Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops

Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 734167
Main Authors Bourke, Peter M., Evers, Jochem B., Bijma, Piter, van Apeldoorn, Dirk F., Smulders, Marinus J. M., Kuyper, Thomas W., Mommer, Liesje, Bonnema, Guusje
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 18.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.
AbstractList Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.
Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.
Author Bonnema, Guusje
Bijma, Piter
Evers, Jochem B.
van Apeldoorn, Dirk F.
Kuyper, Thomas W.
Mommer, Liesje
Bourke, Peter M.
Smulders, Marinus J. M.
AuthorAffiliation 2 Centre for Crops Systems Analysis, Wageningen University & Research , Wageningen , Netherlands
5 Field Crops, Wageningen University & Research , Lelystad , Netherlands
6 Soil Biology, Wageningen University & Research , Wageningen , Netherlands
3 Animal Breeding and Genomics, Wageningen University & Research , Wageningen , Netherlands
1 Plant Breeding, Wageningen University & Research , Wageningen , Netherlands
4 Farming Systems Ecology Group, Wageningen University & Research , Wageningen , Netherlands
7 Plant Ecology and Nature Conservation, Wageningen University & Research , Wageningen , Netherlands
AuthorAffiliation_xml – name: 2 Centre for Crops Systems Analysis, Wageningen University & Research , Wageningen , Netherlands
– name: 7 Plant Ecology and Nature Conservation, Wageningen University & Research , Wageningen , Netherlands
– name: 1 Plant Breeding, Wageningen University & Research , Wageningen , Netherlands
– name: 6 Soil Biology, Wageningen University & Research , Wageningen , Netherlands
– name: 5 Field Crops, Wageningen University & Research , Lelystad , Netherlands
– name: 4 Farming Systems Ecology Group, Wageningen University & Research , Wageningen , Netherlands
– name: 3 Animal Breeding and Genomics, Wageningen University & Research , Wageningen , Netherlands
Author_xml – sequence: 1
  givenname: Peter M.
  surname: Bourke
  fullname: Bourke, Peter M.
– sequence: 2
  givenname: Jochem B.
  surname: Evers
  fullname: Evers, Jochem B.
– sequence: 3
  givenname: Piter
  surname: Bijma
  fullname: Bijma, Piter
– sequence: 4
  givenname: Dirk F.
  surname: van Apeldoorn
  fullname: van Apeldoorn, Dirk F.
– sequence: 5
  givenname: Marinus J. M.
  surname: Smulders
  fullname: Smulders, Marinus J. M.
– sequence: 6
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
– sequence: 7
  givenname: Liesje
  surname: Mommer
  fullname: Mommer, Liesje
– sequence: 8
  givenname: Guusje
  surname: Bonnema
  fullname: Bonnema, Guusje
BookMark eNp1kbtuVDEQhi0UREJIT3lKml189zEFEllxWSkoKVLQWb6djaOz9mL7REqXB4GXy5PgwyZSgoSb8Xjm_8aa_zU4iCl6AN4iuCSkl--H3ViWGGK0FIQiLl6AI8Q5XVCOfxw8uR-Ck1KuYTsMQinFK3BIaM97hPgRWJ1m712Im-7U36bouu8pJjuNdcr-Q3cx1TrX6pXv7u9-rWP12ea0u7_73bUkdauWlDfg5aDH4k8e4jG4_PL5cvVtcXb-db36dLawlMi66KkxVLRpeuDWcdczSLygmg9GWzYI65izXjCNIKGMOWGMkZBYw50jXJJjsN5jXdLXapfDVudblXRQfx9S3iida7CjVx5DNBhvBkQQHaiTRgorOTIYOww1bqyPe9ZuMlvfxsaa9fgM-rwSw5XapBvVc8IFYg3w7gGQ08_Jl6q2oVg_jjr6NBWFORQECobnVr5vbZsrJftB2VB1DWkmh1EhqGY_1eynmv1Uez-bEP4jfPzffyV_ALw4p_s
CitedBy_id crossref_primary_10_1016_j_eja_2023_127024
crossref_primary_10_1016_j_soilbio_2022_108855
crossref_primary_10_3389_fpls_2022_733996
crossref_primary_10_1016_j_forpol_2023_103100
crossref_primary_10_1016_j_jafr_2024_101501
crossref_primary_10_3389_fphgy_2024_1341617
crossref_primary_10_1007_s13593_024_00984_2
crossref_primary_10_1093_evlett_qrae051
crossref_primary_10_1038_s44264_025_00048_2
crossref_primary_10_3389_fpls_2023_1228850
crossref_primary_10_1073_pnas_2305517121
crossref_primary_10_1186_s40066_024_00490_4
crossref_primary_10_1080_1343943X_2024_2372878
crossref_primary_10_3389_fsufs_2022_921216
crossref_primary_10_1007_s11104_023_06111_6
crossref_primary_10_34133_plantphenomics_0280
crossref_primary_10_1186_s12870_025_06103_x
crossref_primary_10_1038_s41598_024_83516_y
crossref_primary_10_1111_eva_13418
crossref_primary_10_1016_j_still_2023_105708
crossref_primary_10_1007_s10806_021_09876_x
crossref_primary_10_1080_21683565_2025_2475459
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1016_j_apsoil_2023_105262
crossref_primary_10_1016_j_agee_2023_108564
crossref_primary_10_3389_fpls_2023_1147671
crossref_primary_10_1007_s11104_023_05909_8
crossref_primary_10_3390_agriculture12020229
crossref_primary_10_3390_agronomy15020287
crossref_primary_10_1016_j_biocontrol_2024_105637
crossref_primary_10_1016_j_rhisph_2024_100890
crossref_primary_10_3390_agronomy14010070
crossref_primary_10_3389_fpls_2023_1162506
crossref_primary_10_3389_fpls_2024_1394413
crossref_primary_10_3390_agronomy13071840
crossref_primary_10_3389_fpls_2022_844635
crossref_primary_10_1039_D4GC02512A
crossref_primary_10_3389_fpls_2024_1388866
crossref_primary_10_3390_agronomy15010158
crossref_primary_10_3389_fpls_2022_843065
crossref_primary_10_3389_fgene_2022_834366
crossref_primary_10_1093_jpe_rtad017
crossref_primary_10_1093_jpe_rtad016
crossref_primary_10_1016_j_atech_2024_100443
crossref_primary_10_1093_pcp_pcae092
crossref_primary_10_1016_j_stress_2024_100662
crossref_primary_10_1007_s10457_024_00997_6
crossref_primary_10_1007_s10886_023_01432_3
crossref_primary_10_1038_s41467_024_52449_5
crossref_primary_10_1002_csc2_21370
crossref_primary_10_1016_j_jchromb_2025_124543
crossref_primary_10_1111_1365_2745_14241
crossref_primary_10_3389_fpls_2024_1356506
crossref_primary_10_2166_wpt_2023_058
Cites_doi 10.1111/nph.15895
10.1016/j.fcr.2009.09.006
10.1146/annurev-phyto-082712-102246
10.1515/sg-2008-0008
10.1111/pce.13001
10.1038/s41598-020-69672-x
10.1016/j.eja.2017.09.009
10.1016/j.fcr.2017.09.006
10.1016/j.eja.2006.01.005
10.1046/j.1461-0248.2003.00516.x
10.2134/agronj2008.0208x
10.1111/j.1744-7348.1996.tb07096.x
10.1016/j.tplants.2015.07.007
10.1002/eap.1629
10.1086/282630
10.1007/s13593-014-0272-z
10.1007/BF00225947
10.1111/aab.12268
10.1079/9780851994178.0000
10.1016/j.fcr.2008.04.001
10.1016/j.eja.2020.126197
10.1111/1365-2435.13062
10.1007/BF00022837
10.1002/jsfa.3615
10.1016/j.tree.2016.02.010
10.1007/BF00010992
10.2307/2257876
10.1038/nplants.2015.33
10.2134/agronj2002.5180
10.1016/j.dib.2019.103898
10.1534/g3.120.401354
10.1016/j.baae.2017.06.002
10.1126/sciadv.aba3756
10.1126/science.162.3859.1243
10.1126/science.1259855
10.2134/agronj1951.00021962004300050007x
10.1534/g3.119.400809
10.1534/genetics.111.130617
10.1111/ele.13336
10.1093/aob/mcy092
10.1016/j.fcr.2020.108015
10.1111/j.1558-5646.1997.tb01458.x
10.3390/su4102550
10.1093/genetics/157.4.1819
10.1111/nph.12035
10.1016/j.fcr.2016.09.015
10.1038/s41477-019-0569-7
10.1093/aob/mcs082
10.2135/cropsci1987.0011183X002700060011x
10.1016/j.agee.2013.03.004
10.1007/BF00056241
10.1111/tpj.13799
10.1007/s13593-014-0277-7
10.1111/nph.12413
10.1007/BF00570909
10.1007/BF00022838
10.1146/annurev.phyto.010708.154114
10.1038/s41559-021-01471-7
10.1016/j.tplants.2019.07.001
10.1007/s11104-018-3744-0
10.1016/j.tree.2018.10.013
10.1093/jxb/ery323
10.1111/nph.14003
10.1071/CP16211
10.1046/j.0022-0477.2001.00609.x
10.1007/s10658-018-1573-x
10.3389/fpls.2021.605172
10.1071/BI9670127
10.1016/j.agwat.2016.08.021
10.1071/FP13177
10.1111/j.1365-2664.2012.02173.x
10.1111/1365-2745.13592
10.1038/s41477-021-00948-4
10.1146/annurev-ecolsys-120213-091917
10.1071/FP08052
10.1073/pnas.0704591104
10.1038/s41586-020-2705-y
10.1038/nature01014
10.1016/j.eja.2019.125936
10.1890/12-1399.1
10.1017/S0889189300008328
10.1016/S0167-8809(01)00278-X
10.1007/s10681-018-2192-5
10.1111/nph.12778
10.1093/aob/mcu099
10.1016/j.fcr.2010.03.004
10.1016/j.fcr.2009.04.007
10.1111/j.1752-4571.2010.00145.x
10.2134/agronj1999.00021962009100020023x
10.1111/j.1558-5646.2009.00676.x
10.1139/b92-253
10.1111/pce.13652
10.1093/aob/mcaa014
10.1111/j.1461-0248.2008.01179.x
10.1007/s13593-017-0445-7
10.3389/fpls.2020.620400
10.2134/agronj1956.00021962004800040012x
10.1038/s41559-021-01497-x
10.3390/agriculture8060080
10.1098/rspb.2019.1290
10.1093/jxb/ery288
10.1093/genetics/82.4.703
10.1007/s13593-018-0522-6
10.1016/j.chom.2015.01.011
10.1038/hdy.2013.15
10.1111/j.1469-8137.2005.01445.x
10.1007/s13593-017-0418-x
10.1038/35083573
10.1007/s13593-019-0562-6
10.1016/bs.agron.2019.04.001
10.1017/S0021859605005009
10.1126/science.1078710
10.1093/aob/mcs296
10.3389/fpls.2019.01606
10.1093/aobpla/plv113
10.1016/j.fcr.2019.107571
10.1016/j.agee.2007.08.003
10.1111/1365-2664.13739
10.1111/nph.17435
10.2134/agronj2009.0404
10.1002/9781119945932.ch5
10.1017/S0003356100002750
10.1016/j.fcr.2015.09.010
10.1111/1462-2920.12686
10.1534/genetics.104.035956
10.1186/s12866-019-1572-x
10.1016/j.eja.2019.125987
10.1534/genetics.112.147983
10.1016/j.plantsci.2018.06.018
10.1007/s00122-018-3125-3
10.1016/B978-0-12-384719-5.00363-4
10.1111/nph.13132
10.1002/9781119525417.ch7
10.1104/pp.112.195727
10.1093/aob/mcr221
10.1038/nature13869
ContentType Journal Article
Copyright Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema.
Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema
Copyright_xml – notice: Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema.
– notice: Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2021.734167
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_e201fbebf1314f4d9b97c961b22d20a2
PMC8636715
10_3389_fpls_2021_734167
GrantInformation_xml – fundername: Top Sectors programme Agri & Food
– fundername: Wageningen University & Research
  grantid: KB-40-005-004; KB-34-007-019
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-84bb47eedaf6cd6d8503e74a6fbac5f7cd5dce75a103455d7bbb903cb6dd3693
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:02 EDT 2025
Thu Aug 21 18:02:37 EDT 2025
Fri Jul 11 11:58:01 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 03:48:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-84bb47eedaf6cd6d8503e74a6fbac5f7cd5dce75a103455d7bbb903cb6dd3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Jérôme Enjalbert, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), France
Reviewed by: Nobuhito Sekiya, Mie University, Japan; Radu E. Sestras, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Jean-Paul Sampoux, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), France
This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.734167
PMID 34868116
PQID 2607307525
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e201fbebf1314f4d9b97c961b22d20a2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636715
proquest_miscellaneous_2607307525
crossref_citationtrail_10_3389_fpls_2021_734167
crossref_primary_10_3389_fpls_2021_734167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-18
  day: 18
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Liu (ref92) 2019; 19
Montazeaud (ref99) 2020; 287
Evers (ref45) 2018
Hajjar (ref64) 2008; 123
Donald (ref40) 1981
Meilhac (ref97) 2020; 6
Beillouin (ref12) 2019; 24
Corre-Hellou (ref29) 2009; 113
Faget (ref48) 2013; 112
Meuwissen (ref98) 2001; 157
Hardin (ref66) 1968; 162
Rangarajan (ref113) 2018; 122
Godin (ref59) 2005; 166
Sapoukhina (ref119) 2013; 200
Dawson (ref32) 2012
Bybee-Finley (ref21) 2018; 8
Hughes (ref77) 2008; 11
Fletcher (ref51) 2016; 67
Kuyper (ref83) 2021
Stomph (ref125) 2020
Gathumbi (ref54) 2002; 94
Ampt (ref4) 2019; 154
Bijma (ref14) 2011; 189
Schouten (ref121) 2019; 10
Litrico (ref91) 2015; 20
Li (ref90) 2013
De Vries (ref36) 2021; 231
Suneson (ref129) 1951; 43
Knörzer (ref81) 2010; 102
Peng (ref107) 2008; 108
Struik (ref126) 2017; 37
Tooker (ref133) 2012; 49
Van Oort (ref136) 2020; 112
Acquaah (ref1) 2020
Gersani (ref57) 2001; 89
Forst (ref52) 2019; 242
van Eeuwijk (ref135) 2019; 282
Brooker (ref18) 2015; 206
Chateil (ref25) 2013; 171
Zuppinger-Dingley (ref152) 2014; 515
Li (ref87) 2020; 113
Weiner (ref146) 2017
Juventia (ref79) 2021; 261
Brooker (ref19) 2021; 109
Dawson (ref33) 2019; 224
Mueller (ref102) 2013; 94
Zhu (ref501) 2016; 168
Loreau (ref93) 2001; 412
O’Leary (ref105) 1999; 14
Walder (ref141) 2012; 159
Weemstra (ref144) 2016; 211
Holland (ref76) 1999; 91
Picheny (ref109) 2017; 40
Barry (ref10) 2019; 34
Henry (ref72) 2010; 117
Laughlin (ref85) 2021; 5
Hemmerling (ref71) 2008; 35
Chimonyo (ref27) 2016; 177
Harper (ref68) 1967; 55
Louarn (ref94) 2020; 126
Smithson (ref123) 1996; 128
Silva (ref30) 2013; 197
Borg (ref16) 2018; 221
Tilman (ref131) 2002; 418
Evers (ref46) 2019; 70
Jensen (ref78) 1996; 182
Louwaars (ref95) 2018; 214
Harper (ref67) 1964
Vanavermaete (ref138) 2020; 10
Ditzler (ref38) 2021; 122
Raseduzzaman (ref114) 2017; 91
Alegria Terrazas (ref2) 2020; 10
Evenson (ref44) 2003; 300
Gorjanc (ref60) 2018; 131
Subrahmaniam (ref128) 2018; 93
Griffing (ref63) 1976; 82
Faverjon (ref49) 2019; 70
Boudreau (ref17) 2013; 51
Bulgarelli (ref20) 2015; 17
Zimmermann (ref151) 1996; 92
Reiss (ref117) 2018; 28
Vandermeer (ref139) 1992
Anten (ref6) 2016; 31
Gaudio (ref55) 2019; 39
Donald (ref39) 1968; 17
Koricheva (ref82) 2018; 32
Steffen (ref124) 2015; 347
Smith (ref122) 1986; 43
Griffing (ref62) 1967; 20
Leclère (ref86) 2020; 585
Rebetzke (ref116) 2014; 41
Bedoussac (ref11) 2015; 35
Ndufa (ref104) 2009; 101
Verbruggen (ref140) 2010; 3
Wang (ref142) 2020; 57
Rasmusson (ref115) 1987; 27
Van Ruijven (ref137) 2003; 6
Connolly (ref28) 2001; 87
Phillips (ref108) 2005; 143
Bijma (ref15) 2014; 112
Lammerts Van Bueren (ref84) 2018; 38
Tilman (ref132) 2014; 45
Hill (ref74) 1990; 79
Li (ref88) 2007; 104
Stukenbrock (ref127) 2008; 46
Barot (ref9) 2017; 37
Li (ref89) 2014; 203
Sarlikioti (ref120) 2011; 108
Barillot (ref8) 2014; 114
Valente (ref134) 2020; 43
Yu (ref150) 2015; 184
Gebeyehu (ref56) 2006; 24
Suneson (ref130) 1956; 48
Feike (ref50) 2012; 4
Moore (ref101) 1997; 51
Cardinale (ref23) 2015; 17
Daetwyler (ref31) 2013; 193
Bergmann (ref13) 2020; 6
Denison (ref37) 2012
Kiær (ref80) 2009; 114
Gaba (ref53) 2015; 35
Prieto (ref111) 2015; 1
Sampoux (ref118) 2020; 10
Annicchiarico (ref5) 2019; 157
Muir (ref103) 2005; 170
Giller (ref58) 2001
Bančič (ref7) 2021; 12
Emmett (ref43) 2018; 431
Prusinkiewicz (ref112) 2012
Weisser (ref147) 2017; 23
Chen (ref26) 2021; 7
Wuest (ref149) 2021; 5
Postma (ref110) 2012; 110
Wright (ref148) 1985; 69
Allard (ref3) 1969; 103
Haug (ref69) 2021; 11
Hetrick (ref73) 1992; 70
Bélanger (ref47) 2019
Østergård (ref106) 2009; 89
Weiner (ref145) 2019; 24
Hill (ref75) 1996; 92
Hamblin (ref65) 1986; 4
Dudley (ref41) 2015; 7
Chacón-Labella (ref24) 2019; 22
McGlothlin (ref96) 2009; 63
Gou (ref61) 2017; 200
Cappa (ref22) 2008; 57
References_xml – volume: 224
  start-page: 37
  year: 2019
  ident: ref33
  article-title: The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition
  publication-title: New Phytol.
  doi: 10.1111/nph.15895
– volume: 114
  start-page: 361
  year: 2009
  ident: ref80
  article-title: Grain yield increase in cereal variety mixtures: a meta-analysis of field trials
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2009.09.006
– volume: 51
  start-page: 499
  year: 2013
  ident: ref17
  article-title: Diseases in intercropping systems
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102246
– volume: 57
  start-page: 45
  year: 2008
  ident: ref22
  article-title: Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model
  publication-title: Silvae Genet.
  doi: 10.1515/sg-2008-0008
– volume: 40
  start-page: 1926
  year: 2017
  ident: ref109
  article-title: Using numerical plant models and phenotypic correlation space to design achievable ideotypes
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13001
– volume: 10
  start-page: 12916
  year: 2020
  ident: ref2
  article-title: A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69672-x
– volume: 91
  start-page: 25
  year: 2017
  ident: ref114
  article-title: Does intercropping enhance yield stability in arable crop production? A meta-analysis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.009
– volume: 221
  start-page: 298
  year: 2018
  ident: ref16
  article-title: Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2017.09.006
– volume: 24
  start-page: 396
  year: 2006
  ident: ref56
  article-title: Genotype× cropping system interaction in climbing beans (Phaseolus vulgaris L.) grown as sole crop and in association with maize (Zea mays L.)
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2006.01.005
– volume: 6
  start-page: 910
  year: 2003
  ident: ref137
  article-title: Diversity reduces invasibility in experimental plant communities: the role of plant species
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2003.00516.x
– volume: 101
  start-page: 1352
  year: 2009
  ident: ref104
  article-title: Do mixed-species legume fallows provide long-term maize yield benefit compared with monoculture legume fallows?
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0208x
– volume: 128
  start-page: 127
  year: 1996
  ident: ref123
  article-title: Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1996.tb07096.x
– volume: 20
  start-page: 604
  year: 2015
  ident: ref91
  article-title: Diversity in plant breeding: a new conceptual framework
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.07.007
– volume: 28
  start-page: 62
  year: 2018
  ident: ref117
  article-title: Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1629
– volume: 103
  start-page: 621
  year: 1969
  ident: ref3
  article-title: Population studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat
  publication-title: Am. Nat.
  doi: 10.1086/282630
– volume: 35
  start-page: 607
  year: 2015
  ident: ref53
  article-title: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0272-z
– volume: 79
  start-page: 168
  year: 1990
  ident: ref74
  article-title: The three C's—competition, coexistence and coevolution—and their impact on the breeding of forage crop mixtures
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00225947
– volume: 168
  start-page: 357
  year: 2016
  ident: ref501
  article-title: High productivity of wheat intercropped with maize is associated with plant architectural responses
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12268
– volume-title: Nitrogen Fixation in Tropical Cropping Systems.
  year: 2001
  ident: ref58
  doi: 10.1079/9780851994178.0000
– volume: 108
  start-page: 32
  year: 2008
  ident: ref107
  article-title: Progress in ideotype breeding to increase rice yield potential
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2008.04.001
– volume: 122
  start-page: 126197
  year: 2021
  ident: ref38
  article-title: Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126197
– volume: 4
  start-page: 245
  year: 1986
  ident: ref65
  article-title: Breeding common bean for yield in mixtures
  publication-title: Plant Breed. Rev.
– volume: 32
  start-page: 1704
  year: 2018
  ident: ref82
  article-title: The relative importance of plant intraspecific diversity in structuring arthropod communities: a meta-analysis
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13062
– volume: 92
  start-page: 129
  year: 1996
  ident: ref151
  article-title: Breeding for yield, in mixtures of common beans (Phaseolus vulgaris L) and maize (Zea mays L)
  publication-title: Euphytica
  doi: 10.1007/BF00022837
– volume: 89
  start-page: 1439
  year: 2009
  ident: ref106
  article-title: Time for a shift in crop production: embracing complexity through diversity at all levels
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.3615
– volume: 31
  start-page: 429
  year: 2016
  ident: ref6
  article-title: Tragedies and crops: understanding natural selection to improve cropping systems
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2016.02.010
– volume: 182
  start-page: 25
  year: 1996
  ident: ref78
  article-title: Grain yield, symbiotic N 2 fixation and interspecific competition for inorganic N in pea-barley intercrops
  publication-title: Plant Soil
  doi: 10.1007/BF00010992
– volume-title: Principles of Plant Genetics and Breeding.
  year: 2020
  ident: ref1
– volume: 55
  start-page: 247
  year: 1967
  ident: ref68
  article-title: A Darwinian approach to plant ecology
  publication-title: J. Ecol.
  doi: 10.2307/2257876
– volume: 1
  start-page: 15033
  year: 2015
  ident: ref111
  article-title: Complementary effects of species and genetic diversity on productivity and stability of sown grasslands
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.33
– volume: 94
  start-page: 518
  year: 2002
  ident: ref54
  article-title: Do species mixtures increase above-and belowground resource capture in woody and herbaceous tropical legumes?
  publication-title: Agron. J.
  doi: 10.2134/agronj2002.5180
– volume: 24
  start-page: 103898
  year: 2019
  ident: ref12
  article-title: A dataset of meta-analyses on crop diversification at the global scale
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.103898
– volume: 10
  start-page: 2753
  year: 2020
  ident: ref138
  article-title: Preservation of genetic variation in a breeding population for long-term genetic gain
  publication-title: G3
  doi: 10.1534/g3.120.401354
– volume: 23
  start-page: 1
  year: 2017
  ident: ref147
  article-title: Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2017.06.002
– volume: 6
  start-page: eaba3756
  year: 2020
  ident: ref13
  article-title: The fungal collaboration gradient dominates the root economics space in plants
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba3756
– volume: 162
  start-page: 1243
  year: 1968
  ident: ref66
  article-title: The tragedy of the commons
  publication-title: Science
  doi: 10.1126/science.162.3859.1243
– volume: 347
  start-page: 1259855
  year: 2015
  ident: ref124
  article-title: Planetary boundaries: guiding human development on a changing planet
  publication-title: Science
  doi: 10.1126/science.1259855
– volume: 43
  start-page: 234
  year: 1951
  ident: ref129
  article-title: Male-sterile facilitated synthetic hybrid barley
  publication-title: Agron. J.
  doi: 10.2134/agronj1951.00021962004300050007x
– volume: 10
  start-page: 89
  year: 2020
  ident: ref118
  article-title: Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations
  publication-title: G3
  doi: 10.1534/g3.119.400809
– volume: 189
  start-page: 1347
  year: 2011
  ident: ref14
  article-title: A general definition of the heritable variation that determines the potential of a population to respond to selection
  publication-title: Genetics
  doi: 10.1534/genetics.111.130617
– volume-title: The Algorithmic Beauty of Plants.
  year: 2012
  ident: ref112
– volume: 22
  start-page: 1472
  year: 2019
  ident: ref24
  article-title: Plant domestication disrupts biodiversity effects across major crop types
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13336
– volume: 122
  start-page: 485
  year: 2018
  ident: ref113
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy092
– volume: 261
  start-page: 108015
  year: 2021
  ident: ref79
  article-title: Spatial and genetic crop diversity support ecosystem service delivery: a case of yield and biocontrol in Dutch organic cabbage production
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2020.108015
– volume: 51
  start-page: 1352
  year: 1997
  ident: ref101
  article-title: Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1997.tb01458.x
– volume: 4
  start-page: 2550
  year: 2012
  ident: ref50
  article-title: How to overcome the slow death of intercropping in the North China plain
  publication-title: Sustainability
  doi: 10.3390/su4102550
– volume: 157
  start-page: 1819
  year: 2001
  ident: ref98
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 197
  start-page: 631
  year: 2013
  ident: ref30
  article-title: Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree
  publication-title: New Phytol.
  doi: 10.1111/nph.12035
– volume: 200
  start-page: 122
  year: 2017
  ident: ref61
  article-title: Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2016.09.015
– volume: 6
  start-page: 28
  year: 2020
  ident: ref97
  article-title: Both selection and plasticity drive niche differentiation in experimental grasslands
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0569-7
– volume: 110
  start-page: 521
  year: 2012
  ident: ref110
  article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs082
– volume: 27
  start-page: 1140
  year: 1987
  ident: ref115
  article-title: An evaluation of ideotype breeding
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1987.0011183X002700060011x
– volume: 171
  start-page: 25
  year: 2013
  ident: ref25
  article-title: Crop genetic diversity benefits farmland biodiversity in cultivated fields
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.03.004
– volume: 17
  start-page: 385
  year: 1968
  ident: ref39
  article-title: The breeding of crop ideotypes
  publication-title: Euphytica
  doi: 10.1007/BF00056241
– volume: 93
  start-page: 747
  year: 2018
  ident: ref128
  article-title: The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions
  publication-title: Plant J.
  doi: 10.1111/tpj.13799
– volume: 35
  start-page: 911
  year: 2015
  ident: ref11
  article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0277-7
– volume-title: Computational Botany: Advancing Plant Science Through Functional–Structural Plant Modelling.
  year: 2018
  ident: ref45
– volume: 200
  start-page: 888
  year: 2013
  ident: ref119
  article-title: Quantitative plant resistance in cultivar mixtures: wheat yellow rust as a modeling case study
  publication-title: New Phytol.
  doi: 10.1111/nph.12413
– volume: 69
  start-page: 399
  year: 1985
  ident: ref148
  article-title: Selection for improved yield in inter-specific mixtures or intercrops
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00570909
– volume: 92
  start-page: 135
  year: 1996
  ident: ref75
  article-title: Breeding components for mixture performance
  publication-title: Euphytica
  doi: 10.1007/BF00022838
– volume: 46
  start-page: 75
  year: 2008
  ident: ref127
  article-title: The origins of plant pathogens in agro-ecosystems
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.010708.154114
– volume: 5
  start-page: 1123
  year: 2021
  ident: ref85
  article-title: Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-021-01471-7
– volume: 24
  start-page: 927
  year: 2019
  ident: ref145
  article-title: Looking in the wrong direction for higher-yielding crop genotypes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.07.001
– volume: 431
  start-page: 53
  year: 2018
  ident: ref43
  article-title: Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3744-0
– volume: 34
  start-page: 167
  year: 2019
  ident: ref10
  article-title: The future of complementarity: disentangling causes from consequences
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2018.10.013
– volume: 70
  start-page: 2491
  year: 2019
  ident: ref49
  article-title: A generic individual-based model can predict yield, nitrogen content, and species abundance in experimental grassland communities
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery323
– volume: 211
  start-page: 1159
  year: 2016
  ident: ref144
  article-title: Towards a multidimensional root trait framework: a tree root review
  publication-title: New Phytol.
  doi: 10.1111/nph.14003
– volume: 67
  start-page: 1252
  year: 2016
  ident: ref51
  article-title: Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP16211
– volume: 89
  start-page: 660
  year: 2001
  ident: ref57
  article-title: Tragedy of the commons as a result of root competition
  publication-title: J. Ecol.
  doi: 10.1046/j.0022-0477.2001.00609.x
– volume: 154
  start-page: 141
  year: 2019
  ident: ref4
  article-title: Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-018-1573-x
– volume: 12
  start-page: 605172
  year: 2021
  ident: ref7
  article-title: Modeling illustrates that genomic selection provides new opportunities for intercrop breeding
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.605172
– volume: 20
  start-page: 127
  year: 1967
  ident: ref62
  article-title: Selection in reference to biological groups I. Individual and group selection applied to populations of unordered groups
  publication-title: Aust. J. Biol. Sci.
  doi: 10.1071/BI9670127
– volume: 177
  start-page: 317
  year: 2016
  ident: ref27
  article-title: Simulating yield and water use of a sorghum–cowpea intercrop using APSIM
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.08.021
– volume: 41
  start-page: 107
  year: 2014
  ident: ref116
  article-title: Plot size matters: interference from intergenotypic competition in plant phenotyping studies
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP13177
– volume: 49
  start-page: 974
  year: 2012
  ident: ref133
  article-title: Genotypically diverse cultivar mixtures for insect pest management and increased crop yields
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2012.02173.x
– volume: 109
  start-page: 2054
  year: 2021
  ident: ref19
  article-title: Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13592
– volume: 7
  start-page: 893
  year: 2021
  ident: ref26
  article-title: Diversity increases yield but reduces harvest index in crop mixtures
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00948-4
– volume: 45
  start-page: 471
  year: 2014
  ident: ref132
  article-title: Biodiversity and ecosystem functioning
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-120213-091917
– volume: 35
  start-page: 739
  year: 2008
  ident: ref71
  article-title: The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP08052
– volume: 104
  start-page: 11192
  year: 2007
  ident: ref88
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0704591104
– volume: 585
  start-page: 551
  year: 2020
  ident: ref86
  article-title: Bending the curve of terrestrial biodiversity needs an integrated strategy
  publication-title: Nature
  doi: 10.1038/s41586-020-2705-y
– volume: 418
  start-page: 671
  year: 2002
  ident: ref131
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 112
  start-page: 125936
  year: 2020
  ident: ref136
  article-title: Effects of strip width on yields in relay-strip intercropping: a simulation study
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125936
– volume: 94
  start-page: 787
  year: 2013
  ident: ref102
  article-title: Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment
  publication-title: Ecology
  doi: 10.1890/12-1399.1
– volume: 14
  start-page: 158
  year: 1999
  ident: ref105
  article-title: Breeding corn for adaptation to two diverse intercropping companions
  publication-title: Am. J. Altern. Agric.
  doi: 10.1017/S0889189300008328
– volume: 87
  start-page: 191
  year: 2001
  ident: ref28
  article-title: The information content of indicators in intercropping research
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00278-X
– volume: 214
  start-page: 114
  year: 2018
  ident: ref95
  article-title: Plant breeding and diversity: a troubled relationship?
  publication-title: Euphytica
  doi: 10.1007/s10681-018-2192-5
– volume: 203
  start-page: 63
  year: 2014
  ident: ref89
  article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture
  publication-title: New Phytol.
  doi: 10.1111/nph.12778
– volume: 114
  start-page: 725
  year: 2014
  ident: ref8
  article-title: Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu099
– volume: 117
  start-page: 209
  year: 2010
  ident: ref72
  article-title: Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.)
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2010.03.004
– volume: 113
  start-page: 72
  year: 2009
  ident: ref29
  article-title: Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea–barley intercrops
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2009.04.007
– volume: 3
  start-page: 547
  year: 2010
  ident: ref140
  article-title: Evolutionary ecology of mycorrhizal functional diversity in agricultural systems
  publication-title: Evol. Appl.
  doi: 10.1111/j.1752-4571.2010.00145.x
– volume: 91
  start-page: 321
  year: 1999
  ident: ref76
  article-title: Cultivar effects on oat–berseem clover intercrops
  publication-title: Agron. J.
  doi: 10.2134/agronj1999.00021962009100020023x
– volume: 63
  start-page: 1785
  year: 2009
  ident: ref96
  article-title: How to measure indirect genetic effects: the congruence of trait-based and variance-partitioning approaches
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00676.x
– volume: 70
  start-page: 2032
  year: 1992
  ident: ref73
  article-title: Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors
  publication-title: Can. J. Bot.
  doi: 10.1139/b92-253
– volume: 43
  start-page: 246
  year: 2020
  ident: ref134
  article-title: Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13652
– volume: 126
  start-page: 671
  year: 2020
  ident: ref94
  article-title: Towards intercrop ideotypes: non-random trait assembly can promote overyielding and stability of species proportion in simulated legume-based mixtures
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcaa014
– volume: 11
  start-page: 609
  year: 2008
  ident: ref77
  article-title: Ecological consequences of genetic diversity
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01179.x
– volume: 37
  start-page: 39
  year: 2017
  ident: ref126
  article-title: Sustainable intensification in agriculture: the richer shade of green. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-017-0445-7
– start-page: 1
  volume-title: Advances in Agronomy.
  year: 2020
  ident: ref125
  article-title: Designing intercrops for high yield, yield stability and efficient use of resources: are there principles?
– volume-title: Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture.
  year: 2012
  ident: ref37
– volume: 11
  start-page: 2176
  year: 2021
  ident: ref69
  article-title: Advances in breeding for mixed cropping–incomplete factorials and the producer/associate concept
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.620400
– volume: 48
  start-page: 188
  year: 1956
  ident: ref130
  article-title: An evolutionary plant breeding method
  publication-title: Agron. J.
  doi: 10.2134/agronj1956.00021962004800040012x
– volume: 5
  start-page: 1068
  year: 2021
  ident: ref149
  article-title: Ecological and evolutionary approaches to improving crop variety mixtures
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-021-01497-x
– volume: 8
  start-page: 80
  year: 2018
  ident: ref21
  article-title: Advancing intercropping research and practices in industrialized agricultural landscapes
  publication-title: Agriculture
  doi: 10.3390/agriculture8060080
– volume: 287
  start-page: 20191290
  year: 2020
  ident: ref99
  article-title: Farming plant cooperation in crops
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2019.1290
– volume: 70
  start-page: 2381
  year: 2019
  ident: ref46
  article-title: Understanding and optimizing species mixtures using functional–structural plant modelling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery288
– volume: 82
  start-page: 703
  year: 1976
  ident: ref63
  article-title: Selection in reference to biological groups. V. Analysis of full-sib groups
  publication-title: Genetics
  doi: 10.1093/genetics/82.4.703
– volume: 38
  start-page: 42
  year: 2018
  ident: ref84
  article-title: Towards resilience through systems-based plant breeding. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0522-6
– volume: 17
  start-page: 392
  year: 2015
  ident: ref20
  article-title: Structure and function of the bacterial root microbiota in wild and domesticated barley
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.01.011
– volume: 112
  start-page: 61
  year: 2014
  ident: ref15
  article-title: The quantitative genetics of indirect genetic effects: a selective review of modelling issues
  publication-title: Heredity
  doi: 10.1038/hdy.2013.15
– volume: 166
  start-page: 705
  year: 2005
  ident: ref59
  article-title: Functional–structural plant modelling
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01445.x
– volume: 37
  start-page: 13
  year: 2017
  ident: ref9
  article-title: Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-017-0418-x
– volume-title: The State of the World’s Biodiversity for Food and Agriculture.
  year: 2019
  ident: ref47
– volume: 412
  start-page: 72
  year: 2001
  ident: ref93
  article-title: Partitioning selection and complementarity in biodiversity experiments
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 39
  start-page: 1
  year: 2019
  ident: ref55
  article-title: Current knowledge and future research opportunities for modeling annual crop mixtures. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-019-0562-6
– volume: 157
  start-page: 141
  year: 2019
  ident: ref5
  article-title: Do we need specific breeding for legume-based mixtures
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2019.04.001
– volume: 143
  start-page: 245
  year: 2005
  ident: ref108
  article-title: Evolutionary plant breeding for low input systems
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859605005009
– volume: 300
  start-page: 758
  year: 2003
  ident: ref44
  article-title: Assessing the impact of the green revolution, 1960 to 2000
  publication-title: Science
  doi: 10.1126/science.1078710
– volume: 112
  start-page: 253
  year: 2013
  ident: ref48
  article-title: Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs296
– volume-title: Wheat Science – Today and Tomorrow.
  year: 1981
  ident: ref40
  article-title: Ideotypes and competition
– volume: 10
  start-page: 1606
  year: 2019
  ident: ref121
  article-title: Breeding has increased the diversity of cultivated tomato in the Netherlands
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01606
– volume: 7
  start-page: plv113
  year: 2015
  ident: ref41
  article-title: Plant cooperation
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plv113
– start-page: 465
  volume-title: Genetics Today: Proc. XI Int. Congr. Genetics.
  year: 1964
  ident: ref67
  article-title: The nature and consequence of interference amongst plants
– volume: 242
  start-page: 107571
  year: 2019
  ident: ref52
  article-title: A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2019.107571
– volume: 123
  start-page: 261
  year: 2008
  ident: ref64
  article-title: The utility of crop genetic diversity in maintaining ecosystem services
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2007.08.003
– volume: 57
  start-page: 2203
  year: 2020
  ident: ref142
  article-title: Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13739
– volume: 231
  start-page: 1171
  year: 2021
  ident: ref36
  article-title: Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients
  publication-title: New Phytol.
  doi: 10.1111/nph.17435
– volume: 102
  start-page: 1023
  year: 2010
  ident: ref81
  article-title: Extension and evaluation of intercropping field trials using spatial models
  publication-title: Agron. J.
  doi: 10.2134/agronj2009.0404
– start-page: 77
  year: 2012
  ident: ref32
  article-title: Breeding for genetically diverse populations: variety mixtures and evolutionary populations
  publication-title: Organic Crop Breeding.
  doi: 10.1002/9781119945932.ch5
– volume: 43
  start-page: 545
  year: 1986
  ident: ref122
  article-title: On the derivation of economic weights in livestock improvement
  publication-title: Anim. Sci.
  doi: 10.1017/S0003356100002750
– volume: 184
  start-page: 133
  year: 2015
  ident: ref150
  article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2015.09.010
– volume: 17
  start-page: 239
  year: 2015
  ident: ref23
  article-title: Bacterial networks and co-occurrence relationships in the lettuce root microbiota
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12686
– volume: 170
  start-page: 1247
  year: 2005
  ident: ref103
  article-title: Incorporation of competitive effects in forest tree or animal breeding programs
  publication-title: Genetics
  doi: 10.1534/genetics.104.035956
– volume: 19
  start-page: 201
  year: 2019
  ident: ref92
  article-title: Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-019-1572-x
– start-page: 2261
  volume-title: Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).
  year: 2017
  ident: ref146
– volume: 113
  start-page: 125987
  year: 2020
  ident: ref87
  article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125987
– volume: 193
  start-page: 347
  year: 2013
  ident: ref31
  article-title: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking
  publication-title: Genetics
  doi: 10.1534/genetics.112.147983
– volume: 282
  start-page: 23
  year: 2019
  ident: ref135
  article-title: Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.06.018
– volume: 131
  start-page: 1953
  year: 2018
  ident: ref60
  article-title: Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-018-3125-3
– volume-title: Encyclopedia of Biodiversity.
  year: 2013
  ident: ref90
  article-title: Crop mixtures and the mechanisms of overyielding
  doi: 10.1016/B978-0-12-384719-5.00363-4
– volume: 206
  start-page: 107
  year: 2015
  ident: ref18
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol.
  doi: 10.1111/nph.13132
– start-page: 193
  year: 2021
  ident: ref83
  article-title: The interplay between roots and arbuscular mycorrhizal fungi influencing water and nutrient acquisition and use efficiency
  publication-title: The Root Systems in Sustainable Agricultural Intensification.
  doi: 10.1002/9781119525417.ch7
– volume: 159
  start-page: 789
  year: 2012
  ident: ref141
  article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.195727
– volume: 108
  start-page: 1065
  year: 2011
  ident: ref120
  article-title: How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcr221
– volume-title: The Ecology of Intercropping.
  year: 1992
  ident: ref139
– volume: 515
  start-page: 108
  year: 2014
  ident: ref152
  article-title: Selection for niche differentiation in plant communities increases biodiversity effects
  publication-title: Nature
  doi: 10.1038/nature13869
SSID ssj0000500997
Score 2.5219917
SecondaryResourceType review_article
Snippet Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by...
Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 734167
SubjectTerms functional–structural plant modeling
indirect genetic effects
intercropping
mycorrhiza
plant breeding
Plant Science
plant–plant interactions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBPEV5yUgsDKFJ_IrZaEVVIYEYQGKL4pdAQgkq7cDGD4E_xy_hbAdoFljY4sSJL9_FvrvY_g6hI0WFT2mrkzzXPKGS60Sm2sKRhOCDgkEMm8Iur_j4ll7csbu5VF9-TVikB47A9S1YKKeschnJqKNGKim05JnKc5OnVRh9webNBVOR1du7PiLOS0IUJvvu6dGzc-fZiYCBO6SV_7FDga6_42N2V0jOmZzRKlppfUV8FmVcQwu2XkdLgwb8uZcNNBxMouXBcRcKhu7ZRCINe4qvZ2FBMwb_Dn-8voUffz5b18frO4ZCg4dQeN5EN6Pzm-E4aVMiJBo8h2lSUAXowtMrx7XhpmApsYJW3KlKMye0YSCzYFWWEsqYEUopmRKtuDGES7KFFuumttsIV1oTwgXVTlhqMq2ILZSwRClBKkt4D_W_8Cl1Sxfus1Y8lhA2eERLj2jpES0joj10_H3HU6TK-KXuwEP-Xc-TXIcToPqyVX35l-p76PBLYSV0Cj_TUdW2mUFL3I9cguWsh0RHk50Wu1fqh_tAr11wwCVjO_8h4i5a9m_tNy9mxR5anE5mdh-8mKk6CB_sJ9Wr9EM
  priority: 102
  providerName: Directory of Open Access Journals
Title Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops
URI https://www.proquest.com/docview/2607307525
https://pubmed.ncbi.nlm.nih.gov/PMC8636715
https://doaj.org/article/e201fbebf1314f4d9b97c961b22d20a2
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagcOCCyksslMpIXDikjV_jpBJC7IpSIRVxaKW9RfEjFGmVlO2uRG_9IfDn-ks646SFSBUSlyhOHDv5HHu-sT0zjL1x2lJIW59J6SHTJfiszH3EsxKVD40CMRmFHX6Bg2P9eW7mf8yjBwDPblXtKJ7U8XKx8_PH-Xvs8O9I40R5u9ucLsjxthQ7FsdksHfZPZRLluIZHA5kv_f0TXQoRVsB0JkGOe_XLW8tZCSnkjv_EQcd76D8SyTtb7KHA5fkH_rGf8TuxPYxuz_tkO-dP2Gz6bKXTLy3UuHYfbve0Ubc41_XacMzR_7HLy9-pYlBiuZ1efGbY6LjM0ycPWVH-x-PZgfZEDIh88gsVlmhHaKPpdcN-AChMLmKVtfQuNqbxvpg8J2tqUWutDHBOufKXHkHISgo1TO20XZtfM547b1SYLVvbNRBeKdi4WxUzllVRwUTtnuNT-UHd-IU1WJRoVpBiFaEaEWIVj2iE_b25onT3pXGP_JOCfKbfOQEO13olt-qoU9VEclL46JrhBK60aF0pfUlCCdlkHktJ-z1dYNV2GloJaRuY7fGmoBGNmukmTA7aslRjeM77feT5H67AMRFmBf_8Tkv2QNKkQ2jKLbYxmq5jq-QzKzcdpoEwOOnudhO_-sVTan2tg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breeding+Beyond+Monoculture%3A+Putting+the+%E2%80%9CIntercrop%E2%80%9D+Into+Crops&rft.jtitle=Frontiers+in+plant+science&rft.au=Bourke%2C+Peter+M.&rft.au=Evers%2C+Jochem+B.&rft.au=Bijma%2C+Piter&rft.au=van+Apeldoorn%2C+Dirk+F.&rft.date=2021-11-18&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.734167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2021_734167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon