Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?

Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 11; p. 583275
Main Authors Meents, Anja K., Mithöfer, Axel
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
AbstractList Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant–plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
Author Meents, Anja K.
Mithöfer, Axel
AuthorAffiliation Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany
AuthorAffiliation_xml – name: Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany
Author_xml – sequence: 1
  givenname: Anja K.
  surname: Meents
  fullname: Meents, Anja K.
– sequence: 2
  givenname: Axel
  surname: Mithöfer
  fullname: Mithöfer, Axel
BookMark eNp1kUFvFCEYhompsbX27nGOXmZlYJgBD5pmrbpJGxtTjTfCwMeWhhm2wJj05n_wH_pLZHcbY5vI5QO-930_wvMcHUxhAoReNnhBKRev7canBcEELxinpGdP0FHTdW3dduT7wT_7Q3SS0g0ui2EsRP8MHVLa9Jy0_AjJS6-m_Pvnr12tlmEc58lplV2Y3lSrVF1dQ4RKVV-Ch8qGWH0LvnTL4b0a1Rrq05SCdiqDqS6KRs9exepS5QxxSu9eoKdW-QQn9_UYff1wdrX8VJ9__rhanp7XuqUi11x1wvBB9wYTa4ztlDK8HTTHFgw2DaP9oLBtmGms0UCYIJQZ1jHBLWPM0mO02ueaoG7kJrpRxTsZlJO7ixDXUsXstAcpgA28ByIGqlsNVFDdtAY6RQGThtCS9XaftZmHEcq4KUflH4Q-7EzuWq7DD9kzQQuJEvDqPiCG2xlSlqNLGnz5YghzkqTtMOYt4axI8V6qY0gpgv07psFyi1luMcstZrnHXCzdI4t2eQesPMb5_xv_AK-osLA
CitedBy_id crossref_primary_10_3390_jof7110969
crossref_primary_10_1093_jxb_erab487
crossref_primary_10_3390_ijms23137031
crossref_primary_10_3389_fpls_2022_879039
crossref_primary_10_1007_s11829_022_09892_2
crossref_primary_10_1002_sae2_70044
crossref_primary_10_1021_acs_jafc_3c06569
crossref_primary_10_1111_pce_14633
crossref_primary_10_1111_pce_14995
crossref_primary_10_1111_pce_14795
crossref_primary_10_1093_plcell_koac009
crossref_primary_10_1007_s11947_024_03457_2
crossref_primary_10_1007_s11694_024_02606_7
crossref_primary_10_1094_PHYTO_03_23_0104_RVW
crossref_primary_10_3390_ijms22063152
crossref_primary_10_3390_metabo11060357
crossref_primary_10_1007_s10886_025_01557_7
crossref_primary_10_1093_jxb_erad338
crossref_primary_10_1093_jxb_erac522
crossref_primary_10_1007_s11829_021_09837_1
crossref_primary_10_1016_j_cub_2023_07_045
crossref_primary_10_1016_j_micres_2023_127564
crossref_primary_10_7554_eLife_89855
crossref_primary_10_3390_plants11233305
crossref_primary_10_7554_eLife_89855_3
crossref_primary_10_1016_j_plantsci_2023_111664
crossref_primary_10_1016_j_jplph_2023_153946
crossref_primary_10_1007_s10526_025_10305_5
crossref_primary_10_3389_fpls_2023_1135000
crossref_primary_10_3390_antiox13121565
crossref_primary_10_1186_s12896_020_00661_8
crossref_primary_10_1042_EBC20210092
crossref_primary_10_1111_ppl_13840
crossref_primary_10_3389_fimmu_2021_844315
crossref_primary_10_1007_s00344_022_10804_0
crossref_primary_10_1016_j_horiz_2022_100008
crossref_primary_10_1016_j_foodres_2023_113684
crossref_primary_10_3390_insects15060458
crossref_primary_10_1002_pei3_70035
crossref_primary_10_3390_insects15080589
crossref_primary_10_3390_ijms21249380
crossref_primary_10_1111_nph_20202
crossref_primary_10_3390_plants13050626
crossref_primary_10_3390_plants10030485
crossref_primary_10_1016_j_foodchem_2021_129482
crossref_primary_10_3390_chemosensors9110297
crossref_primary_10_1021_acs_jafc_2c04218
crossref_primary_10_1080_03235408_2022_2081766
crossref_primary_10_1007_s10658_024_02964_4
crossref_primary_10_1007_s40725_022_00177_8
crossref_primary_10_1111_ppl_13547
crossref_primary_10_1073_pnas_2122808119
crossref_primary_10_3389_fpls_2023_1141338
crossref_primary_10_3390_s22145453
Cites_doi 10.1016/j.tree.2009.09.010
10.1111/tpj.14077
10.1016/j.envexpbot.2017.10.012
10.1016/s1352-2310(03)00391-1
10.1078/1439-1791-00131
10.1016/j.envpol.2004.02.027
10.1007/s10886-012-0072-3
10.1007/bf01140183
10.1046/j.1365-313x.1998.00324.x
10.1016/j.tplants.2012.03.012
10.1038/nature03451
10.1111/j.1365-313x.2003.01987.x
10.1104/pp.104.054460
10.1016/j.atmosenv.2006.11.029
10.1021/bk-1983-0208.ch004
10.1038/srep11183
10.1016/s1369-5266(02)00263-7
10.1007/pl00013951
10.1104/pp.107.113118
10.1023/A:1024270713493
10.1016/j.phytochem.2011.04.022
10.1007/s10886-009-9654-0
10.1016/s0065-2296(09)51015-4
10.1016/j.tplants.2017.07.005
10.1038/31219
10.3389/fpls.2014.00578
10.1038/ncomms7273
10.1111/nph.14671
10.1093/chemse/bji066
10.1093/pcp/pcp030
10.1890/0012-9658(2006)87[922:drisva]2.0.co;2
10.1080/07352680600899973
10.1086/284408
10.1101/370692
10.1046/j.1365-3032.2000.00190.x
10.4161/psb.29517
10.1016/j.phytochem.2014.08.008
10.1603/0046-225x-34.3.576
10.1371/journal.pone.0020419
10.3389/fpls.2019.00646
10.1007/s10886-008-9579-z
10.1046/j.1365-313x.2002.01198.x
10.1146/annurev.arplant.59.032607.092825
10.1021/acs.jafc.6b01742
10.1007/s10886-006-9147-3
10.1016/j.phytochem.2011.08.029
10.1023/A:1012213116515
10.1111/j.1461-0248.2007.01043.x
10.1016/s0305-1978(01)00046-1
10.1016/s0305-1978(01)00049-7
10.1038/35081189
10.1111/nph.12145
10.1007/s10526-005-3313-3
10.1007/s10886-017-0836-x
10.1038/35020072
10.1007/s10886-007-9255-8
10.1016/s0031-9422(02)00240-6
10.1098/rstb.2007.2173
10.1111/j.1365-3040.2005.01341.x
10.1023/b:joec.0000042072.18151.6f
10.1007/s10886-005-6413-8
10.1038/35069058
10.1073/pnas.260499897
10.1016/s0305-1978(01)00047-3
10.1016/j.copbio.2013.12.006
10.21273/hortsci.37.2.378
10.1034/j.1600-0706.2003.12075.x
10.1007/s00442-006-0365-8
10.1007/978-94-011-0473-9_23
10.1016/j.pbi.2016.06.019
10.1098/rsbl.2010.0440
10.1146/annurev.arplant.57.032905.105346
10.1016/j.phytochem.2010.09.010
10.1073/pnas.0700906104
10.1016/j.cub.2010.02.052
10.1007/bf00979614
10.1007/s10886-005-2020-y
10.1007/s10886-010-9787-1
10.1016/j.pbi.2006.03.002
10.1111/j.1570-7458.2007.00602.x
10.1021/es010637y
10.1016/j.scienta.2018.03.026
10.1016/j.tree.2019.01.008
10.1007/s00344-020-10129-w
10.1073/pnas.0308037100
10.1016/j.bbrc.2008.09.069
10.3390/plants8090318
10.1039/c1np00021g
10.1038/s41598-019-53946-0
10.2307/3495807
10.1007/s00425-004-1404-5
10.1021/acs.jafc.7b03251
10.1038/ni1253
10.1073/pnas.91.6.2329
10.1073/pnas.87.19.7713
10.1007/pl00008892
10.1007/s004420000389
10.1023/A:1020939112234
10.1016/bs.abr.2016.08.001
10.1163/156854288x00111
10.1104/pp.001941
10.1111/j.1744-7348.2010.00432.x
10.1093/chemse/bji028
10.1146/annurev.ento.52.110405.091407
10.1007/bf00398271
10.1126/science.221.4607.277
10.1603/en09279
10.1104/pp.104.049981
10.1016/j.tplants.2009.04.002
10.1111/j.1461-0248.2010.01510.x
10.1007/s00425-005-1528-2
10.1104/pp.19.01242
10.1007/s11258-018-0854-y
10.1073/pnas.0610266104
10.1007/s10886-005-3540-1
10.3389/fpls.2019.00264
10.1111/ele.12205
10.21577/0103-5053.20160279
10.1016/s0031-9422(00)81812-9
10.1029/1999jd900144
10.1126/science.250.4985.1251
10.1007/s00425-010-1203-0
10.1016/j.tplants.2010.01.006
10.1038/srep41508
10.1111/j.1365-3040.2006.01561.x
10.1007/s10886-005-7099-7
10.1111/pce.13624
10.1016/j.foodres.2013.09.015
10.1023/A:1010393700918
10.1023/b:joec.0000048783.64264.2a
10.1146/annurev.arplant.53.100301.135207
10.1016/s1360-1385(96)90004-7
ContentType Journal Article
Copyright Copyright © 2020 Meents and Mithöfer.
Copyright © 2020 Meents and Mithöfer. 2020 Meents and Mithöfer
Copyright_xml – notice: Copyright © 2020 Meents and Mithöfer.
– notice: Copyright © 2020 Meents and Mithöfer. 2020 Meents and Mithöfer
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2020.583275
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_9e5b87e29b3c4ce393c14de6a3e02123
PMC7593327
10_3389_fpls_2020_583275
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-8a69d8bc7d02fddf6aad84bc80fed0d1537ba0f15d1fdce259235d56598f555f3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:42 EDT 2025
Thu Aug 21 13:39:52 EDT 2025
Fri Jul 11 01:00:35 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Tue Jul 01 03:27:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-8a69d8bc7d02fddf6aad84bc80fed0d1537ba0f15d1fdce259235d56598f555f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Rika Ozawa, Kyoto University, Japan; Manuel Benedetti, University of L’Aquila, Italy
This article was submitted to Plant Pathogen Interactions, a section of the journal Frontiers in Plant Science
Edited by: Massimo E. Maffei, University of Turin, Italy
OpenAccessLink https://doaj.org/article/9e5b87e29b3c4ce393c14de6a3e02123
PMID 33178248
PQID 2460084285
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9e5b87e29b3c4ce393c14de6a3e02123
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7593327
proquest_miscellaneous_2460084285
crossref_primary_10_3389_fpls_2020_583275
crossref_citationtrail_10_3389_fpls_2020_583275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Dudareva (B39) 2004; 135
Duran-Flores (B40) 2016; 32
Baldwin (B12) 2010; 20
Fowler (B51) 1985; 126
Orians (B101) 2005; 31
Drukker (B36) 2000; 25
Farneti (B48) 2013; 54
Halitschke (B60) 2000; 124
Farag (B44) 2005; 220
Blande (B17) 2010; 13
Piesik (B106) 2006; 46
Connor (B26) 2007; 125
James (B74) 2005; 31
Kessler (B85) 2006; 148
Farmer (B47) 1990; 87
Heil (B63) 2010; 6
De Moraes (B29) 1998; 393
Frost (B54) 2007; 10
Hoballah (B68) 2001; 3
Paré (B103) 1996; 79
Shiojiri (B121) 2017; 7
Freundlich (B52) 2019
Hassanali (B61) 2008; 363
McCormick (B94) 2012; 17
Snoeren (B122) 2010; 36
Piesik (B105) 2010; 157
Kihara (B86) 2014; 107
James (B75) 2005; 50
Heil (B66) 2014; 5
Dudareva (B37) 2013; 198
Seco (B120) 2007; 41
Heil (B62) 2009; 14
Arimura (B4) 2009; 50
Dicke (B33) 1990; 16
Arimura (B7) 2000; 406
Dicke (B34) 2003; 4
Ruther (B119) 2005; 31
Arimura (B6) 2002; 29
Maffei (B91) 2011; 28
Martins (B92) 2017; 28
Rodriguez-Saona (B115) 2001; 27
D’Alessandro (B28) 2005; 30
Rhoades (B114) 1983
Pickett (B104) 2014; 26
Sukegawa (B123) 2018; 96
Karban (B81) 2006; 87
Howe (B71) 2008; 59
Fall (B43) 1999; 104
Mithöfer (B96) 2008; 146
Takabayashi (B124) 1996; 1
Boller (B19) 2009; 60
Farag (B45) 2002; 61
Bruce (B23) 2015; 5
Tamogami (B125) 2008; 376
Reid (B113) 1995
Gust (B59) 2017; 22
Karban (B80) 2003; 100
Matsui (B93) 2006; 9
Bricchi (B20) 2010; 232
De Moraes (B30) 2001; 410
Heil (B64) 2007; 104
Gouinguené (B58) 2002; 129
Lee (B87) 2010; 39
Jackson (B72) 1976; 129
Frey (B53) 2000; 97
Karban (B78) 2001; 29
Vucetic (B129) 2014; 9
James (B76) 2004; 30
Ozawa (B102) 2000; 113
Kanagendran (B77) 2018; 145
von Mérey (B128) 2011; 72
Karban (B82) 2014; 17
Vuorinen (B130) 2004; 131
Röse (B117) 2005; 222
Li (B88) 2019; 8
Mithöfer (B97) 2005; 137
Girón-Calva (B56) 2017; 43
Fontana (B50) 2009; 35
Atkinson (B10) 2003; 37
Loreto (B90) 2006; 29
Cook (B27) 2007; 52
Heil (B67) 2009; 51
Zhuang (B134) 2012; 73
Mumm (B100) 2005; 30
Meents (B95) 2019; 9
Ausubel (B11) 2005; 6
Degenhardt (B31) 2010; 71
Engelberth (B41) 2004; 101
Agelopoulos (B1) 1999; 25
Banchio (B15) 2005; 31
Moretti (B99) 2002; 37
Gershenzon (B55) 2007; 104
Arimura (B3) 2004; 37
Karban (B79) 2000; 125
Douma (B35) 2019; 42
Holopainen (B69) 2010; 15
Hou (B70) 2019; 10
Waterman (B131) 2019; 34
Brilli (B21) 2019; 10
Choi (B25) 1994; 91
Preston (B109) 2001; 29
Zeringue (B133) 1987; 26
Carrasco (B24) 2005; 34
Li (B89) 2020; 182
Baldwin (B14) 1983; 221
Mofikoya (B98) 2017; 65
Pinto (B107) 2007; 33
Rodriguez-Saona (B116) 2009; 35
Girón-Calva (B57) 2012; 38
Ameye (B2) 2018; 220
Farmer (B46) 2001; 411
Heil (B65) 2010; 25
Turlings (B126) 1990; 250
James (B73) 2003; 29
Arimura (B5) 2001; 29
Arimura (B8) 2017
Ferrusquía-Jiménez (B49) 2020
Ashmore (B9) 2005; 28
Rostás (B118) 2006; 32
Karl (B83) 2001; 35
Preston (B110) 2004; 30
Bate (B16) 1998; 16
Dudareva (B38) 2006; 25
Kessler (B84) 2002; 53
Boland (B18) 1992; 79
Dicke (B32) 1987; 38
Baldwin (B13) 2002; 5
Quintana-Rodriguez (B111) 2018; 237
Rasmann (B112) 2005; 434
Portillo-Estrada (B108) 2018; 219
Zeng (B132) 2016; 64
Brilli (B22) 2011; 6
Erb (B42) 2015; 6
Van Poecke (B127) 2001; 27
References_xml – volume: 25
  start-page: 137
  year: 2010
  ident: B65
  article-title: Explaining evolution of plant communication by airborne signals.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2009.09.010
– volume: 96
  start-page: 910
  year: 2018
  ident: B123
  article-title: Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential.
  publication-title: Plant J.
  doi: 10.1111/tpj.14077
– volume: 145
  start-page: 21
  year: 2018
  ident: B77
  article-title: Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.10.012
– volume: 37
  start-page: 197
  year: 2003
  ident: B10
  article-title: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review.
  publication-title: Atmos. Environ.
  doi: 10.1016/s1352-2310(03)00391-1
– volume: 4
  start-page: 27
  year: 2003
  ident: B34
  article-title: Inducible indirect defence of plants: from mechanisms to ecological functions.
  publication-title: Basic Appl. Ecol.
  doi: 10.1078/1439-1791-00131
– volume: 131
  start-page: 305
  year: 2004
  ident: B130
  article-title: Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.02.027
– volume: 38
  start-page: 226
  year: 2012
  ident: B57
  article-title: Volatile dose and exposure time impact perception in neighboring plants.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-012-0072-3
– volume: 79
  start-page: 368
  year: 1992
  ident: B18
  article-title: Are acyclic C 11 and C 16 homoterpenes plant volatiles indicating herbivory?
  publication-title: Naturwissenschaften
  doi: 10.1007/bf01140183
– volume: 16
  start-page: 561
  year: 1998
  ident: B16
  article-title: C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00324.x
– volume: 17
  start-page: 303
  year: 2012
  ident: B94
  article-title: The specificity of herbivore-induced plant volatiles in attracting herbivore enemies.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.03.012
– volume: 434
  start-page: 732
  year: 2005
  ident: B112
  article-title: Recruitment of entomopathogenic nematodes by insect-damaged maize roots.
  publication-title: Nature
  doi: 10.1038/nature03451
– volume: 37
  start-page: 603
  year: 2004
  ident: B3
  article-title: Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313x.2003.01987.x
– volume: 137
  start-page: 1160
  year: 2005
  ident: B97
  article-title: Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.054460
– volume: 41
  start-page: 2477
  year: 2007
  ident: B120
  article-title: Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations.
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.11.029
– year: 1983
  ident: B114
  publication-title: Responses of Alder and Willow to Attack by Tent Caterpillars and Webworms: Evidence for Pheromonal Sensitivity of Willows.
  doi: 10.1021/bk-1983-0208.ch004
– volume: 5
  year: 2015
  ident: B23
  article-title: The first crop plant genetically engineered to release an insect pheromone for defence.
  publication-title: Sci. Rep.
  doi: 10.1038/srep11183
– volume: 5
  start-page: 351
  year: 2002
  ident: B13
  article-title: Volatile signaling in plant–plant–herbivore interactions: what is real?
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/s1369-5266(02)00263-7
– volume: 113
  start-page: 427
  year: 2000
  ident: B102
  article-title: Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites.
  publication-title: J. Plant Res.
  doi: 10.1007/pl00013951
– volume: 146
  start-page: 825
  year: 2008
  ident: B96
  article-title: Recognition of herbivory-associated molecular patterns.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.113118
– volume: 29
  start-page: 1601
  year: 2003
  ident: B73
  article-title: Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1024270713493
– volume: 72
  start-page: 1838
  year: 2011
  ident: B128
  article-title: Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.04.022
– volume: 35
  start-page: 833
  year: 2009
  ident: B50
  article-title: The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-009-9654-0
– volume: 51
  start-page: 667
  year: 2009
  ident: B67
  article-title: Ecological consequences of plant defence signalling.
  publication-title: Adv. Bot. Res.
  doi: 10.1016/s0065-2296(09)51015-4
– volume: 22
  start-page: 779
  year: 2017
  ident: B59
  article-title: Sensing danger: key to activating plant immunity.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.07.005
– volume: 393
  start-page: 570
  year: 1998
  ident: B29
  article-title: Herbivore-infested plants selectively attract parasitoids.
  publication-title: Nature
  doi: 10.1038/31219
– volume: 5
  year: 2014
  ident: B66
  article-title: Danger signals–damaged-self recognition across the tree of life.
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2014.00578
– volume: 6
  start-page: 1
  year: 2015
  ident: B42
  article-title: Indole is an essential herbivore-induced volatile priming signal in maize.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7273
– volume: 220
  start-page: 666
  year: 2018
  ident: B2
  article-title: Green leaf volatile production by plants: a meta-analysis.
  publication-title: New Phytol.
  doi: 10.1111/nph.14671
– volume: 30
  start-page: 739
  year: 2005
  ident: B28
  article-title: In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps.
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bji066
– volume: 50
  start-page: 911
  year: 2009
  ident: B4
  article-title: Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp030
– volume: 87
  start-page: 922
  year: 2006
  ident: B81
  article-title: Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication.
  publication-title: Ecology
  doi: 10.1890/0012-9658(2006)87[922:drisva]2.0.co;2
– volume: 25
  start-page: 417
  year: 2006
  ident: B38
  article-title: Plant volatiles: recent advances and future perspectives.
  publication-title: Crit. Rev. Plant. Sci.
  doi: 10.1080/07352680600899973
– volume: 126
  start-page: 181
  year: 1985
  ident: B51
  article-title: Rapidly induced defenses and talking trees: the devil’s advocate position.
  publication-title: Am. Nat.
  doi: 10.1086/284408
– year: 2019
  ident: B52
  article-title: Variable costs and benefits of eavesdropping a green leaf volatile on two plant species in a common garden.
  publication-title: bioRxiv [Preprint]
  doi: 10.1101/370692
– volume: 25
  start-page: 260
  year: 2000
  ident: B36
  article-title: Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey.
  publication-title: Physiol. Entomol.
  doi: 10.1046/j.1365-3032.2000.00190.x
– volume: 9
  year: 2014
  ident: B129
  article-title: Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.29517
– volume: 107
  start-page: 42
  year: 2014
  ident: B86
  article-title: Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia polymorpha).
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.08.008
– volume: 34
  start-page: 576
  year: 2005
  ident: B24
  article-title: Response of the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) to mango fruit volatiles.
  publication-title: Environ. Entomol.
  doi: 10.1603/0046-225x-34.3.576
– volume: 6
  year: 2011
  ident: B22
  article-title: Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF).
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020419
– volume: 10
  year: 2019
  ident: B70
  article-title: Damage-associated molecular pattern-triggered immunity in plants.
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2019.00646
– volume: 35
  start-page: 163
  year: 2009
  ident: B116
  article-title: Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-008-9579-z
– volume: 29
  start-page: 87
  year: 2002
  ident: B6
  article-title: Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2002.01198.x
– volume: 59
  start-page: 41
  year: 2008
  ident: B71
  article-title: Plant immunity to insect herbivores.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092825
– volume: 64
  start-page: 5011
  year: 2016
  ident: B132
  article-title: Formation of volatile tea constituent indole during the oolong tea manufacturing process.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b01742
– volume: 32
  year: 2006
  ident: B118
  article-title: Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-006-9147-3
– volume: 73
  start-page: 15
  year: 2012
  ident: B134
  article-title: Biosynthesis and emission of insect herbivory-induced volatile indole in rice.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.08.029
– volume: 27
  start-page: 1911
  year: 2001
  ident: B127
  article-title: Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1012213116515
– volume: 10
  start-page: 490
  year: 2007
  ident: B54
  article-title: Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores.
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01043.x
– volume: 29
  start-page: 995
  year: 2001
  ident: B78
  article-title: Communication between sagebrush and wild tobacco in the field.
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/s0305-1978(01)00046-1
– volume: 29
  start-page: 1049
  year: 2001
  ident: B5
  article-title: Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites.
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/s0305-1978(01)00049-7
– volume: 411
  start-page: 854
  year: 2001
  ident: B46
  article-title: Surface-to-air signals.
  publication-title: Nature
  doi: 10.1038/35081189
– volume: 198
  start-page: 16
  year: 2013
  ident: B37
  article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds.
  publication-title: New Phytol.
  doi: 10.1111/nph.12145
– volume: 50
  start-page: 871
  year: 2005
  ident: B75
  article-title: Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps.
  publication-title: BioControl
  doi: 10.1007/s10526-005-3313-3
– volume: 43
  start-page: 339
  year: 2017
  ident: B56
  article-title: Volatile-mediated interactions between cabbage plants in the field and the impact of ozone pollution.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-017-0836-x
– volume: 406
  start-page: 512
  year: 2000
  ident: B7
  article-title: Herbivory-induced volatiles elicit defence genes in lima bean leaves.
  publication-title: Nature
  doi: 10.1038/35020072
– volume: 33
  start-page: 683
  year: 2007
  ident: B107
  article-title: Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-007-9255-8
– volume: 61
  start-page: 545
  year: 2002
  ident: B45
  article-title: C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato.
  publication-title: Phytochemistry
  doi: 10.1016/s0031-9422(02)00240-6
– volume: 363
  start-page: 611
  year: 2008
  ident: B61
  article-title: Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry.
  publication-title: ıPhilos
  doi: 10.1098/rstb.2007.2173
– volume: 28
  start-page: 949
  year: 2005
  ident: B9
  article-title: Assessing the future global impacts of ozone on vegetation.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01341.x
– volume: 30
  start-page: 1613
  year: 2004
  ident: B76
  article-title: Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/b:joec.0000042072.18151.6f
– volume: 31
  start-page: 2217
  year: 2005
  ident: B119
  article-title: Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-005-6413-8
– volume: 410
  start-page: 577
  year: 2001
  ident: B30
  article-title: Caterpillar-induced nocturnal plant volatiles repel conspecific females.
  publication-title: Nature
  doi: 10.1038/35069058
– volume: 97
  start-page: 14801
  year: 2000
  ident: B53
  article-title: An herbivore elicitor activates the gene for indole emission in maize.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.260499897
– volume: 29
  start-page: 1007
  year: 2001
  ident: B109
  article-title: Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal?
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/s0305-1978(01)00047-3
– volume: 26
  start-page: 125
  year: 2014
  ident: B104
  article-title: Push–pull farming systems.
  publication-title: Curr. Opin. Biotech.
  doi: 10.1016/j.copbio.2013.12.006
– volume: 37
  start-page: 378
  year: 2002
  ident: B99
  article-title: Internal bruising alters aroma volatile profiles in tomato fruit tissues.
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/hortsci.37.2.378
– volume: 100
  start-page: 325
  year: 2003
  ident: B80
  article-title: Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants.
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2003.12075.x
– volume: 148
  start-page: 280
  year: 2006
  ident: B85
  article-title: Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.
  publication-title: Oecologia
  doi: 10.1007/s00442-006-0365-8
– start-page: 486
  year: 1995
  ident: B113
  article-title: Ethylene in plant growth, development, and senescence
  publication-title: Plant Hormones
  doi: 10.1007/978-94-011-0473-9_23
– volume: 32
  start-page: 77
  year: 2016
  ident: B40
  article-title: Sources of specificity in plant damaged-self recognition.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.06.019
– volume: 6
  start-page: 843
  year: 2010
  ident: B63
  article-title: Short signalling distances make plant communication a soliloquy.
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2010.0440
– volume: 60
  start-page: 379
  year: 2009
  ident: B19
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105346
– volume: 71
  start-page: 2024
  year: 2010
  ident: B31
  article-title: Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.09.010
– volume: 104
  start-page: 5257
  year: 2007
  ident: B55
  article-title: Plant volatiles carry both public and private messages.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0700906104
– volume: 20
  start-page: R392
  year: 2010
  ident: B12
  article-title: Plant volatiles.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.02.052
– volume: 16
  start-page: 3091
  year: 1990
  ident: B33
  article-title: Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/bf00979614
– volume: 31
  start-page: 481
  year: 2005
  ident: B74
  article-title: Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-005-2020-y
– volume: 36
  start-page: 479
  year: 2010
  ident: B122
  article-title: The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-010-9787-1
– volume: 9
  start-page: 274
  year: 2006
  ident: B93
  article-title: Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.03.002
– volume: 125
  start-page: 145
  year: 2007
  ident: B26
  article-title: The role of the plant in attracting parasitoids: response to progressive mechanical wounding.
  publication-title: Entomol. Exp. Appl.
  doi: 10.1111/j.1570-7458.2007.00602.x
– volume: 35
  start-page: 2926
  year: 2001
  ident: B83
  article-title: On-line analysis of reactive VOCs from urban lawn mowing.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010637y
– volume: 237
  start-page: 207
  year: 2018
  ident: B111
  article-title: Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests.
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.03.026
– volume: 34
  start-page: 447
  year: 2019
  ident: B131
  article-title: Simulated herbivory: the key to disentangling plant defence responses.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2019.01.008
– year: 2020
  ident: B49
  article-title: Extracellular DNA: a relevant plant damage-associated molecular pattern (DAMP) for crop protection against pests—a review.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10129-w
– volume: 46
  start-page: 29
  year: 2006
  ident: B106
  article-title: Mechanically-injured wheat plants release greater amounts of the secondary metabolites linalool and linalool oxide.
  publication-title: J. Plant Prot. Res.
– volume: 101
  year: 2004
  ident: B41
  article-title: Airborne signals prime plants against insect herbivore attack.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0308037100
– volume: 376
  start-page: 723
  year: 2008
  ident: B125
  article-title: Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.09.069
– volume: 8
  year: 2019
  ident: B88
  article-title: SpitWorm, a herbivorous robot: mechanical leaf wounding with simultaneous application of salivary components.
  publication-title: Plants
  doi: 10.3390/plants8090318
– volume: 28
  start-page: 1359
  year: 2011
  ident: B91
  article-title: Plant volatiles: production, function and pharmacology.
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c1np00021g
– volume: 9
  year: 2019
  ident: B95
  article-title: Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53946-0
– volume: 79
  start-page: 93
  year: 1996
  ident: B103
  article-title: Plant volatile signals in response to herbivore feeding.
  publication-title: Fla Entomol.
  doi: 10.2307/3495807
– volume: 220
  start-page: 900
  year: 2005
  ident: B44
  article-title: (Z)-3-Hexenol induces defense genes and downstream metabolites in maize.
  publication-title: Planta
  doi: 10.1007/s00425-004-1404-5
– volume: 65
  start-page: 9579
  year: 2017
  ident: B98
  article-title: Passive adsorption of volatile monoterpene in pest control: aided by proximity and disrupted by ozone.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b03251
– volume: 6
  start-page: 973
  year: 2005
  ident: B11
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1253
– volume: 91
  start-page: 2329
  year: 1994
  ident: B25
  article-title: Lipid-derived signals that discriminate wound-and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.91.6.2329
– volume: 87
  start-page: 7713
  year: 1990
  ident: B47
  article-title: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.87.19.7713
– volume: 125
  start-page: 66
  year: 2000
  ident: B79
  article-title: Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush.
  publication-title: Oecologia
  doi: 10.1007/pl00008892
– volume: 124
  start-page: 408
  year: 2000
  ident: B60
  article-title: Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata.
  publication-title: Oecologia
  doi: 10.1007/s004420000389
– volume: 25
  start-page: 1411
  year: 1999
  ident: B1
  article-title: A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1020939112234
– start-page: 3
  year: 2017
  ident: B8
  article-title: From the lab bench to the forest: ecology and defence mechanisms of volatile-mediated ‘talking trees’
  publication-title: Advance in Botanical Research
  doi: 10.1016/bs.abr.2016.08.001
– volume: 38
  start-page: 148
  year: 1987
  ident: B32
  article-title: How plants obtain predatory mites as bodyguards.
  publication-title: Neth. J. Zool.
  doi: 10.1163/156854288x00111
– volume: 129
  start-page: 1296
  year: 2002
  ident: B58
  article-title: The effects of abiotic factors on induced volatile emissions in corn plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.001941
– volume: 157
  start-page: 425
  year: 2010
  ident: B105
  article-title: Volatile induction of three cereals: influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants.
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2010.00432.x
– volume: 30
  start-page: 337
  year: 2005
  ident: B100
  article-title: The significance of background odour for an egg parasitoid to detect plants with host eggs.
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bji028
– volume: 52
  start-page: 375
  year: 2007
  ident: B27
  article-title: The use of push-pull strategies in integrated pest management.
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.52.110405.091407
– volume: 129
  start-page: 273
  year: 1976
  ident: B72
  article-title: Production of ethylene by excised segments of plant tissue prior to the effect of wounding.
  publication-title: Planta
  doi: 10.1007/bf00398271
– volume: 221
  start-page: 277
  year: 1983
  ident: B14
  article-title: Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants.
  publication-title: Science
  doi: 10.1126/science.221.4607.277
– volume: 39
  start-page: 653
  year: 2010
  ident: B87
  article-title: Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry.
  publication-title: Environ. Entomol.
  doi: 10.1603/en09279
– volume: 135
  start-page: 1893
  year: 2004
  ident: B39
  article-title: Biochemistry of plant volatiles.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.049981
– volume: 14
  start-page: 356
  year: 2009
  ident: B62
  article-title: Damaged-self recognition in plant herbivore defence.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.04.002
– volume: 13
  start-page: 1172
  year: 2010
  ident: B17
  article-title: Air pollution impedes plant-to-plant communication by volatiles.
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2010.01510.x
– volume: 222
  start-page: 327
  year: 2005
  ident: B117
  article-title: Systemic induction of volatile release in cotton: how specific is the signal to herbivory?
  publication-title: Planta
  doi: 10.1007/s00425-005-1528-2
– volume: 182
  start-page: 1545
  year: 2020
  ident: B89
  article-title: Perception of damaged self in plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01242
– volume: 219
  start-page: 1021
  year: 2018
  ident: B108
  article-title: Massive release of volatile organic compounds due to leaf midrib wounding in Populus tremula.
  publication-title: Plant Ecol.
  doi: 10.1007/s11258-018-0854-y
– volume: 104
  start-page: 5467
  year: 2007
  ident: B64
  article-title: Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0610266104
– volume: 31
  start-page: 719
  year: 2005
  ident: B15
  article-title: Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-005-3540-1
– volume: 10
  year: 2019
  ident: B21
  article-title: Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops.
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2019.00264
– volume: 17
  start-page: 44
  year: 2014
  ident: B82
  article-title: Volatile communication between plants that affects herbivory: a meta-analysis.
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12205
– volume: 28
  start-page: 1204
  year: 2017
  ident: B92
  article-title: Volatile organic compounds (VOCs) emitted by Ilex paraguariensis plants are affected by the herbivory of the lepidopteran Thelosia camina and the coleopteran Hedypathes betulinus.
  publication-title: J. Braz. Chem. Soc.
  doi: 10.21577/0103-5053.20160279
– volume: 26
  start-page: 1357
  year: 1987
  ident: B133
  article-title: Changes in cotton leaf chemistry induced by volatile elicitors.
  publication-title: Phytochemistry
  doi: 10.1016/s0031-9422(00)81812-9
– volume: 104
  start-page: 15963
  year: 1999
  ident: B43
  article-title: Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry.
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/1999jd900144
– volume: 3
  start-page: 583
  year: 2001
  ident: B68
  article-title: Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids.
  publication-title: Evol. Ecol. Res.
– volume: 250
  start-page: 1251
  year: 1990
  ident: B126
  article-title: Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps.
  publication-title: Science
  doi: 10.1126/science.250.4985.1251
– volume: 232
  start-page: 719
  year: 2010
  ident: B20
  article-title: Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in lima bean (Phaseolus lunatus L.).
  publication-title: Planta
  doi: 10.1007/s00425-010-1203-0
– volume: 15
  start-page: 176
  year: 2010
  ident: B69
  article-title: Multiple stress factors and the emission of plant VOCs.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.01.006
– volume: 7
  start-page: 1
  year: 2017
  ident: B121
  article-title: Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.
  publication-title: Sci. Rep.
  doi: 10.1038/srep41508
– volume: 29
  start-page: 1820
  year: 2006
  ident: B90
  article-title: On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01561.x
– volume: 31
  start-page: 2231
  year: 2005
  ident: B101
  article-title: Herbivores, vascular pathways, and systemic induction: facts and artifacts.
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-005-7099-7
– volume: 42
  start-page: 3308
  year: 2019
  ident: B35
  article-title: What makes a volatile organic compound a reliable indicator of insect herbivory?
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13624
– volume: 54
  start-page: 1579
  year: 2013
  ident: B48
  article-title: Aroma volatile release kinetics of tomato genotypes measured by PTR-MS following artificial chewing.
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2013.09.015
– volume: 27
  start-page: 679
  year: 2001
  ident: B115
  article-title: Exogenous methyl jasmonate induces volatile emissions in cotton plants.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1010393700918
– volume: 30
  start-page: 2193
  year: 2004
  ident: B110
  article-title: Plant–plant signaling: application of trans-or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco.
  publication-title: J. Chem. Ecol.
  doi: 10.1023/b:joec.0000048783.64264.2a
– volume: 53
  start-page: 299
  year: 2002
  ident: B84
  article-title: Plant responses to insect herbivory: the emerging molecular analysis.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.53.100301.135207
– volume: 1
  start-page: 109
  year: 1996
  ident: B124
  article-title: Plant—carnivore mutualism through herbivore-induced carnivore attractants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/s1360-1385(96)90004-7
SSID ssj0000500997
Score 2.484433
SecondaryResourceType review_article
Snippet Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 583275
SubjectTerms DAMP
defense
Plant Science
plant–plant communication
signaling
volatiles
wounding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIT1xfRPDioW4fSdt4c32gwoqIireQZhIU1nbR9eDN_-A_9Jc40-7K9qIXT6VtSpKZaeYbMvmGsT30yIV1EgKgM2hCxDYw0voA0X0mAQMAG9Fp5P5Ven4nLh_kw1SpL8oJa-iBG8F1lZNFnrlYFYkV1iUqsZEAl5rEETt5zfOJPm8qmGpYvQn6ZM2-JEZhquuHA2LnjsMDiUZMaYVTfqim629hzHaG5JTLOVtkC2OsyI-aMS6xGVcus7lehXjufYVpqjc0-vr4rK-8ddLjkF-8crSAF8cNv6kGjiM25fcVJb7hzYl5xmUkmKjGAe9PquTy65pwE2PbVXZ3dnp7fB6MyyUEFlHFKMhNqiAvbAZh7AF8agzkorB56B2EgEtbVpjQRxIijxPDuCdOJCCgU7mXUvpkjc2WVenWGVfCysSLFEyaCxvGKkXBSwkYbaHoIe6w7kR42o65xKmkxUBjTEHi1iRuTeLWjbg7bP_ni2HDo_FL2x7p46cdMWDXD9Au9Ngu9F920WG7E21q_GNoG8SUrnrDnkRKVQTiHDvKWmpu9dh-Uz491tzbmVQJjnHjP4a4yeZp1uQJI7nFZkcvb24bIc6o2Kmt-RuItvyQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?
URI https://www.proquest.com/docview/2460084285
https://pubmed.ncbi.nlm.nih.gov/PMC7593327
https://doaj.org/article/9e5b87e29b3c4ce393c14de6a3e02123
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKy4ELKgXEQlu5EhcOaRPb4yRIqKJAW5AWIcSivVmOfwrSkpTtVqK3vkPfkCdhJskWIlVIvSRK4sT2jO35Jra_Yew5WuTKBfCJpz1oSgmXWHAxQXSfg0cHwGW0G3n8UR9P1IcpTP9uj-4FeHaja0fxpCbz2e6vnxf72OFfkceJ9nYvns6IeFuku4DtM4c7bA3tUk7ddNyD_Y7pm-BQG21Fa5UoLabdvOWNHxnYqZbOf4BBhyso_zFJh-vsfo8l-etO-Q_YSqg32N2DBvHexUNmKB7R4vflVXvmg50gL_n7M44tZB645Z-bWeCIXfnXhhbG4cVb-wOHmWSpuuD5eBlFl39qCTnR933EJofvvrw5TvpwColD1LFICqtLX1Qu96mI3kdtrS9U5Yo0Bp96HPryyqYxA59FrBj6RUKCR8BXFhEAonzMVuumDk8YL5UDGZX2VhfKpaLUQZYAHr0xH7QXI7a3FJ5xPdc4hbyYGfQ5SNyGxG1I3KYT94i9uH7jtOPZ-E_aA9LHdTpiyG5vNPMT03c4UwaoijyIspJOOSyedJnCwlkZiNVejtjOUpsGexRNk9g6NOeYk9IUZUAUmFE-UPMgx-GT-vu3lps7h1JiGZ_eojrP2D26IoOYwSZbXczPwxYinUW13f4hwOPRNNtuG_MfOGD_SA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%93Plant+Communication%3A+Is+There+a+Role+for+Volatile+Damage-Associated+Molecular+Patterns%3F&rft.jtitle=Frontiers+in+plant+science&rft.au=Meents%2C+Anja+K.&rft.au=Mith%C3%B6fer%2C+Axel&rft.date=2020-10-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft_id=info:doi/10.3389%2Ffpls.2020.583275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2020_583275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon