The effects of radiation on the density of an aluminoborosilicate glass
Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some boros...
Saved in:
Published in | Journal of non-crystalline solids Vol. 289; no. 1; pp. 175 - 184 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2001
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3093 1873-4812 |
DOI | 10.1016/S0022-3093(01)00707-4 |
Cover
Loading…
Abstract | Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the
10B (n,α)
7Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 Å in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM
[1] computer code. The number of displacements produced by each
10B(n,α)
7Li reaction was estimated at 580 and involved distances of up to 15 Å. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction
10B (n,α)
7Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change. |
---|---|
AbstractList | Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the
10B (n,α)
7Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 Å in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM
[1] computer code. The number of displacements produced by each
10B(n,α)
7Li reaction was estimated at 580 and involved distances of up to 15 Å. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction
10B (n,α)
7Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change. Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation is responsible for an important fraction of the radiation energy dissipated in these glasses. It has been reported previously that some borosilicate glasses increase their density during irradiation while the density of other glasses decreases. Although the density increase of silica after irradiation has been understood, thanks mainly to molecular dynamics calculations and diffraction experiments, the processes involved in more complex glasses could be more varied. In this work we irradiated an aluminum-borosilicate glass which is a candidate for the aforementioned purposes and which increases density during alpha irradiation from the exp 10 B (n, alpha ) exp 7 Li reaction. We studied the effects of alpha irradiation on its microstructure, using several experimental techniques, and subsequently correlated the results. Small angle X-ray scattering (SAXS) measurements revealed the presence of inhomogeneities of about 10 A in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and helium pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM [1] computer code. The number of displacements produced by each exp 10 B(n, alpha ) exp 7 Li reaction was estimated at 580 and involved distances of up to 15 A . An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction exp 10 B (n, alpha ) exp 7 Li, in the scenario of pre-existing phase separation in the samples. In the case of the aluminum-borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure, are responsible for a density decrease. The final effect is due to the sum of all contributions described, which in this case results in a net density increase of the irradiated samples. An understanding of this phenomenon can lead to the design of new glasses which overcome radiation with a minimum of density change. Authors irradiated an Al borosilicate glass. Authors studied the effects of alpha irradiation on its microstructure, using several experimental techniques and correlated the results. SAXS measurements revealed the presence of inhomogeneities of about 10 angstroms in the untreated samples. After annealing these samples, TEM images displayed a contrast structure and He pycnometry revealed density changes, both typical of glass phase separation. After irradiation, the glass density increased and the SAXS intensity decreased, indicating a compositional homogenization process in the samples subject to a higher dose of irradiation. Atomic displacements were calculated by means of the TRIM computer code. The number of displacements produced by each 10B(n,a) 7Li reaction was estimated at 580 and involved distances of up to 15 angstroms. An increase in the density of the irradiated samples can be explained in terms of the atomic displacements produced by the nuclear reaction cascades of the reaction 10B (n,a) 7Li, in the scenario of pre-existing phase separation in the samples. In the case of the Al borosilicate glasses studied here, which exhibit a fine phase separation, the density of the Si-rich phase increases with the incorporation of Na and B atoms. The B-rich phase also increases its density with the flow of Si atoms from the matrix. Vacancies created by irradiation in the glass structure are responsible for a density decrease. The final effect is due to the sum of all contributions described. 23 refs. |
Author | Prado, M.O. Bevilacqua, A.M. Torriani, I.L. Messi, N.B. Plivelic, T.S. Arribére, M.A. |
Author_xml | – sequence: 1 givenname: M.O. surname: Prado fullname: Prado, M.O. email: pradom@cab.cnea.gov.ar organization: Departmento de Engenharia de Mat. (LAMAV), Universidade Federal de São Carlos, Via Washington Luiz km 235, Caixa Postal 676, 13565-905 São Carlos-SP, CEP, Brazil – sequence: 2 givenname: N.B. surname: Messi fullname: Messi, N.B. organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina – sequence: 3 givenname: T.S. surname: Plivelic fullname: Plivelic, T.S. organization: Laboratorio Nacional de Luz Sı́ncrotron, Campinas, SP, Brazil – sequence: 4 givenname: I.L. surname: Torriani fullname: Torriani, I.L. organization: Laboratorio Nacional de Luz Sı́ncrotron, Campinas, SP, Brazil – sequence: 5 givenname: A.M. surname: Bevilacqua fullname: Bevilacqua, A.M. organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina – sequence: 6 givenname: M.A. surname: Arribére fullname: Arribére, M.A. organization: Centro Atómico Bariloche, CNEA, S.C. de Bariloche, Argentina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1100334$$DView record in Pascal Francis |
BookMark | eNqNkcFrVDEQxoNUcFv9E4R3KFIPT5OX7CahhyJFW6HgwXoOk2TSprxNapIt9L83u1sUvLTDwBzm9w3M9x2Sg5QTEvKe0U-MstXnn5RO08ip5ieUfaRUUjmKV2TBlOSjUGw6IIu_yBtyWOsd7SW5WpCL61scMAR0rQ45DAV8hBZzGnq3vvOYamyP2x2kAebNOqZsc8k1ztFBw-FmhlrfktcB5orvnuYR-fXt6_X55Xj14-L7-Zer0Qmu26iFVUFaiZZq5aeA0i7RBsGdEn6S1mtvgQnlltJ5YOjAMcWtDnoCpZeSH5EP-7v3Jf_eYG1mHavDeYaEeVPNtNKKM7F6ASgnJSjv4PETCNXBHAokF6u5L3EN5dEwRjskOrbcY66_XguGfwQ12xjMLgaz9dhQZnYxmK3u9D-di23ncCsQ52fVZ3s1dk8fIhZTXcTk0MfSIzM-x2cu_AHMXqN_ |
CODEN | JNCSBJ |
CitedBy_id | crossref_primary_10_1016_j_nucengdes_2012_03_019 crossref_primary_10_1007_s12633_018_9949_2 crossref_primary_10_1039_b601593j crossref_primary_10_1016_S0022_3093_03_00307_7 crossref_primary_10_1007_s10870_018_00767_0 crossref_primary_10_1016_j_anucene_2014_01_026 crossref_primary_10_1016_j_jnoncrysol_2006_11_049 crossref_primary_10_1016_j_jallcom_2016_11_299 crossref_primary_10_1016_j_radphyschem_2015_01_034 crossref_primary_10_1016_j_jallcom_2016_01_098 crossref_primary_10_1016_j_jnoncrysol_2003_09_031 crossref_primary_10_1016_j_nimb_2023_06_010 crossref_primary_10_1088_2053_1591_aad7ac crossref_primary_10_1016_j_radphyschem_2016_05_002 crossref_primary_10_1515_ract_2016_2658 crossref_primary_10_1016_j_jlumin_2018_03_016 crossref_primary_10_1007_s00339_019_2574_0 crossref_primary_10_1016_j_apradiso_2014_02_008 crossref_primary_10_1016_j_physb_2009_05_018 crossref_primary_10_1080_10420150_2014_958746 crossref_primary_10_1002_pssa_200622124 |
Cites_doi | 10.1007/978-1-4615-8103-1_3 10.1107/S0021889897001829 10.1107/S0021889871006228 10.1107/S0021889892001663 10.1016/B978-0-12-509701-7.50006-7 10.1107/S0021889873008204 10.1016/0168-583X(88)90258-3 10.1063/1.1681714 10.1146/annurev.ms.06.080176.002133 10.1016/0022-3115(88)90335-2 10.1103/PhysRevB.50.118 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science B.V. 2001 INIST-CNRS |
Copyright_xml | – notice: 2001 Elsevier Science B.V. – notice: 2001 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QQ 8FD JG9 7SR |
DOI | 10.1016/S0022-3093(01)00707-4 |
DatabaseName | CrossRef Pascal-Francis Ceramic Abstracts Technology Research Database Materials Research Database Engineered Materials Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Ceramic Abstracts Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4812 |
EndPage | 184 |
ExternalDocumentID | 1100334 10_1016_S0022_3093_01_00707_4 S0022309301007074 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSZ T5K TWZ VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QQ 8FD JG9 7SR |
ID | FETCH-LOGICAL-c439t-94b8f7b7eb098d2fe7b5ebf43c84d27bd9dba148c57cda1ecac183b9f92a89573 |
IEDL.DBID | .~1 |
ISSN | 0022-3093 |
IngestDate | Thu Sep 04 22:11:14 EDT 2025 Fri Sep 05 09:30:27 EDT 2025 Mon Jul 21 09:14:48 EDT 2025 Tue Jul 01 00:24:08 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Fri Feb 23 02:26:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | R100 P120 B160 Alpha beams X-ray scattering Physical radiation effects Phase separation Aluminium compounds Calcium compounds Experimental study Microstructure Density Magnesium compounds Borosilicate glass Sodium compounds |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-94b8f7b7eb098d2fe7b5ebf43c84d27bd9dba148c57cda1ecac183b9f92a89573 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 26728403 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_26983146 proquest_miscellaneous_26728403 pascalfrancis_primary_1100334 crossref_primary_10_1016_S0022_3093_01_00707_4 crossref_citationtrail_10_1016_S0022_3093_01_00707_4 elsevier_sciencedirect_doi_10_1016_S0022_3093_01_00707_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-08-01 |
PublicationDateYYYYMMDD | 2001-08-01 |
PublicationDate_xml | – month: 08 year: 2001 text: 2001-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of non-crystalline solids |
PublicationYear | 2001 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bates, Hendricks, Shaffer (BIB3) 1974; 61 N. Messi de Bernasconi, M. Prado, A. Bevilacqua, M. Arribere, Daño por radiación alfa en bloques vı́treos sinterizados, Congresso Geral de Energı́a Nuclear, Brasil, 1998 Svergun (BIB19) 1992; 25 Varsshneya (BIB21) 1994 Firestone, Shirley (BIB12) 1996 Kellerman, Vicentin, Tamura, Rocha, Tolentino, Barbosa, Craievich, Torriani (BIB16) 1997; 30 J.F. Ziegler, J.P. Biersack, O. Littmark, in: J.F. Ziegler (Ed.), The Stopping and Range of Ions in Solids, vol. 1, Pergamon, New York, 1985 (Chapter 4) Sato, Furuya, Kozaka, Inagaki, Tamai (BIB6) 1988; 152 Porai Koshits (BIB25) 1976; 6 Varsshneya (BIB23) 1994 BIB9 M. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. I, Part A Z=1–60, Academic Press, New York, 1981 Jesús Rincón, Alicia Durán, Separación de Fases en Vidrios, Monograph of the Sociedad Española de Cerámica y Vidrio, Artes Gráficas Ibarra, Madrid, 1982 (Chapter 5) M.A. Arribére, A.J. Kestelman, in: Selected topics about applications of the k-sub-zero and other parametric methods in Neutron Activation Analysis, Report of the International Atomic Energy Agency, p. 89 José Maria Fernandez Navarro, El Vidrio, Taravilla, Madrid, 1991, p. 373 (Chapter 10) Glatter, Kratky (BIB15) 1982 J.E. Mendel, W.A. Ross, F.P. Roberts, R.P. Turcotte, Y.B. Katayama, J.H. Westsik, in: Proceedings of the IAEA Symposium IAEA-SM-207/100, 1976, p. 49 Marples (BIB5) 1988; 32 Patel, Schmidt (BIB18) 1971; 4 Vonk (BIB17) 1973; 6 M. Mughabghab, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. II, Part A Z=61–100, Academic Press, New York, 1984 Primak (BIB2) 1960; 10 Wein, Rajiv, Vashishta, Rino (BIB22) 1994; 50 K.J. Tuli, Nuclear Wallet Cards, National Nuclear Data Center, Brookhaven National Laboratory, 1995 BIB10 10.1016/S0022-3093(01)00707-4_BIB7 10.1016/S0022-3093(01)00707-4_BIB4 Marples (10.1016/S0022-3093(01)00707-4_BIB5) 1988; 32 Svergun (10.1016/S0022-3093(01)00707-4_BIB19) 1992; 25 Porai Koshits (10.1016/S0022-3093(01)00707-4_BIB25) 1976; 6 Patel (10.1016/S0022-3093(01)00707-4_BIB18) 1971; 4 Firestone (10.1016/S0022-3093(01)00707-4_BIB12) 1996 10.1016/S0022-3093(01)00707-4_BIB8 Varsshneya (10.1016/S0022-3093(01)00707-4_BIB23) 1994 Bates (10.1016/S0022-3093(01)00707-4_BIB3) 1974; 61 Vonk (10.1016/S0022-3093(01)00707-4_BIB17) 1973; 6 Sato (10.1016/S0022-3093(01)00707-4_BIB6) 1988; 152 10.1016/S0022-3093(01)00707-4_BIB20 Varsshneya (10.1016/S0022-3093(01)00707-4_BIB21) 1994 10.1016/S0022-3093(01)00707-4_BIB14 10.1016/S0022-3093(01)00707-4_BIB13 10.1016/S0022-3093(01)00707-4_BIB24 10.1016/S0022-3093(01)00707-4_BIB11 Glatter (10.1016/S0022-3093(01)00707-4_BIB15) 1982 Kellerman (10.1016/S0022-3093(01)00707-4_BIB16) 1997; 30 Primak (10.1016/S0022-3093(01)00707-4_BIB2) 1960; 10 10.1016/S0022-3093(01)00707-4_BIB1 Wein (10.1016/S0022-3093(01)00707-4_BIB22) 1994; 50 |
References_xml | – volume: 10 start-page: 117 year: 1960 ident: BIB2 publication-title: J. Phys. Chem. Glasses – volume: 4 start-page: 50 year: 1971 ident: BIB18 publication-title: J. Appl. Crystallogr. – volume: 25 start-page: 495 year: 1992 ident: BIB19 publication-title: J. Appl. Crystallogr. – volume: 6 start-page: 389 year: 1976 ident: BIB25 publication-title: Ann. Rev. Mater. Sci. – reference: M. Mughabghab, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. II, Part A Z=61–100, Academic Press, New York, 1984 – reference: J.F. Ziegler, J.P. Biersack, O. Littmark, in: J.F. Ziegler (Ed.), The Stopping and Range of Ions in Solids, vol. 1, Pergamon, New York, 1985 (Chapter 4) – reference: M.A. Arribére, A.J. Kestelman, in: Selected topics about applications of the k-sub-zero and other parametric methods in Neutron Activation Analysis, Report of the International Atomic Energy Agency, p. 89 – volume: 61 start-page: 4163 year: 1974 ident: BIB3 publication-title: J. Chem. Phys. – reference: Jesús Rincón, Alicia Durán, Separación de Fases en Vidrios, Monograph of the Sociedad Española de Cerámica y Vidrio, Artes Gráficas Ibarra, Madrid, 1982 (Chapter 5) – ident: BIB10 – year: 1994 ident: BIB23 publication-title: Fundamentals of Inorganic Glasses – volume: 50 start-page: 118 year: 1994 ident: BIB22 publication-title: Phys. Rev. B – volume: 30 start-page: 880 year: 1997 ident: BIB16 publication-title: J. Appl. Cryst. – year: 1996 ident: BIB12 publication-title: Table of Isotopes – year: 1994 ident: BIB21 publication-title: Fundamentals of Inorganic Glasses – reference: M. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, vol. I, Part A Z=1–60, Academic Press, New York, 1981 – volume: 6 start-page: 81 year: 1973 ident: BIB17 publication-title: J. Appl. Crystallogr. – reference: J.E. Mendel, W.A. Ross, F.P. Roberts, R.P. Turcotte, Y.B. Katayama, J.H. Westsik, in: Proceedings of the IAEA Symposium IAEA-SM-207/100, 1976, p. 49 – volume: 32 start-page: 480 year: 1988 ident: BIB5 publication-title: Nucl. Instrum. and Meth. B – ident: BIB9 – reference: N. Messi de Bernasconi, M. Prado, A. Bevilacqua, M. Arribere, Daño por radiación alfa en bloques vı́treos sinterizados, Congresso Geral de Energı́a Nuclear, Brasil, 1998 – year: 1982 ident: BIB15 publication-title: Small Angle X-ray Scattering – volume: 152 start-page: 265 year: 1988 ident: BIB6 publication-title: J. Nucl. Mater. – reference: K.J. Tuli, Nuclear Wallet Cards, National Nuclear Data Center, Brookhaven National Laboratory, 1995 – reference: José Maria Fernandez Navarro, El Vidrio, Taravilla, Madrid, 1991, p. 373 (Chapter 10) – ident: 10.1016/S0022-3093(01)00707-4_BIB1 doi: 10.1007/978-1-4615-8103-1_3 – volume: 30 start-page: 880 year: 1997 ident: 10.1016/S0022-3093(01)00707-4_BIB16 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889897001829 – ident: 10.1016/S0022-3093(01)00707-4_BIB14 – ident: 10.1016/S0022-3093(01)00707-4_BIB20 – volume: 4 start-page: 50 year: 1971 ident: 10.1016/S0022-3093(01)00707-4_BIB18 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889871006228 – year: 1994 ident: 10.1016/S0022-3093(01)00707-4_BIB23 – year: 1994 ident: 10.1016/S0022-3093(01)00707-4_BIB21 – volume: 10 start-page: 117 issue: 3 year: 1960 ident: 10.1016/S0022-3093(01)00707-4_BIB2 publication-title: J. Phys. Chem. Glasses – volume: 25 start-page: 495 year: 1992 ident: 10.1016/S0022-3093(01)00707-4_BIB19 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892001663 – year: 1996 ident: 10.1016/S0022-3093(01)00707-4_BIB12 – ident: 10.1016/S0022-3093(01)00707-4_BIB13 doi: 10.1016/B978-0-12-509701-7.50006-7 – volume: 6 start-page: 81 year: 1973 ident: 10.1016/S0022-3093(01)00707-4_BIB17 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889873008204 – volume: 32 start-page: 480 year: 1988 ident: 10.1016/S0022-3093(01)00707-4_BIB5 publication-title: Nucl. Instrum. and Meth. B doi: 10.1016/0168-583X(88)90258-3 – year: 1982 ident: 10.1016/S0022-3093(01)00707-4_BIB15 – ident: 10.1016/S0022-3093(01)00707-4_BIB24 – ident: 10.1016/S0022-3093(01)00707-4_BIB7 – ident: 10.1016/S0022-3093(01)00707-4_BIB11 – ident: 10.1016/S0022-3093(01)00707-4_BIB8 – volume: 61 start-page: 4163 issue: 10 year: 1974 ident: 10.1016/S0022-3093(01)00707-4_BIB3 publication-title: J. Chem. Phys. doi: 10.1063/1.1681714 – volume: 6 start-page: 389 year: 1976 ident: 10.1016/S0022-3093(01)00707-4_BIB25 publication-title: Ann. Rev. Mater. Sci. doi: 10.1146/annurev.ms.06.080176.002133 – ident: 10.1016/S0022-3093(01)00707-4_BIB4 – volume: 152 start-page: 265 year: 1988 ident: 10.1016/S0022-3093(01)00707-4_BIB6 publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(88)90335-2 – volume: 50 start-page: 118 issue: 1 year: 1994 ident: 10.1016/S0022-3093(01)00707-4_BIB22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.118 |
SSID | ssj0000738 |
Score | 1.7473483 |
Snippet | Glasses used for nuclear waste immobilization are subjected to high levels of radiation, and this may affect their physicochemical properties. Alpha radiation... Authors irradiated an Al borosilicate glass. Authors studied the effects of alpha irradiation on its microstructure, using several experimental techniques and... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 175 |
SubjectTerms | Condensed matter: structure, mechanical and thermal properties Disordered solids Exact sciences and technology Glasses Physical radiation effects, radiation damage Physics Radiation effects on specific materials Structure of solids and liquids; crystallography |
Title | The effects of radiation on the density of an aluminoborosilicate glass |
URI | https://dx.doi.org/10.1016/S0022-3093(01)00707-4 https://www.proquest.com/docview/26728403 https://www.proquest.com/docview/26983146 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EERURXRW_zcGDHqptkzbNURbXVdGTgreQpCksSLvsrgcv_nYnaburiApCT02ThpnpzIS-eQNwgl4_ZDRPg5RSFjAVR4FmqQmEpqlKtNKUueLk-4e0_8Run5PnOei2tTAOVtn4_tqne2_d3LlopHkxHAxcjS-GNjyQh5HnrHGcoIxxx59__j6DeaAJZ1PGcHx6VsVTr-BvnobRmV8kYD_Fp9WhGqPUirrdxTfP7cNRbx3WmjySXNZb3YA5W3Zgqdu2b-vAyiemwQ4seqSnGW_CNRoGaVAcpCrIyJETOO0QvDAbJLmDtE_e3JgqiULnNSgrtJRqPKgL5ojPuLfgqXf12O0HTTeFwGDSMQkE01nBNbc6FFkeF5brxOqCUZOxPOY6F7lWeDgyCTe5iqxRBj93LQoRq0wknG7DfFmVdgcI6hbzTCMiE1sWKi4MtXiQNAnmgibKxS6wVobSNFTjruPFi5xhylD00olehpH0opdsF86n04Y118ZfE7JWQfKL0UiMB39NPfyi0NkLI9feDsePWwVLVJz7i6JKW72OZZxyDOkh_e0JkVGMQHv_394-LNdgN4c0PID5yejVHmL2M9FH3ryPYOHy5q7_8AHJFPzn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58ICoiuiq-zcGDHuq2Tdo0R1nU9XlS8BaSNIUFaRd3PXjxtztJW1cRFYSe8mqYmc6DfjMDcIhaP2Q0T4OUUhYwFUeBZqkJhKapSrTSlLnk5Nu7tP_Arh6TxynotbkwDlbZ6P5ap3tt3Yx0G2p2h4OBy_FF04YBeRj5mjVsGmZZQrkT7ZO3Cc4DZTj7KBmOyydpPPURfvAojI79KQH7yUAtDdUIyVbU_S6-qW5vj85XYLlxJMlpfddVmLJlB-Z7bf-2Dix-KjXYgTkP9TSjNbhAySANjINUBXl21Qkcewg-6A6S3GHax69uTpVEofYalBWKSjUa1BlzxLvc6_Bwfnbf6wdNO4XAoNcxDgTTWcE1tzoUWR4XluvE6oJRk7E85joXuVYYHZmEm1xF1iiD37sWhYhVJhJON2CmrEq7CQSZi46mEZGJLQsVF4ZajCRNgs6giXKxBayloTRNrXHX8uJJTkBlSHrpSC_DSHrSS7YFJx_bhnWxjb82ZC2D5BepkWgQ_tq694WhkxdGrr8dzh-0DJbIOPcbRZW2ehnJOOVo00P62wqRUTRB2_-_3gHM9-9vb-TN5d31DizUyDcHO9yFmfHzi91DV2is972ovwOgzP59 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+radiation+on+the+density+of+an+aluminoborosilicate+glass&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=Prado%2C+M.O.&rft.au=Messi%2C+N.B.&rft.au=Plivelic%2C+T.S.&rft.au=Torriani%2C+I.L.&rft.date=2001-08-01&rft.pub=Elsevier+B.V&rft.issn=0022-3093&rft.eissn=1873-4812&rft.volume=289&rft.issue=1&rft.spage=175&rft.epage=184&rft_id=info:doi/10.1016%2FS0022-3093%2801%2900707-4&rft.externalDocID=S0022309301007074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon |