Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops
Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of...
Saved in:
Published in | Frontiers in plant science Vol. 12; p. 734167 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
18.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future. |
---|---|
AbstractList | Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future. Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future. |
Author | Bonnema, Guusje Bijma, Piter Evers, Jochem B. van Apeldoorn, Dirk F. Kuyper, Thomas W. Mommer, Liesje Bourke, Peter M. Smulders, Marinus J. M. |
AuthorAffiliation | 2 Centre for Crops Systems Analysis, Wageningen University & Research , Wageningen , Netherlands 5 Field Crops, Wageningen University & Research , Lelystad , Netherlands 6 Soil Biology, Wageningen University & Research , Wageningen , Netherlands 3 Animal Breeding and Genomics, Wageningen University & Research , Wageningen , Netherlands 1 Plant Breeding, Wageningen University & Research , Wageningen , Netherlands 4 Farming Systems Ecology Group, Wageningen University & Research , Wageningen , Netherlands 7 Plant Ecology and Nature Conservation, Wageningen University & Research , Wageningen , Netherlands |
AuthorAffiliation_xml | – name: 2 Centre for Crops Systems Analysis, Wageningen University & Research , Wageningen , Netherlands – name: 7 Plant Ecology and Nature Conservation, Wageningen University & Research , Wageningen , Netherlands – name: 1 Plant Breeding, Wageningen University & Research , Wageningen , Netherlands – name: 6 Soil Biology, Wageningen University & Research , Wageningen , Netherlands – name: 5 Field Crops, Wageningen University & Research , Lelystad , Netherlands – name: 4 Farming Systems Ecology Group, Wageningen University & Research , Wageningen , Netherlands – name: 3 Animal Breeding and Genomics, Wageningen University & Research , Wageningen , Netherlands |
Author_xml | – sequence: 1 givenname: Peter M. surname: Bourke fullname: Bourke, Peter M. – sequence: 2 givenname: Jochem B. surname: Evers fullname: Evers, Jochem B. – sequence: 3 givenname: Piter surname: Bijma fullname: Bijma, Piter – sequence: 4 givenname: Dirk F. surname: van Apeldoorn fullname: van Apeldoorn, Dirk F. – sequence: 5 givenname: Marinus J. M. surname: Smulders fullname: Smulders, Marinus J. M. – sequence: 6 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. – sequence: 7 givenname: Liesje surname: Mommer fullname: Mommer, Liesje – sequence: 8 givenname: Guusje surname: Bonnema fullname: Bonnema, Guusje |
BookMark | eNp1kbtuVDEQhi0UREJIT3lKml189zEFEllxWSkoKVLQWb6djaOz9mL7REqXB4GXy5PgwyZSgoSb8Xjm_8aa_zU4iCl6AN4iuCSkl--H3ViWGGK0FIQiLl6AI8Q5XVCOfxw8uR-Ck1KuYTsMQinFK3BIaM97hPgRWJ1m712Im-7U36bouu8pJjuNdcr-Q3cx1TrX6pXv7u9-rWP12ea0u7_73bUkdauWlDfg5aDH4k8e4jG4_PL5cvVtcXb-db36dLawlMi66KkxVLRpeuDWcdczSLygmg9GWzYI65izXjCNIKGMOWGMkZBYw50jXJJjsN5jXdLXapfDVudblXRQfx9S3iida7CjVx5DNBhvBkQQHaiTRgorOTIYOww1bqyPe9ZuMlvfxsaa9fgM-rwSw5XapBvVc8IFYg3w7gGQ08_Jl6q2oVg_jjr6NBWFORQECobnVr5vbZsrJftB2VB1DWkmh1EhqGY_1eynmv1Uez-bEP4jfPzffyV_ALw4p_s |
CitedBy_id | crossref_primary_10_1016_j_eja_2023_127024 crossref_primary_10_1016_j_soilbio_2022_108855 crossref_primary_10_3389_fpls_2022_733996 crossref_primary_10_1016_j_forpol_2023_103100 crossref_primary_10_1016_j_jafr_2024_101501 crossref_primary_10_3389_fphgy_2024_1341617 crossref_primary_10_1007_s13593_024_00984_2 crossref_primary_10_1093_evlett_qrae051 crossref_primary_10_1038_s44264_025_00048_2 crossref_primary_10_3389_fpls_2023_1228850 crossref_primary_10_1073_pnas_2305517121 crossref_primary_10_1186_s40066_024_00490_4 crossref_primary_10_1080_1343943X_2024_2372878 crossref_primary_10_3389_fsufs_2022_921216 crossref_primary_10_1007_s11104_023_06111_6 crossref_primary_10_34133_plantphenomics_0280 crossref_primary_10_1186_s12870_025_06103_x crossref_primary_10_1038_s41598_024_83516_y crossref_primary_10_1111_eva_13418 crossref_primary_10_1016_j_still_2023_105708 crossref_primary_10_1007_s10806_021_09876_x crossref_primary_10_1080_21683565_2025_2475459 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_1016_j_apsoil_2023_105262 crossref_primary_10_1016_j_agee_2023_108564 crossref_primary_10_3389_fpls_2023_1147671 crossref_primary_10_1007_s11104_023_05909_8 crossref_primary_10_3390_agriculture12020229 crossref_primary_10_3390_agronomy15020287 crossref_primary_10_1016_j_biocontrol_2024_105637 crossref_primary_10_1016_j_rhisph_2024_100890 crossref_primary_10_3390_agronomy14010070 crossref_primary_10_3389_fpls_2023_1162506 crossref_primary_10_3389_fpls_2024_1394413 crossref_primary_10_3390_agronomy13071840 crossref_primary_10_3389_fpls_2022_844635 crossref_primary_10_1039_D4GC02512A crossref_primary_10_3389_fpls_2024_1388866 crossref_primary_10_3390_agronomy15010158 crossref_primary_10_3389_fpls_2022_843065 crossref_primary_10_3389_fgene_2022_834366 crossref_primary_10_1093_jpe_rtad017 crossref_primary_10_1093_jpe_rtad016 crossref_primary_10_1016_j_atech_2024_100443 crossref_primary_10_1093_pcp_pcae092 crossref_primary_10_1016_j_stress_2024_100662 crossref_primary_10_1007_s10457_024_00997_6 crossref_primary_10_1007_s10886_023_01432_3 crossref_primary_10_1038_s41467_024_52449_5 crossref_primary_10_1002_csc2_21370 crossref_primary_10_1016_j_jchromb_2025_124543 crossref_primary_10_1111_1365_2745_14241 crossref_primary_10_3389_fpls_2024_1356506 crossref_primary_10_2166_wpt_2023_058 |
Cites_doi | 10.1111/nph.15895 10.1016/j.fcr.2009.09.006 10.1146/annurev-phyto-082712-102246 10.1515/sg-2008-0008 10.1111/pce.13001 10.1038/s41598-020-69672-x 10.1016/j.eja.2017.09.009 10.1016/j.fcr.2017.09.006 10.1016/j.eja.2006.01.005 10.1046/j.1461-0248.2003.00516.x 10.2134/agronj2008.0208x 10.1111/j.1744-7348.1996.tb07096.x 10.1016/j.tplants.2015.07.007 10.1002/eap.1629 10.1086/282630 10.1007/s13593-014-0272-z 10.1007/BF00225947 10.1111/aab.12268 10.1079/9780851994178.0000 10.1016/j.fcr.2008.04.001 10.1016/j.eja.2020.126197 10.1111/1365-2435.13062 10.1007/BF00022837 10.1002/jsfa.3615 10.1016/j.tree.2016.02.010 10.1007/BF00010992 10.2307/2257876 10.1038/nplants.2015.33 10.2134/agronj2002.5180 10.1016/j.dib.2019.103898 10.1534/g3.120.401354 10.1016/j.baae.2017.06.002 10.1126/sciadv.aba3756 10.1126/science.162.3859.1243 10.1126/science.1259855 10.2134/agronj1951.00021962004300050007x 10.1534/g3.119.400809 10.1534/genetics.111.130617 10.1111/ele.13336 10.1093/aob/mcy092 10.1016/j.fcr.2020.108015 10.1111/j.1558-5646.1997.tb01458.x 10.3390/su4102550 10.1093/genetics/157.4.1819 10.1111/nph.12035 10.1016/j.fcr.2016.09.015 10.1038/s41477-019-0569-7 10.1093/aob/mcs082 10.2135/cropsci1987.0011183X002700060011x 10.1016/j.agee.2013.03.004 10.1007/BF00056241 10.1111/tpj.13799 10.1007/s13593-014-0277-7 10.1111/nph.12413 10.1007/BF00570909 10.1007/BF00022838 10.1146/annurev.phyto.010708.154114 10.1038/s41559-021-01471-7 10.1016/j.tplants.2019.07.001 10.1007/s11104-018-3744-0 10.1016/j.tree.2018.10.013 10.1093/jxb/ery323 10.1111/nph.14003 10.1071/CP16211 10.1046/j.0022-0477.2001.00609.x 10.1007/s10658-018-1573-x 10.3389/fpls.2021.605172 10.1071/BI9670127 10.1016/j.agwat.2016.08.021 10.1071/FP13177 10.1111/j.1365-2664.2012.02173.x 10.1111/1365-2745.13592 10.1038/s41477-021-00948-4 10.1146/annurev-ecolsys-120213-091917 10.1071/FP08052 10.1073/pnas.0704591104 10.1038/s41586-020-2705-y 10.1038/nature01014 10.1016/j.eja.2019.125936 10.1890/12-1399.1 10.1017/S0889189300008328 10.1016/S0167-8809(01)00278-X 10.1007/s10681-018-2192-5 10.1111/nph.12778 10.1093/aob/mcu099 10.1016/j.fcr.2010.03.004 10.1016/j.fcr.2009.04.007 10.1111/j.1752-4571.2010.00145.x 10.2134/agronj1999.00021962009100020023x 10.1111/j.1558-5646.2009.00676.x 10.1139/b92-253 10.1111/pce.13652 10.1093/aob/mcaa014 10.1111/j.1461-0248.2008.01179.x 10.1007/s13593-017-0445-7 10.3389/fpls.2020.620400 10.2134/agronj1956.00021962004800040012x 10.1038/s41559-021-01497-x 10.3390/agriculture8060080 10.1098/rspb.2019.1290 10.1093/jxb/ery288 10.1093/genetics/82.4.703 10.1007/s13593-018-0522-6 10.1016/j.chom.2015.01.011 10.1038/hdy.2013.15 10.1111/j.1469-8137.2005.01445.x 10.1007/s13593-017-0418-x 10.1038/35083573 10.1007/s13593-019-0562-6 10.1016/bs.agron.2019.04.001 10.1017/S0021859605005009 10.1126/science.1078710 10.1093/aob/mcs296 10.3389/fpls.2019.01606 10.1093/aobpla/plv113 10.1016/j.fcr.2019.107571 10.1016/j.agee.2007.08.003 10.1111/1365-2664.13739 10.1111/nph.17435 10.2134/agronj2009.0404 10.1002/9781119945932.ch5 10.1017/S0003356100002750 10.1016/j.fcr.2015.09.010 10.1111/1462-2920.12686 10.1534/genetics.104.035956 10.1186/s12866-019-1572-x 10.1016/j.eja.2019.125987 10.1534/genetics.112.147983 10.1016/j.plantsci.2018.06.018 10.1007/s00122-018-3125-3 10.1016/B978-0-12-384719-5.00363-4 10.1111/nph.13132 10.1002/9781119525417.ch7 10.1104/pp.112.195727 10.1093/aob/mcr221 10.1038/nature13869 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema |
Copyright_xml | – notice: Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. – notice: Copyright © 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema. 2021 Bourke, Evers, Bijma, van Apeldoorn, Smulders, Kuyper, Mommer and Bonnema |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2021.734167 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_e201fbebf1314f4d9b97c961b22d20a2 PMC8636715 10_3389_fpls_2021_734167 |
GrantInformation_xml | – fundername: Top Sectors programme Agri & Food – fundername: Wageningen University & Research grantid: KB-40-005-004; KB-34-007-019 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c439t-84bb47eedaf6cd6d8503e74a6fbac5f7cd5dce75a103455d7bbb903cb6dd3693 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:31:02 EDT 2025 Thu Aug 21 18:02:37 EDT 2025 Fri Jul 11 11:58:01 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Tue Jul 01 03:48:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-84bb47eedaf6cd6d8503e74a6fbac5f7cd5dce75a103455d7bbb903cb6dd3693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Jérôme Enjalbert, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), France Reviewed by: Nobuhito Sekiya, Mie University, Japan; Radu E. Sestras, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Jean-Paul Sampoux, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), France This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.734167 |
PMID | 34868116 |
PQID | 2607307525 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e201fbebf1314f4d9b97c961b22d20a2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636715 proquest_miscellaneous_2607307525 crossref_citationtrail_10_3389_fpls_2021_734167 crossref_primary_10_3389_fpls_2021_734167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-18 |
PublicationDateYYYYMMDD | 2021-11-18 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in plant science |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Liu (ref92) 2019; 19 Montazeaud (ref99) 2020; 287 Evers (ref45) 2018 Hajjar (ref64) 2008; 123 Donald (ref40) 1981 Meilhac (ref97) 2020; 6 Beillouin (ref12) 2019; 24 Corre-Hellou (ref29) 2009; 113 Faget (ref48) 2013; 112 Meuwissen (ref98) 2001; 157 Hardin (ref66) 1968; 162 Rangarajan (ref113) 2018; 122 Godin (ref59) 2005; 166 Sapoukhina (ref119) 2013; 200 Dawson (ref32) 2012 Bybee-Finley (ref21) 2018; 8 Hughes (ref77) 2008; 11 Fletcher (ref51) 2016; 67 Kuyper (ref83) 2021 Stomph (ref125) 2020 Gathumbi (ref54) 2002; 94 Ampt (ref4) 2019; 154 Bijma (ref14) 2011; 189 Schouten (ref121) 2019; 10 Litrico (ref91) 2015; 20 Li (ref90) 2013 De Vries (ref36) 2021; 231 Suneson (ref129) 1951; 43 Knörzer (ref81) 2010; 102 Peng (ref107) 2008; 108 Struik (ref126) 2017; 37 Tooker (ref133) 2012; 49 Van Oort (ref136) 2020; 112 Acquaah (ref1) 2020 Gersani (ref57) 2001; 89 Forst (ref52) 2019; 242 van Eeuwijk (ref135) 2019; 282 Brooker (ref18) 2015; 206 Chateil (ref25) 2013; 171 Zuppinger-Dingley (ref152) 2014; 515 Li (ref87) 2020; 113 Weiner (ref146) 2017 Juventia (ref79) 2021; 261 Brooker (ref19) 2021; 109 Dawson (ref33) 2019; 224 Mueller (ref102) 2013; 94 Zhu (ref501) 2016; 168 Loreau (ref93) 2001; 412 O’Leary (ref105) 1999; 14 Walder (ref141) 2012; 159 Weemstra (ref144) 2016; 211 Holland (ref76) 1999; 91 Picheny (ref109) 2017; 40 Barry (ref10) 2019; 34 Henry (ref72) 2010; 117 Laughlin (ref85) 2021; 5 Hemmerling (ref71) 2008; 35 Chimonyo (ref27) 2016; 177 Harper (ref68) 1967; 55 Louarn (ref94) 2020; 126 Smithson (ref123) 1996; 128 Silva (ref30) 2013; 197 Borg (ref16) 2018; 221 Tilman (ref131) 2002; 418 Evers (ref46) 2019; 70 Jensen (ref78) 1996; 182 Louwaars (ref95) 2018; 214 Harper (ref67) 1964 Vanavermaete (ref138) 2020; 10 Ditzler (ref38) 2021; 122 Raseduzzaman (ref114) 2017; 91 Alegria Terrazas (ref2) 2020; 10 Evenson (ref44) 2003; 300 Gorjanc (ref60) 2018; 131 Subrahmaniam (ref128) 2018; 93 Griffing (ref63) 1976; 82 Faverjon (ref49) 2019; 70 Boudreau (ref17) 2013; 51 Bulgarelli (ref20) 2015; 17 Zimmermann (ref151) 1996; 92 Reiss (ref117) 2018; 28 Vandermeer (ref139) 1992 Anten (ref6) 2016; 31 Gaudio (ref55) 2019; 39 Donald (ref39) 1968; 17 Koricheva (ref82) 2018; 32 Steffen (ref124) 2015; 347 Smith (ref122) 1986; 43 Griffing (ref62) 1967; 20 Leclère (ref86) 2020; 585 Rebetzke (ref116) 2014; 41 Bedoussac (ref11) 2015; 35 Ndufa (ref104) 2009; 101 Verbruggen (ref140) 2010; 3 Wang (ref142) 2020; 57 Rasmusson (ref115) 1987; 27 Van Ruijven (ref137) 2003; 6 Connolly (ref28) 2001; 87 Phillips (ref108) 2005; 143 Bijma (ref15) 2014; 112 Lammerts Van Bueren (ref84) 2018; 38 Tilman (ref132) 2014; 45 Hill (ref74) 1990; 79 Li (ref88) 2007; 104 Stukenbrock (ref127) 2008; 46 Barot (ref9) 2017; 37 Li (ref89) 2014; 203 Sarlikioti (ref120) 2011; 108 Barillot (ref8) 2014; 114 Valente (ref134) 2020; 43 Yu (ref150) 2015; 184 Gebeyehu (ref56) 2006; 24 Suneson (ref130) 1956; 48 Feike (ref50) 2012; 4 Moore (ref101) 1997; 51 Cardinale (ref23) 2015; 17 Daetwyler (ref31) 2013; 193 Bergmann (ref13) 2020; 6 Denison (ref37) 2012 Kiær (ref80) 2009; 114 Gaba (ref53) 2015; 35 Prieto (ref111) 2015; 1 Sampoux (ref118) 2020; 10 Annicchiarico (ref5) 2019; 157 Muir (ref103) 2005; 170 Giller (ref58) 2001 Bančič (ref7) 2021; 12 Emmett (ref43) 2018; 431 Prusinkiewicz (ref112) 2012 Weisser (ref147) 2017; 23 Chen (ref26) 2021; 7 Wuest (ref149) 2021; 5 Postma (ref110) 2012; 110 Wright (ref148) 1985; 69 Allard (ref3) 1969; 103 Haug (ref69) 2021; 11 Hetrick (ref73) 1992; 70 Bélanger (ref47) 2019 Østergård (ref106) 2009; 89 Weiner (ref145) 2019; 24 Hill (ref75) 1996; 92 Hamblin (ref65) 1986; 4 Dudley (ref41) 2015; 7 Chacón-Labella (ref24) 2019; 22 McGlothlin (ref96) 2009; 63 Gou (ref61) 2017; 200 Cappa (ref22) 2008; 57 |
References_xml | – volume: 224 start-page: 37 year: 2019 ident: ref33 article-title: The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition publication-title: New Phytol. doi: 10.1111/nph.15895 – volume: 114 start-page: 361 year: 2009 ident: ref80 article-title: Grain yield increase in cereal variety mixtures: a meta-analysis of field trials publication-title: Field Crop Res. doi: 10.1016/j.fcr.2009.09.006 – volume: 51 start-page: 499 year: 2013 ident: ref17 article-title: Diseases in intercropping systems publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102246 – volume: 57 start-page: 45 year: 2008 ident: ref22 article-title: Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model publication-title: Silvae Genet. doi: 10.1515/sg-2008-0008 – volume: 40 start-page: 1926 year: 2017 ident: ref109 article-title: Using numerical plant models and phenotypic correlation space to design achievable ideotypes publication-title: Plant Cell Environ. doi: 10.1111/pce.13001 – volume: 10 start-page: 12916 year: 2020 ident: ref2 article-title: A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota publication-title: Sci. Rep. doi: 10.1038/s41598-020-69672-x – volume: 91 start-page: 25 year: 2017 ident: ref114 article-title: Does intercropping enhance yield stability in arable crop production? A meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.009 – volume: 221 start-page: 298 year: 2018 ident: ref16 article-title: Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps publication-title: Field Crop Res. doi: 10.1016/j.fcr.2017.09.006 – volume: 24 start-page: 396 year: 2006 ident: ref56 article-title: Genotype× cropping system interaction in climbing beans (Phaseolus vulgaris L.) grown as sole crop and in association with maize (Zea mays L.) publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2006.01.005 – volume: 6 start-page: 910 year: 2003 ident: ref137 article-title: Diversity reduces invasibility in experimental plant communities: the role of plant species publication-title: Ecol. Lett. doi: 10.1046/j.1461-0248.2003.00516.x – volume: 101 start-page: 1352 year: 2009 ident: ref104 article-title: Do mixed-species legume fallows provide long-term maize yield benefit compared with monoculture legume fallows? publication-title: Agron. J. doi: 10.2134/agronj2008.0208x – volume: 128 start-page: 127 year: 1996 ident: ref123 article-title: Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1996.tb07096.x – volume: 20 start-page: 604 year: 2015 ident: ref91 article-title: Diversity in plant breeding: a new conceptual framework publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.07.007 – volume: 28 start-page: 62 year: 2018 ident: ref117 article-title: Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield publication-title: Ecol. Appl. doi: 10.1002/eap.1629 – volume: 103 start-page: 621 year: 1969 ident: ref3 article-title: Population studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat publication-title: Am. Nat. doi: 10.1086/282630 – volume: 35 start-page: 607 year: 2015 ident: ref53 article-title: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0272-z – volume: 79 start-page: 168 year: 1990 ident: ref74 article-title: The three C's—competition, coexistence and coevolution—and their impact on the breeding of forage crop mixtures publication-title: Theor. Appl. Genet. doi: 10.1007/BF00225947 – volume: 168 start-page: 357 year: 2016 ident: ref501 article-title: High productivity of wheat intercropped with maize is associated with plant architectural responses publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12268 – volume-title: Nitrogen Fixation in Tropical Cropping Systems. year: 2001 ident: ref58 doi: 10.1079/9780851994178.0000 – volume: 108 start-page: 32 year: 2008 ident: ref107 article-title: Progress in ideotype breeding to increase rice yield potential publication-title: Field Crop Res. doi: 10.1016/j.fcr.2008.04.001 – volume: 122 start-page: 126197 year: 2021 ident: ref38 article-title: Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126197 – volume: 4 start-page: 245 year: 1986 ident: ref65 article-title: Breeding common bean for yield in mixtures publication-title: Plant Breed. Rev. – volume: 32 start-page: 1704 year: 2018 ident: ref82 article-title: The relative importance of plant intraspecific diversity in structuring arthropod communities: a meta-analysis publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13062 – volume: 92 start-page: 129 year: 1996 ident: ref151 article-title: Breeding for yield, in mixtures of common beans (Phaseolus vulgaris L) and maize (Zea mays L) publication-title: Euphytica doi: 10.1007/BF00022837 – volume: 89 start-page: 1439 year: 2009 ident: ref106 article-title: Time for a shift in crop production: embracing complexity through diversity at all levels publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3615 – volume: 31 start-page: 429 year: 2016 ident: ref6 article-title: Tragedies and crops: understanding natural selection to improve cropping systems publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2016.02.010 – volume: 182 start-page: 25 year: 1996 ident: ref78 article-title: Grain yield, symbiotic N 2 fixation and interspecific competition for inorganic N in pea-barley intercrops publication-title: Plant Soil doi: 10.1007/BF00010992 – volume-title: Principles of Plant Genetics and Breeding. year: 2020 ident: ref1 – volume: 55 start-page: 247 year: 1967 ident: ref68 article-title: A Darwinian approach to plant ecology publication-title: J. Ecol. doi: 10.2307/2257876 – volume: 1 start-page: 15033 year: 2015 ident: ref111 article-title: Complementary effects of species and genetic diversity on productivity and stability of sown grasslands publication-title: Nat. Plants doi: 10.1038/nplants.2015.33 – volume: 94 start-page: 518 year: 2002 ident: ref54 article-title: Do species mixtures increase above-and belowground resource capture in woody and herbaceous tropical legumes? publication-title: Agron. J. doi: 10.2134/agronj2002.5180 – volume: 24 start-page: 103898 year: 2019 ident: ref12 article-title: A dataset of meta-analyses on crop diversification at the global scale publication-title: Data Brief doi: 10.1016/j.dib.2019.103898 – volume: 10 start-page: 2753 year: 2020 ident: ref138 article-title: Preservation of genetic variation in a breeding population for long-term genetic gain publication-title: G3 doi: 10.1534/g3.120.401354 – volume: 23 start-page: 1 year: 2017 ident: ref147 article-title: Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2017.06.002 – volume: 6 start-page: eaba3756 year: 2020 ident: ref13 article-title: The fungal collaboration gradient dominates the root economics space in plants publication-title: Sci. Adv. doi: 10.1126/sciadv.aba3756 – volume: 162 start-page: 1243 year: 1968 ident: ref66 article-title: The tragedy of the commons publication-title: Science doi: 10.1126/science.162.3859.1243 – volume: 347 start-page: 1259855 year: 2015 ident: ref124 article-title: Planetary boundaries: guiding human development on a changing planet publication-title: Science doi: 10.1126/science.1259855 – volume: 43 start-page: 234 year: 1951 ident: ref129 article-title: Male-sterile facilitated synthetic hybrid barley publication-title: Agron. J. doi: 10.2134/agronj1951.00021962004300050007x – volume: 10 start-page: 89 year: 2020 ident: ref118 article-title: Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations publication-title: G3 doi: 10.1534/g3.119.400809 – volume: 189 start-page: 1347 year: 2011 ident: ref14 article-title: A general definition of the heritable variation that determines the potential of a population to respond to selection publication-title: Genetics doi: 10.1534/genetics.111.130617 – volume-title: The Algorithmic Beauty of Plants. year: 2012 ident: ref112 – volume: 22 start-page: 1472 year: 2019 ident: ref24 article-title: Plant domestication disrupts biodiversity effects across major crop types publication-title: Ecol. Lett. doi: 10.1111/ele.13336 – volume: 122 start-page: 485 year: 2018 ident: ref113 article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Ann. Bot. doi: 10.1093/aob/mcy092 – volume: 261 start-page: 108015 year: 2021 ident: ref79 article-title: Spatial and genetic crop diversity support ecosystem service delivery: a case of yield and biocontrol in Dutch organic cabbage production publication-title: Field Crop Res. doi: 10.1016/j.fcr.2020.108015 – volume: 51 start-page: 1352 year: 1997 ident: ref101 article-title: Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions publication-title: Evolution doi: 10.1111/j.1558-5646.1997.tb01458.x – volume: 4 start-page: 2550 year: 2012 ident: ref50 article-title: How to overcome the slow death of intercropping in the North China plain publication-title: Sustainability doi: 10.3390/su4102550 – volume: 157 start-page: 1819 year: 2001 ident: ref98 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 197 start-page: 631 year: 2013 ident: ref30 article-title: Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree publication-title: New Phytol. doi: 10.1111/nph.12035 – volume: 200 start-page: 122 year: 2017 ident: ref61 article-title: Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing publication-title: Field Crop Res. doi: 10.1016/j.fcr.2016.09.015 – volume: 6 start-page: 28 year: 2020 ident: ref97 article-title: Both selection and plasticity drive niche differentiation in experimental grasslands publication-title: Nat. Plants doi: 10.1038/s41477-019-0569-7 – volume: 110 start-page: 521 year: 2012 ident: ref110 article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures publication-title: Ann. Bot. doi: 10.1093/aob/mcs082 – volume: 27 start-page: 1140 year: 1987 ident: ref115 article-title: An evaluation of ideotype breeding publication-title: Crop Sci. doi: 10.2135/cropsci1987.0011183X002700060011x – volume: 171 start-page: 25 year: 2013 ident: ref25 article-title: Crop genetic diversity benefits farmland biodiversity in cultivated fields publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.03.004 – volume: 17 start-page: 385 year: 1968 ident: ref39 article-title: The breeding of crop ideotypes publication-title: Euphytica doi: 10.1007/BF00056241 – volume: 93 start-page: 747 year: 2018 ident: ref128 article-title: The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions publication-title: Plant J. doi: 10.1111/tpj.13799 – volume: 35 start-page: 911 year: 2015 ident: ref11 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0277-7 – volume-title: Computational Botany: Advancing Plant Science Through Functional–Structural Plant Modelling. year: 2018 ident: ref45 – volume: 200 start-page: 888 year: 2013 ident: ref119 article-title: Quantitative plant resistance in cultivar mixtures: wheat yellow rust as a modeling case study publication-title: New Phytol. doi: 10.1111/nph.12413 – volume: 69 start-page: 399 year: 1985 ident: ref148 article-title: Selection for improved yield in inter-specific mixtures or intercrops publication-title: Theor. Appl. Genet. doi: 10.1007/BF00570909 – volume: 92 start-page: 135 year: 1996 ident: ref75 article-title: Breeding components for mixture performance publication-title: Euphytica doi: 10.1007/BF00022838 – volume: 46 start-page: 75 year: 2008 ident: ref127 article-title: The origins of plant pathogens in agro-ecosystems publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.010708.154114 – volume: 5 start-page: 1123 year: 2021 ident: ref85 article-title: Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-021-01471-7 – volume: 24 start-page: 927 year: 2019 ident: ref145 article-title: Looking in the wrong direction for higher-yielding crop genotypes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.07.001 – volume: 431 start-page: 53 year: 2018 ident: ref43 article-title: Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition publication-title: Plant Soil doi: 10.1007/s11104-018-3744-0 – volume: 34 start-page: 167 year: 2019 ident: ref10 article-title: The future of complementarity: disentangling causes from consequences publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2018.10.013 – volume: 70 start-page: 2491 year: 2019 ident: ref49 article-title: A generic individual-based model can predict yield, nitrogen content, and species abundance in experimental grassland communities publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery323 – volume: 211 start-page: 1159 year: 2016 ident: ref144 article-title: Towards a multidimensional root trait framework: a tree root review publication-title: New Phytol. doi: 10.1111/nph.14003 – volume: 67 start-page: 1252 year: 2016 ident: ref51 article-title: Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems publication-title: Crop Pasture Sci. doi: 10.1071/CP16211 – volume: 89 start-page: 660 year: 2001 ident: ref57 article-title: Tragedy of the commons as a result of root competition publication-title: J. Ecol. doi: 10.1046/j.0022-0477.2001.00609.x – volume: 154 start-page: 141 year: 2019 ident: ref4 article-title: Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-018-1573-x – volume: 12 start-page: 605172 year: 2021 ident: ref7 article-title: Modeling illustrates that genomic selection provides new opportunities for intercrop breeding publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.605172 – volume: 20 start-page: 127 year: 1967 ident: ref62 article-title: Selection in reference to biological groups I. Individual and group selection applied to populations of unordered groups publication-title: Aust. J. Biol. Sci. doi: 10.1071/BI9670127 – volume: 177 start-page: 317 year: 2016 ident: ref27 article-title: Simulating yield and water use of a sorghum–cowpea intercrop using APSIM publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.08.021 – volume: 41 start-page: 107 year: 2014 ident: ref116 article-title: Plot size matters: interference from intergenotypic competition in plant phenotyping studies publication-title: Funct. Plant Biol. doi: 10.1071/FP13177 – volume: 49 start-page: 974 year: 2012 ident: ref133 article-title: Genotypically diverse cultivar mixtures for insect pest management and increased crop yields publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2012.02173.x – volume: 109 start-page: 2054 year: 2021 ident: ref19 article-title: Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming publication-title: J. Ecol. doi: 10.1111/1365-2745.13592 – volume: 7 start-page: 893 year: 2021 ident: ref26 article-title: Diversity increases yield but reduces harvest index in crop mixtures publication-title: Nat. Plants doi: 10.1038/s41477-021-00948-4 – volume: 45 start-page: 471 year: 2014 ident: ref132 article-title: Biodiversity and ecosystem functioning publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-120213-091917 – volume: 35 start-page: 739 year: 2008 ident: ref71 article-title: The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition publication-title: Funct. Plant Biol. doi: 10.1071/FP08052 – volume: 104 start-page: 11192 year: 2007 ident: ref88 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0704591104 – volume: 585 start-page: 551 year: 2020 ident: ref86 article-title: Bending the curve of terrestrial biodiversity needs an integrated strategy publication-title: Nature doi: 10.1038/s41586-020-2705-y – volume: 418 start-page: 671 year: 2002 ident: ref131 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 112 start-page: 125936 year: 2020 ident: ref136 article-title: Effects of strip width on yields in relay-strip intercropping: a simulation study publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125936 – volume: 94 start-page: 787 year: 2013 ident: ref102 article-title: Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment publication-title: Ecology doi: 10.1890/12-1399.1 – volume: 14 start-page: 158 year: 1999 ident: ref105 article-title: Breeding corn for adaptation to two diverse intercropping companions publication-title: Am. J. Altern. Agric. doi: 10.1017/S0889189300008328 – volume: 87 start-page: 191 year: 2001 ident: ref28 article-title: The information content of indicators in intercropping research publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00278-X – volume: 214 start-page: 114 year: 2018 ident: ref95 article-title: Plant breeding and diversity: a troubled relationship? publication-title: Euphytica doi: 10.1007/s10681-018-2192-5 – volume: 203 start-page: 63 year: 2014 ident: ref89 article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture publication-title: New Phytol. doi: 10.1111/nph.12778 – volume: 114 start-page: 725 year: 2014 ident: ref8 article-title: Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures publication-title: Ann. Bot. doi: 10.1093/aob/mcu099 – volume: 117 start-page: 209 year: 2010 ident: ref72 article-title: Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.) publication-title: Field Crop Res. doi: 10.1016/j.fcr.2010.03.004 – volume: 113 start-page: 72 year: 2009 ident: ref29 article-title: Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea–barley intercrops publication-title: Field Crop Res. doi: 10.1016/j.fcr.2009.04.007 – volume: 3 start-page: 547 year: 2010 ident: ref140 article-title: Evolutionary ecology of mycorrhizal functional diversity in agricultural systems publication-title: Evol. Appl. doi: 10.1111/j.1752-4571.2010.00145.x – volume: 91 start-page: 321 year: 1999 ident: ref76 article-title: Cultivar effects on oat–berseem clover intercrops publication-title: Agron. J. doi: 10.2134/agronj1999.00021962009100020023x – volume: 63 start-page: 1785 year: 2009 ident: ref96 article-title: How to measure indirect genetic effects: the congruence of trait-based and variance-partitioning approaches publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00676.x – volume: 70 start-page: 2032 year: 1992 ident: ref73 article-title: Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors publication-title: Can. J. Bot. doi: 10.1139/b92-253 – volume: 43 start-page: 246 year: 2020 ident: ref134 article-title: Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria publication-title: Plant Cell Environ. doi: 10.1111/pce.13652 – volume: 126 start-page: 671 year: 2020 ident: ref94 article-title: Towards intercrop ideotypes: non-random trait assembly can promote overyielding and stability of species proportion in simulated legume-based mixtures publication-title: Ann. Bot. doi: 10.1093/aob/mcaa014 – volume: 11 start-page: 609 year: 2008 ident: ref77 article-title: Ecological consequences of genetic diversity publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01179.x – volume: 37 start-page: 39 year: 2017 ident: ref126 article-title: Sustainable intensification in agriculture: the richer shade of green. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-017-0445-7 – start-page: 1 volume-title: Advances in Agronomy. year: 2020 ident: ref125 article-title: Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? – volume-title: Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture. year: 2012 ident: ref37 – volume: 11 start-page: 2176 year: 2021 ident: ref69 article-title: Advances in breeding for mixed cropping–incomplete factorials and the producer/associate concept publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.620400 – volume: 48 start-page: 188 year: 1956 ident: ref130 article-title: An evolutionary plant breeding method publication-title: Agron. J. doi: 10.2134/agronj1956.00021962004800040012x – volume: 5 start-page: 1068 year: 2021 ident: ref149 article-title: Ecological and evolutionary approaches to improving crop variety mixtures publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-021-01497-x – volume: 8 start-page: 80 year: 2018 ident: ref21 article-title: Advancing intercropping research and practices in industrialized agricultural landscapes publication-title: Agriculture doi: 10.3390/agriculture8060080 – volume: 287 start-page: 20191290 year: 2020 ident: ref99 article-title: Farming plant cooperation in crops publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2019.1290 – volume: 70 start-page: 2381 year: 2019 ident: ref46 article-title: Understanding and optimizing species mixtures using functional–structural plant modelling publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery288 – volume: 82 start-page: 703 year: 1976 ident: ref63 article-title: Selection in reference to biological groups. V. Analysis of full-sib groups publication-title: Genetics doi: 10.1093/genetics/82.4.703 – volume: 38 start-page: 42 year: 2018 ident: ref84 article-title: Towards resilience through systems-based plant breeding. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0522-6 – volume: 17 start-page: 392 year: 2015 ident: ref20 article-title: Structure and function of the bacterial root microbiota in wild and domesticated barley publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.011 – volume: 112 start-page: 61 year: 2014 ident: ref15 article-title: The quantitative genetics of indirect genetic effects: a selective review of modelling issues publication-title: Heredity doi: 10.1038/hdy.2013.15 – volume: 166 start-page: 705 year: 2005 ident: ref59 article-title: Functional–structural plant modelling publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01445.x – volume: 37 start-page: 13 year: 2017 ident: ref9 article-title: Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-017-0418-x – volume-title: The State of the World’s Biodiversity for Food and Agriculture. year: 2019 ident: ref47 – volume: 412 start-page: 72 year: 2001 ident: ref93 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature doi: 10.1038/35083573 – volume: 39 start-page: 1 year: 2019 ident: ref55 article-title: Current knowledge and future research opportunities for modeling annual crop mixtures. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-019-0562-6 – volume: 157 start-page: 141 year: 2019 ident: ref5 article-title: Do we need specific breeding for legume-based mixtures publication-title: Adv. Agron. doi: 10.1016/bs.agron.2019.04.001 – volume: 143 start-page: 245 year: 2005 ident: ref108 article-title: Evolutionary plant breeding for low input systems publication-title: J. Agric. Sci. doi: 10.1017/S0021859605005009 – volume: 300 start-page: 758 year: 2003 ident: ref44 article-title: Assessing the impact of the green revolution, 1960 to 2000 publication-title: Science doi: 10.1126/science.1078710 – volume: 112 start-page: 253 year: 2013 ident: ref48 article-title: Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses publication-title: Ann. Bot. doi: 10.1093/aob/mcs296 – volume-title: Wheat Science – Today and Tomorrow. year: 1981 ident: ref40 article-title: Ideotypes and competition – volume: 10 start-page: 1606 year: 2019 ident: ref121 article-title: Breeding has increased the diversity of cultivated tomato in the Netherlands publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01606 – volume: 7 start-page: plv113 year: 2015 ident: ref41 article-title: Plant cooperation publication-title: AoB Plants doi: 10.1093/aobpla/plv113 – start-page: 465 volume-title: Genetics Today: Proc. XI Int. Congr. Genetics. year: 1964 ident: ref67 article-title: The nature and consequence of interference amongst plants – volume: 242 start-page: 107571 year: 2019 ident: ref52 article-title: A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat publication-title: Field Crop Res. doi: 10.1016/j.fcr.2019.107571 – volume: 123 start-page: 261 year: 2008 ident: ref64 article-title: The utility of crop genetic diversity in maintaining ecosystem services publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2007.08.003 – volume: 57 start-page: 2203 year: 2020 ident: ref142 article-title: Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13739 – volume: 231 start-page: 1171 year: 2021 ident: ref36 article-title: Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients publication-title: New Phytol. doi: 10.1111/nph.17435 – volume: 102 start-page: 1023 year: 2010 ident: ref81 article-title: Extension and evaluation of intercropping field trials using spatial models publication-title: Agron. J. doi: 10.2134/agronj2009.0404 – start-page: 77 year: 2012 ident: ref32 article-title: Breeding for genetically diverse populations: variety mixtures and evolutionary populations publication-title: Organic Crop Breeding. doi: 10.1002/9781119945932.ch5 – volume: 43 start-page: 545 year: 1986 ident: ref122 article-title: On the derivation of economic weights in livestock improvement publication-title: Anim. Sci. doi: 10.1017/S0003356100002750 – volume: 184 start-page: 133 year: 2015 ident: ref150 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis publication-title: Field Crop Res. doi: 10.1016/j.fcr.2015.09.010 – volume: 17 start-page: 239 year: 2015 ident: ref23 article-title: Bacterial networks and co-occurrence relationships in the lettuce root microbiota publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12686 – volume: 170 start-page: 1247 year: 2005 ident: ref103 article-title: Incorporation of competitive effects in forest tree or animal breeding programs publication-title: Genetics doi: 10.1534/genetics.104.035956 – volume: 19 start-page: 201 year: 2019 ident: ref92 article-title: Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly publication-title: BMC Microbiol. doi: 10.1186/s12866-019-1572-x – start-page: 2261 volume-title: Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). year: 2017 ident: ref146 – volume: 113 start-page: 125987 year: 2020 ident: ref87 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125987 – volume: 193 start-page: 347 year: 2013 ident: ref31 article-title: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking publication-title: Genetics doi: 10.1534/genetics.112.147983 – volume: 282 start-page: 23 year: 2019 ident: ref135 article-title: Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.06.018 – volume: 131 start-page: 1953 year: 2018 ident: ref60 article-title: Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-018-3125-3 – volume-title: Encyclopedia of Biodiversity. year: 2013 ident: ref90 article-title: Crop mixtures and the mechanisms of overyielding doi: 10.1016/B978-0-12-384719-5.00363-4 – volume: 206 start-page: 107 year: 2015 ident: ref18 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol. doi: 10.1111/nph.13132 – start-page: 193 year: 2021 ident: ref83 article-title: The interplay between roots and arbuscular mycorrhizal fungi influencing water and nutrient acquisition and use efficiency publication-title: The Root Systems in Sustainable Agricultural Intensification. doi: 10.1002/9781119525417.ch7 – volume: 159 start-page: 789 year: 2012 ident: ref141 article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade publication-title: Plant Physiol. doi: 10.1104/pp.112.195727 – volume: 108 start-page: 1065 year: 2011 ident: ref120 article-title: How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model publication-title: Ann. Bot. doi: 10.1093/aob/mcr221 – volume-title: The Ecology of Intercropping. year: 1992 ident: ref139 – volume: 515 start-page: 108 year: 2014 ident: ref152 article-title: Selection for niche differentiation in plant communities increases biodiversity effects publication-title: Nature doi: 10.1038/nature13869 |
SSID | ssj0000500997 |
Score | 2.5219917 |
SecondaryResourceType | review_article |
Snippet | Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by... Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 734167 |
SubjectTerms | functional–structural plant modeling indirect genetic effects intercropping mycorrhiza plant breeding Plant Science plant–plant interactions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBPEV5yUgsDKFJ_IrZaEVVIYEYQGKL4pdAQgkq7cDGD4E_xy_hbAdoFljY4sSJL9_FvrvY_g6hI0WFT2mrkzzXPKGS60Sm2sKRhOCDgkEMm8Iur_j4ll7csbu5VF9-TVikB47A9S1YKKeschnJqKNGKim05JnKc5OnVRh9webNBVOR1du7PiLOS0IUJvvu6dGzc-fZiYCBO6SV_7FDga6_42N2V0jOmZzRKlppfUV8FmVcQwu2XkdLgwb8uZcNNBxMouXBcRcKhu7ZRCINe4qvZ2FBMwb_Dn-8voUffz5b18frO4ZCg4dQeN5EN6Pzm-E4aVMiJBo8h2lSUAXowtMrx7XhpmApsYJW3KlKMye0YSCzYFWWEsqYEUopmRKtuDGES7KFFuumttsIV1oTwgXVTlhqMq2ILZSwRClBKkt4D_W_8Cl1Sxfus1Y8lhA2eERLj2jpES0joj10_H3HU6TK-KXuwEP-Xc-TXIcToPqyVX35l-p76PBLYSV0Cj_TUdW2mUFL3I9cguWsh0RHk50Wu1fqh_tAr11wwCVjO_8h4i5a9m_tNy9mxR5anE5mdh-8mKk6CB_sJ9Wr9EM priority: 102 providerName: Directory of Open Access Journals |
Title | Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops |
URI | https://www.proquest.com/docview/2607307525 https://pubmed.ncbi.nlm.nih.gov/PMC8636715 https://doaj.org/article/e201fbebf1314f4d9b97c961b22d20a2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagcOCCyksslMpIXDikjV_jpBJC7IpSIRVxaKW9RfEjFGmVlO2uRG_9IfDn-ks646SFSBUSlyhOHDv5HHu-sT0zjL1x2lJIW59J6SHTJfiszH3EsxKVD40CMRmFHX6Bg2P9eW7mf8yjBwDPblXtKJ7U8XKx8_PH-Xvs8O9I40R5u9ucLsjxthQ7FsdksHfZPZRLluIZHA5kv_f0TXQoRVsB0JkGOe_XLW8tZCSnkjv_EQcd76D8SyTtb7KHA5fkH_rGf8TuxPYxuz_tkO-dP2Gz6bKXTLy3UuHYfbve0Ubc41_XacMzR_7HLy9-pYlBiuZ1efGbY6LjM0ycPWVH-x-PZgfZEDIh88gsVlmhHaKPpdcN-AChMLmKVtfQuNqbxvpg8J2tqUWutDHBOufKXHkHISgo1TO20XZtfM547b1SYLVvbNRBeKdi4WxUzllVRwUTtnuNT-UHd-IU1WJRoVpBiFaEaEWIVj2iE_b25onT3pXGP_JOCfKbfOQEO13olt-qoU9VEclL46JrhBK60aF0pfUlCCdlkHktJ-z1dYNV2GloJaRuY7fGmoBGNmukmTA7aslRjeM77feT5H67AMRFmBf_8Tkv2QNKkQ2jKLbYxmq5jq-QzKzcdpoEwOOnudhO_-sVTan2tg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breeding+Beyond+Monoculture%3A+Putting+the+%E2%80%9CIntercrop%E2%80%9D+Into+Crops&rft.jtitle=Frontiers+in+plant+science&rft.au=Bourke%2C+Peter+M.&rft.au=Evers%2C+Jochem+B.&rft.au=Bijma%2C+Piter&rft.au=van+Apeldoorn%2C+Dirk+F.&rft.date=2021-11-18&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.734167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2021_734167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |