy Agency, p. 89
José Maria Fernandez Navarro, El Vidrio, Taravilla, Madrid, 1991, p. 373 (Chapter 10)
Glatter, Kratky (BIB15) 1982
J.E. Mendel, W.A. Ross, F.P. Roberts, R.P. Turcotte, Y.B. Katayama, J.H. Westsik, in: Proceedings of the IAEA Symposium IAEA-SM-207/100, 1976, p. 49
Marples (BIB5) 1988; 32
Patel, Schmidt (BIB18) 1971; 4
Vonk (BIB17) 1973; 6
M. Mughabghab, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. II, Part A Z=61–100, Academic Press, New York, 1984
Primak (BIB2) 1960; 10
Wein, Rajiv, Vashishta, Rino (BIB22) 1994; 50
K.J. Tuli, Nuclear Wallet Cards, National Nuclear Data Center, Brookhaven National Laboratory, 1995
BIB10
10.1016/S0022-3093(01)00707-4_BIB7
10.1016/S0022-3093(01)00707-4_BIB4
Marples (10.1016/S0022-3093(01)00707-4_BIB5) 1988; 32
Svergun (10.1016/S0022-3093(01)00707-4_BIB19) 1992; 25
Porai Koshits (10.1016/S0022-3093(01)00707-4_BIB25) 1976; 6
Patel (10.1016/S0022-3093(01)00707-4_BIB18) 1971; 4
Firestone (10.1016/S0022-3093(01)00707-4_BIB12) 1996
10.1016/S0022-3093(01)00707-4_BIB8
Varsshneya (10.1016/S0022-3093(01)00707-4_BIB23) 1994
Bates (10.1016/S0022-3093(01)00707-4_BIB3) 1974; 61
Vonk (10.1016/S0022-3093(01)00707-4_BIB17) 1973; 6
Sato (10.1016/S0022-3093(01)00707-4_BIB6) 1988; 152
10.1016/S0022-3093(01)00707-4_BIB20
Varsshneya (10.1016/S0022-3093(01)00707-4_BIB21) 1994
10.1016/S0022-3093(01)00707-4_BIB14
10.1016/S0022-3093(01)00707-4_BIB13
10.1016/S0022-3093(01)00707-4_BIB24
10.1016/S0022-3093(01)00707-4_BIB11
Glatter (10.1016/S0022-3093(01)00707-4_BIB15) 1982
Kellerman (10.1016/S0022-3093(01)00707-4_BIB16) 1997; 30
Primak (10.1016/S0022-3093(01)00707-4_BIB2) 1960; 10
10.1016/S0022-3093(01)00707-4_BIB1
Wein (10.1016/S0022-3093(01)00707-4_BIB22) 1994; 50
References_xml – volume: 10
  start-page: 117
  year: 1960
  ident: BIB2
  publication-title: J. Phys. Chem. Glasses
– volume: 4
  start-page: 50
  year: 1971
  ident: BIB18
  publication-title: J. Appl. Crystallogr.
– volume: 25
  start-page: 495
  year: 1992
  ident: BIB19
  publication-title: J. Appl. Crystallogr.
– volume: 6
  start-page: 389
  year: 1976
  ident: BIB25
  publication-title: Ann. Rev. Mater. Sci.
– reference: M. Mughabghab, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. II, Part A Z=61–100, Academic Press, New York, 1984
– reference: J.F. Ziegler, J.P. Biersack, O. Littmark, in: J.F. Ziegler (Ed.), The Stopping and Range of Ions in Solids, vol. 1, Pergamon, New York, 1985 (Chapter 4)
– reference: M.A. Arribére, A.J. Kestelman, in: Selected topics about applications of the k-sub-zero and other parametric methods in Neutron Activation Analysis, Report of the International Atomic Energy Agency, p. 89
– volume: 61
  start-page: 4163
  year: 1974
  ident: BIB3
  publication-title: J. Chem. Phys.
– reference: Jesús Rincón, Alicia Durán, Separación de Fases en Vidrios, Monograph of the Sociedad Española de Cerámica y Vidrio, Artes Gráficas Ibarra, Madrid, 1982 (Chapter 5)
– ident: BIB10
– year: 1994
  ident: BIB23
  publication-title: Fundamentals of Inorganic Glasses
– volume: 50
  start-page: 118
  year: 1994
  ident: BIB22
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 880
  year: 1997
  ident: BIB16
  publication-title: J. Appl. Cryst.
– year: 1996
  ident: BIB12
  publication-title: Table of Isotopes
– year: 1994
  ident: BIB21
  publication-title: Fundamentals of Inorganic Glasses
– reference: M. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. I, Part A Z=1–60, Academic Press, New York, 1981
– volume: 6
  start-page: 81
  year: 1973
  ident: BIB17
  publication-title: J. Appl. Crystallogr.
– reference: J.E. Mendel, W.A. Ross, F.P. Roberts, R.P. Turcotte, Y.B. Katayama, J.H. Westsik, in: Proceedings of the IAEA Symposium IAEA-SM-207/100, 1976, p. 49
– volume: 32
  start-page: 480
  year: 1988
  ident: BIB5
  publication-title: Nucl. Instrum. and Meth. B
– ident: BIB9
– reference: N. Messi de Bernasconi, M. Prado, A. Bevilacqua, M. Arribere, Daño por radiación alfa en bloques vı́treos sinterizados, Congresso Geral de Energı́a Nuclear, Brasil, 1998
– year: 1982
  ident: BIB15
  publication-title: Small Angle X-ray Scattering
– volume: 152
  start-page: 265
  year: 1988
  ident: BIB6
  publication-title: J. Nucl. Mater.
– reference: K.J. Tuli, Nuclear Wallet Cards, National Nuclear Data Center, Brookhaven National Laboratory, 1995
– reference: José Maria Fernandez Navarro, El Vidrio, Taravilla, Madrid, 1991, p. 373 (Chapter 10)
– ident: 10.1016/S0022-3093(01)00707-4_BIB1
  doi: 10.1007/978-1-4615-8103-1_3
– volume: 30
  start-page: 880
  year: 1997
  ident: 10.1016/S0022-3093(01)00707-4_BIB16
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889897001829
– ident: 10.1016/S0022-3093(01)00707-4_BIB14
– ident: 10.1016/S0022-3093(01)00707-4_BIB20
– volume: 4
  start-page: 50
  year: 1971
  ident: 10.1016/S0022-3093(01)00707-4_BIB18
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889871006228
– year: 1994
  ident: 10.1016/S0022-3093(01)00707-4_BIB23
– year: 1994
  ident: 10.1016/S0022-3093(01)00707-4_BIB21
– volume: 10
  start-page: 117
  issue: 3
  year: 1960
  ident: 10.1016/S0022-3093(01)00707-4_BIB2
  publication-title: J. Phys. Chem. Glasses
– volume: 25
  start-page: 495
  year: 1992
  ident: 10.1016/S0022-3093(01)00707-4_BIB19
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892001663
– year: 1996
  ident: 10.1016/S0022-3093(01)00707-4_BIB12
– ident: 10.1016/S0022-3093(01)00707-4_BIB13
  doi: 10.1016/B978-0-12-509701-7.50006-7
– volume: 6
  start-page: 81
  year: 1973
  ident: 10.1016/S0022-3093(01)00707-4_BIB17
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889873008204
– volume: 32
  start-page: 480
  year: 1988
  ident: 10.1016/S0022-3093(01)00707-4_BIB5
  publication-title: Nucl. Instrum. and Meth. B
  doi: 10.1016/0168-583X(88)90258-3
– year: 1982
  ident: 10.1016/S0022-3093(01)00707-4_BIB15
– ident: 10.1016/S0022-3093(01)00707-4_BIB24
– ident: 10.1016/S0022-3093(01)00707-4_BIB7
– ident: 10.1016/S0022-3093(01)00707-4_BIB11
– ident: 10.1016/S0022-3093(01)00707-4_BIB8
– volume: 61
  start-page: 4163
  issue: 10
  year: 1974
  ident: 10.1016/S0022-3093(01)00707-4_BIB3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681714
– volume: 6
  start-page: 389
  year: 1976
  ident: 10.1016/S0022-3093(01)00707-4_BIB25
  publication-title: Ann. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.06.080176.002133
– ident: 10.1016/S0022-3093(01)00707-4_BIB4
– volume: 152
  start-page: 265
  year: 1988
  ident: 10.1016/S0022-3093(01)00707-4_BIB6
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(88)90335-2
– volume: 50
  start-page: 118
  issue: 1
  year: 1994
  ident: 10.1016/S0022-3093(01)00707-4_BIB22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.118
SSID ssj0000738
Score 1.7473483
Snippet Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation...
Authors irradiated an Al borosilicate glass. Authors studied the effects of alpha irradiation on its microstructure, using several experimental techniques and...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 175
SubjectTerms Condensed matter: structure, mechanical and thermal properties
Disordered solids
Exact sciences and technology
Glasses
Physical radiation effects, radiation damage
Physics
Radiation effects on specific materials
Structure of solids and liquids; crystallography
Title The effects of radiation on the density of an aluminoborosilicate glass
URI https://dx.doi.org/10.1016/S0022-3093(01)00707-4
https://www.proquest.com/docview/26728403
https://www.proquest.com/docview/26983146
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EERURXRW_zcGDHqptkzbNURbXVdGTgreQpCksSLvsrgcv_nYnaburiApCT02ThpnpzIS-eQNwgl4_ZDRPg5RSFjAVR4FmqQmEpqlKtNKUueLk-4e0_8Run5PnOei2tTAOVtn4_tqne2_d3LlopHkxHAxcjS-GNjyQh5HnrHGcoIxxx59__j6DeaAJZ1PGcHx6VsVTr-BvnobRmV8kYD_Fp9WhGqPUirrdxTfP7cNRbx3WmjySXNZb3YA5W3Zgqdu2b-vAyiemwQ4seqSnGW_CNRoGaVAcpCrIyJETOO0QvDAbJLmDtE_e3JgqiULnNSgrtJRqPKgL5ojPuLfgqXf12O0HTTeFwGDSMQkE01nBNbc6FFkeF5brxOqCUZOxPOY6F7lWeDgyCTe5iqxRBj93LQoRq0wknG7DfFmVdgcI6hbzTCMiE1sWKi4MtXiQNAnmgibKxS6wVobSNFTjruPFi5xhylD00olehpH0opdsF86n04Y118ZfE7JWQfKL0UiMB39NPfyi0NkLI9feDsePWwVLVJz7i6JKW72OZZxyDOkh_e0JkVGMQHv_394-LNdgN4c0PID5yejVHmL2M9FH3ryPYOHy5q7_8AHJFPzn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58ICoiuiq-zcGDHuq2Tdo0R1nU9XlS8BaSNIUFaRd3PXjxtztJW1cRFYSe8mqYmc6DfjMDcIhaP2Q0T4OUUhYwFUeBZqkJhKapSrTSlLnk5Nu7tP_Arh6TxynotbkwDlbZ6P5ap3tt3Yx0G2p2h4OBy_FF04YBeRj5mjVsGmZZQrkT7ZO3Cc4DZTj7KBmOyydpPPURfvAojI79KQH7yUAtDdUIyVbU_S6-qW5vj85XYLlxJMlpfddVmLJlB-Z7bf-2Dix-KjXYgTkP9TSjNbhAySANjINUBXl21Qkcewg-6A6S3GHax69uTpVEofYalBWKSjUa1BlzxLvc6_Bwfnbf6wdNO4XAoNcxDgTTWcE1tzoUWR4XluvE6oJRk7E85joXuVYYHZmEm1xF1iiD37sWhYhVJhJON2CmrEq7CQSZi46mEZGJLQsVF4ZajCRNgs6giXKxBayloTRNrXHX8uJJTkBlSHrpSC_DSHrSS7YFJx_bhnWxjb82ZC2D5BepkWgQ_tq694WhkxdGrr8dzh-0DJbIOPcbRZW2ehnJOOVo00P62wqRUTRB2_-_3gHM9-9vb-TN5d31DizUyDcHO9yFmfHzi91DV2is972ovwOgzP59
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+radiation+on+the+density+of+an+aluminoborosilicate+glass&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=Prado%2C+M.O.&rft.au=Messi%2C+N.B.&rft.au=Plivelic%2C+T.S.&rft.au=Torriani%2C+I.L.&rft.date=2001-08-01&rft.pub=Elsevier+B.V&rft.issn=0022-3093&rft.eissn=1873-4812&rft.volume=289&rft.issue=1&rft.spage=175&rft.epage=184&rft_id=info:doi/10.1016%2FS0022-3093%2801%2900707-4&rft.externalDocID=S0022309301007074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon