Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange
Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally trans...
Saved in:
Published in | Current genetics Vol. 63; no. 3; pp. 451 - 455 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2017
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in
Legionella pneumophila
and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system. |
---|---|
AbstractList | Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system. Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system. |
Author | Attaiech, Laetitia Charpentier, Xavier |
Author_xml | – sequence: 1 givenname: Laetitia orcidid: 0000-0002-6188-1839 surname: Attaiech fullname: Attaiech, Laetitia email: laetitia.attaiech@univ-lyon1.fr organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Univ Lyon – sequence: 2 givenname: Xavier orcidid: 0000-0001-9039-8021 surname: Charpentier fullname: Charpentier, Xavier organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Univ Lyon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27826682$$D View this record in MEDLINE/PubMed https://hal.science/hal-01911298$$DView record in HAL |
BookMark | eNqFkc1u1TAUhC1URG8LD8AGWWIDi8CxnfiHXVUBRboSC2BtOY7T68pxLnZSyNvjKC1ClYCVreNvRnM8Z-gkjtEh9JzAGwIg3mYAquoKCK-Ac1bxR2hHakYrUJKdoB0QQSsJkp2is5xvAAiVSjxBp1RIyrmkO9R-8cHFKSx4SibmfkyDaYN7h6eDw4OJC_5hloxbYyeXvMF2jNaZsD77hNvZh6nyEVtzNNZPCx57fO2im7zF7qc9mHjtnqLHvQnZPbs7z9G3D--_Xl5V-88fP11e7CtbMzVVoueMOWdFKwkFwYgiTRn0fUeburOO2w5I42TXq16V9NYqQVTPpLAEmnI5R68334MJ-pj8YNKiR-P11cVerzMoloQqeUsK-2pjj2n8Prs86cFn60Iw0Y1z1hQAmpo1zf9RIpkiICjjBX35AL0Z5xTL0oVSihMCNS3UiztqbgfX_Y56X0oBxAbYNOacXK_L15rJj7F05IMmoNf69VZ_WYvrtX69BiAPlPfm_9LQTZMLW-pKf4T-q-gXHaS_Nw |
CitedBy_id | crossref_primary_10_3389_fitd_2021_691604 crossref_primary_10_1128_mSphere_00975_20 crossref_primary_10_3390_antibiotics12020328 crossref_primary_10_1111_mmi_14644 crossref_primary_10_3390_ijms221810169 crossref_primary_10_1128_JB_00548_20 crossref_primary_10_3389_fmicb_2019_01960 crossref_primary_10_1093_femsre_fuac050 crossref_primary_10_1016_j_micres_2021_126856 crossref_primary_10_1074_jbc_REV119_006545 crossref_primary_10_1128_mBio_02443_19 crossref_primary_10_1134_S1022795422010124 |
Cites_doi | 10.1186/1471-2164-12-536 10.1016/j.cell.2014.01.068 10.1016/j.gene.2007.04.026 10.1128/JB.01035-08 10.1002/bies.201500101 10.1371/journal.pbio.1002394 10.1016/j.resmic.2007.09.004 10.1128/jb.172.7.4064-4071.1990 10.1128/JB.186.12.3814-3825.2004 10.1371/journal.pone.0035620 10.1126/science.1198545 10.1038/nrmicro3199 10.1111/j.1574-6976.2012.00353.x 10.3390/life4020217 10.1073/pnas.1601626113 10.1186/1471-2180-12-32 10.1111/j.1462-2920.2011.02689.x 10.1101/gr.209536.116 10.12688/f1000research.8737.1 10.1128/mBio.00005-11 10.1038/nrmicro1204 10.1186/s12864-016-2432-9 10.1006/jtbi.2000.2179 10.1111/j.1462-2920.2012.02889.x 10.1016/j.cell.2012.06.036 10.1093/nar/gkl1096 10.1073/pnas.1315278110 10.1007/s00294-015-0520-z 10.1016/j.jmb.2005.01.012 10.1371/journal.ppat.1002241 10.1038/349029a0 10.1128/JB.181.16.5004-5016.1999 10.1128/JB.181.5.1395-1402.1999 10.1128/JB.00718-15 10.1016/j.resmic.2006.07.002 10.1111/j.1574-6968.2006.00141.x 10.1016/S0966-842X(03)00064-7 10.1111/j.1751-7915.2008.00023.x 10.1371/journal.ppat.1003003 10.1007/978-1-62703-161-5_9 10.1038/ng.3114 10.1128/JB.00476-09 10.1093/nar/gkt041 10.1128/mBio.00071-11 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Current Genetics is a copyright of Springer, 2017. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Current Genetics is a copyright of Springer, 2017. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SS 7TK 7TM 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 1XC |
DOI | 10.1007/s00294-016-0663-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1432-0983 |
EndPage | 455 |
ExternalDocumentID | oai_HAL_hal_01911298v1 27826682 10_1007_s00294_016_0663_6 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fondation pour la Recherche Médicale grantid: SPF20130526652 funderid: http://dx.doi.org/10.13039/501100002915 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PF- PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z8O Z8P Z8Q Z8W ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7SS 7TK 7TM 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c439t-7f633eec7b812073191533effd254dce6cd015e8df9f9266cc9719f387c1059f3 |
IEDL.DBID | U2A |
ISSN | 0172-8083 |
IngestDate | Tue Jun 17 06:52:32 EDT 2025 Fri Jul 11 00:42:29 EDT 2025 Mon Jul 21 09:43:31 EDT 2025 Fri Jul 25 19:00:23 EDT 2025 Wed Feb 19 02:40:49 EST 2025 Tue Jul 01 01:44:31 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Fri Feb 21 02:36:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Competence HGT Silencing Gene regulation sRNA Bacterial Transformation RNA Gene Expression Regulation Genetic Homologous Recombination Legionella pneumophila Molecular Small Untranslated DNA Evolution |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-7f633eec7b812073191533effd254dce6cd015e8df9f9266cc9719f387c1059f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-6188-1839 0000-0001-9039-8021 |
PMID | 27826682 |
PQID | 1899611042 |
PQPubID | 54061 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_01911298v1 proquest_miscellaneous_2000543551 proquest_miscellaneous_1839107236 proquest_journals_1899611042 pubmed_primary_27826682 crossref_citationtrail_10_1007_s00294_016_0663_6 crossref_primary_10_1007_s00294_016_0663_6 springer_journals_10_1007_s00294_016_0663_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170600 2017-6-00 2017-Jun 20170601 2017-06 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 6 year: 2017 text: 20170600 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Berlin |
PublicationSubtitle | Microorganisms and Organelles |
PublicationTitle | Current genetics |
PublicationTitleAbbrev | Curr Genet |
PublicationTitleAlternate | Curr Genet |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
References | SextonJAVogelJPRegulation of hypercompetence in Legionella pneumophilaJ Bacteriol2004186381438251:CAS:528:DC%2BD2cXkvFOrs74%3D10.1128/JB.186.12.3814-3825.200415175295419971 ArberWHorizontal gene transfer among bacteria and its role in biological evolutionLife201442172241:CAS:528:DC%2BC2cXhtlagtrrF10.3390/life4020217253701944187160 KooninEVHorizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitionsF1000Research2016275080734962295 SeitzPBlokeschMCues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental gram-negative bacteriaFEMS Microbiol Rev2013373363631:CAS:528:DC%2BC3sXntlersrw%3D10.1111/j.1574-6976.2012.00353.x22928673 WoodburyRLWangXMoranCPSigma X induces competence gene expression in Streptococcus pyogenesRes Microbiol20061578518561:CAS:528:DC%2BD28XhtVyktr7N10.1016/j.resmic.2006.07.00216963231 CroucherNJMostowyRWymantCHorizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflictPLoS Biol201614e100239410.1371/journal.pbio.1002394269345904774983 Sánchez-BusóLComasIJorquesGGonzález-CandelasFRecombination drives genome evolution in outbreak-related Legionella pneumophila isolatesNat Genet2014461205121110.1038/ng.311425282102 CroucherNJHarrisSRFraserCRapid pneumococcal evolution in response to clinical interventionsScience20113314304341:CAS:528:DC%2BC3MXpsF2lsg%3D%3D10.1126/science.1198545212734803648787 LinJZhuLLauGWDisentangling competence for genetic transformation and virulence in Streptococcus pneumoniaeCurr Genet201662971031:CAS:528:DC%2BC2MXhsFGku7rK10.1007/s00294-015-0520-z26403231 SmithJMDowsonCGSprattBGLocalized sex in bacteriaNature199134929311:CAS:528:DyaK3MXpslynug%3D%3D10.1038/349029a01985260 DavidSRusniokCMentastiMMultiple major disease-associated clones of Legionella pneumophila have emerged recently and independentlyGenome Res2016 SlagerJKjosMAttaiechLVeeningJ-WAntibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the originCell20141573954061:CAS:528:DC%2BC2cXmslalsrs%3D10.1016/j.cell.2014.01.06824725406 BuchrieserCCharpentierXInduction of competence for natural transformation in Legionella pneumophila and exploitation for mutant constructionMethods Mol Biol Clifton NJ20139541831951:CAS:528:DC%2BC3sXlvV2isrk%3D10.1007/978-1-62703-161-5_9 JohnstonCMartinBFichantGBacterial transformation: distribution, shared mechanisms and divergent controlNat Rev Microbiol2014121811961:CAS:528:DC%2BC2cXitFamtb8%3D10.1038/nrmicro319924509783 CharpentierXFaucherSPKalachikovSShumanHALoss of RNase R induces competence development in Legionella pneumophilaJ Bacteriol2008190812681361:CAS:528:DC%2BD1cXhsV2lsLjL10.1128/JB.01035-08188494322593228 MirończukAMKovácsÁTKuipersOPInduction of natural competence in Bacillus cereus ATCC14579Microb Biotechnol2008122623510.1111/j.1751-7915.2008.00023.x212618423815884 BlokeschMChitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repressionEnviron Microbiol201214189819121:CAS:528:DC%2BC38XhtFOntbjL10.1111/j.1462-2920.2011.02689.x22222000 Overballe-PetersenSHarmsKOrlandoLAABacterial natural transformation by highly fragmented and damaged DNAProc Natl Acad Sci USA201311019860198651:CAS:528:DC%2BC3sXhvFKms73F10.1073/pnas.1315278110242483613856829 Gomez-ValeroLRusniokCJarraudSExtensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomesBMC Genom2011125361:CAS:528:DC%2BC3MXhsV2lurjK10.1186/1471-2164-12-536 SinhaSCameronADSRedfieldRJSxy induces a CRP-S regulon in Escherichia coliJ Bacteriol2009191518051951:CAS:528:DC%2BD1MXhtVSis7%2FF10.1128/JB.00476-09195023952725579 Anderson MT, Seifert HS (2011) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. mBio 2:e00005-11. doi:10.1128/mBio.00005-11 KesslerASchellUSahrTThe Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuitEnviron Microbiol2013156466621:CAS:528:DC%2BC3sXhvVCitro%3D10.1111/j.1462-2920.2012.02889.x23033905 LeeMSMorrisonDAIdentification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformationJ Bacteriol1999181500450161:CAS:528:DyaK1MXltlart7c%3D1043877393990 SchmidSBevilacquaCCrutz-Le CoqA-MAlternative sigma factor σH activates competence gene expression in Lactobacillus sakeiBMC Microbiol201212321:CAS:528:DC%2BC38Xos12mtbY%3D10.1186/1471-2180-12-32224095973364868 BhattacharjeeMKFineDHFigurskiDHtfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitansGene200739953641:CAS:528:DC%2BD2sXnvFOntrg%3D10.1016/j.gene.2007.04.026175613572080652 ClaverysJ-PMartinBBacterial “competence” genes: signatures of active transformation, or only remnants?Trends Microbiol2003111611651:CAS:528:DC%2BD3sXjtFeqtbs%3D10.1016/S0966-842X(03)00064-712706993 Lo ScrudatoMBlokeschMA transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformableNucl Acids Res201341364436581:CAS:528:DC%2BC3sXlsVCnu7g%3D10.1093/nar/gkt041233821743616704 Medrano RomeroVMorikawaKListeria monocytogenes σH contributes to expression of competence genes and intracellular growthJ Bacteriol20161981207121710.1128/JB.00718-15268334124859582 AttaiechLBoughammouraABrochier-ArmanetCSilencing of natural transformation by an RNA chaperone and a multitarget small RNAProc Natl Acad Sci USA2016113881388181:CAS:528:DC%2BC28XhtFOku7bL10.1073/pnas.1601626113274329734978251 LiuYOrsiRHBoorKJAn advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenesBMC Genom20161711510.1186/s12864-016-2432-9 BlokeschMCompetence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. choleraeBioEssays News Rev Mol Cell Dev Biol2015371163116810.1002/bies.201500101 MandinPRepoilaFVergassolaMIdentification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targetsNucl Acids Res2007359629741:CAS:528:DC%2BD2sXhvFWmur8%3D10.1093/nar/gkl1096172592221807966 ZhuLLauGWInhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptidePLoS Pathog20117e10022411:CAS:528:DC%2BC3MXht1altLfJ10.1371/journal.ppat.1002241219092803164649 JohnsborgOEldholmVHåvarsteinLSNatural genetic transformation: prevalence, mechanisms and functionRes Microbiol20071587677781:CAS:528:DC%2BD2sXhsVCksL%2FK10.1016/j.resmic.2007.09.00417997281 RabinovichLSigalNBorovokIProphage excision activates Listeria competence genes that promote phagosomal escape and virulenceCell20121507928021:CAS:528:DC%2BC38Xht1aktLvO10.1016/j.cell.2012.06.03622901809 RedfieldRJCameronADSQianQA novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzaeJ Mol Biol20053477357471:CAS:528:DC%2BD2MXitlCgurw%3D10.1016/j.jmb.2005.01.01215769466 SinhaSRedfieldRJNatural DNA uptake by Escherichia coliPLoS One20127e356201:CAS:528:DC%2BC38XmsF2rs74%3D10.1371/journal.pone.0035620225328643330819 StoneBJKwaikYANatural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV piliJ Bacteriol1999181139514021:CAS:528:DyaK1MXhslWrtrw%3D1004936893526 WydauSDervynRAnbaJConservation of key elements of natural competence in Lactococcus lactis sspFEMS Microbiol Lett200625732421:CAS:528:DC%2BD28XjslyksL0%3D10.1111/j.1574-6968.2006.00141.x16553829 GogartenJPTownsendJPHorizontal gene transfer, genome innovation and evolutionNat Rev Microbiol200536796871:CAS:528:DC%2BD2MXps1Kjtbo%3D10.1038/nrmicro120416138096 MohanSDubnauDTranscriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilisJ Bacteriol1990172406440711:CAS:528:DyaK3cXkslajtLo%3D10.1128/jb.172.7.4064-4071.19901694528213393 MorikawaKTakemuraAJInoseYExpression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureusPLoS Pathog20128e10030031:CAS:528:DC%2BC38XhslWjsbvO10.1371/journal.ppat.1003003231333873486894 MacfadyenLPRegulation of competence development in Haemophilus influenzaeJ Theor Biol20002073493591:CAS:528:DC%2BD3cXotVyntbg%3D10.1006/jtbi.2000.217911082305 Stevens KE, Chang D, Zwack EE, Sebert ME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. mBio doi:10.1128/mBio.00071-11 S Schmid (663_CR33) 2012; 12 JA Sexton (663_CR35) 2004; 186 NJ Croucher (663_CR11) 2016; 14 L Rabinovich (663_CR30) 2012; 150 C Johnston (663_CR16) 2014; 12 A Kessler (663_CR17) 2013; 15 663_CR40 JM Smith (663_CR39) 1991; 349 M Lo Scrudato (663_CR22) 2013; 41 O Johnsborg (663_CR15) 2007; 158 L Sánchez-Busó (663_CR32) 2014; 46 X Charpentier (663_CR8) 2008; 190 LP Macfadyen (663_CR23) 2000; 207 V Medrano Romero (663_CR25) 2016; 198 S David (663_CR12) 2016 Y Liu (663_CR21) 2016; 17 P Seitz (663_CR34) 2013; 37 MK Bhattacharjee (663_CR4) 2007; 399 L Attaiech (663_CR3) 2016; 113 K Morikawa (663_CR28) 2012; 8 C Buchrieser (663_CR7) 2013; 954 NJ Croucher (663_CR10) 2011; 331 663_CR1 EV Koonin (663_CR18) 2016 S Mohan (663_CR27) 1990; 172 S Sinha (663_CR36) 2012; 7 J Slager (663_CR38) 2014; 157 JP Gogarten (663_CR13) 2005; 3 RJ Redfield (663_CR31) 2005; 347 J Lin (663_CR20) 2016; 62 AM Mirończuk (663_CR26) 2008; 1 S Overballe-Petersen (663_CR29) 2013; 110 W Arber (663_CR2) 2014; 4 M Blokesch (663_CR5) 2012; 14 MS Lee (663_CR19) 1999; 181 L Zhu (663_CR44) 2011; 7 BJ Stone (663_CR41) 1999; 181 M Blokesch (663_CR6) 2015; 37 L Gomez-Valero (663_CR14) 2011; 12 S Wydau (663_CR43) 2006; 257 J-P Claverys (663_CR9) 2003; 11 S Sinha (663_CR37) 2009; 191 P Mandin (663_CR24) 2007; 35 RL Woodbury (663_CR42) 2006; 157 21909280 - PLoS Pathog. 2011 Sep;7(9):e1002241 16138096 - Nat Rev Microbiol. 2005 Sep;3(9):679-87 27432973 - Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8813-8 24725406 - Cell. 2014 Apr 10;157(2):395-406 24509783 - Nat Rev Microbiol. 2014 Mar;12(3):181-96 27508073 - F1000Res. 2016 Jul 25;5:null 11082305 - J Theor Biol. 2000 Dec 7;207(3):349-59 21273480 - Science. 2011 Jan 28;331(6016):430-4 21933920 - MBio. 2011 Sep 20;2(5):null 26833412 - J Bacteriol. 2016 Mar 31;198(8):1207-17 24248361 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19860-5 17561357 - Gene. 2007 Sep 1;399(1):53-64 22044686 - BMC Genomics. 2011 Nov 01;12:536 15175295 - J Bacteriol. 2004 Jun;186(12):3814-25 26445388 - Bioessays. 2015 Nov;37(11):1163-8 22928673 - FEMS Microbiol Rev. 2013 May;37(3):336-63 23133387 - PLoS Pathog. 2012;8(11):e1003003 26403231 - Curr Genet. 2016 Feb;62(1):97-103 22409597 - BMC Microbiol. 2012 Mar 12;12:32 16963231 - Res Microbiol. 2006 Nov;157(9):851-6 22901809 - Cell. 2012 Aug 17;150(4):792-802 22222000 - Environ Microbiol. 2012 Aug;14(8):1898-912 25370194 - Life (Basel). 2014 May 16;4(2):217-24 10438773 - J Bacteriol. 1999 Aug;181(16):5004-16 19502395 - J Bacteriol. 2009 Aug;191(16):5180-95 22532864 - PLoS One. 2012;7(4):e35620 12706993 - Trends Microbiol. 2003 Apr;11(4):161-5 17997281 - Res Microbiol. 2007 Dec;158(10):767-78 21261842 - Microb Biotechnol. 2008 May;1(3):226-35 23150395 - Methods Mol Biol. 2013;954:183-95 1694528 - J Bacteriol. 1990 Jul;172(7):4064-71 18849432 - J Bacteriol. 2008 Dec;190(24):8126-36 15769466 - J Mol Biol. 2005 Apr 8;347(4):735-47 16553829 - FEMS Microbiol Lett. 2006 Apr;257(1):32-42 10049368 - J Bacteriol. 1999 Mar;181(5):1395-402 21325040 - MBio. 2011 Feb 15;2(1):e00005-11 23033905 - Environ Microbiol. 2013 Feb;15(2):646-62 1985260 - Nature. 1991 Jan 3;349(6304):29-31 27662900 - Genome Res. 2016 Nov;26(11):1555-1564 25282102 - Nat Genet. 2014 Nov;46(11):1205-11 26934590 - PLoS Biol. 2016 Mar 02;14(3):e1002394 17259222 - Nucleic Acids Res. 2007;35(3):962-74 26880300 - BMC Genomics. 2016 Feb 16;17 :115 23382174 - Nucleic Acids Res. 2013 Apr 1;41(6):3644-58 |
References_xml | – reference: KooninEVHorizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitionsF1000Research2016275080734962295 – reference: MorikawaKTakemuraAJInoseYExpression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureusPLoS Pathog20128e10030031:CAS:528:DC%2BC38XhslWjsbvO10.1371/journal.ppat.1003003231333873486894 – reference: SmithJMDowsonCGSprattBGLocalized sex in bacteriaNature199134929311:CAS:528:DyaK3MXpslynug%3D%3D10.1038/349029a01985260 – reference: SextonJAVogelJPRegulation of hypercompetence in Legionella pneumophilaJ Bacteriol2004186381438251:CAS:528:DC%2BD2cXkvFOrs74%3D10.1128/JB.186.12.3814-3825.200415175295419971 – reference: Medrano RomeroVMorikawaKListeria monocytogenes σH contributes to expression of competence genes and intracellular growthJ Bacteriol20161981207121710.1128/JB.00718-15268334124859582 – reference: MandinPRepoilaFVergassolaMIdentification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targetsNucl Acids Res2007359629741:CAS:528:DC%2BD2sXhvFWmur8%3D10.1093/nar/gkl1096172592221807966 – reference: ClaverysJ-PMartinBBacterial “competence” genes: signatures of active transformation, or only remnants?Trends Microbiol2003111611651:CAS:528:DC%2BD3sXjtFeqtbs%3D10.1016/S0966-842X(03)00064-712706993 – reference: RabinovichLSigalNBorovokIProphage excision activates Listeria competence genes that promote phagosomal escape and virulenceCell20121507928021:CAS:528:DC%2BC38Xht1aktLvO10.1016/j.cell.2012.06.03622901809 – reference: ArberWHorizontal gene transfer among bacteria and its role in biological evolutionLife201442172241:CAS:528:DC%2BC2cXhtlagtrrF10.3390/life4020217253701944187160 – reference: Gomez-ValeroLRusniokCJarraudSExtensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomesBMC Genom2011125361:CAS:528:DC%2BC3MXhsV2lurjK10.1186/1471-2164-12-536 – reference: GogartenJPTownsendJPHorizontal gene transfer, genome innovation and evolutionNat Rev Microbiol200536796871:CAS:528:DC%2BD2MXps1Kjtbo%3D10.1038/nrmicro120416138096 – reference: JohnstonCMartinBFichantGBacterial transformation: distribution, shared mechanisms and divergent controlNat Rev Microbiol2014121811961:CAS:528:DC%2BC2cXitFamtb8%3D10.1038/nrmicro319924509783 – reference: RedfieldRJCameronADSQianQA novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzaeJ Mol Biol20053477357471:CAS:528:DC%2BD2MXitlCgurw%3D10.1016/j.jmb.2005.01.01215769466 – reference: WydauSDervynRAnbaJConservation of key elements of natural competence in Lactococcus lactis sspFEMS Microbiol Lett200625732421:CAS:528:DC%2BD28XjslyksL0%3D10.1111/j.1574-6968.2006.00141.x16553829 – reference: BuchrieserCCharpentierXInduction of competence for natural transformation in Legionella pneumophila and exploitation for mutant constructionMethods Mol Biol Clifton NJ20139541831951:CAS:528:DC%2BC3sXlvV2isrk%3D10.1007/978-1-62703-161-5_9 – reference: Anderson MT, Seifert HS (2011) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. mBio 2:e00005-11. doi:10.1128/mBio.00005-11 – reference: LeeMSMorrisonDAIdentification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformationJ Bacteriol1999181500450161:CAS:528:DyaK1MXltlart7c%3D1043877393990 – reference: SlagerJKjosMAttaiechLVeeningJ-WAntibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the originCell20141573954061:CAS:528:DC%2BC2cXmslalsrs%3D10.1016/j.cell.2014.01.06824725406 – reference: SinhaSCameronADSRedfieldRJSxy induces a CRP-S regulon in Escherichia coliJ Bacteriol2009191518051951:CAS:528:DC%2BD1MXhtVSis7%2FF10.1128/JB.00476-09195023952725579 – reference: LiuYOrsiRHBoorKJAn advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenesBMC Genom20161711510.1186/s12864-016-2432-9 – reference: BlokeschMCompetence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. choleraeBioEssays News Rev Mol Cell Dev Biol2015371163116810.1002/bies.201500101 – reference: AttaiechLBoughammouraABrochier-ArmanetCSilencing of natural transformation by an RNA chaperone and a multitarget small RNAProc Natl Acad Sci USA2016113881388181:CAS:528:DC%2BC28XhtFOku7bL10.1073/pnas.1601626113274329734978251 – reference: BhattacharjeeMKFineDHFigurskiDHtfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitansGene200739953641:CAS:528:DC%2BD2sXnvFOntrg%3D10.1016/j.gene.2007.04.026175613572080652 – reference: SinhaSRedfieldRJNatural DNA uptake by Escherichia coliPLoS One20127e356201:CAS:528:DC%2BC38XmsF2rs74%3D10.1371/journal.pone.0035620225328643330819 – reference: ZhuLLauGWInhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptidePLoS Pathog20117e10022411:CAS:528:DC%2BC3MXht1altLfJ10.1371/journal.ppat.1002241219092803164649 – reference: StoneBJKwaikYANatural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV piliJ Bacteriol1999181139514021:CAS:528:DyaK1MXhslWrtrw%3D1004936893526 – reference: Overballe-PetersenSHarmsKOrlandoLAABacterial natural transformation by highly fragmented and damaged DNAProc Natl Acad Sci USA201311019860198651:CAS:528:DC%2BC3sXhvFKms73F10.1073/pnas.1315278110242483613856829 – reference: MirończukAMKovácsÁTKuipersOPInduction of natural competence in Bacillus cereus ATCC14579Microb Biotechnol2008122623510.1111/j.1751-7915.2008.00023.x212618423815884 – reference: MohanSDubnauDTranscriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilisJ Bacteriol1990172406440711:CAS:528:DyaK3cXkslajtLo%3D10.1128/jb.172.7.4064-4071.19901694528213393 – reference: CroucherNJMostowyRWymantCHorizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflictPLoS Biol201614e100239410.1371/journal.pbio.1002394269345904774983 – reference: JohnsborgOEldholmVHåvarsteinLSNatural genetic transformation: prevalence, mechanisms and functionRes Microbiol20071587677781:CAS:528:DC%2BD2sXhsVCksL%2FK10.1016/j.resmic.2007.09.00417997281 – reference: Sánchez-BusóLComasIJorquesGGonzález-CandelasFRecombination drives genome evolution in outbreak-related Legionella pneumophila isolatesNat Genet2014461205121110.1038/ng.311425282102 – reference: SeitzPBlokeschMCues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental gram-negative bacteriaFEMS Microbiol Rev2013373363631:CAS:528:DC%2BC3sXntlersrw%3D10.1111/j.1574-6976.2012.00353.x22928673 – reference: BlokeschMChitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repressionEnviron Microbiol201214189819121:CAS:528:DC%2BC38XhtFOntbjL10.1111/j.1462-2920.2011.02689.x22222000 – reference: CharpentierXFaucherSPKalachikovSShumanHALoss of RNase R induces competence development in Legionella pneumophilaJ Bacteriol2008190812681361:CAS:528:DC%2BD1cXhsV2lsLjL10.1128/JB.01035-08188494322593228 – reference: Stevens KE, Chang D, Zwack EE, Sebert ME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. mBio doi:10.1128/mBio.00071-11 – reference: KesslerASchellUSahrTThe Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuitEnviron Microbiol2013156466621:CAS:528:DC%2BC3sXhvVCitro%3D10.1111/j.1462-2920.2012.02889.x23033905 – reference: MacfadyenLPRegulation of competence development in Haemophilus influenzaeJ Theor Biol20002073493591:CAS:528:DC%2BD3cXotVyntbg%3D10.1006/jtbi.2000.217911082305 – reference: Lo ScrudatoMBlokeschMA transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformableNucl Acids Res201341364436581:CAS:528:DC%2BC3sXlsVCnu7g%3D10.1093/nar/gkt041233821743616704 – reference: SchmidSBevilacquaCCrutz-Le CoqA-MAlternative sigma factor σH activates competence gene expression in Lactobacillus sakeiBMC Microbiol201212321:CAS:528:DC%2BC38Xos12mtbY%3D10.1186/1471-2180-12-32224095973364868 – reference: WoodburyRLWangXMoranCPSigma X induces competence gene expression in Streptococcus pyogenesRes Microbiol20061578518561:CAS:528:DC%2BD28XhtVyktr7N10.1016/j.resmic.2006.07.00216963231 – reference: LinJZhuLLauGWDisentangling competence for genetic transformation and virulence in Streptococcus pneumoniaeCurr Genet201662971031:CAS:528:DC%2BC2MXhsFGku7rK10.1007/s00294-015-0520-z26403231 – reference: CroucherNJHarrisSRFraserCRapid pneumococcal evolution in response to clinical interventionsScience20113314304341:CAS:528:DC%2BC3MXpsF2lsg%3D%3D10.1126/science.1198545212734803648787 – reference: DavidSRusniokCMentastiMMultiple major disease-associated clones of Legionella pneumophila have emerged recently and independentlyGenome Res2016 – volume: 12 start-page: 536 year: 2011 ident: 663_CR14 publication-title: BMC Genom doi: 10.1186/1471-2164-12-536 – volume: 157 start-page: 395 year: 2014 ident: 663_CR38 publication-title: Cell doi: 10.1016/j.cell.2014.01.068 – volume: 399 start-page: 53 year: 2007 ident: 663_CR4 publication-title: Gene doi: 10.1016/j.gene.2007.04.026 – volume: 190 start-page: 8126 year: 2008 ident: 663_CR8 publication-title: J Bacteriol doi: 10.1128/JB.01035-08 – volume: 37 start-page: 1163 year: 2015 ident: 663_CR6 publication-title: BioEssays News Rev Mol Cell Dev Biol doi: 10.1002/bies.201500101 – volume: 14 start-page: e1002394 year: 2016 ident: 663_CR11 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002394 – volume: 158 start-page: 767 year: 2007 ident: 663_CR15 publication-title: Res Microbiol doi: 10.1016/j.resmic.2007.09.004 – volume: 172 start-page: 4064 year: 1990 ident: 663_CR27 publication-title: J Bacteriol doi: 10.1128/jb.172.7.4064-4071.1990 – volume: 186 start-page: 3814 year: 2004 ident: 663_CR35 publication-title: J Bacteriol doi: 10.1128/JB.186.12.3814-3825.2004 – volume: 7 start-page: e35620 year: 2012 ident: 663_CR36 publication-title: PLoS One doi: 10.1371/journal.pone.0035620 – volume: 331 start-page: 430 year: 2011 ident: 663_CR10 publication-title: Science doi: 10.1126/science.1198545 – volume: 12 start-page: 181 year: 2014 ident: 663_CR16 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3199 – volume: 37 start-page: 336 year: 2013 ident: 663_CR34 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2012.00353.x – volume: 4 start-page: 217 year: 2014 ident: 663_CR2 publication-title: Life doi: 10.3390/life4020217 – volume: 113 start-page: 8813 year: 2016 ident: 663_CR3 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1601626113 – volume: 12 start-page: 32 year: 2012 ident: 663_CR33 publication-title: BMC Microbiol doi: 10.1186/1471-2180-12-32 – volume: 14 start-page: 1898 year: 2012 ident: 663_CR5 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2011.02689.x – year: 2016 ident: 663_CR12 publication-title: Genome Res doi: 10.1101/gr.209536.116 – year: 2016 ident: 663_CR18 publication-title: F1000Research doi: 10.12688/f1000research.8737.1 – ident: 663_CR1 doi: 10.1128/mBio.00005-11 – volume: 3 start-page: 679 year: 2005 ident: 663_CR13 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1204 – volume: 17 start-page: 115 year: 2016 ident: 663_CR21 publication-title: BMC Genom doi: 10.1186/s12864-016-2432-9 – volume: 207 start-page: 349 year: 2000 ident: 663_CR23 publication-title: J Theor Biol doi: 10.1006/jtbi.2000.2179 – volume: 15 start-page: 646 year: 2013 ident: 663_CR17 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2012.02889.x – volume: 150 start-page: 792 year: 2012 ident: 663_CR30 publication-title: Cell doi: 10.1016/j.cell.2012.06.036 – volume: 35 start-page: 962 year: 2007 ident: 663_CR24 publication-title: Nucl Acids Res doi: 10.1093/nar/gkl1096 – volume: 110 start-page: 19860 year: 2013 ident: 663_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1315278110 – volume: 62 start-page: 97 year: 2016 ident: 663_CR20 publication-title: Curr Genet doi: 10.1007/s00294-015-0520-z – volume: 347 start-page: 735 year: 2005 ident: 663_CR31 publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.01.012 – volume: 7 start-page: e1002241 year: 2011 ident: 663_CR44 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002241 – volume: 349 start-page: 29 year: 1991 ident: 663_CR39 publication-title: Nature doi: 10.1038/349029a0 – volume: 181 start-page: 5004 year: 1999 ident: 663_CR19 publication-title: J Bacteriol doi: 10.1128/JB.181.16.5004-5016.1999 – volume: 181 start-page: 1395 year: 1999 ident: 663_CR41 publication-title: J Bacteriol doi: 10.1128/JB.181.5.1395-1402.1999 – volume: 198 start-page: 1207 year: 2016 ident: 663_CR25 publication-title: J Bacteriol doi: 10.1128/JB.00718-15 – volume: 157 start-page: 851 year: 2006 ident: 663_CR42 publication-title: Res Microbiol doi: 10.1016/j.resmic.2006.07.002 – volume: 257 start-page: 32 year: 2006 ident: 663_CR43 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2006.00141.x – volume: 11 start-page: 161 year: 2003 ident: 663_CR9 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(03)00064-7 – volume: 1 start-page: 226 year: 2008 ident: 663_CR26 publication-title: Microb Biotechnol doi: 10.1111/j.1751-7915.2008.00023.x – volume: 8 start-page: e1003003 year: 2012 ident: 663_CR28 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003003 – volume: 954 start-page: 183 year: 2013 ident: 663_CR7 publication-title: Methods Mol Biol Clifton NJ doi: 10.1007/978-1-62703-161-5_9 – volume: 46 start-page: 1205 year: 2014 ident: 663_CR32 publication-title: Nat Genet doi: 10.1038/ng.3114 – volume: 191 start-page: 5180 year: 2009 ident: 663_CR37 publication-title: J Bacteriol doi: 10.1128/JB.00476-09 – volume: 41 start-page: 3644 year: 2013 ident: 663_CR22 publication-title: Nucl Acids Res doi: 10.1093/nar/gkt041 – ident: 663_CR40 doi: 10.1128/mBio.00071-11 – reference: 27432973 - Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8813-8 – reference: 21933920 - MBio. 2011 Sep 20;2(5):null – reference: 26880300 - BMC Genomics. 2016 Feb 16;17 :115 – reference: 15175295 - J Bacteriol. 2004 Jun;186(12):3814-25 – reference: 17259222 - Nucleic Acids Res. 2007;35(3):962-74 – reference: 25282102 - Nat Genet. 2014 Nov;46(11):1205-11 – reference: 17561357 - Gene. 2007 Sep 1;399(1):53-64 – reference: 27662900 - Genome Res. 2016 Nov;26(11):1555-1564 – reference: 23033905 - Environ Microbiol. 2013 Feb;15(2):646-62 – reference: 25370194 - Life (Basel). 2014 May 16;4(2):217-24 – reference: 26833412 - J Bacteriol. 2016 Mar 31;198(8):1207-17 – reference: 11082305 - J Theor Biol. 2000 Dec 7;207(3):349-59 – reference: 26403231 - Curr Genet. 2016 Feb;62(1):97-103 – reference: 24509783 - Nat Rev Microbiol. 2014 Mar;12(3):181-96 – reference: 16138096 - Nat Rev Microbiol. 2005 Sep;3(9):679-87 – reference: 17997281 - Res Microbiol. 2007 Dec;158(10):767-78 – reference: 16553829 - FEMS Microbiol Lett. 2006 Apr;257(1):32-42 – reference: 22044686 - BMC Genomics. 2011 Nov 01;12:536 – reference: 23382174 - Nucleic Acids Res. 2013 Apr 1;41(6):3644-58 – reference: 21273480 - Science. 2011 Jan 28;331(6016):430-4 – reference: 21909280 - PLoS Pathog. 2011 Sep;7(9):e1002241 – reference: 22409597 - BMC Microbiol. 2012 Mar 12;12:32 – reference: 21261842 - Microb Biotechnol. 2008 May;1(3):226-35 – reference: 26934590 - PLoS Biol. 2016 Mar 02;14(3):e1002394 – reference: 22222000 - Environ Microbiol. 2012 Aug;14(8):1898-912 – reference: 24725406 - Cell. 2014 Apr 10;157(2):395-406 – reference: 15769466 - J Mol Biol. 2005 Apr 8;347(4):735-47 – reference: 22532864 - PLoS One. 2012;7(4):e35620 – reference: 22901809 - Cell. 2012 Aug 17;150(4):792-802 – reference: 26445388 - Bioessays. 2015 Nov;37(11):1163-8 – reference: 24248361 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19860-5 – reference: 10049368 - J Bacteriol. 1999 Mar;181(5):1395-402 – reference: 19502395 - J Bacteriol. 2009 Aug;191(16):5180-95 – reference: 12706993 - Trends Microbiol. 2003 Apr;11(4):161-5 – reference: 1985260 - Nature. 1991 Jan 3;349(6304):29-31 – reference: 23133387 - PLoS Pathog. 2012;8(11):e1003003 – reference: 23150395 - Methods Mol Biol. 2013;954:183-95 – reference: 21325040 - MBio. 2011 Feb 15;2(1):e00005-11 – reference: 18849432 - J Bacteriol. 2008 Dec;190(24):8126-36 – reference: 10438773 - J Bacteriol. 1999 Aug;181(16):5004-16 – reference: 1694528 - J Bacteriol. 1990 Jul;172(7):4064-71 – reference: 16963231 - Res Microbiol. 2006 Nov;157(9):851-6 – reference: 22928673 - FEMS Microbiol Rev. 2013 May;37(3):336-63 – reference: 27508073 - F1000Res. 2016 Jul 25;5:null |
SSID | ssj0012897 |
Score | 2.2286077 |
SecondaryResourceType | review_article |
Snippet | Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original... |
SourceID | hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | Bacteria Bacteriology Biochemistry Biological evolution Biomedical and Life Sciences Cell Biology Chromosomes Deoxyribonucleic acid DNA DNA, Bacterial - genetics Evolution, Molecular Exchanging Gene expression Gene Expression Regulation, Bacterial genetic transformation genome homologous recombination Homologous Recombination - genetics Homology Immunology Legionella pneumophila Legionella pneumophila - genetics Legionnaires' disease bacterium Life Sciences Microbial Genetics and Genomics Microbiology Microbiology and Parasitology non-coding RNA phylogeny Plant Sciences Proteomics Regulatory mechanisms (biology) Review RNA, Small Untranslated - genetics Transformation, Bacterial - genetics Transformation, Genetic Transformations Virology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELZGp0l7mWBso6MgD-1pk0UTp47NC6oQqJq2vWxIfYsS5ywqlaTQdKP_PXfODzZV9LW9No595_vO5_uOsc_aopcZOi1AGSMiabXIRjEIBeCsi6RWjg70f_xUk-vo23Q0bQ7cls21ynZP9Bt1Xlo6Iz8NMDBQ6Kui8HxxJ6hrFGVXmxYaO-wlUZeRVsfTLuDCrdfU5dIxWj1ijTarOfQkoiGR4gaKavClUP_5pZ0buhW5CTk30qXeC13tsjcNfOTjer332Aso3rJXdUPJ9T7Lfs3Ii8zXvOoAaTaHM44wj9-i3fO_6XrJs5qiOeWWihbx_3y6gGer2bwSs4Jb9KAW4TkvHUcFozpHDg91jfA7dn11-ftiIpouCsIi2KhE7JSUADbO0JejQWOAhhAPnMsxNswtKJsjJACdO-MMumtrTRwYJ3VsCXs5-Z71irKAA8Z9tGONTnGXjEajFAVDIDYZDKMBTNpnw3YOE9tQjFOni3nSkSP7aU_oWhlNe6L67Ev3k0XNr7FN-AQXppMjZuzJ-HtCnyFSJeSo_wR9NmjXLWnscZk8aU-ffeq-Rkui9EhaQLkiGYnYKQ6lel4m9BgXMRo-5kOtE91wQgRbSml8wtdWSf4ZwHPv9HH7cA_Z65CAhD_3GbBedb-CI4RBVXbsdf0Rmbf_rA priority: 102 providerName: ProQuest |
Title | Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange |
URI | https://link.springer.com/article/10.1007/s00294-016-0663-6 https://www.ncbi.nlm.nih.gov/pubmed/27826682 https://www.proquest.com/docview/1899611042 https://www.proquest.com/docview/1839107236 https://www.proquest.com/docview/2000543551 https://hal.science/hal-01911298 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db9MwEMBPdBMSLwgYsI5RmYknkKU1TmyHt3ZqV_FRIaBSeYoS96xV6lK0pkD_-93lS6BtSDxFaq9Javtyv8t9GOC1dWRlTr2VqONYhspZmUUGpUb0zofKas8v9D9N9WQWvp9H87qOe9NkuzchyfJJ3Ra7cQCJMyY0V80rqTuwH5Hrznlcs2DQhg7Ig6hqpA2pOgFGE8q87RR_GaPOBadC3uTMGzHS0vSMH8HDmhnFoJrkx3AP8ydwv9pFcncA2dclm47VThQthWYrfCeI7cQlKbv4le42Iqv6MqfCcaUina-MEYhsu1wVcpkLR2bTEZOLtRe0qri4UeDvqjD4KczGo29nE1lvnSAdEUYhjddKITqTkQEnLSavjLgOvV-QQ7hwqN2COADtwsc-JhvtXGz6sVfWOAYur57BXr7O8RBE6eK42Kb0aAyjKCXBALmFDPnOiHHahdNmDBNX9xXn7S1WSdsRuRz2hHPJeNgT3YU37U9-VE01_iV8QhPTynE77MngY8KfEZ4yLtqf_S4cN_OW1Eq4SfrkS2rCmzDowqv2a1IfjomkOa63LKMImEyg9N0yQQm2BGZ0mefVmmhvJyDC0trSFd42i-SPG7jrPx39l_QLeBAwTJTvfo5hr7ja4ktCoSLrQcfMTQ_2B-PhcMrH8-8fRnQcjqafv_RKxbgGZ1UBzw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQ4i9TPym2wCD4AVk0dqp4yAhNAFTx7q9sEl9yxLnLCp16aDpRv8p_kbunCaApu1tr-01ce3zfd_5fHcAr6wjlOl6K9EkiYy0szLvxygNonc-0tZ4PtA_ODSD4-jrqD9agd9NLgxfq2xsYjDUxdTxGfm7HjkGhrAqUh_PfkjuGsXR1aaFRq0W-7i4IJdt9mHvM63va6V2vxx9GshlVwHpCHwrGXujNaKLc8I2UnByWIjyoPcF-UqFQ-MKgki0hU98QvDlXBL3Eq9t7JiLeE3PXYVbBLxddvbiUevgkalP6vTsmKwMcZsmitoNRUsVF-HtGc7519L8h4Or3_kW5mWKeyk8G1Bv9y5sLOmq2Kn16x6sYHkfbtcNLBcPIP82ZtSaLETVEuB8gu8F0UpxSnZGXGSLmcjrktCZcJwkSc8L4QmRz8eTSo5L4QixHbkDYuoFKTTnVQr8VeckP4TjG5nfR7BWTkt8AiJ4Vy6xGVnlqN_PSFAhV68htx0xyTrQbeYwdcuS5txZY5K2xZjDtKd8jY2nPTUdeNP-5Kyu53Gd8EtamFaOK3EPdoYpf0bMmJmqPe91YLtZt3S5_2fpX23twIv2a9q5HI7JSpzOWUYTV4uVNlfLqMCpiRPSax7XOtEORxG5M8bSG942SvLPAK76T5vXD_c53BkcHQzT4d7h_hasKyYx4cxpG9aqn3N8ShSsyp8FvRdwctMb7Q9GrTxE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnUB7QXxTGGAQvICstXbqOEgIDbaqY6OagEl7yxLnrFUq6aApo_8afx13-QI0bW97ba-Ja5_v9zuf7w7ghXWEMj1vJZookoF2VqaDEKVB9M4H2hrPB_qfxmZ0GHw8GhytwO8mF4avVTY2sTTU2czxGflmnxwDQ1gVqE1fX4s42B6-O_0uuYMUR1qbdhqViuzh8ozct_nb3W1a65dKDXe-fhjJusOAdATEhQy90RrRhSnhHCk7OS9Ef9D7jPymzKFxGcEl2sxHPiIocy4K-5HXNnTMS7ym567CWsheUQfW3u-MDz63MQxyZapk7ZBsDjGdJqbaK0uYKi7J2zdcAUBL8x8qrp7wnczzhPdcsLbEwOFNuFGTV7FVadstWMH8Nlyr2lku70D6ZcIYNl2KoqXD6RTfCCKZ4htZHXGWLOcirQpEJ8JxyiQ9rwxWiHQxmRZykgtH-O3IORAzL0i9OctS4K8qQ_kuHF7JDN-DTj7L8QGI0tdykU3IRgeDQUKCCrmWDTnxiFHShV4zh7GrC5xzn41p3JZmLqc95kttPO2x6cKr9ienVXWPy4Sf08K0clyXe7S1H_NnxJOZt9qf_S5sNOsW19ZgHv_V3S48a7-mfczBmSTH2YJlNDG3UGlzsYwqGTYxRHrN_Uon2uEoonrGWHrD60ZJ_hnARf_p4eXDfQrXaZPF-7vjvUewrpjRlAdQG9ApfizwMfGxIn1SK76A46vea38AzstB3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silently+transformable%3A+the+many+ways+bacteria+conceal+their+built-in+capacity+of+genetic+exchange&rft.jtitle=Current+genetics&rft.au=Attaiech%2C+Laetitia&rft.au=Charpentier%2C+Xavier&rft.date=2017-06-01&rft.issn=0172-8083&rft.volume=63&rft.issue=3+p.451-455&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1007%2Fs00294-016-0663-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-8083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-8083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-8083&client=summon |