Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study

Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of...

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 6; no. 4; pp. 644 - 648
Main Authors Kuo, Hsiao-I., Bikson, Marom, Datta, Abhishek, Minhas, Preet, Paulus, Walter, Kuo, Min-Fang, Nitsche, Michael A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2013
Subjects
Online AccessGet full text
ISSN1935-861X
1876-4754
1876-4754
DOI10.1016/j.brs.2012.09.010

Cover

Loading…
Abstract Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.
AbstractList Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.
Abstract Background Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2 ) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. Objective We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. Methods tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Results Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. Conclusion The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.
Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.BACKGROUNDTranscranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.OBJECTIVEWe aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.METHODStDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.RESULTSExcitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.CONCLUSIONThe results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.
Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.
Author Paulus, Walter
Bikson, Marom
Minhas, Preet
Kuo, Min-Fang
Datta, Abhishek
Kuo, Hsiao-I.
Nitsche, Michael A.
Author_xml – sequence: 1
  givenname: Hsiao-I.
  surname: Kuo
  fullname: Kuo, Hsiao-I.
  organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany
– sequence: 2
  givenname: Marom
  surname: Bikson
  fullname: Bikson, Marom
  organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
– sequence: 3
  givenname: Abhishek
  surname: Datta
  fullname: Datta, Abhishek
  organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
– sequence: 4
  givenname: Preet
  surname: Minhas
  fullname: Minhas, Preet
  organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
– sequence: 5
  givenname: Walter
  surname: Paulus
  fullname: Paulus, Walter
  organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany
– sequence: 6
  givenname: Min-Fang
  surname: Kuo
  fullname: Kuo, Min-Fang
  organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany
– sequence: 7
  givenname: Michael A.
  surname: Nitsche
  fullname: Nitsche, Michael A.
  email: mnitsch1@gwdg.de
  organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23149292$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URH_gAdigLNkk2HGc2CAhVSnQShUgBiR2lse-mXrI2FM7qciTsO2zlBfDYQqLSpSVr-xzjuXz-RDtOe8AoacEFwST-sW6WIZYlJiUBRYFJvgBOiC8qfOqYdVemgVlOa_J1310GOMaYyYEbx6h_ZKSSpSiPEDfW7_ZqmDdKmt9GKxWffaxVzFNdpiyM2dGDSZbTunYXYEbrHdJopzJTu3qIj-Bzjo772bVzfXPHzfXJPs0pw0n7eJldpy9hzH47cUUre_96nf-YhjN9Bg97FQf4cnteoS-vH3zuT3Nzz-8O2uPz3NdUTHk3HS0pKZUDDc6PZpRyisQXd1Vmi0ZbaBmFVd1pxpBWE2JUBRAc8MJUMZreoSe73K3wV-OEAe5sVFD3ysHfoySUCEwqzkmSfrsVjouN2DkNtiNCpP801YSkJ1ABx9jgO6vhGA5E5FrmYjImYjEQiYiydPc8aRi1VzYEJTt73W-2jkh1XNlIcioLbiEwwbQgzTe3ut-fcet-0Qq9f8NJohrP4YEMr1fxuSRi_mvzF-FlBgTTucA8e-A_1z-C5M1zuA
CitedBy_id crossref_primary_10_3389_fbioe_2022_894131
crossref_primary_10_1016_j_neuroscience_2017_10_005
crossref_primary_10_1109_JPROC_2015_2407272
crossref_primary_10_1212_WNL_0000000000007893
crossref_primary_10_3389_fnhum_2016_00377
crossref_primary_10_1007_s11517_021_02338_6
crossref_primary_10_1162_jocn_a_01166
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_3389_fnhum_2021_747840
crossref_primary_10_3389_fnins_2019_00547
crossref_primary_10_1136_bmjopen_2021_059943
crossref_primary_10_1186_s13063_024_08699_1
crossref_primary_10_3389_fpsyg_2020_564447
crossref_primary_10_3389_fneur_2018_00825
crossref_primary_10_4236_ojpsych_2024_144019
crossref_primary_10_1049_iet_smt_2014_0220
crossref_primary_10_1088_1741_2552_ad8efb
crossref_primary_10_1016_j_neuroscience_2019_06_034
crossref_primary_10_3390_app13031992
crossref_primary_10_3389_fnins_2022_905247
crossref_primary_10_3389_fnins_2023_1189420
crossref_primary_10_1111_ejn_16173
crossref_primary_10_1016_j_clinph_2023_08_011
crossref_primary_10_3389_fnhum_2014_01043
crossref_primary_10_1016_j_clinph_2024_02_012
crossref_primary_10_1007_s00702_022_02507_3
crossref_primary_10_1007_s40473_017_0134_5
crossref_primary_10_1016_j_neuropsychologia_2014_11_021
crossref_primary_10_3390_brainsci15010028
crossref_primary_10_1186_s12984_019_0489_9
crossref_primary_10_1016_j_jpain_2022_09_010
crossref_primary_10_1016_j_neuroimage_2015_05_019
crossref_primary_10_1007_s00221_019_05599_8
crossref_primary_10_3389_fnhum_2022_959455
crossref_primary_10_1515_sjpain_2021_0187
crossref_primary_10_1016_j_brs_2019_07_010
crossref_primary_10_1097_j_pain_0000000000002187
crossref_primary_10_3389_fnbeh_2019_00224
crossref_primary_10_3389_fncel_2016_00053
crossref_primary_10_1016_j_jpain_2015_09_009
crossref_primary_10_1007_s41745_017_0058_9
crossref_primary_10_1016_j_pmr_2023_06_008
crossref_primary_10_3390_brainsci12020248
crossref_primary_10_1113_JP287085
crossref_primary_10_1080_02640414_2024_2328418
crossref_primary_10_3389_fnhum_2023_1197393
crossref_primary_10_1523_ENEURO_0394_23_2024
crossref_primary_10_1016_j_brs_2016_10_013
crossref_primary_10_1155_2018_1613402
crossref_primary_10_1038_s41598_022_08545_x
crossref_primary_10_1002_pchj_723
crossref_primary_10_3390_brainsci10080531
crossref_primary_10_1007_s10916_020_1535_7
crossref_primary_10_1016_j_brs_2017_11_001
crossref_primary_10_9758_cpn_23_1118
crossref_primary_10_1186_s13063_022_06855_z
crossref_primary_10_1051_sm_2018001
crossref_primary_10_1016_j_rehab_2024_101872
crossref_primary_10_1016_j_neuropsychologia_2023_108489
crossref_primary_10_1176_appi_focus_20210020
crossref_primary_10_1016_j_neuropsychologia_2021_107955
crossref_primary_10_1007_s10072_019_04229_z
crossref_primary_10_1038_s41598_021_87371_z
crossref_primary_10_1080_02699052_2017_1390254
crossref_primary_10_1113_JP278788
crossref_primary_10_4306_jknpa_2016_55_3_158
crossref_primary_10_1016_j_brs_2023_11_018
crossref_primary_10_1002_advs_202207251
crossref_primary_10_1016_j_tine_2017_08_001
crossref_primary_10_3389_fneur_2022_919511
crossref_primary_10_3390_brainsci13040640
crossref_primary_10_1016_j_pnpbp_2022_110521
crossref_primary_10_1016_j_clinph_2017_09_118
crossref_primary_10_1016_j_neubiorev_2021_02_035
crossref_primary_10_1097_YCT_0000000000001069
crossref_primary_10_1016_j_brs_2018_12_227
crossref_primary_10_1088_1741_2552_ac297d
crossref_primary_10_1186_s13102_023_00621_7
crossref_primary_10_3389_fnins_2017_00691
crossref_primary_10_1016_j_brs_2016_03_001
crossref_primary_10_1016_j_brs_2020_11_004
crossref_primary_10_3389_fnagi_2018_00177
crossref_primary_10_1523_ENEURO_0072_14_2015
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105928
crossref_primary_10_1002_hbm_24405
crossref_primary_10_1002_hbm_25857
crossref_primary_10_3389_fpsyt_2017_00147
crossref_primary_10_1016_j_neulet_2021_136304
crossref_primary_10_1109_ACCESS_2018_2890019
crossref_primary_10_14814_phy2_14087
crossref_primary_10_1016_j_pain_0000000000000006
crossref_primary_10_1007_s40473_014_0009_y
crossref_primary_10_3389_fnhum_2016_00394
crossref_primary_10_1016_j_ijpsycho_2024_112357
crossref_primary_10_1212_WNL_0000000000012187
crossref_primary_10_1002_hbm_23469
crossref_primary_10_1177_1059712320930753
crossref_primary_10_1002_hbm_25764
crossref_primary_10_1038_s41598_024_74029_9
crossref_primary_10_3390_bioengineering11040353
crossref_primary_10_1016_j_brs_2016_03_018
crossref_primary_10_1016_j_brs_2021_06_007
crossref_primary_10_1016_j_brainres_2021_147365
crossref_primary_10_1016_j_brs_2017_04_003
crossref_primary_10_1016_j_brs_2019_08_017
crossref_primary_10_3389_fnins_2019_00412
crossref_primary_10_1038_srep34385
crossref_primary_10_1016_j_ajp_2018_08_008
crossref_primary_10_1016_j_brs_2018_06_005
crossref_primary_10_1016_j_clinph_2017_01_004
crossref_primary_10_1016_j_brs_2018_06_004
crossref_primary_10_1186_s12993_023_00217_8
crossref_primary_10_3390_jcm11082082
crossref_primary_10_1515_teb_2024_2008
crossref_primary_10_1017_S1355617719000766
crossref_primary_10_1016_j_jns_2023_122825
crossref_primary_10_3389_fneur_2024_1462364
crossref_primary_10_1002_ana_24766
crossref_primary_10_1016_j_neulet_2021_136204
crossref_primary_10_1007_s00406_023_01666_y
crossref_primary_10_1016_j_smhs_2024_12_002
crossref_primary_10_1113_JP286004
crossref_primary_10_3389_fpsyg_2024_1479887
crossref_primary_10_1016_j_neuropsychologia_2016_01_030
crossref_primary_10_1007_s00221_018_5250_2
crossref_primary_10_1093_cercor_bhx055
crossref_primary_10_1016_j_clinph_2024_12_004
crossref_primary_10_1162_jocn_a_01449
crossref_primary_10_1016_j_brs_2015_10_006
crossref_primary_10_1523_JNEUROSCI_3120_15_2016
crossref_primary_10_1016_j_neuroimage_2014_02_015
crossref_primary_10_1186_s12984_024_01468_w
crossref_primary_10_1016_j_neuropsychologia_2015_06_021
crossref_primary_10_3390_brainsci13111604
crossref_primary_10_1093_cercor_bhx041
crossref_primary_10_3390_biomedicines12102379
crossref_primary_10_1152_jn_00896_2016
crossref_primary_10_31083_j_jin2301008
crossref_primary_10_1016_j_isci_2024_108967
crossref_primary_10_1109_TNSRE_2014_2308997
crossref_primary_10_1016_j_neuroscience_2021_10_019
crossref_primary_10_2147_JPR_S407738
crossref_primary_10_1016_j_ajp_2019_05_015
crossref_primary_10_3389_fnins_2021_671020
crossref_primary_10_1016_j_brs_2014_01_059
crossref_primary_10_1152_jn_00861_2017
crossref_primary_10_1186_s13063_021_05689_5
crossref_primary_10_1007_s00221_023_06769_5
crossref_primary_10_1016_j_compbiomed_2022_105328
crossref_primary_10_1016_j_clinph_2022_01_130
crossref_primary_10_3389_fnhum_2024_1395426
crossref_primary_10_1162_jocn_a_01664
crossref_primary_10_1371_journal_pbio_1002031
crossref_primary_10_1016_j_brs_2019_02_013
crossref_primary_10_1016_j_neulet_2018_09_047
crossref_primary_10_1038_s41598_020_76956_9
crossref_primary_10_1093_cercor_bhac485
crossref_primary_10_1093_cercor_bhz246
crossref_primary_10_3389_fpsyt_2024_1441533
crossref_primary_10_1016_j_pmip_2019_03_001
crossref_primary_10_1016_j_neulet_2016_06_056
crossref_primary_10_1111_ejn_13640
crossref_primary_10_3389_fnint_2018_00064
crossref_primary_10_1080_00140139_2022_2096262
crossref_primary_10_1016_j_brs_2016_04_015
crossref_primary_10_1371_journal_pone_0256100
crossref_primary_10_3389_fnhum_2019_00157
crossref_primary_10_1016_j_brs_2019_09_017
crossref_primary_10_1093_cercor_bhab278
crossref_primary_10_1080_02687038_2021_1959015
crossref_primary_10_3389_fnbeh_2017_00130
crossref_primary_10_1111_ejn_13653
crossref_primary_10_1016_j_medengphy_2020_09_015
crossref_primary_10_1016_j_neuropsychologia_2019_05_011
crossref_primary_10_1142_S0129065721500507
crossref_primary_10_1016_j_bbr_2022_114265
crossref_primary_10_3233_RNN_170757
crossref_primary_10_1371_journal_pone_0071607
crossref_primary_10_1186_s12888_025_06506_y
crossref_primary_10_3389_fpsyg_2021_643677
crossref_primary_10_1080_09540261_2017_1286299
crossref_primary_10_25259_ABP_20_2023
crossref_primary_10_1016_j_jad_2023_05_075
crossref_primary_10_1007_s00426_017_0846_x
crossref_primary_10_1016_j_apmr_2014_11_004
crossref_primary_10_1371_journal_pone_0141417
crossref_primary_10_1016_j_cortex_2018_09_019
crossref_primary_10_7717_peerj_17288
crossref_primary_10_3390_brainsci10050310
crossref_primary_10_1016_j_cortex_2016_11_016
crossref_primary_10_1016_j_neuropsychologia_2014_07_026
crossref_primary_10_1016_j_neuropsychologia_2016_09_017
crossref_primary_10_3389_fnhum_2021_652393
crossref_primary_10_1109_JBHI_2021_3127080
crossref_primary_10_1016_j_neuroimage_2015_06_067
crossref_primary_10_1016_j_compbiomed_2024_108084
crossref_primary_10_1016_j_bandl_2020_104840
crossref_primary_10_1097_YCO_0000000000000809
crossref_primary_10_1016_j_brs_2022_11_001
crossref_primary_10_1088_1741_2552_ac23be
crossref_primary_10_1016_j_jneumeth_2013_07_016
crossref_primary_10_1016_j_neuroimage_2023_120051
crossref_primary_10_1080_17470919_2023_2263924
crossref_primary_10_1038_s41598_023_43416_z
crossref_primary_10_3390_brainsci12010071
crossref_primary_10_1016_j_trci_2017_04_008
crossref_primary_10_1016_j_bandc_2024_106149
crossref_primary_10_1093_geronb_gbz048
crossref_primary_10_1007_s00702_015_1365_9
crossref_primary_10_3389_fnhum_2023_1327811
crossref_primary_10_1152_jn_00662_2014
crossref_primary_10_1523_JNEUROSCI_4894_14_2015
crossref_primary_10_1186_s12984_021_00901_8
crossref_primary_10_1162_jocn_a_01514
crossref_primary_10_1016_j_bandc_2019_03_005
crossref_primary_10_1016_j_neuroimage_2019_116183
crossref_primary_10_1186_s12984_024_01498_4
crossref_primary_10_1016_j_seizure_2017_03_005
crossref_primary_10_3389_fnhum_2022_842954
crossref_primary_10_1007_s10548_023_00996_3
crossref_primary_10_1038_s41593_017_0054_4
crossref_primary_10_1038_s41598_022_15226_2
crossref_primary_10_1016_j_clinph_2019_11_018
crossref_primary_10_1111_ejn_15756
crossref_primary_10_1016_j_brs_2014_02_003
crossref_primary_10_1111_psyp_14289
crossref_primary_10_1177_1545968318787916
crossref_primary_10_1111_ner_12632
crossref_primary_10_3389_fnimg_2024_1341732
crossref_primary_10_3390_brainsci10110875
crossref_primary_10_1016_j_bandc_2018_09_008
crossref_primary_10_1016_j_clinph_2015_11_012
crossref_primary_10_1016_j_bandl_2019_104655
crossref_primary_10_1162_jocn_a_01849
crossref_primary_10_3389_fneng_2014_00028
crossref_primary_10_1016_j_bpsc_2022_09_014
crossref_primary_10_1016_j_neuroimage_2019_116124
crossref_primary_10_3389_fpsyt_2022_923938
crossref_primary_10_1016_j_compbiomed_2020_103998
crossref_primary_10_1016_j_nicl_2022_103113
crossref_primary_10_1016_j_cortex_2024_05_004
crossref_primary_10_1162_jocn_a_00888
crossref_primary_10_3389_fnhum_2023_1126510
crossref_primary_10_3389_fnhum_2019_00411
crossref_primary_10_1016_j_cortex_2019_10_006
crossref_primary_10_1016_j_cortex_2018_08_012
crossref_primary_10_1007_s00221_020_05832_9
crossref_primary_10_1111_ejn_13238
crossref_primary_10_1038_s41598_020_64378_6
crossref_primary_10_1016_j_neubiorev_2015_09_010
crossref_primary_10_1016_j_neuropsychologia_2019_107242
crossref_primary_10_1080_00207454_2020_1775594
crossref_primary_10_3233_JAD_240230
crossref_primary_10_3389_fpsyg_2017_00685
crossref_primary_10_1080_09602011_2024_2314878
crossref_primary_10_1155_2024_2512796
crossref_primary_10_3233_JAD_220539
crossref_primary_10_1016_j_schres_2018_10_027
crossref_primary_10_1007_s13295_014_0056_6
crossref_primary_10_3389_fnmol_2022_853509
crossref_primary_10_1007_s00702_017_1808_6
crossref_primary_10_1016_j_brs_2023_07_052
crossref_primary_10_1002_mds_29940
crossref_primary_10_3389_fnagi_2014_00253
crossref_primary_10_1177_1545968315595286
crossref_primary_10_1016_j_mex_2024_102939
crossref_primary_10_1016_j_jenvp_2023_102111
crossref_primary_10_1109_TNSRE_2018_2890001
crossref_primary_10_3389_fpsyg_2019_00529
crossref_primary_10_1186_s12984_024_01459_x
crossref_primary_10_1519_JSC_0000000000004954
crossref_primary_10_3389_fnagi_2019_00264
crossref_primary_10_1002_jnr_25062
crossref_primary_10_1016_j_brs_2021_01_018
crossref_primary_10_1093_cercor_bhac010
crossref_primary_10_1016_j_brs_2015_05_010
crossref_primary_10_1016_j_neuropsychologia_2016_03_008
crossref_primary_10_1016_j_neuroscience_2019_03_010
crossref_primary_10_1093_scan_nsx063
crossref_primary_10_5334_pb_534
crossref_primary_10_1080_09602011_2020_1845749
crossref_primary_10_1016_j_neuroimage_2016_05_032
crossref_primary_10_1038_s41598_019_53985_7
crossref_primary_10_1007_s00221_014_4087_6
crossref_primary_10_1016_j_neuroscience_2019_11_016
crossref_primary_10_3390_biom14010071
crossref_primary_10_1093_cercor_bhaa077
crossref_primary_10_1371_journal_pone_0222620
crossref_primary_10_3389_fneur_2019_01089
crossref_primary_10_1016_j_bbr_2023_114661
crossref_primary_10_3389_fpain_2022_798056
crossref_primary_10_1002_pri_2109
crossref_primary_10_7717_peerj_3028
crossref_primary_10_1016_j_neuroimage_2025_121018
crossref_primary_10_1515_revneuro_2017_0048
crossref_primary_10_1523_JNEUROSCI_2450_16_2016
crossref_primary_10_7554_eLife_51184
crossref_primary_10_1007_s10916_019_1490_3
crossref_primary_10_3233_JAD_201091
crossref_primary_10_1016_j_clinph_2024_07_006
crossref_primary_10_1097_WNR_0000000000001413
crossref_primary_10_3389_fnhum_2024_1461417
crossref_primary_10_1016_j_neuroimage_2018_10_044
crossref_primary_10_1097_YCT_0000000000000531
crossref_primary_10_1038_s41598_020_57724_1
crossref_primary_10_1586_14737175_2015_992782
crossref_primary_10_1016_j_dcn_2018_04_010
crossref_primary_10_3389_fnins_2021_800436
crossref_primary_10_3390_brainsci10040235
crossref_primary_10_1017_S1355617724000304
crossref_primary_10_1038_s41398_021_01264_3
crossref_primary_10_1007_s12152_022_09508_9
crossref_primary_10_1113_JP282387
crossref_primary_10_1002_hbm_26181
crossref_primary_10_3389_fnhum_2020_560586
crossref_primary_10_1016_j_pnpbp_2018_11_004
crossref_primary_10_3389_fresc_2022_795737
crossref_primary_10_1186_s12984_019_0581_1
crossref_primary_10_3389_fnrgo_2023_1142182
crossref_primary_10_3390_brainsci11020188
crossref_primary_10_1007_s10339_022_01076_3
crossref_primary_10_3389_fcvm_2022_1070157
crossref_primary_10_1038_s41598_019_54621_0
crossref_primary_10_3389_fnins_2019_01181
crossref_primary_10_1007_s12264_020_00501_x
crossref_primary_10_1186_s13063_024_08157_y
crossref_primary_10_1093_cercor_bhy238
crossref_primary_10_1002_jnr_25298
crossref_primary_10_1097_j_pain_0000000000002814
crossref_primary_10_3390_biomedicines10112698
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_3389_fnins_2018_00787
crossref_primary_10_3389_fnins_2018_00427
crossref_primary_10_1027_1016_9040_a000254
crossref_primary_10_1038_s41598_018_22730_x
crossref_primary_10_1016_j_cortex_2022_08_011
crossref_primary_10_1016_j_brs_2019_03_003
crossref_primary_10_1016_j_neucli_2022_09_002
crossref_primary_10_1093_cercor_bhae226
crossref_primary_10_1186_s12938_017_0361_8
crossref_primary_10_1016_j_brs_2016_07_003
crossref_primary_10_1097_WNP_0000000000000543
crossref_primary_10_1088_1741_2560_13_3_036022
crossref_primary_10_1016_j_jneumeth_2016_09_008
crossref_primary_10_1007_s11055_021_01178_z
crossref_primary_10_1007_s41465_023_00264_z
crossref_primary_10_1016_j_brs_2019_10_004
crossref_primary_10_1016_j_brs_2015_06_018
crossref_primary_10_1016_j_neuroimage_2016_09_006
crossref_primary_10_1016_j_brs_2015_06_013
crossref_primary_10_1038_s41598_020_76533_0
crossref_primary_10_1007_s10608_019_10044_9
crossref_primary_10_1016_j_heliyon_2025_e43039
crossref_primary_10_1111_ejn_16321
crossref_primary_10_3390_jcm12103407
crossref_primary_10_1016_j_neuropsychologia_2015_02_002
crossref_primary_10_1016_j_ajp_2020_102542
crossref_primary_10_1088_1741_2552_acfa8c
crossref_primary_10_3390_ijerph19084575
crossref_primary_10_1016_j_neuroimage_2017_05_060
crossref_primary_10_1038_s41598_021_04607_8
crossref_primary_10_1002_hbm_25388
crossref_primary_10_1016_j_neuroimage_2019_116403
crossref_primary_10_1586_17434440_2016_1153968
crossref_primary_10_1152_jn_00615_2016
crossref_primary_10_1038_s41398_024_02994_w
crossref_primary_10_3758_s13415_024_01202_y
crossref_primary_10_1016_j_eplepsyres_2023_107265
crossref_primary_10_1007_s41465_024_00314_0
crossref_primary_10_3390_brainsci12040453
crossref_primary_10_1038_s41598_017_03022_2
crossref_primary_10_1162_jocn_a_00927
crossref_primary_10_1080_09602011_2021_1927761
crossref_primary_10_1002_brb3_884
crossref_primary_10_3389_fphys_2023_1263309
crossref_primary_10_1016_j_jad_2021_11_043
crossref_primary_10_1016_j_comppsych_2024_152520
crossref_primary_10_1016_j_schres_2025_03_003
crossref_primary_10_1098_rsos_181186
crossref_primary_10_1186_s13063_019_3594_y
crossref_primary_10_1016_j_brainres_2021_147282
crossref_primary_10_1016_j_brs_2015_09_002
crossref_primary_10_1038_srep40612
crossref_primary_10_1016_j_jbiomech_2024_112418
crossref_primary_10_1177_1559325816685467
crossref_primary_10_1111_ner_13342
crossref_primary_10_1016_j_bbr_2019_112073
crossref_primary_10_1186_s12984_025_01546_7
crossref_primary_10_1109_ACCESS_2022_3190410
crossref_primary_10_3390_brainsci9110324
crossref_primary_10_1016_j_jpain_2016_01_472
crossref_primary_10_1080_09602011_2020_1805335
crossref_primary_10_1016_j_neubiorev_2016_02_016
crossref_primary_10_1162_netn_a_00097
crossref_primary_10_3389_fnins_2020_00381
crossref_primary_10_1016_j_neuroscience_2020_12_007
crossref_primary_10_1136_bmjopen_2021_055038
crossref_primary_10_1097_YCT_0000000000000756
crossref_primary_10_58558_jcd_2022_1_1_13
crossref_primary_10_1007_s00221_016_4667_8
crossref_primary_10_1371_journal_pone_0172714
crossref_primary_10_7554_eLife_32740
crossref_primary_10_1016_j_clinph_2022_08_015
crossref_primary_10_3389_fpsyg_2017_00952
crossref_primary_10_3390_biomedicines12112635
crossref_primary_10_1093_cercor_bhae395
crossref_primary_10_1038_s41598_021_92670_6
crossref_primary_10_1016_j_clinph_2015_12_020
crossref_primary_10_1016_j_brs_2017_01_001
crossref_primary_10_1016_j_jneumeth_2022_109485
crossref_primary_10_1371_journal_pone_0102834
crossref_primary_10_3390_nano11081962
crossref_primary_10_1016_j_brainres_2019_01_003
crossref_primary_10_1038_s41598_024_57917_y
crossref_primary_10_3233_RNN_190922
crossref_primary_10_1038_s41597_021_01046_y
crossref_primary_10_3389_fnins_2023_1107116
crossref_primary_10_1186_s12984_021_00899_z
crossref_primary_10_1080_17434440_2020_1816168
crossref_primary_10_33549_physiolres_934361
crossref_primary_10_3389_fnhum_2014_00665
crossref_primary_10_3389_fpsyt_2016_00087
crossref_primary_10_1093_cercor_bhad070
crossref_primary_10_3389_fpsyt_2023_1140361
crossref_primary_10_1113_JP272738
crossref_primary_10_1093_pm_pnac135
crossref_primary_10_1155_2021_8966584
crossref_primary_10_1016_j_neuropsychologia_2020_107447
crossref_primary_10_1016_j_neures_2020_06_002
crossref_primary_10_1371_journal_pone_0300779
crossref_primary_10_1177_1545968314567152
crossref_primary_10_3389_fncel_2022_818703
crossref_primary_10_3390_brainsci12070912
crossref_primary_10_1016_j_neuroimage_2017_03_001
crossref_primary_10_3233_RNN_211210
crossref_primary_10_1016_j_cortex_2018_11_022
crossref_primary_10_1038_s41598_022_06570_4
crossref_primary_10_1016_j_neures_2022_01_006
crossref_primary_10_1111_pcn_13745
crossref_primary_10_1162_jocn_a_02270
crossref_primary_10_1016_j_neuroscience_2020_07_017
crossref_primary_10_1016_j_brs_2014_07_033
crossref_primary_10_1016_j_jneumeth_2020_108957
crossref_primary_10_3390_brainsci14121162
crossref_primary_10_3390_brainsci14121284
crossref_primary_10_1177_20494637221150333
crossref_primary_10_3389_fnins_2024_1389651
crossref_primary_10_1002_hbm_24398
crossref_primary_10_1088_0031_9155_61_12_4506
crossref_primary_10_1016_j_brs_2018_04_022
crossref_primary_10_1016_j_brs_2023_01_1672
crossref_primary_10_1016_j_jpain_2023_11_001
crossref_primary_10_1515_s13295_014_0056_6
crossref_primary_10_3389_fnins_2023_1122406
crossref_primary_10_3389_fnins_2017_00391
crossref_primary_10_1016_S2215_0366_15_00056_5
crossref_primary_10_3389_fnhum_2020_583730
crossref_primary_10_1002_hbm_70001
crossref_primary_10_3389_fneur_2017_00029
crossref_primary_10_1111_ejn_12908
crossref_primary_10_1111_ner_12320
Cites_doi 10.1152/jn.01312.2006
10.1088/1741-2560/5/2/007
10.1212/WNL.57.10.1899
10.1016/j.nurx.2006.07.008
10.1016/j.brs.2009.03.005
10.1007/s00221-011-2610-6
10.1097/00019052-199310000-00007
10.1111/j.1460-9568.2005.04233.x
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1111/j.1468-1331.2008.02270.x
10.1016/j.brs.2009.03.007
10.1111/j.0953-816X.2004.03398.x
10.1016/S1388-2457(02)00412-1
10.1088/1741-2560/8/6/066017
10.1016/j.brs.2008.06.004
10.1016/S1474-4422(07)70032-7
10.1016/j.jneumeth.2010.05.007
10.1016/j.clinph.2010.05.005
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brs.2012.09.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 648
ExternalDocumentID 23149292
10_1016_j_brs_2012_09_010
S1935861X12001830
1_s2_0_S1935861X12001830
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c439t-8df323d2a507c10153384e9f6f4c5b537e6548a6fa79156319a3eec8d81e35863
IEDL.DBID .~1
ISSN 1935-861X
1876-4754
IngestDate Fri Jul 11 00:49:39 EDT 2025
Thu Apr 03 06:53:50 EDT 2025
Tue Jul 01 01:50:13 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:27:22 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Aug 26 16:34:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Transcranial direct current stimulation
Motor cortex
High definition tDCS
Plasticity
Language English
License Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-8df323d2a507c10153384e9f6f4c5b537e6548a6fa79156319a3eec8d81e35863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23149292
PQID 1399056801
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1399056801
pubmed_primary_23149292
crossref_primary_10_1016_j_brs_2012_09_010
crossref_citationtrail_10_1016_j_brs_2012_09_010
elsevier_sciencedirect_doi_10_1016_j_brs_2012_09_010
elsevier_clinicalkeyesjournals_1_s2_0_S1935861X12001830
elsevier_clinicalkey_doi_10_1016_j_brs_2012_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-00
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Datta, Elwassif, Battaglia, Bikson (bib12) 2008; 5
Nitsche, Paulus (bib3) 2001; 57
Rothwell (bib13) 1993; 6
Lang, Siebner, Ward, Lee, Nitsche, Paulus (bib7) 2005; 22
Nitsche, Doemkes, Karakose, Antal, Liebetanz, Lang (bib10) 2007; 97
Webster, Celnik, Cohen (bib5) 2006; 3
Fregni, Freedman, Pascual-Leone (bib6) 2007; 6
Minhas, Bansal, Patel, Ho, Diaz, Datta (bib11) 2010; 190
Faria, Hallett, Miranda (bib9) 2011; 8
Boggio, Zaghi, Lopes, Fregni (bib16) 2008; 15
Nitsche, Paulus (bib2) 2000; 527
Bachmann, Muschinsky, Nitsche, Rolke, Magerl, Treede (bib15) 2010; 121
Beck, Hallett (bib18) 2011; 210
Datta, Bansal, Diaz, Patel, Reato, Bikson (bib8) 2009; 2
Radman, Ramos, Brumberg, Bikson (bib17) 2009; 2
Nitsche, Liebetanz, Schlitterlau, Henschke, Fricke, Frommann (bib19) 2004; 19
Borckardt, Bikson, Frohman, Reeves, Datta, Bansal (bib14) 2012; 13
Nitsche, Cohen, Wassermann, Priori, Lang, Antal (bib4) 2008; 1
Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib1) 2003; 114
Lang (10.1016/j.brs.2012.09.010_bib7) 2005; 22
Bachmann (10.1016/j.brs.2012.09.010_bib15) 2010; 121
Datta (10.1016/j.brs.2012.09.010_bib8) 2009; 2
Beck (10.1016/j.brs.2012.09.010_bib18) 2011; 210
Webster (10.1016/j.brs.2012.09.010_bib5) 2006; 3
Nitsche (10.1016/j.brs.2012.09.010_bib10) 2007; 97
Minhas (10.1016/j.brs.2012.09.010_bib11) 2010; 190
Nitsche (10.1016/j.brs.2012.09.010_bib2) 2000; 527
Nitsche (10.1016/j.brs.2012.09.010_bib3) 2001; 57
Datta (10.1016/j.brs.2012.09.010_bib12) 2008; 5
Rothwell (10.1016/j.brs.2012.09.010_bib13) 1993; 6
Borckardt (10.1016/j.brs.2012.09.010_bib14) 2012; 13
Faria (10.1016/j.brs.2012.09.010_bib9) 2011; 8
Nitsche (10.1016/j.brs.2012.09.010_bib1) 2003; 114
Radman (10.1016/j.brs.2012.09.010_bib17) 2009; 2
Boggio (10.1016/j.brs.2012.09.010_bib16) 2008; 15
Nitsche (10.1016/j.brs.2012.09.010_bib4) 2008; 1
Nitsche (10.1016/j.brs.2012.09.010_bib19) 2004; 19
Fregni (10.1016/j.brs.2012.09.010_bib6) 2007; 6
References_xml – volume: 6
  start-page: 715
  year: 1993
  end-page: 723
  ident: bib13
  article-title: Evoked potentials, magnetic stimulation studies, and event-related potentials
  publication-title: Curr Opin Neurol
– volume: 1
  start-page: 206
  year: 2008
  end-page: 223
  ident: bib4
  article-title: Transcranial direct current stimulation: State of the art 2008.
  publication-title: Brain Stimul.
– volume: 3
  start-page: 474
  year: 2006
  end-page: 481
  ident: bib5
  article-title: Noninvasive brain stimulation in stroke rehabilitation. NeuroRx : the journal of the American Society for Experimental.
  publication-title: NeuroTherapeutics.
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: bib8
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 190
  start-page: 188
  year: 2010
  end-page: 197
  ident: bib11
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS.
  publication-title: J Neurosci Methods
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib2
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
– volume: 13
  start-page: 112
  year: 2012
  end-page: 120
  ident: bib14
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J Pain
– volume: 2
  start-page: 215
  year: 2009
  end-page: 228
  ident: bib17
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
– volume: 210
  start-page: 165
  year: 2011
  end-page: 172
  ident: bib18
  article-title: Surround inhibition in the motor system
  publication-title: Exp Brain Res
– volume: 97
  start-page: 3109
  year: 2007
  end-page: 3117
  ident: bib10
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J Neurophysiol
– volume: 121
  start-page: 2083
  year: 2010
  end-page: 2089
  ident: bib15
  article-title: Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts
  publication-title: Clin Neurophysiol
– volume: 8
  start-page: 066017
  year: 2011
  ident: bib9
  article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS
  publication-title: J Neural Eng
– volume: 57
  start-page: 1899
  year: 2001
  end-page: 1901
  ident: bib3
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 5
  start-page: 163
  year: 2008
  end-page: 174
  ident: bib12
  article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
  publication-title: J Neural Eng
– volume: 114
  start-page: 600
  year: 2003
  end-page: 604
  ident: bib1
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin Neurophysiol
– volume: 6
  start-page: 188
  year: 2007
  end-page: 191
  ident: bib6
  article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques
  publication-title: Lancet Neurol
– volume: 19
  start-page: 2720
  year: 2004
  end-page: 2726
  ident: bib19
  article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans
  publication-title: Eur J Neurosci
– volume: 22
  start-page: 495
  year: 2005
  end-page: 504
  ident: bib7
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur J Neurosci
– volume: 15
  start-page: 1124
  year: 2008
  end-page: 1130
  ident: bib16
  article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers
  publication-title: Eur J Neurol
– volume: 97
  start-page: 3109
  issue: 4
  year: 2007
  ident: 10.1016/j.brs.2012.09.010_bib10
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01312.2006
– volume: 5
  start-page: 163
  issue: 2
  year: 2008
  ident: 10.1016/j.brs.2012.09.010_bib12
  article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/2/007
– volume: 57
  start-page: 1899
  issue: 10
  year: 2001
  ident: 10.1016/j.brs.2012.09.010_bib3
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.57.10.1899
– volume: 3
  start-page: 474
  issue: 4
  year: 2006
  ident: 10.1016/j.brs.2012.09.010_bib5
  article-title: Noninvasive brain stimulation in stroke rehabilitation. NeuroRx : the journal of the American Society for Experimental.
  publication-title: NeuroTherapeutics.
  doi: 10.1016/j.nurx.2006.07.008
– volume: 2
  start-page: 201
  issue: 4
  year: 2009
  ident: 10.1016/j.brs.2012.09.010_bib8
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 13
  start-page: 112
  issue: 2
  year: 2012
  ident: 10.1016/j.brs.2012.09.010_bib14
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J Pain
– volume: 210
  start-page: 165
  issue: 2
  year: 2011
  ident: 10.1016/j.brs.2012.09.010_bib18
  article-title: Surround inhibition in the motor system
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-011-2610-6
– volume: 6
  start-page: 715
  issue: 5
  year: 1993
  ident: 10.1016/j.brs.2012.09.010_bib13
  article-title: Evoked potentials, magnetic stimulation studies, and event-related potentials
  publication-title: Curr Opin Neurol
  doi: 10.1097/00019052-199310000-00007
– volume: 22
  start-page: 495
  issue: 2
  year: 2005
  ident: 10.1016/j.brs.2012.09.010_bib7
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04233.x
– volume: 527
  start-page: 633
  issue: Pt 3
  year: 2000
  ident: 10.1016/j.brs.2012.09.010_bib2
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 15
  start-page: 1124
  issue: 10
  year: 2008
  ident: 10.1016/j.brs.2012.09.010_bib16
  article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2008.02270.x
– volume: 2
  start-page: 215
  issue: 4
  year: 2009
  ident: 10.1016/j.brs.2012.09.010_bib17
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.007
– volume: 19
  start-page: 2720
  issue: 10
  year: 2004
  ident: 10.1016/j.brs.2012.09.010_bib19
  article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans
  publication-title: Eur J Neurosci
  doi: 10.1111/j.0953-816X.2004.03398.x
– volume: 114
  start-page: 600
  issue: 4
  year: 2003
  ident: 10.1016/j.brs.2012.09.010_bib1
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00412-1
– volume: 8
  start-page: 066017
  issue: 6
  year: 2011
  ident: 10.1016/j.brs.2012.09.010_bib9
  article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/6/066017
– volume: 1
  start-page: 206
  issue: 3
  year: 2008
  ident: 10.1016/j.brs.2012.09.010_bib4
  article-title: Transcranial direct current stimulation: State of the art 2008.
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2008.06.004
– volume: 6
  start-page: 188
  issue: 2
  year: 2007
  ident: 10.1016/j.brs.2012.09.010_bib6
  article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70032-7
– volume: 190
  start-page: 188
  issue: 2
  year: 2010
  ident: 10.1016/j.brs.2012.09.010_bib11
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS.
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.05.007
– volume: 121
  start-page: 2083
  issue: 12
  year: 2010
  ident: 10.1016/j.brs.2012.09.010_bib15
  article-title: Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.05.005
SSID ssj0059987
Score 2.5201764
Snippet Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of...
Abstract Background Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 644
SubjectTerms Adult
Brain Mapping
Electric Stimulation - methods
Electrodes
Evoked Potentials, Motor - physiology
Female
High definition tDCS
Human
Humans
Male
Motor cortex
Motor Cortex - physiology
Neurology
Neuronal Plasticity - physiology
Neurons - physiology
Plasticity
Transcranial direct current stimulation
Title Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X12001830
https://www.clinicalkey.es/playcontent/1-s2.0-S1935861X12001830
https://dx.doi.org/10.1016/j.brs.2012.09.010
https://www.ncbi.nlm.nih.gov/pubmed/23149292
https://www.proquest.com/docview/1399056801
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heuGCaHltH8iVEAeksHnYefS2CkVbEAjxkPZmOY6DFrXZ1W6Qupf-jV73t9A_1hkn2QpBQeKa2HHsGY-_sT_PAOxGXBQRjz0n5zpBB0VFTsK166hQFwiQRa5t7M7Ts7B_zY8HYrAEaXsXhmiVje2vbbq11s2TbjOa3fFw2L306Agv9AYe0YLigPx2il6HOn3wa0HzEOhORPXJsnCodHuyaTle2YQidtN2YHLg0iXap9em_2FPuwYdrcFqAx5Zr_6_t7Bkynew3ivRcf4xY3vM0jntPvk6_EzrDIPlDUtHE7tjzc4RKhOLupoxStmBnWfZDF__I54zVeaMuB_OoSmGpeVzMX4___P7fu6xC_padZhefmE9ZsN6jNsW7feJlDjbgOujr1dp32nSLDga0UjlxHkR-EHuK4SGGgcGAWDMTVKEBdciE0FkKLe8CgsVJejt4ZxVgTE6zmPPkASCTVguR6XZBoaiDg06iChhzZUQGVoDREA6C6yw3A647QBL3cQgp1QY32VLNruVKBNJMpFuIlEmHdhfVBnXATieK-y3UpPtzVK0hRKXh-cqRU9VMtNmNk-lJ6dYWD7SuA7wRc0HSvtSg59bhZI4memERpVmdIcN4WAhIkXU0IGtWtMWnUYgzhHL-u9f1-gHWPFtJg9iGn-E5WpyZz4hnqqyHTthduBN79tJ_-wvcZQeZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V2wNcUKE8tkAxEuKAFDYPO4_eVinVlrYrRFtpb5bjOGgRZFe7qcT-kl77W8of64wTL0KUInFNMnbsscff2J9nAN4kXFQJTwOv5DpDB0UlXsa176lYVwiQRalt7M6TcTw65x8nYrIBubsLQ7TKzva3Nt1a6-7JoOvNwXw6HZwGdIQXB5OAaEFphH77JkWn4j3YHB4ejcbOIAv0KJL2cFl4JOAONy3Nq1hQ0G7aEcze-3SP9vbl6W_w0y5DB1vwoMOPbNj-4kPYMPUj2B7W6Dt_X7G3zDI67Vb5NvzI2ySD9ReWzxZ205p9QrRMROpmxShrB7afFSt8_Yt7zlRdMqJ_ePummtaW0sX49dXPy-urgH2m0pr9_HSPDZmN7DF3NdryiZe4egznBx_O8pHXZVrwNAKSxkvLKgqjMlSIDjV2DGLAlJusiiuuRSGixFB6eRVXKsnQ4cNpqyJjdFqmgSElRE-gV89q8wwYajs26COikjVXQhRoEBAE6SKy-vL74LsOlroLQ07ZML5Jxzf7KlEnknQi_UyiTvrwbi0yb2Nw3PVx6LQm3eVSNIcSV4i7hJLbhMyym9BLGcglfiz_GHR94GvJ38btvyp87QaUxPlMhzSqNrMLrAg7C0EpAoc-PG1H2rrRiMU5wtlw5_8qfQX3Rmcnx_L4cHz0HO6HNrEHEY9fQK9ZXJiXCK-aYrebPjcwWCEX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+cortical+plasticity+induced+by+conventional+and+high-definition+4+%C3%97+1+ring+tDCS%3A+a+neurophysiological+study&rft.jtitle=Brain+stimulation&rft.au=Kuo%2C+Hsiao-I&rft.au=Bikson%2C+Marom&rft.au=Datta%2C+Abhishek&rft.au=Minhas%2C+Preet&rft.date=2013-07-01&rft.eissn=1876-4754&rft.volume=6&rft.issue=4&rft.spage=644&rft_id=info:doi/10.1016%2Fj.brs.2012.09.010&rft_id=info%3Apmid%2F23149292&rft.externalDocID=23149292
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1935861X%2FS1935861X13X00051%2Fcov150h.gif