Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study
Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of...
Saved in:
Published in | Brain stimulation Vol. 6; no. 4; pp. 644 - 648 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1935-861X 1876-4754 1876-4754 |
DOI | 10.1016/j.brs.2012.09.010 |
Cover
Loading…
Abstract | Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.
We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.
tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.
Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.
The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly. |
---|---|
AbstractList | Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.
We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.
tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.
Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.
The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly. Abstract Background Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm2 ) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. Objective We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. Methods tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Results Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. Conclusion The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly. Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.BACKGROUNDTranscranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring.We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.OBJECTIVEWe aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability.tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.METHODStDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS.Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.RESULTSExcitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS.The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly.CONCLUSIONThe results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly. Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS protocol was proposed for more focal stimulation according to the results of computational modeling. HD tDCS utilizes small disc electrodes deployed in 4 × 1 ring configuration whereby the physiological effects of the induced electric field are thought to be grossly constrained to the cortical area circumscribed by the ring. We aim to compare the physiological effects of both tDCS electrode arrangements on motor cortex excitability. tDCS was applied with 2 mA for 10 min. Fourteen healthy subjects participated, and motor cortex excitability was monitored by transcranial magnetic stimulation (TMS) before and after tDCS. Excitability enhancement following anodal and a respective reduction after cathodal stimulation occurred in both, conventional and HD tDCS. However, the plastic changes showed a more delayed peak at 30 min and longer lasting after-effects for more than 2 h after HD tDCS for both polarities, as compared to conventional tDCS. The results show that this new electrode arrangement is efficient for the induction of neuroplasticity in the primary motor cortex. The pattern of aftereffects might be compatible with the concept of GABA-mediated surround inhibition, which should be explored in future studies directly. |
Author | Paulus, Walter Bikson, Marom Minhas, Preet Kuo, Min-Fang Datta, Abhishek Kuo, Hsiao-I. Nitsche, Michael A. |
Author_xml | – sequence: 1 givenname: Hsiao-I. surname: Kuo fullname: Kuo, Hsiao-I. organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany – sequence: 2 givenname: Marom surname: Bikson fullname: Bikson, Marom organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA – sequence: 3 givenname: Abhishek surname: Datta fullname: Datta, Abhishek organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA – sequence: 4 givenname: Preet surname: Minhas fullname: Minhas, Preet organization: Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA – sequence: 5 givenname: Walter surname: Paulus fullname: Paulus, Walter organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany – sequence: 6 givenname: Min-Fang surname: Kuo fullname: Kuo, Min-Fang organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany – sequence: 7 givenname: Michael A. surname: Nitsche fullname: Nitsche, Michael A. email: mnitsch1@gwdg.de organization: Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23149292$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URH_gAdigLNkk2HGc2CAhVSnQShUgBiR2lse-mXrI2FM7qciTsO2zlBfDYQqLSpSVr-xzjuXz-RDtOe8AoacEFwST-sW6WIZYlJiUBRYFJvgBOiC8qfOqYdVemgVlOa_J1310GOMaYyYEbx6h_ZKSSpSiPEDfW7_ZqmDdKmt9GKxWffaxVzFNdpiyM2dGDSZbTunYXYEbrHdJopzJTu3qIj-Bzjo772bVzfXPHzfXJPs0pw0n7eJldpy9hzH47cUUre_96nf-YhjN9Bg97FQf4cnteoS-vH3zuT3Nzz-8O2uPz3NdUTHk3HS0pKZUDDc6PZpRyisQXd1Vmi0ZbaBmFVd1pxpBWE2JUBRAc8MJUMZreoSe73K3wV-OEAe5sVFD3ysHfoySUCEwqzkmSfrsVjouN2DkNtiNCpP801YSkJ1ABx9jgO6vhGA5E5FrmYjImYjEQiYiydPc8aRi1VzYEJTt73W-2jkh1XNlIcioLbiEwwbQgzTe3ut-fcet-0Qq9f8NJohrP4YEMr1fxuSRi_mvzF-FlBgTTucA8e-A_1z-C5M1zuA |
CitedBy_id | crossref_primary_10_3389_fbioe_2022_894131 crossref_primary_10_1016_j_neuroscience_2017_10_005 crossref_primary_10_1109_JPROC_2015_2407272 crossref_primary_10_1212_WNL_0000000000007893 crossref_primary_10_3389_fnhum_2016_00377 crossref_primary_10_1007_s11517_021_02338_6 crossref_primary_10_1162_jocn_a_01166 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_3389_fnhum_2021_747840 crossref_primary_10_3389_fnins_2019_00547 crossref_primary_10_1136_bmjopen_2021_059943 crossref_primary_10_1186_s13063_024_08699_1 crossref_primary_10_3389_fpsyg_2020_564447 crossref_primary_10_3389_fneur_2018_00825 crossref_primary_10_4236_ojpsych_2024_144019 crossref_primary_10_1049_iet_smt_2014_0220 crossref_primary_10_1088_1741_2552_ad8efb crossref_primary_10_1016_j_neuroscience_2019_06_034 crossref_primary_10_3390_app13031992 crossref_primary_10_3389_fnins_2022_905247 crossref_primary_10_3389_fnins_2023_1189420 crossref_primary_10_1111_ejn_16173 crossref_primary_10_1016_j_clinph_2023_08_011 crossref_primary_10_3389_fnhum_2014_01043 crossref_primary_10_1016_j_clinph_2024_02_012 crossref_primary_10_1007_s00702_022_02507_3 crossref_primary_10_1007_s40473_017_0134_5 crossref_primary_10_1016_j_neuropsychologia_2014_11_021 crossref_primary_10_3390_brainsci15010028 crossref_primary_10_1186_s12984_019_0489_9 crossref_primary_10_1016_j_jpain_2022_09_010 crossref_primary_10_1016_j_neuroimage_2015_05_019 crossref_primary_10_1007_s00221_019_05599_8 crossref_primary_10_3389_fnhum_2022_959455 crossref_primary_10_1515_sjpain_2021_0187 crossref_primary_10_1016_j_brs_2019_07_010 crossref_primary_10_1097_j_pain_0000000000002187 crossref_primary_10_3389_fnbeh_2019_00224 crossref_primary_10_3389_fncel_2016_00053 crossref_primary_10_1016_j_jpain_2015_09_009 crossref_primary_10_1007_s41745_017_0058_9 crossref_primary_10_1016_j_pmr_2023_06_008 crossref_primary_10_3390_brainsci12020248 crossref_primary_10_1113_JP287085 crossref_primary_10_1080_02640414_2024_2328418 crossref_primary_10_3389_fnhum_2023_1197393 crossref_primary_10_1523_ENEURO_0394_23_2024 crossref_primary_10_1016_j_brs_2016_10_013 crossref_primary_10_1155_2018_1613402 crossref_primary_10_1038_s41598_022_08545_x crossref_primary_10_1002_pchj_723 crossref_primary_10_3390_brainsci10080531 crossref_primary_10_1007_s10916_020_1535_7 crossref_primary_10_1016_j_brs_2017_11_001 crossref_primary_10_9758_cpn_23_1118 crossref_primary_10_1186_s13063_022_06855_z crossref_primary_10_1051_sm_2018001 crossref_primary_10_1016_j_rehab_2024_101872 crossref_primary_10_1016_j_neuropsychologia_2023_108489 crossref_primary_10_1176_appi_focus_20210020 crossref_primary_10_1016_j_neuropsychologia_2021_107955 crossref_primary_10_1007_s10072_019_04229_z crossref_primary_10_1038_s41598_021_87371_z crossref_primary_10_1080_02699052_2017_1390254 crossref_primary_10_1113_JP278788 crossref_primary_10_4306_jknpa_2016_55_3_158 crossref_primary_10_1016_j_brs_2023_11_018 crossref_primary_10_1002_advs_202207251 crossref_primary_10_1016_j_tine_2017_08_001 crossref_primary_10_3389_fneur_2022_919511 crossref_primary_10_3390_brainsci13040640 crossref_primary_10_1016_j_pnpbp_2022_110521 crossref_primary_10_1016_j_clinph_2017_09_118 crossref_primary_10_1016_j_neubiorev_2021_02_035 crossref_primary_10_1097_YCT_0000000000001069 crossref_primary_10_1016_j_brs_2018_12_227 crossref_primary_10_1088_1741_2552_ac297d crossref_primary_10_1186_s13102_023_00621_7 crossref_primary_10_3389_fnins_2017_00691 crossref_primary_10_1016_j_brs_2016_03_001 crossref_primary_10_1016_j_brs_2020_11_004 crossref_primary_10_3389_fnagi_2018_00177 crossref_primary_10_1523_ENEURO_0072_14_2015 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105928 crossref_primary_10_1002_hbm_24405 crossref_primary_10_1002_hbm_25857 crossref_primary_10_3389_fpsyt_2017_00147 crossref_primary_10_1016_j_neulet_2021_136304 crossref_primary_10_1109_ACCESS_2018_2890019 crossref_primary_10_14814_phy2_14087 crossref_primary_10_1016_j_pain_0000000000000006 crossref_primary_10_1007_s40473_014_0009_y crossref_primary_10_3389_fnhum_2016_00394 crossref_primary_10_1016_j_ijpsycho_2024_112357 crossref_primary_10_1212_WNL_0000000000012187 crossref_primary_10_1002_hbm_23469 crossref_primary_10_1177_1059712320930753 crossref_primary_10_1002_hbm_25764 crossref_primary_10_1038_s41598_024_74029_9 crossref_primary_10_3390_bioengineering11040353 crossref_primary_10_1016_j_brs_2016_03_018 crossref_primary_10_1016_j_brs_2021_06_007 crossref_primary_10_1016_j_brainres_2021_147365 crossref_primary_10_1016_j_brs_2017_04_003 crossref_primary_10_1016_j_brs_2019_08_017 crossref_primary_10_3389_fnins_2019_00412 crossref_primary_10_1038_srep34385 crossref_primary_10_1016_j_ajp_2018_08_008 crossref_primary_10_1016_j_brs_2018_06_005 crossref_primary_10_1016_j_clinph_2017_01_004 crossref_primary_10_1016_j_brs_2018_06_004 crossref_primary_10_1186_s12993_023_00217_8 crossref_primary_10_3390_jcm11082082 crossref_primary_10_1515_teb_2024_2008 crossref_primary_10_1017_S1355617719000766 crossref_primary_10_1016_j_jns_2023_122825 crossref_primary_10_3389_fneur_2024_1462364 crossref_primary_10_1002_ana_24766 crossref_primary_10_1016_j_neulet_2021_136204 crossref_primary_10_1007_s00406_023_01666_y crossref_primary_10_1016_j_smhs_2024_12_002 crossref_primary_10_1113_JP286004 crossref_primary_10_3389_fpsyg_2024_1479887 crossref_primary_10_1016_j_neuropsychologia_2016_01_030 crossref_primary_10_1007_s00221_018_5250_2 crossref_primary_10_1093_cercor_bhx055 crossref_primary_10_1016_j_clinph_2024_12_004 crossref_primary_10_1162_jocn_a_01449 crossref_primary_10_1016_j_brs_2015_10_006 crossref_primary_10_1523_JNEUROSCI_3120_15_2016 crossref_primary_10_1016_j_neuroimage_2014_02_015 crossref_primary_10_1186_s12984_024_01468_w crossref_primary_10_1016_j_neuropsychologia_2015_06_021 crossref_primary_10_3390_brainsci13111604 crossref_primary_10_1093_cercor_bhx041 crossref_primary_10_3390_biomedicines12102379 crossref_primary_10_1152_jn_00896_2016 crossref_primary_10_31083_j_jin2301008 crossref_primary_10_1016_j_isci_2024_108967 crossref_primary_10_1109_TNSRE_2014_2308997 crossref_primary_10_1016_j_neuroscience_2021_10_019 crossref_primary_10_2147_JPR_S407738 crossref_primary_10_1016_j_ajp_2019_05_015 crossref_primary_10_3389_fnins_2021_671020 crossref_primary_10_1016_j_brs_2014_01_059 crossref_primary_10_1152_jn_00861_2017 crossref_primary_10_1186_s13063_021_05689_5 crossref_primary_10_1007_s00221_023_06769_5 crossref_primary_10_1016_j_compbiomed_2022_105328 crossref_primary_10_1016_j_clinph_2022_01_130 crossref_primary_10_3389_fnhum_2024_1395426 crossref_primary_10_1162_jocn_a_01664 crossref_primary_10_1371_journal_pbio_1002031 crossref_primary_10_1016_j_brs_2019_02_013 crossref_primary_10_1016_j_neulet_2018_09_047 crossref_primary_10_1038_s41598_020_76956_9 crossref_primary_10_1093_cercor_bhac485 crossref_primary_10_1093_cercor_bhz246 crossref_primary_10_3389_fpsyt_2024_1441533 crossref_primary_10_1016_j_pmip_2019_03_001 crossref_primary_10_1016_j_neulet_2016_06_056 crossref_primary_10_1111_ejn_13640 crossref_primary_10_3389_fnint_2018_00064 crossref_primary_10_1080_00140139_2022_2096262 crossref_primary_10_1016_j_brs_2016_04_015 crossref_primary_10_1371_journal_pone_0256100 crossref_primary_10_3389_fnhum_2019_00157 crossref_primary_10_1016_j_brs_2019_09_017 crossref_primary_10_1093_cercor_bhab278 crossref_primary_10_1080_02687038_2021_1959015 crossref_primary_10_3389_fnbeh_2017_00130 crossref_primary_10_1111_ejn_13653 crossref_primary_10_1016_j_medengphy_2020_09_015 crossref_primary_10_1016_j_neuropsychologia_2019_05_011 crossref_primary_10_1142_S0129065721500507 crossref_primary_10_1016_j_bbr_2022_114265 crossref_primary_10_3233_RNN_170757 crossref_primary_10_1371_journal_pone_0071607 crossref_primary_10_1186_s12888_025_06506_y crossref_primary_10_3389_fpsyg_2021_643677 crossref_primary_10_1080_09540261_2017_1286299 crossref_primary_10_25259_ABP_20_2023 crossref_primary_10_1016_j_jad_2023_05_075 crossref_primary_10_1007_s00426_017_0846_x crossref_primary_10_1016_j_apmr_2014_11_004 crossref_primary_10_1371_journal_pone_0141417 crossref_primary_10_1016_j_cortex_2018_09_019 crossref_primary_10_7717_peerj_17288 crossref_primary_10_3390_brainsci10050310 crossref_primary_10_1016_j_cortex_2016_11_016 crossref_primary_10_1016_j_neuropsychologia_2014_07_026 crossref_primary_10_1016_j_neuropsychologia_2016_09_017 crossref_primary_10_3389_fnhum_2021_652393 crossref_primary_10_1109_JBHI_2021_3127080 crossref_primary_10_1016_j_neuroimage_2015_06_067 crossref_primary_10_1016_j_compbiomed_2024_108084 crossref_primary_10_1016_j_bandl_2020_104840 crossref_primary_10_1097_YCO_0000000000000809 crossref_primary_10_1016_j_brs_2022_11_001 crossref_primary_10_1088_1741_2552_ac23be crossref_primary_10_1016_j_jneumeth_2013_07_016 crossref_primary_10_1016_j_neuroimage_2023_120051 crossref_primary_10_1080_17470919_2023_2263924 crossref_primary_10_1038_s41598_023_43416_z crossref_primary_10_3390_brainsci12010071 crossref_primary_10_1016_j_trci_2017_04_008 crossref_primary_10_1016_j_bandc_2024_106149 crossref_primary_10_1093_geronb_gbz048 crossref_primary_10_1007_s00702_015_1365_9 crossref_primary_10_3389_fnhum_2023_1327811 crossref_primary_10_1152_jn_00662_2014 crossref_primary_10_1523_JNEUROSCI_4894_14_2015 crossref_primary_10_1186_s12984_021_00901_8 crossref_primary_10_1162_jocn_a_01514 crossref_primary_10_1016_j_bandc_2019_03_005 crossref_primary_10_1016_j_neuroimage_2019_116183 crossref_primary_10_1186_s12984_024_01498_4 crossref_primary_10_1016_j_seizure_2017_03_005 crossref_primary_10_3389_fnhum_2022_842954 crossref_primary_10_1007_s10548_023_00996_3 crossref_primary_10_1038_s41593_017_0054_4 crossref_primary_10_1038_s41598_022_15226_2 crossref_primary_10_1016_j_clinph_2019_11_018 crossref_primary_10_1111_ejn_15756 crossref_primary_10_1016_j_brs_2014_02_003 crossref_primary_10_1111_psyp_14289 crossref_primary_10_1177_1545968318787916 crossref_primary_10_1111_ner_12632 crossref_primary_10_3389_fnimg_2024_1341732 crossref_primary_10_3390_brainsci10110875 crossref_primary_10_1016_j_bandc_2018_09_008 crossref_primary_10_1016_j_clinph_2015_11_012 crossref_primary_10_1016_j_bandl_2019_104655 crossref_primary_10_1162_jocn_a_01849 crossref_primary_10_3389_fneng_2014_00028 crossref_primary_10_1016_j_bpsc_2022_09_014 crossref_primary_10_1016_j_neuroimage_2019_116124 crossref_primary_10_3389_fpsyt_2022_923938 crossref_primary_10_1016_j_compbiomed_2020_103998 crossref_primary_10_1016_j_nicl_2022_103113 crossref_primary_10_1016_j_cortex_2024_05_004 crossref_primary_10_1162_jocn_a_00888 crossref_primary_10_3389_fnhum_2023_1126510 crossref_primary_10_3389_fnhum_2019_00411 crossref_primary_10_1016_j_cortex_2019_10_006 crossref_primary_10_1016_j_cortex_2018_08_012 crossref_primary_10_1007_s00221_020_05832_9 crossref_primary_10_1111_ejn_13238 crossref_primary_10_1038_s41598_020_64378_6 crossref_primary_10_1016_j_neubiorev_2015_09_010 crossref_primary_10_1016_j_neuropsychologia_2019_107242 crossref_primary_10_1080_00207454_2020_1775594 crossref_primary_10_3233_JAD_240230 crossref_primary_10_3389_fpsyg_2017_00685 crossref_primary_10_1080_09602011_2024_2314878 crossref_primary_10_1155_2024_2512796 crossref_primary_10_3233_JAD_220539 crossref_primary_10_1016_j_schres_2018_10_027 crossref_primary_10_1007_s13295_014_0056_6 crossref_primary_10_3389_fnmol_2022_853509 crossref_primary_10_1007_s00702_017_1808_6 crossref_primary_10_1016_j_brs_2023_07_052 crossref_primary_10_1002_mds_29940 crossref_primary_10_3389_fnagi_2014_00253 crossref_primary_10_1177_1545968315595286 crossref_primary_10_1016_j_mex_2024_102939 crossref_primary_10_1016_j_jenvp_2023_102111 crossref_primary_10_1109_TNSRE_2018_2890001 crossref_primary_10_3389_fpsyg_2019_00529 crossref_primary_10_1186_s12984_024_01459_x crossref_primary_10_1519_JSC_0000000000004954 crossref_primary_10_3389_fnagi_2019_00264 crossref_primary_10_1002_jnr_25062 crossref_primary_10_1016_j_brs_2021_01_018 crossref_primary_10_1093_cercor_bhac010 crossref_primary_10_1016_j_brs_2015_05_010 crossref_primary_10_1016_j_neuropsychologia_2016_03_008 crossref_primary_10_1016_j_neuroscience_2019_03_010 crossref_primary_10_1093_scan_nsx063 crossref_primary_10_5334_pb_534 crossref_primary_10_1080_09602011_2020_1845749 crossref_primary_10_1016_j_neuroimage_2016_05_032 crossref_primary_10_1038_s41598_019_53985_7 crossref_primary_10_1007_s00221_014_4087_6 crossref_primary_10_1016_j_neuroscience_2019_11_016 crossref_primary_10_3390_biom14010071 crossref_primary_10_1093_cercor_bhaa077 crossref_primary_10_1371_journal_pone_0222620 crossref_primary_10_3389_fneur_2019_01089 crossref_primary_10_1016_j_bbr_2023_114661 crossref_primary_10_3389_fpain_2022_798056 crossref_primary_10_1002_pri_2109 crossref_primary_10_7717_peerj_3028 crossref_primary_10_1016_j_neuroimage_2025_121018 crossref_primary_10_1515_revneuro_2017_0048 crossref_primary_10_1523_JNEUROSCI_2450_16_2016 crossref_primary_10_7554_eLife_51184 crossref_primary_10_1007_s10916_019_1490_3 crossref_primary_10_3233_JAD_201091 crossref_primary_10_1016_j_clinph_2024_07_006 crossref_primary_10_1097_WNR_0000000000001413 crossref_primary_10_3389_fnhum_2024_1461417 crossref_primary_10_1016_j_neuroimage_2018_10_044 crossref_primary_10_1097_YCT_0000000000000531 crossref_primary_10_1038_s41598_020_57724_1 crossref_primary_10_1586_14737175_2015_992782 crossref_primary_10_1016_j_dcn_2018_04_010 crossref_primary_10_3389_fnins_2021_800436 crossref_primary_10_3390_brainsci10040235 crossref_primary_10_1017_S1355617724000304 crossref_primary_10_1038_s41398_021_01264_3 crossref_primary_10_1007_s12152_022_09508_9 crossref_primary_10_1113_JP282387 crossref_primary_10_1002_hbm_26181 crossref_primary_10_3389_fnhum_2020_560586 crossref_primary_10_1016_j_pnpbp_2018_11_004 crossref_primary_10_3389_fresc_2022_795737 crossref_primary_10_1186_s12984_019_0581_1 crossref_primary_10_3389_fnrgo_2023_1142182 crossref_primary_10_3390_brainsci11020188 crossref_primary_10_1007_s10339_022_01076_3 crossref_primary_10_3389_fcvm_2022_1070157 crossref_primary_10_1038_s41598_019_54621_0 crossref_primary_10_3389_fnins_2019_01181 crossref_primary_10_1007_s12264_020_00501_x crossref_primary_10_1186_s13063_024_08157_y crossref_primary_10_1093_cercor_bhy238 crossref_primary_10_1002_jnr_25298 crossref_primary_10_1097_j_pain_0000000000002814 crossref_primary_10_3390_biomedicines10112698 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_3389_fnins_2018_00787 crossref_primary_10_3389_fnins_2018_00427 crossref_primary_10_1027_1016_9040_a000254 crossref_primary_10_1038_s41598_018_22730_x crossref_primary_10_1016_j_cortex_2022_08_011 crossref_primary_10_1016_j_brs_2019_03_003 crossref_primary_10_1016_j_neucli_2022_09_002 crossref_primary_10_1093_cercor_bhae226 crossref_primary_10_1186_s12938_017_0361_8 crossref_primary_10_1016_j_brs_2016_07_003 crossref_primary_10_1097_WNP_0000000000000543 crossref_primary_10_1088_1741_2560_13_3_036022 crossref_primary_10_1016_j_jneumeth_2016_09_008 crossref_primary_10_1007_s11055_021_01178_z crossref_primary_10_1007_s41465_023_00264_z crossref_primary_10_1016_j_brs_2019_10_004 crossref_primary_10_1016_j_brs_2015_06_018 crossref_primary_10_1016_j_neuroimage_2016_09_006 crossref_primary_10_1016_j_brs_2015_06_013 crossref_primary_10_1038_s41598_020_76533_0 crossref_primary_10_1007_s10608_019_10044_9 crossref_primary_10_1016_j_heliyon_2025_e43039 crossref_primary_10_1111_ejn_16321 crossref_primary_10_3390_jcm12103407 crossref_primary_10_1016_j_neuropsychologia_2015_02_002 crossref_primary_10_1016_j_ajp_2020_102542 crossref_primary_10_1088_1741_2552_acfa8c crossref_primary_10_3390_ijerph19084575 crossref_primary_10_1016_j_neuroimage_2017_05_060 crossref_primary_10_1038_s41598_021_04607_8 crossref_primary_10_1002_hbm_25388 crossref_primary_10_1016_j_neuroimage_2019_116403 crossref_primary_10_1586_17434440_2016_1153968 crossref_primary_10_1152_jn_00615_2016 crossref_primary_10_1038_s41398_024_02994_w crossref_primary_10_3758_s13415_024_01202_y crossref_primary_10_1016_j_eplepsyres_2023_107265 crossref_primary_10_1007_s41465_024_00314_0 crossref_primary_10_3390_brainsci12040453 crossref_primary_10_1038_s41598_017_03022_2 crossref_primary_10_1162_jocn_a_00927 crossref_primary_10_1080_09602011_2021_1927761 crossref_primary_10_1002_brb3_884 crossref_primary_10_3389_fphys_2023_1263309 crossref_primary_10_1016_j_jad_2021_11_043 crossref_primary_10_1016_j_comppsych_2024_152520 crossref_primary_10_1016_j_schres_2025_03_003 crossref_primary_10_1098_rsos_181186 crossref_primary_10_1186_s13063_019_3594_y crossref_primary_10_1016_j_brainres_2021_147282 crossref_primary_10_1016_j_brs_2015_09_002 crossref_primary_10_1038_srep40612 crossref_primary_10_1016_j_jbiomech_2024_112418 crossref_primary_10_1177_1559325816685467 crossref_primary_10_1111_ner_13342 crossref_primary_10_1016_j_bbr_2019_112073 crossref_primary_10_1186_s12984_025_01546_7 crossref_primary_10_1109_ACCESS_2022_3190410 crossref_primary_10_3390_brainsci9110324 crossref_primary_10_1016_j_jpain_2016_01_472 crossref_primary_10_1080_09602011_2020_1805335 crossref_primary_10_1016_j_neubiorev_2016_02_016 crossref_primary_10_1162_netn_a_00097 crossref_primary_10_3389_fnins_2020_00381 crossref_primary_10_1016_j_neuroscience_2020_12_007 crossref_primary_10_1136_bmjopen_2021_055038 crossref_primary_10_1097_YCT_0000000000000756 crossref_primary_10_58558_jcd_2022_1_1_13 crossref_primary_10_1007_s00221_016_4667_8 crossref_primary_10_1371_journal_pone_0172714 crossref_primary_10_7554_eLife_32740 crossref_primary_10_1016_j_clinph_2022_08_015 crossref_primary_10_3389_fpsyg_2017_00952 crossref_primary_10_3390_biomedicines12112635 crossref_primary_10_1093_cercor_bhae395 crossref_primary_10_1038_s41598_021_92670_6 crossref_primary_10_1016_j_clinph_2015_12_020 crossref_primary_10_1016_j_brs_2017_01_001 crossref_primary_10_1016_j_jneumeth_2022_109485 crossref_primary_10_1371_journal_pone_0102834 crossref_primary_10_3390_nano11081962 crossref_primary_10_1016_j_brainres_2019_01_003 crossref_primary_10_1038_s41598_024_57917_y crossref_primary_10_3233_RNN_190922 crossref_primary_10_1038_s41597_021_01046_y crossref_primary_10_3389_fnins_2023_1107116 crossref_primary_10_1186_s12984_021_00899_z crossref_primary_10_1080_17434440_2020_1816168 crossref_primary_10_33549_physiolres_934361 crossref_primary_10_3389_fnhum_2014_00665 crossref_primary_10_3389_fpsyt_2016_00087 crossref_primary_10_1093_cercor_bhad070 crossref_primary_10_3389_fpsyt_2023_1140361 crossref_primary_10_1113_JP272738 crossref_primary_10_1093_pm_pnac135 crossref_primary_10_1155_2021_8966584 crossref_primary_10_1016_j_neuropsychologia_2020_107447 crossref_primary_10_1016_j_neures_2020_06_002 crossref_primary_10_1371_journal_pone_0300779 crossref_primary_10_1177_1545968314567152 crossref_primary_10_3389_fncel_2022_818703 crossref_primary_10_3390_brainsci12070912 crossref_primary_10_1016_j_neuroimage_2017_03_001 crossref_primary_10_3233_RNN_211210 crossref_primary_10_1016_j_cortex_2018_11_022 crossref_primary_10_1038_s41598_022_06570_4 crossref_primary_10_1016_j_neures_2022_01_006 crossref_primary_10_1111_pcn_13745 crossref_primary_10_1162_jocn_a_02270 crossref_primary_10_1016_j_neuroscience_2020_07_017 crossref_primary_10_1016_j_brs_2014_07_033 crossref_primary_10_1016_j_jneumeth_2020_108957 crossref_primary_10_3390_brainsci14121162 crossref_primary_10_3390_brainsci14121284 crossref_primary_10_1177_20494637221150333 crossref_primary_10_3389_fnins_2024_1389651 crossref_primary_10_1002_hbm_24398 crossref_primary_10_1088_0031_9155_61_12_4506 crossref_primary_10_1016_j_brs_2018_04_022 crossref_primary_10_1016_j_brs_2023_01_1672 crossref_primary_10_1016_j_jpain_2023_11_001 crossref_primary_10_1515_s13295_014_0056_6 crossref_primary_10_3389_fnins_2023_1122406 crossref_primary_10_3389_fnins_2017_00391 crossref_primary_10_1016_S2215_0366_15_00056_5 crossref_primary_10_3389_fnhum_2020_583730 crossref_primary_10_1002_hbm_70001 crossref_primary_10_3389_fneur_2017_00029 crossref_primary_10_1111_ejn_12908 crossref_primary_10_1111_ner_12320 |
Cites_doi | 10.1152/jn.01312.2006 10.1088/1741-2560/5/2/007 10.1212/WNL.57.10.1899 10.1016/j.nurx.2006.07.008 10.1016/j.brs.2009.03.005 10.1007/s00221-011-2610-6 10.1097/00019052-199310000-00007 10.1111/j.1460-9568.2005.04233.x 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1111/j.1468-1331.2008.02270.x 10.1016/j.brs.2009.03.007 10.1111/j.0953-816X.2004.03398.x 10.1016/S1388-2457(02)00412-1 10.1088/1741-2560/8/6/066017 10.1016/j.brs.2008.06.004 10.1016/S1474-4422(07)70032-7 10.1016/j.jneumeth.2010.05.007 10.1016/j.clinph.2010.05.005 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brs.2012.09.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-4754 |
EndPage | 648 |
ExternalDocumentID | 23149292 10_1016_j_brs_2012_09_010 S1935861X12001830 1_s2_0_S1935861X12001830 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AADPK AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c439t-8df323d2a507c10153384e9f6f4c5b537e6548a6fa79156319a3eec8d81e35863 |
IEDL.DBID | .~1 |
ISSN | 1935-861X 1876-4754 |
IngestDate | Fri Jul 11 00:49:39 EDT 2025 Thu Apr 03 06:53:50 EDT 2025 Tue Jul 01 01:50:13 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:27:22 EST 2024 Sun Feb 23 10:19:08 EST 2025 Tue Aug 26 16:34:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human Transcranial direct current stimulation Motor cortex High definition tDCS Plasticity |
Language | English |
License | Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-8df323d2a507c10153384e9f6f4c5b537e6548a6fa79156319a3eec8d81e35863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23149292 |
PQID | 1399056801 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1399056801 pubmed_primary_23149292 crossref_primary_10_1016_j_brs_2012_09_010 crossref_citationtrail_10_1016_j_brs_2012_09_010 elsevier_sciencedirect_doi_10_1016_j_brs_2012_09_010 elsevier_clinicalkeyesjournals_1_s2_0_S1935861X12001830 elsevier_clinicalkey_doi_10_1016_j_brs_2012_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-00 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain stimulation |
PublicationTitleAlternate | Brain Stimul |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Datta, Elwassif, Battaglia, Bikson (bib12) 2008; 5 Nitsche, Paulus (bib3) 2001; 57 Rothwell (bib13) 1993; 6 Lang, Siebner, Ward, Lee, Nitsche, Paulus (bib7) 2005; 22 Nitsche, Doemkes, Karakose, Antal, Liebetanz, Lang (bib10) 2007; 97 Webster, Celnik, Cohen (bib5) 2006; 3 Fregni, Freedman, Pascual-Leone (bib6) 2007; 6 Minhas, Bansal, Patel, Ho, Diaz, Datta (bib11) 2010; 190 Faria, Hallett, Miranda (bib9) 2011; 8 Boggio, Zaghi, Lopes, Fregni (bib16) 2008; 15 Nitsche, Paulus (bib2) 2000; 527 Bachmann, Muschinsky, Nitsche, Rolke, Magerl, Treede (bib15) 2010; 121 Beck, Hallett (bib18) 2011; 210 Datta, Bansal, Diaz, Patel, Reato, Bikson (bib8) 2009; 2 Radman, Ramos, Brumberg, Bikson (bib17) 2009; 2 Nitsche, Liebetanz, Schlitterlau, Henschke, Fricke, Frommann (bib19) 2004; 19 Borckardt, Bikson, Frohman, Reeves, Datta, Bansal (bib14) 2012; 13 Nitsche, Cohen, Wassermann, Priori, Lang, Antal (bib4) 2008; 1 Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib1) 2003; 114 Lang (10.1016/j.brs.2012.09.010_bib7) 2005; 22 Bachmann (10.1016/j.brs.2012.09.010_bib15) 2010; 121 Datta (10.1016/j.brs.2012.09.010_bib8) 2009; 2 Beck (10.1016/j.brs.2012.09.010_bib18) 2011; 210 Webster (10.1016/j.brs.2012.09.010_bib5) 2006; 3 Nitsche (10.1016/j.brs.2012.09.010_bib10) 2007; 97 Minhas (10.1016/j.brs.2012.09.010_bib11) 2010; 190 Nitsche (10.1016/j.brs.2012.09.010_bib2) 2000; 527 Nitsche (10.1016/j.brs.2012.09.010_bib3) 2001; 57 Datta (10.1016/j.brs.2012.09.010_bib12) 2008; 5 Rothwell (10.1016/j.brs.2012.09.010_bib13) 1993; 6 Borckardt (10.1016/j.brs.2012.09.010_bib14) 2012; 13 Faria (10.1016/j.brs.2012.09.010_bib9) 2011; 8 Nitsche (10.1016/j.brs.2012.09.010_bib1) 2003; 114 Radman (10.1016/j.brs.2012.09.010_bib17) 2009; 2 Boggio (10.1016/j.brs.2012.09.010_bib16) 2008; 15 Nitsche (10.1016/j.brs.2012.09.010_bib4) 2008; 1 Nitsche (10.1016/j.brs.2012.09.010_bib19) 2004; 19 Fregni (10.1016/j.brs.2012.09.010_bib6) 2007; 6 |
References_xml | – volume: 6 start-page: 715 year: 1993 end-page: 723 ident: bib13 article-title: Evoked potentials, magnetic stimulation studies, and event-related potentials publication-title: Curr Opin Neurol – volume: 1 start-page: 206 year: 2008 end-page: 223 ident: bib4 article-title: Transcranial direct current stimulation: State of the art 2008. publication-title: Brain Stimul. – volume: 3 start-page: 474 year: 2006 end-page: 481 ident: bib5 article-title: Noninvasive brain stimulation in stroke rehabilitation. NeuroRx : the journal of the American Society for Experimental. publication-title: NeuroTherapeutics. – volume: 2 start-page: 201 year: 2009 end-page: 207 ident: bib8 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 190 start-page: 188 year: 2010 end-page: 197 ident: bib11 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. publication-title: J Neurosci Methods – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: bib2 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol – volume: 13 start-page: 112 year: 2012 end-page: 120 ident: bib14 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J Pain – volume: 2 start-page: 215 year: 2009 end-page: 228 ident: bib17 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul – volume: 210 start-page: 165 year: 2011 end-page: 172 ident: bib18 article-title: Surround inhibition in the motor system publication-title: Exp Brain Res – volume: 97 start-page: 3109 year: 2007 end-page: 3117 ident: bib10 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J Neurophysiol – volume: 121 start-page: 2083 year: 2010 end-page: 2089 ident: bib15 article-title: Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts publication-title: Clin Neurophysiol – volume: 8 start-page: 066017 year: 2011 ident: bib9 article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS publication-title: J Neural Eng – volume: 57 start-page: 1899 year: 2001 end-page: 1901 ident: bib3 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 5 start-page: 163 year: 2008 end-page: 174 ident: bib12 article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis publication-title: J Neural Eng – volume: 114 start-page: 600 year: 2003 end-page: 604 ident: bib1 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin Neurophysiol – volume: 6 start-page: 188 year: 2007 end-page: 191 ident: bib6 article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques publication-title: Lancet Neurol – volume: 19 start-page: 2720 year: 2004 end-page: 2726 ident: bib19 article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans publication-title: Eur J Neurosci – volume: 22 start-page: 495 year: 2005 end-page: 504 ident: bib7 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur J Neurosci – volume: 15 start-page: 1124 year: 2008 end-page: 1130 ident: bib16 article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers publication-title: Eur J Neurol – volume: 97 start-page: 3109 issue: 4 year: 2007 ident: 10.1016/j.brs.2012.09.010_bib10 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.01312.2006 – volume: 5 start-page: 163 issue: 2 year: 2008 ident: 10.1016/j.brs.2012.09.010_bib12 article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis publication-title: J Neural Eng doi: 10.1088/1741-2560/5/2/007 – volume: 57 start-page: 1899 issue: 10 year: 2001 ident: 10.1016/j.brs.2012.09.010_bib3 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology doi: 10.1212/WNL.57.10.1899 – volume: 3 start-page: 474 issue: 4 year: 2006 ident: 10.1016/j.brs.2012.09.010_bib5 article-title: Noninvasive brain stimulation in stroke rehabilitation. NeuroRx : the journal of the American Society for Experimental. publication-title: NeuroTherapeutics. doi: 10.1016/j.nurx.2006.07.008 – volume: 2 start-page: 201 issue: 4 year: 2009 ident: 10.1016/j.brs.2012.09.010_bib8 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.005 – volume: 13 start-page: 112 issue: 2 year: 2012 ident: 10.1016/j.brs.2012.09.010_bib14 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J Pain – volume: 210 start-page: 165 issue: 2 year: 2011 ident: 10.1016/j.brs.2012.09.010_bib18 article-title: Surround inhibition in the motor system publication-title: Exp Brain Res doi: 10.1007/s00221-011-2610-6 – volume: 6 start-page: 715 issue: 5 year: 1993 ident: 10.1016/j.brs.2012.09.010_bib13 article-title: Evoked potentials, magnetic stimulation studies, and event-related potentials publication-title: Curr Opin Neurol doi: 10.1097/00019052-199310000-00007 – volume: 22 start-page: 495 issue: 2 year: 2005 ident: 10.1016/j.brs.2012.09.010_bib7 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04233.x – volume: 527 start-page: 633 issue: Pt 3 year: 2000 ident: 10.1016/j.brs.2012.09.010_bib2 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 15 start-page: 1124 issue: 10 year: 2008 ident: 10.1016/j.brs.2012.09.010_bib16 article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers publication-title: Eur J Neurol doi: 10.1111/j.1468-1331.2008.02270.x – volume: 2 start-page: 215 issue: 4 year: 2009 ident: 10.1016/j.brs.2012.09.010_bib17 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.007 – volume: 19 start-page: 2720 issue: 10 year: 2004 ident: 10.1016/j.brs.2012.09.010_bib19 article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans publication-title: Eur J Neurosci doi: 10.1111/j.0953-816X.2004.03398.x – volume: 114 start-page: 600 issue: 4 year: 2003 ident: 10.1016/j.brs.2012.09.010_bib1 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00412-1 – volume: 8 start-page: 066017 issue: 6 year: 2011 ident: 10.1016/j.brs.2012.09.010_bib9 article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS publication-title: J Neural Eng doi: 10.1088/1741-2560/8/6/066017 – volume: 1 start-page: 206 issue: 3 year: 2008 ident: 10.1016/j.brs.2012.09.010_bib4 article-title: Transcranial direct current stimulation: State of the art 2008. publication-title: Brain Stimul. doi: 10.1016/j.brs.2008.06.004 – volume: 6 start-page: 188 issue: 2 year: 2007 ident: 10.1016/j.brs.2012.09.010_bib6 article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70032-7 – volume: 190 start-page: 188 issue: 2 year: 2010 ident: 10.1016/j.brs.2012.09.010_bib11 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.05.007 – volume: 121 start-page: 2083 issue: 12 year: 2010 ident: 10.1016/j.brs.2012.09.010_bib15 article-title: Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.05.005 |
SSID | ssj0059987 |
Score | 2.5201764 |
Snippet | Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of... Abstract Background Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 644 |
SubjectTerms | Adult Brain Mapping Electric Stimulation - methods Electrodes Evoked Potentials, Motor - physiology Female High definition tDCS Human Humans Male Motor cortex Motor Cortex - physiology Neurology Neuronal Plasticity - physiology Neurons - physiology Plasticity Transcranial direct current stimulation |
Title | Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X12001830 https://www.clinicalkey.es/playcontent/1-s2.0-S1935861X12001830 https://dx.doi.org/10.1016/j.brs.2012.09.010 https://www.ncbi.nlm.nih.gov/pubmed/23149292 https://www.proquest.com/docview/1399056801 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heuGCaHltH8iVEAeksHnYefS2CkVbEAjxkPZmOY6DFrXZ1W6Qupf-jV73t9A_1hkn2QpBQeKa2HHsGY-_sT_PAOxGXBQRjz0n5zpBB0VFTsK166hQFwiQRa5t7M7Ts7B_zY8HYrAEaXsXhmiVje2vbbq11s2TbjOa3fFw2L306Agv9AYe0YLigPx2il6HOn3wa0HzEOhORPXJsnCodHuyaTle2YQidtN2YHLg0iXap9em_2FPuwYdrcFqAx5Zr_6_t7Bkynew3ivRcf4xY3vM0jntPvk6_EzrDIPlDUtHE7tjzc4RKhOLupoxStmBnWfZDF__I54zVeaMuB_OoSmGpeVzMX4___P7fu6xC_padZhefmE9ZsN6jNsW7feJlDjbgOujr1dp32nSLDga0UjlxHkR-EHuK4SGGgcGAWDMTVKEBdciE0FkKLe8CgsVJejt4ZxVgTE6zmPPkASCTVguR6XZBoaiDg06iChhzZUQGVoDREA6C6yw3A647QBL3cQgp1QY32VLNruVKBNJMpFuIlEmHdhfVBnXATieK-y3UpPtzVK0hRKXh-cqRU9VMtNmNk-lJ6dYWD7SuA7wRc0HSvtSg59bhZI4memERpVmdIcN4WAhIkXU0IGtWtMWnUYgzhHL-u9f1-gHWPFtJg9iGn-E5WpyZz4hnqqyHTthduBN79tJ_-wvcZQeZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V2wNcUKE8tkAxEuKAFDYPO4_eVinVlrYrRFtpb5bjOGgRZFe7qcT-kl77W8of64wTL0KUInFNMnbsscff2J9nAN4kXFQJTwOv5DpDB0UlXsa176lYVwiQRalt7M6TcTw65x8nYrIBubsLQ7TKzva3Nt1a6-7JoOvNwXw6HZwGdIQXB5OAaEFphH77JkWn4j3YHB4ejcbOIAv0KJL2cFl4JOAONy3Nq1hQ0G7aEcze-3SP9vbl6W_w0y5DB1vwoMOPbNj-4kPYMPUj2B7W6Dt_X7G3zDI67Vb5NvzI2ySD9ReWzxZ205p9QrRMROpmxShrB7afFSt8_Yt7zlRdMqJ_ePummtaW0sX49dXPy-urgH2m0pr9_HSPDZmN7DF3NdryiZe4egznBx_O8pHXZVrwNAKSxkvLKgqjMlSIDjV2DGLAlJusiiuuRSGixFB6eRVXKsnQ4cNpqyJjdFqmgSElRE-gV89q8wwYajs26COikjVXQhRoEBAE6SKy-vL74LsOlroLQ07ZML5Jxzf7KlEnknQi_UyiTvrwbi0yb2Nw3PVx6LQm3eVSNIcSV4i7hJLbhMyym9BLGcglfiz_GHR94GvJ38btvyp87QaUxPlMhzSqNrMLrAg7C0EpAoc-PG1H2rrRiMU5wtlw5_8qfQX3Rmcnx_L4cHz0HO6HNrEHEY9fQK9ZXJiXCK-aYrebPjcwWCEX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+cortical+plasticity+induced+by+conventional+and+high-definition+4+%C3%97+1+ring+tDCS%3A+a+neurophysiological+study&rft.jtitle=Brain+stimulation&rft.au=Kuo%2C+Hsiao-I&rft.au=Bikson%2C+Marom&rft.au=Datta%2C+Abhishek&rft.au=Minhas%2C+Preet&rft.date=2013-07-01&rft.eissn=1876-4754&rft.volume=6&rft.issue=4&rft.spage=644&rft_id=info:doi/10.1016%2Fj.brs.2012.09.010&rft_id=info%3Apmid%2F23149292&rft.externalDocID=23149292 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1935861X%2FS1935861X13X00051%2Fcov150h.gif |