Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?
Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 583275 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides. |
---|---|
AbstractList | Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant–plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides. Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides. |
Author | Meents, Anja K. Mithöfer, Axel |
AuthorAffiliation | Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany |
AuthorAffiliation_xml | – name: Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany |
Author_xml | – sequence: 1 givenname: Anja K. surname: Meents fullname: Meents, Anja K. – sequence: 2 givenname: Axel surname: Mithöfer fullname: Mithöfer, Axel |
BookMark | eNp1kUFvFCEYhompsbX27nGOXmZlYJgBD5pmrbpJGxtTjTfCwMeWhhm2wJj05n_wH_pLZHcbY5vI5QO-930_wvMcHUxhAoReNnhBKRev7canBcEELxinpGdP0FHTdW3dduT7wT_7Q3SS0g0ui2EsRP8MHVLa9Jy0_AjJS6-m_Pvnr12tlmEc58lplV2Y3lSrVF1dQ4RKVV-Ch8qGWH0LvnTL4b0a1Rrq05SCdiqDqS6KRs9exepS5QxxSu9eoKdW-QQn9_UYff1wdrX8VJ9__rhanp7XuqUi11x1wvBB9wYTa4ztlDK8HTTHFgw2DaP9oLBtmGms0UCYIJQZ1jHBLWPM0mO02ueaoG7kJrpRxTsZlJO7ixDXUsXstAcpgA28ByIGqlsNVFDdtAY6RQGThtCS9XaftZmHEcq4KUflH4Q-7EzuWq7DD9kzQQuJEvDqPiCG2xlSlqNLGnz5YghzkqTtMOYt4axI8V6qY0gpgv07psFyi1luMcstZrnHXCzdI4t2eQesPMb5_xv_AK-osLA |
CitedBy_id | crossref_primary_10_3390_jof7110969 crossref_primary_10_1093_jxb_erab487 crossref_primary_10_3390_ijms23137031 crossref_primary_10_3389_fpls_2022_879039 crossref_primary_10_1007_s11829_022_09892_2 crossref_primary_10_1002_sae2_70044 crossref_primary_10_1021_acs_jafc_3c06569 crossref_primary_10_1111_pce_14633 crossref_primary_10_1111_pce_14995 crossref_primary_10_1111_pce_14795 crossref_primary_10_1093_plcell_koac009 crossref_primary_10_1007_s11947_024_03457_2 crossref_primary_10_1007_s11694_024_02606_7 crossref_primary_10_1094_PHYTO_03_23_0104_RVW crossref_primary_10_3390_ijms22063152 crossref_primary_10_3390_metabo11060357 crossref_primary_10_1007_s10886_025_01557_7 crossref_primary_10_1093_jxb_erad338 crossref_primary_10_1093_jxb_erac522 crossref_primary_10_1007_s11829_021_09837_1 crossref_primary_10_1016_j_cub_2023_07_045 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_7554_eLife_89855 crossref_primary_10_3390_plants11233305 crossref_primary_10_7554_eLife_89855_3 crossref_primary_10_1016_j_plantsci_2023_111664 crossref_primary_10_1016_j_jplph_2023_153946 crossref_primary_10_1007_s10526_025_10305_5 crossref_primary_10_3389_fpls_2023_1135000 crossref_primary_10_3390_antiox13121565 crossref_primary_10_1186_s12896_020_00661_8 crossref_primary_10_1042_EBC20210092 crossref_primary_10_1111_ppl_13840 crossref_primary_10_3389_fimmu_2021_844315 crossref_primary_10_1007_s00344_022_10804_0 crossref_primary_10_1016_j_horiz_2022_100008 crossref_primary_10_1016_j_foodres_2023_113684 crossref_primary_10_3390_insects15060458 crossref_primary_10_1002_pei3_70035 crossref_primary_10_3390_insects15080589 crossref_primary_10_3390_ijms21249380 crossref_primary_10_1111_nph_20202 crossref_primary_10_3390_plants13050626 crossref_primary_10_3390_plants10030485 crossref_primary_10_1016_j_foodchem_2021_129482 crossref_primary_10_3390_chemosensors9110297 crossref_primary_10_1021_acs_jafc_2c04218 crossref_primary_10_1080_03235408_2022_2081766 crossref_primary_10_1007_s10658_024_02964_4 crossref_primary_10_1007_s40725_022_00177_8 crossref_primary_10_1111_ppl_13547 crossref_primary_10_1073_pnas_2122808119 crossref_primary_10_3389_fpls_2023_1141338 crossref_primary_10_3390_s22145453 |
Cites_doi | 10.1016/j.tree.2009.09.010 10.1111/tpj.14077 10.1016/j.envexpbot.2017.10.012 10.1016/s1352-2310(03)00391-1 10.1078/1439-1791-00131 10.1016/j.envpol.2004.02.027 10.1007/s10886-012-0072-3 10.1007/bf01140183 10.1046/j.1365-313x.1998.00324.x 10.1016/j.tplants.2012.03.012 10.1038/nature03451 10.1111/j.1365-313x.2003.01987.x 10.1104/pp.104.054460 10.1016/j.atmosenv.2006.11.029 10.1021/bk-1983-0208.ch004 10.1038/srep11183 10.1016/s1369-5266(02)00263-7 10.1007/pl00013951 10.1104/pp.107.113118 10.1023/A:1024270713493 10.1016/j.phytochem.2011.04.022 10.1007/s10886-009-9654-0 10.1016/s0065-2296(09)51015-4 10.1016/j.tplants.2017.07.005 10.1038/31219 10.3389/fpls.2014.00578 10.1038/ncomms7273 10.1111/nph.14671 10.1093/chemse/bji066 10.1093/pcp/pcp030 10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 10.1080/07352680600899973 10.1086/284408 10.1101/370692 10.1046/j.1365-3032.2000.00190.x 10.4161/psb.29517 10.1016/j.phytochem.2014.08.008 10.1603/0046-225x-34.3.576 10.1371/journal.pone.0020419 10.3389/fpls.2019.00646 10.1007/s10886-008-9579-z 10.1046/j.1365-313x.2002.01198.x 10.1146/annurev.arplant.59.032607.092825 10.1021/acs.jafc.6b01742 10.1007/s10886-006-9147-3 10.1016/j.phytochem.2011.08.029 10.1023/A:1012213116515 10.1111/j.1461-0248.2007.01043.x 10.1016/s0305-1978(01)00046-1 10.1016/s0305-1978(01)00049-7 10.1038/35081189 10.1111/nph.12145 10.1007/s10526-005-3313-3 10.1007/s10886-017-0836-x 10.1038/35020072 10.1007/s10886-007-9255-8 10.1016/s0031-9422(02)00240-6 10.1098/rstb.2007.2173 10.1111/j.1365-3040.2005.01341.x 10.1023/b:joec.0000042072.18151.6f 10.1007/s10886-005-6413-8 10.1038/35069058 10.1073/pnas.260499897 10.1016/s0305-1978(01)00047-3 10.1016/j.copbio.2013.12.006 10.21273/hortsci.37.2.378 10.1034/j.1600-0706.2003.12075.x 10.1007/s00442-006-0365-8 10.1007/978-94-011-0473-9_23 10.1016/j.pbi.2016.06.019 10.1098/rsbl.2010.0440 10.1146/annurev.arplant.57.032905.105346 10.1016/j.phytochem.2010.09.010 10.1073/pnas.0700906104 10.1016/j.cub.2010.02.052 10.1007/bf00979614 10.1007/s10886-005-2020-y 10.1007/s10886-010-9787-1 10.1016/j.pbi.2006.03.002 10.1111/j.1570-7458.2007.00602.x 10.1021/es010637y 10.1016/j.scienta.2018.03.026 10.1016/j.tree.2019.01.008 10.1007/s00344-020-10129-w 10.1073/pnas.0308037100 10.1016/j.bbrc.2008.09.069 10.3390/plants8090318 10.1039/c1np00021g 10.1038/s41598-019-53946-0 10.2307/3495807 10.1007/s00425-004-1404-5 10.1021/acs.jafc.7b03251 10.1038/ni1253 10.1073/pnas.91.6.2329 10.1073/pnas.87.19.7713 10.1007/pl00008892 10.1007/s004420000389 10.1023/A:1020939112234 10.1016/bs.abr.2016.08.001 10.1163/156854288x00111 10.1104/pp.001941 10.1111/j.1744-7348.2010.00432.x 10.1093/chemse/bji028 10.1146/annurev.ento.52.110405.091407 10.1007/bf00398271 10.1126/science.221.4607.277 10.1603/en09279 10.1104/pp.104.049981 10.1016/j.tplants.2009.04.002 10.1111/j.1461-0248.2010.01510.x 10.1007/s00425-005-1528-2 10.1104/pp.19.01242 10.1007/s11258-018-0854-y 10.1073/pnas.0610266104 10.1007/s10886-005-3540-1 10.3389/fpls.2019.00264 10.1111/ele.12205 10.21577/0103-5053.20160279 10.1016/s0031-9422(00)81812-9 10.1029/1999jd900144 10.1126/science.250.4985.1251 10.1007/s00425-010-1203-0 10.1016/j.tplants.2010.01.006 10.1038/srep41508 10.1111/j.1365-3040.2006.01561.x 10.1007/s10886-005-7099-7 10.1111/pce.13624 10.1016/j.foodres.2013.09.015 10.1023/A:1010393700918 10.1023/b:joec.0000048783.64264.2a 10.1146/annurev.arplant.53.100301.135207 10.1016/s1360-1385(96)90004-7 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Meents and Mithöfer. Copyright © 2020 Meents and Mithöfer. 2020 Meents and Mithöfer |
Copyright_xml | – notice: Copyright © 2020 Meents and Mithöfer. – notice: Copyright © 2020 Meents and Mithöfer. 2020 Meents and Mithöfer |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2020.583275 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_9e5b87e29b3c4ce393c14de6a3e02123 PMC7593327 10_3389_fpls_2020_583275 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c439t-8a69d8bc7d02fddf6aad84bc80fed0d1537ba0f15d1fdce259235d56598f555f3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Thu Aug 21 13:39:52 EDT 2025 Fri Jul 11 01:00:35 EDT 2025 Thu Apr 24 22:51:14 EDT 2025 Tue Jul 01 03:27:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-8a69d8bc7d02fddf6aad84bc80fed0d1537ba0f15d1fdce259235d56598f555f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Rika Ozawa, Kyoto University, Japan; Manuel Benedetti, University of L’Aquila, Italy This article was submitted to Plant Pathogen Interactions, a section of the journal Frontiers in Plant Science Edited by: Massimo E. Maffei, University of Turin, Italy |
OpenAccessLink | https://doaj.org/article/9e5b87e29b3c4ce393c14de6a3e02123 |
PMID | 33178248 |
PQID | 2460084285 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e5b87e29b3c4ce393c14de6a3e02123 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7593327 proquest_miscellaneous_2460084285 crossref_primary_10_3389_fpls_2020_583275 crossref_citationtrail_10_3389_fpls_2020_583275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in plant science |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Dudareva (B39) 2004; 135 Duran-Flores (B40) 2016; 32 Baldwin (B12) 2010; 20 Fowler (B51) 1985; 126 Orians (B101) 2005; 31 Drukker (B36) 2000; 25 Farneti (B48) 2013; 54 Halitschke (B60) 2000; 124 Farag (B44) 2005; 220 Blande (B17) 2010; 13 Piesik (B106) 2006; 46 Connor (B26) 2007; 125 James (B74) 2005; 31 Kessler (B85) 2006; 148 Farmer (B47) 1990; 87 Heil (B63) 2010; 6 De Moraes (B29) 1998; 393 Frost (B54) 2007; 10 Hoballah (B68) 2001; 3 Paré (B103) 1996; 79 Shiojiri (B121) 2017; 7 Freundlich (B52) 2019 Hassanali (B61) 2008; 363 McCormick (B94) 2012; 17 Snoeren (B122) 2010; 36 Piesik (B105) 2010; 157 Kihara (B86) 2014; 107 James (B75) 2005; 50 Heil (B66) 2014; 5 Dudareva (B37) 2013; 198 Seco (B120) 2007; 41 Heil (B62) 2009; 14 Arimura (B4) 2009; 50 Dicke (B33) 1990; 16 Arimura (B7) 2000; 406 Dicke (B34) 2003; 4 Ruther (B119) 2005; 31 Arimura (B6) 2002; 29 Maffei (B91) 2011; 28 Martins (B92) 2017; 28 Rodriguez-Saona (B115) 2001; 27 D’Alessandro (B28) 2005; 30 Rhoades (B114) 1983 Pickett (B104) 2014; 26 Sukegawa (B123) 2018; 96 Karban (B81) 2006; 87 Howe (B71) 2008; 59 Fall (B43) 1999; 104 Mithöfer (B96) 2008; 146 Takabayashi (B124) 1996; 1 Boller (B19) 2009; 60 Farag (B45) 2002; 61 Bruce (B23) 2015; 5 Tamogami (B125) 2008; 376 Reid (B113) 1995 Gust (B59) 2017; 22 Karban (B80) 2003; 100 Matsui (B93) 2006; 9 Bricchi (B20) 2010; 232 De Moraes (B30) 2001; 410 Heil (B64) 2007; 104 Gouinguené (B58) 2002; 129 Lee (B87) 2010; 39 Jackson (B72) 1976; 129 Frey (B53) 2000; 97 Karban (B78) 2001; 29 Vucetic (B129) 2014; 9 James (B76) 2004; 30 Ozawa (B102) 2000; 113 Kanagendran (B77) 2018; 145 von Mérey (B128) 2011; 72 Karban (B82) 2014; 17 Vuorinen (B130) 2004; 131 Röse (B117) 2005; 222 Li (B88) 2019; 8 Mithöfer (B97) 2005; 137 Girón-Calva (B56) 2017; 43 Fontana (B50) 2009; 35 Atkinson (B10) 2003; 37 Loreto (B90) 2006; 29 Cook (B27) 2007; 52 Heil (B67) 2009; 51 Zhuang (B134) 2012; 73 Mumm (B100) 2005; 30 Meents (B95) 2019; 9 Ausubel (B11) 2005; 6 Degenhardt (B31) 2010; 71 Engelberth (B41) 2004; 101 Agelopoulos (B1) 1999; 25 Banchio (B15) 2005; 31 Moretti (B99) 2002; 37 Gershenzon (B55) 2007; 104 Arimura (B3) 2004; 37 Karban (B79) 2000; 125 Douma (B35) 2019; 42 Holopainen (B69) 2010; 15 Hou (B70) 2019; 10 Waterman (B131) 2019; 34 Brilli (B21) 2019; 10 Choi (B25) 1994; 91 Preston (B109) 2001; 29 Zeringue (B133) 1987; 26 Carrasco (B24) 2005; 34 Li (B89) 2020; 182 Baldwin (B14) 1983; 221 Mofikoya (B98) 2017; 65 Pinto (B107) 2007; 33 Rodriguez-Saona (B116) 2009; 35 Girón-Calva (B57) 2012; 38 Ameye (B2) 2018; 220 Farmer (B46) 2001; 411 Heil (B65) 2010; 25 Turlings (B126) 1990; 250 James (B73) 2003; 29 Arimura (B5) 2001; 29 Arimura (B8) 2017 Ferrusquía-Jiménez (B49) 2020 Ashmore (B9) 2005; 28 Rostás (B118) 2006; 32 Karl (B83) 2001; 35 Preston (B110) 2004; 30 Bate (B16) 1998; 16 Dudareva (B38) 2006; 25 Kessler (B84) 2002; 53 Boland (B18) 1992; 79 Dicke (B32) 1987; 38 Baldwin (B13) 2002; 5 Quintana-Rodriguez (B111) 2018; 237 Rasmann (B112) 2005; 434 Portillo-Estrada (B108) 2018; 219 Zeng (B132) 2016; 64 Brilli (B22) 2011; 6 Erb (B42) 2015; 6 Van Poecke (B127) 2001; 27 |
References_xml | – volume: 25 start-page: 137 year: 2010 ident: B65 article-title: Explaining evolution of plant communication by airborne signals. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2009.09.010 – volume: 96 start-page: 910 year: 2018 ident: B123 article-title: Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential. publication-title: Plant J. doi: 10.1111/tpj.14077 – volume: 145 start-page: 21 year: 2018 ident: B77 article-title: Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.10.012 – volume: 37 start-page: 197 year: 2003 ident: B10 article-title: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. publication-title: Atmos. Environ. doi: 10.1016/s1352-2310(03)00391-1 – volume: 4 start-page: 27 year: 2003 ident: B34 article-title: Inducible indirect defence of plants: from mechanisms to ecological functions. publication-title: Basic Appl. Ecol. doi: 10.1078/1439-1791-00131 – volume: 131 start-page: 305 year: 2004 ident: B130 article-title: Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.02.027 – volume: 38 start-page: 226 year: 2012 ident: B57 article-title: Volatile dose and exposure time impact perception in neighboring plants. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0072-3 – volume: 79 start-page: 368 year: 1992 ident: B18 article-title: Are acyclic C 11 and C 16 homoterpenes plant volatiles indicating herbivory? publication-title: Naturwissenschaften doi: 10.1007/bf01140183 – volume: 16 start-page: 561 year: 1998 ident: B16 article-title: C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00324.x – volume: 17 start-page: 303 year: 2012 ident: B94 article-title: The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.03.012 – volume: 434 start-page: 732 year: 2005 ident: B112 article-title: Recruitment of entomopathogenic nematodes by insect-damaged maize roots. publication-title: Nature doi: 10.1038/nature03451 – volume: 37 start-page: 603 year: 2004 ident: B3 article-title: Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1. publication-title: Plant J. doi: 10.1111/j.1365-313x.2003.01987.x – volume: 137 start-page: 1160 year: 2005 ident: B97 article-title: Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. publication-title: Plant Physiol. doi: 10.1104/pp.104.054460 – volume: 41 start-page: 2477 year: 2007 ident: B120 article-title: Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.11.029 – year: 1983 ident: B114 publication-title: Responses of Alder and Willow to Attack by Tent Caterpillars and Webworms: Evidence for Pheromonal Sensitivity of Willows. doi: 10.1021/bk-1983-0208.ch004 – volume: 5 year: 2015 ident: B23 article-title: The first crop plant genetically engineered to release an insect pheromone for defence. publication-title: Sci. Rep. doi: 10.1038/srep11183 – volume: 5 start-page: 351 year: 2002 ident: B13 article-title: Volatile signaling in plant–plant–herbivore interactions: what is real? publication-title: Curr. Opin. Plant Biol. doi: 10.1016/s1369-5266(02)00263-7 – volume: 113 start-page: 427 year: 2000 ident: B102 article-title: Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. publication-title: J. Plant Res. doi: 10.1007/pl00013951 – volume: 146 start-page: 825 year: 2008 ident: B96 article-title: Recognition of herbivory-associated molecular patterns. publication-title: Plant Physiol. doi: 10.1104/pp.107.113118 – volume: 29 start-page: 1601 year: 2003 ident: B73 article-title: Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. publication-title: J. Chem. Ecol. doi: 10.1023/A:1024270713493 – volume: 72 start-page: 1838 year: 2011 ident: B128 article-title: Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.04.022 – volume: 35 start-page: 833 year: 2009 ident: B50 article-title: The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-009-9654-0 – volume: 51 start-page: 667 year: 2009 ident: B67 article-title: Ecological consequences of plant defence signalling. publication-title: Adv. Bot. Res. doi: 10.1016/s0065-2296(09)51015-4 – volume: 22 start-page: 779 year: 2017 ident: B59 article-title: Sensing danger: key to activating plant immunity. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.07.005 – volume: 393 start-page: 570 year: 1998 ident: B29 article-title: Herbivore-infested plants selectively attract parasitoids. publication-title: Nature doi: 10.1038/31219 – volume: 5 year: 2014 ident: B66 article-title: Danger signals–damaged-self recognition across the tree of life. publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2014.00578 – volume: 6 start-page: 1 year: 2015 ident: B42 article-title: Indole is an essential herbivore-induced volatile priming signal in maize. publication-title: Nat. Commun. doi: 10.1038/ncomms7273 – volume: 220 start-page: 666 year: 2018 ident: B2 article-title: Green leaf volatile production by plants: a meta-analysis. publication-title: New Phytol. doi: 10.1111/nph.14671 – volume: 30 start-page: 739 year: 2005 ident: B28 article-title: In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. publication-title: Chem. Senses doi: 10.1093/chemse/bji066 – volume: 50 start-page: 911 year: 2009 ident: B4 article-title: Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp030 – volume: 87 start-page: 922 year: 2006 ident: B81 article-title: Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. publication-title: Ecology doi: 10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 – volume: 25 start-page: 417 year: 2006 ident: B38 article-title: Plant volatiles: recent advances and future perspectives. publication-title: Crit. Rev. Plant. Sci. doi: 10.1080/07352680600899973 – volume: 126 start-page: 181 year: 1985 ident: B51 article-title: Rapidly induced defenses and talking trees: the devil’s advocate position. publication-title: Am. Nat. doi: 10.1086/284408 – year: 2019 ident: B52 article-title: Variable costs and benefits of eavesdropping a green leaf volatile on two plant species in a common garden. publication-title: bioRxiv [Preprint] doi: 10.1101/370692 – volume: 25 start-page: 260 year: 2000 ident: B36 article-title: Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. publication-title: Physiol. Entomol. doi: 10.1046/j.1365-3032.2000.00190.x – volume: 9 year: 2014 ident: B129 article-title: Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. publication-title: Plant Signal. Behav. doi: 10.4161/psb.29517 – volume: 107 start-page: 42 year: 2014 ident: B86 article-title: Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia polymorpha). publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.08.008 – volume: 34 start-page: 576 year: 2005 ident: B24 article-title: Response of the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) to mango fruit volatiles. publication-title: Environ. Entomol. doi: 10.1603/0046-225x-34.3.576 – volume: 6 year: 2011 ident: B22 article-title: Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). publication-title: PLoS One doi: 10.1371/journal.pone.0020419 – volume: 10 year: 2019 ident: B70 article-title: Damage-associated molecular pattern-triggered immunity in plants. publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2019.00646 – volume: 35 start-page: 163 year: 2009 ident: B116 article-title: Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-008-9579-z – volume: 29 start-page: 87 year: 2002 ident: B6 article-title: Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. publication-title: Plant J. doi: 10.1046/j.1365-313x.2002.01198.x – volume: 59 start-page: 41 year: 2008 ident: B71 article-title: Plant immunity to insect herbivores. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092825 – volume: 64 start-page: 5011 year: 2016 ident: B132 article-title: Formation of volatile tea constituent indole during the oolong tea manufacturing process. publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b01742 – volume: 32 year: 2006 ident: B118 article-title: Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-006-9147-3 – volume: 73 start-page: 15 year: 2012 ident: B134 article-title: Biosynthesis and emission of insect herbivory-induced volatile indole in rice. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.08.029 – volume: 27 start-page: 1911 year: 2001 ident: B127 article-title: Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. publication-title: J. Chem. Ecol. doi: 10.1023/A:1012213116515 – volume: 10 start-page: 490 year: 2007 ident: B54 article-title: Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01043.x – volume: 29 start-page: 995 year: 2001 ident: B78 article-title: Communication between sagebrush and wild tobacco in the field. publication-title: Biochem. Syst. Ecol. doi: 10.1016/s0305-1978(01)00046-1 – volume: 29 start-page: 1049 year: 2001 ident: B5 article-title: Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. publication-title: Biochem. Syst. Ecol. doi: 10.1016/s0305-1978(01)00049-7 – volume: 411 start-page: 854 year: 2001 ident: B46 article-title: Surface-to-air signals. publication-title: Nature doi: 10.1038/35081189 – volume: 198 start-page: 16 year: 2013 ident: B37 article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds. publication-title: New Phytol. doi: 10.1111/nph.12145 – volume: 50 start-page: 871 year: 2005 ident: B75 article-title: Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. publication-title: BioControl doi: 10.1007/s10526-005-3313-3 – volume: 43 start-page: 339 year: 2017 ident: B56 article-title: Volatile-mediated interactions between cabbage plants in the field and the impact of ozone pollution. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-017-0836-x – volume: 406 start-page: 512 year: 2000 ident: B7 article-title: Herbivory-induced volatiles elicit defence genes in lima bean leaves. publication-title: Nature doi: 10.1038/35020072 – volume: 33 start-page: 683 year: 2007 ident: B107 article-title: Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? publication-title: J. Chem. Ecol. doi: 10.1007/s10886-007-9255-8 – volume: 61 start-page: 545 year: 2002 ident: B45 article-title: C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. publication-title: Phytochemistry doi: 10.1016/s0031-9422(02)00240-6 – volume: 363 start-page: 611 year: 2008 ident: B61 article-title: Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. publication-title: ıPhilos doi: 10.1098/rstb.2007.2173 – volume: 28 start-page: 949 year: 2005 ident: B9 article-title: Assessing the future global impacts of ozone on vegetation. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01341.x – volume: 30 start-page: 1613 year: 2004 ident: B76 article-title: Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. publication-title: J. Chem. Ecol. doi: 10.1023/b:joec.0000042072.18151.6f – volume: 31 start-page: 2217 year: 2005 ident: B119 article-title: Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-005-6413-8 – volume: 410 start-page: 577 year: 2001 ident: B30 article-title: Caterpillar-induced nocturnal plant volatiles repel conspecific females. publication-title: Nature doi: 10.1038/35069058 – volume: 97 start-page: 14801 year: 2000 ident: B53 article-title: An herbivore elicitor activates the gene for indole emission in maize. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.260499897 – volume: 29 start-page: 1007 year: 2001 ident: B109 article-title: Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal? publication-title: Biochem. Syst. Ecol. doi: 10.1016/s0305-1978(01)00047-3 – volume: 26 start-page: 125 year: 2014 ident: B104 article-title: Push–pull farming systems. publication-title: Curr. Opin. Biotech. doi: 10.1016/j.copbio.2013.12.006 – volume: 37 start-page: 378 year: 2002 ident: B99 article-title: Internal bruising alters aroma volatile profiles in tomato fruit tissues. publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/hortsci.37.2.378 – volume: 100 start-page: 325 year: 2003 ident: B80 article-title: Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. publication-title: Oikos doi: 10.1034/j.1600-0706.2003.12075.x – volume: 148 start-page: 280 year: 2006 ident: B85 article-title: Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. publication-title: Oecologia doi: 10.1007/s00442-006-0365-8 – start-page: 486 year: 1995 ident: B113 article-title: Ethylene in plant growth, development, and senescence publication-title: Plant Hormones doi: 10.1007/978-94-011-0473-9_23 – volume: 32 start-page: 77 year: 2016 ident: B40 article-title: Sources of specificity in plant damaged-self recognition. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.06.019 – volume: 6 start-page: 843 year: 2010 ident: B63 article-title: Short signalling distances make plant communication a soliloquy. publication-title: Biol. Lett. doi: 10.1098/rsbl.2010.0440 – volume: 60 start-page: 379 year: 2009 ident: B19 article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105346 – volume: 71 start-page: 2024 year: 2010 ident: B31 article-title: Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.09.010 – volume: 104 start-page: 5257 year: 2007 ident: B55 article-title: Plant volatiles carry both public and private messages. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0700906104 – volume: 20 start-page: R392 year: 2010 ident: B12 article-title: Plant volatiles. publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.02.052 – volume: 16 start-page: 3091 year: 1990 ident: B33 article-title: Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control. publication-title: J. Chem. Ecol. doi: 10.1007/bf00979614 – volume: 31 start-page: 481 year: 2005 ident: B74 article-title: Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-005-2020-y – volume: 36 start-page: 479 year: 2010 ident: B122 article-title: The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-010-9787-1 – volume: 9 start-page: 274 year: 2006 ident: B93 article-title: Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2006.03.002 – volume: 125 start-page: 145 year: 2007 ident: B26 article-title: The role of the plant in attracting parasitoids: response to progressive mechanical wounding. publication-title: Entomol. Exp. Appl. doi: 10.1111/j.1570-7458.2007.00602.x – volume: 35 start-page: 2926 year: 2001 ident: B83 article-title: On-line analysis of reactive VOCs from urban lawn mowing. publication-title: Environ. Sci. Technol. doi: 10.1021/es010637y – volume: 237 start-page: 207 year: 2018 ident: B111 article-title: Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests. publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.03.026 – volume: 34 start-page: 447 year: 2019 ident: B131 article-title: Simulated herbivory: the key to disentangling plant defence responses. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2019.01.008 – year: 2020 ident: B49 article-title: Extracellular DNA: a relevant plant damage-associated molecular pattern (DAMP) for crop protection against pests—a review. publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10129-w – volume: 46 start-page: 29 year: 2006 ident: B106 article-title: Mechanically-injured wheat plants release greater amounts of the secondary metabolites linalool and linalool oxide. publication-title: J. Plant Prot. Res. – volume: 101 year: 2004 ident: B41 article-title: Airborne signals prime plants against insect herbivore attack. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0308037100 – volume: 376 start-page: 723 year: 2008 ident: B125 article-title: Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.09.069 – volume: 8 year: 2019 ident: B88 article-title: SpitWorm, a herbivorous robot: mechanical leaf wounding with simultaneous application of salivary components. publication-title: Plants doi: 10.3390/plants8090318 – volume: 28 start-page: 1359 year: 2011 ident: B91 article-title: Plant volatiles: production, function and pharmacology. publication-title: Nat. Prod. Rep. doi: 10.1039/c1np00021g – volume: 9 year: 2019 ident: B95 article-title: Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. publication-title: Sci. Rep. doi: 10.1038/s41598-019-53946-0 – volume: 79 start-page: 93 year: 1996 ident: B103 article-title: Plant volatile signals in response to herbivore feeding. publication-title: Fla Entomol. doi: 10.2307/3495807 – volume: 220 start-page: 900 year: 2005 ident: B44 article-title: (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. publication-title: Planta doi: 10.1007/s00425-004-1404-5 – volume: 65 start-page: 9579 year: 2017 ident: B98 article-title: Passive adsorption of volatile monoterpene in pest control: aided by proximity and disrupted by ozone. publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b03251 – volume: 6 start-page: 973 year: 2005 ident: B11 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nat. Immunol. doi: 10.1038/ni1253 – volume: 91 start-page: 2329 year: 1994 ident: B25 article-title: Lipid-derived signals that discriminate wound-and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.6.2329 – volume: 87 start-page: 7713 year: 1990 ident: B47 article-title: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.87.19.7713 – volume: 125 start-page: 66 year: 2000 ident: B79 article-title: Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. publication-title: Oecologia doi: 10.1007/pl00008892 – volume: 124 start-page: 408 year: 2000 ident: B60 article-title: Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. publication-title: Oecologia doi: 10.1007/s004420000389 – volume: 25 start-page: 1411 year: 1999 ident: B1 article-title: A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. publication-title: J. Chem. Ecol. doi: 10.1023/A:1020939112234 – start-page: 3 year: 2017 ident: B8 article-title: From the lab bench to the forest: ecology and defence mechanisms of volatile-mediated ‘talking trees’ publication-title: Advance in Botanical Research doi: 10.1016/bs.abr.2016.08.001 – volume: 38 start-page: 148 year: 1987 ident: B32 article-title: How plants obtain predatory mites as bodyguards. publication-title: Neth. J. Zool. doi: 10.1163/156854288x00111 – volume: 129 start-page: 1296 year: 2002 ident: B58 article-title: The effects of abiotic factors on induced volatile emissions in corn plants. publication-title: Plant Physiol. doi: 10.1104/pp.001941 – volume: 157 start-page: 425 year: 2010 ident: B105 article-title: Volatile induction of three cereals: influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2010.00432.x – volume: 30 start-page: 337 year: 2005 ident: B100 article-title: The significance of background odour for an egg parasitoid to detect plants with host eggs. publication-title: Chem. Senses doi: 10.1093/chemse/bji028 – volume: 52 start-page: 375 year: 2007 ident: B27 article-title: The use of push-pull strategies in integrated pest management. publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.52.110405.091407 – volume: 129 start-page: 273 year: 1976 ident: B72 article-title: Production of ethylene by excised segments of plant tissue prior to the effect of wounding. publication-title: Planta doi: 10.1007/bf00398271 – volume: 221 start-page: 277 year: 1983 ident: B14 article-title: Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. publication-title: Science doi: 10.1126/science.221.4607.277 – volume: 39 start-page: 653 year: 2010 ident: B87 article-title: Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. publication-title: Environ. Entomol. doi: 10.1603/en09279 – volume: 135 start-page: 1893 year: 2004 ident: B39 article-title: Biochemistry of plant volatiles. publication-title: Plant Physiol. doi: 10.1104/pp.104.049981 – volume: 14 start-page: 356 year: 2009 ident: B62 article-title: Damaged-self recognition in plant herbivore defence. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.04.002 – volume: 13 start-page: 1172 year: 2010 ident: B17 article-title: Air pollution impedes plant-to-plant communication by volatiles. publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2010.01510.x – volume: 222 start-page: 327 year: 2005 ident: B117 article-title: Systemic induction of volatile release in cotton: how specific is the signal to herbivory? publication-title: Planta doi: 10.1007/s00425-005-1528-2 – volume: 182 start-page: 1545 year: 2020 ident: B89 article-title: Perception of damaged self in plants. publication-title: Plant Physiol. doi: 10.1104/pp.19.01242 – volume: 219 start-page: 1021 year: 2018 ident: B108 article-title: Massive release of volatile organic compounds due to leaf midrib wounding in Populus tremula. publication-title: Plant Ecol. doi: 10.1007/s11258-018-0854-y – volume: 104 start-page: 5467 year: 2007 ident: B64 article-title: Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0610266104 – volume: 31 start-page: 719 year: 2005 ident: B15 article-title: Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-005-3540-1 – volume: 10 year: 2019 ident: B21 article-title: Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2019.00264 – volume: 17 start-page: 44 year: 2014 ident: B82 article-title: Volatile communication between plants that affects herbivory: a meta-analysis. publication-title: Ecol. Lett. doi: 10.1111/ele.12205 – volume: 28 start-page: 1204 year: 2017 ident: B92 article-title: Volatile organic compounds (VOCs) emitted by Ilex paraguariensis plants are affected by the herbivory of the lepidopteran Thelosia camina and the coleopteran Hedypathes betulinus. publication-title: J. Braz. Chem. Soc. doi: 10.21577/0103-5053.20160279 – volume: 26 start-page: 1357 year: 1987 ident: B133 article-title: Changes in cotton leaf chemistry induced by volatile elicitors. publication-title: Phytochemistry doi: 10.1016/s0031-9422(00)81812-9 – volume: 104 start-page: 15963 year: 1999 ident: B43 article-title: Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999jd900144 – volume: 3 start-page: 583 year: 2001 ident: B68 article-title: Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. publication-title: Evol. Ecol. Res. – volume: 250 start-page: 1251 year: 1990 ident: B126 article-title: Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. publication-title: Science doi: 10.1126/science.250.4985.1251 – volume: 232 start-page: 719 year: 2010 ident: B20 article-title: Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in lima bean (Phaseolus lunatus L.). publication-title: Planta doi: 10.1007/s00425-010-1203-0 – volume: 15 start-page: 176 year: 2010 ident: B69 article-title: Multiple stress factors and the emission of plant VOCs. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.01.006 – volume: 7 start-page: 1 year: 2017 ident: B121 article-title: Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. publication-title: Sci. Rep. doi: 10.1038/srep41508 – volume: 29 start-page: 1820 year: 2006 ident: B90 article-title: On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01561.x – volume: 31 start-page: 2231 year: 2005 ident: B101 article-title: Herbivores, vascular pathways, and systemic induction: facts and artifacts. publication-title: J. Chem. Ecol. doi: 10.1007/s10886-005-7099-7 – volume: 42 start-page: 3308 year: 2019 ident: B35 article-title: What makes a volatile organic compound a reliable indicator of insect herbivory? publication-title: Plant Cell Environ. doi: 10.1111/pce.13624 – volume: 54 start-page: 1579 year: 2013 ident: B48 article-title: Aroma volatile release kinetics of tomato genotypes measured by PTR-MS following artificial chewing. publication-title: Food Res. Int. doi: 10.1016/j.foodres.2013.09.015 – volume: 27 start-page: 679 year: 2001 ident: B115 article-title: Exogenous methyl jasmonate induces volatile emissions in cotton plants. publication-title: J. Chem. Ecol. doi: 10.1023/A:1010393700918 – volume: 30 start-page: 2193 year: 2004 ident: B110 article-title: Plant–plant signaling: application of trans-or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco. publication-title: J. Chem. Ecol. doi: 10.1023/b:joec.0000048783.64264.2a – volume: 53 start-page: 299 year: 2002 ident: B84 article-title: Plant responses to insect herbivory: the emerging molecular analysis. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.100301.135207 – volume: 1 start-page: 109 year: 1996 ident: B124 article-title: Plant—carnivore mutualism through herbivore-induced carnivore attractants. publication-title: Trends Plant Sci. doi: 10.1016/s1360-1385(96)90004-7 |
SSID | ssj0000500997 |
Score | 2.484433 |
SecondaryResourceType | review_article |
Snippet | Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 583275 |
SubjectTerms | DAMP defense Plant Science plant–plant communication signaling volatiles wounding |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIT1xfRPDioW4fSdt4c32gwoqIireQZhIU1nbR9eDN_-A_9Jc40-7K9qIXT6VtSpKZaeYbMvmGsT30yIV1EgKgM2hCxDYw0voA0X0mAQMAG9Fp5P5Ven4nLh_kw1SpL8oJa-iBG8F1lZNFnrlYFYkV1iUqsZEAl5rEETt5zfOJPm8qmGpYvQn6ZM2-JEZhquuHA2LnjsMDiUZMaYVTfqim629hzHaG5JTLOVtkC2OsyI-aMS6xGVcus7lehXjufYVpqjc0-vr4rK-8ddLjkF-8crSAF8cNv6kGjiM25fcVJb7hzYl5xmUkmKjGAe9PquTy65pwE2PbVXZ3dnp7fB6MyyUEFlHFKMhNqiAvbAZh7AF8agzkorB56B2EgEtbVpjQRxIijxPDuCdOJCCgU7mXUvpkjc2WVenWGVfCysSLFEyaCxvGKkXBSwkYbaHoIe6w7kR42o65xKmkxUBjTEHi1iRuTeLWjbg7bP_ni2HDo_FL2x7p46cdMWDXD9Au9Ngu9F920WG7E21q_GNoG8SUrnrDnkRKVQTiHDvKWmpu9dh-Uz491tzbmVQJjnHjP4a4yeZp1uQJI7nFZkcvb24bIc6o2Kmt-RuItvyQ priority: 102 providerName: Directory of Open Access Journals |
Title | Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns? |
URI | https://www.proquest.com/docview/2460084285 https://pubmed.ncbi.nlm.nih.gov/PMC7593327 https://doaj.org/article/9e5b87e29b3c4ce393c14de6a3e02123 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKy4ELKgXEQlu5EhcOaRPb4yRIqKJAW5AWIcSivVmOfwrSkpTtVqK3vkPfkCdhJskWIlVIvSRK4sT2jO35Jra_Yew5WuTKBfCJpz1oSgmXWHAxQXSfg0cHwGW0G3n8UR9P1IcpTP9uj-4FeHaja0fxpCbz2e6vnxf72OFfkceJ9nYvns6IeFuku4DtM4c7bA3tUk7ddNyD_Y7pm-BQG21Fa5UoLabdvOWNHxnYqZbOf4BBhyso_zFJh-vsfo8l-etO-Q_YSqg32N2DBvHexUNmKB7R4vflVXvmg50gL_n7M44tZB645Z-bWeCIXfnXhhbG4cVb-wOHmWSpuuD5eBlFl39qCTnR933EJofvvrw5TvpwColD1LFICqtLX1Qu96mI3kdtrS9U5Yo0Bp96HPryyqYxA59FrBj6RUKCR8BXFhEAonzMVuumDk8YL5UDGZX2VhfKpaLUQZYAHr0xH7QXI7a3FJ5xPdc4hbyYGfQ5SNyGxG1I3KYT94i9uH7jtOPZ-E_aA9LHdTpiyG5vNPMT03c4UwaoijyIspJOOSyedJnCwlkZiNVejtjOUpsGexRNk9g6NOeYk9IUZUAUmFE-UPMgx-GT-vu3lps7h1JiGZ_eojrP2D26IoOYwSZbXczPwxYinUW13f4hwOPRNNtuG_MfOGD_SA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%93Plant+Communication%3A+Is+There+a+Role+for+Volatile+Damage-Associated+Molecular+Patterns%3F&rft.jtitle=Frontiers+in+plant+science&rft.au=Meents%2C+Anja+K.&rft.au=Mith%C3%B6fer%2C+Axel&rft.date=2020-10-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft_id=info:doi/10.3389%2Ffpls.2020.583275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2020_583275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |