Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange

Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally trans...

Full description

Saved in:
Bibliographic Details
Published inCurrent genetics Vol. 63; no. 3; pp. 451 - 455
Main Authors Attaiech, Laetitia, Charpentier, Xavier
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2017
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system.
AbstractList Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system.
Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system.
Author Attaiech, Laetitia
Charpentier, Xavier
Author_xml – sequence: 1
  givenname: Laetitia
  orcidid: 0000-0002-6188-1839
  surname: Attaiech
  fullname: Attaiech, Laetitia
  email: laetitia.attaiech@univ-lyon1.fr
  organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Univ Lyon
– sequence: 2
  givenname: Xavier
  orcidid: 0000-0001-9039-8021
  surname: Charpentier
  fullname: Charpentier, Xavier
  organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Univ Lyon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27826682$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01911298$$DView record in HAL
BookMark eNqFkc1u1TAUhC1URG8LD8AGWWIDi8CxnfiHXVUBRboSC2BtOY7T68pxLnZSyNvjKC1ClYCVreNvRnM8Z-gkjtEh9JzAGwIg3mYAquoKCK-Ac1bxR2hHakYrUJKdoB0QQSsJkp2is5xvAAiVSjxBp1RIyrmkO9R-8cHFKSx4SibmfkyDaYN7h6eDw4OJC_5hloxbYyeXvMF2jNaZsD77hNvZh6nyEVtzNNZPCx57fO2im7zF7qc9mHjtnqLHvQnZPbs7z9G3D--_Xl5V-88fP11e7CtbMzVVoueMOWdFKwkFwYgiTRn0fUeburOO2w5I42TXq16V9NYqQVTPpLAEmnI5R68334MJ-pj8YNKiR-P11cVerzMoloQqeUsK-2pjj2n8Prs86cFn60Iw0Y1z1hQAmpo1zf9RIpkiICjjBX35AL0Z5xTL0oVSihMCNS3UiztqbgfX_Y56X0oBxAbYNOacXK_L15rJj7F05IMmoNf69VZ_WYvrtX69BiAPlPfm_9LQTZMLW-pKf4T-q-gXHaS_Nw
CitedBy_id crossref_primary_10_3389_fitd_2021_691604
crossref_primary_10_1128_mSphere_00975_20
crossref_primary_10_3390_antibiotics12020328
crossref_primary_10_1111_mmi_14644
crossref_primary_10_3390_ijms221810169
crossref_primary_10_1128_JB_00548_20
crossref_primary_10_3389_fmicb_2019_01960
crossref_primary_10_1093_femsre_fuac050
crossref_primary_10_1016_j_micres_2021_126856
crossref_primary_10_1074_jbc_REV119_006545
crossref_primary_10_1128_mBio_02443_19
crossref_primary_10_1134_S1022795422010124
Cites_doi 10.1186/1471-2164-12-536
10.1016/j.cell.2014.01.068
10.1016/j.gene.2007.04.026
10.1128/JB.01035-08
10.1002/bies.201500101
10.1371/journal.pbio.1002394
10.1016/j.resmic.2007.09.004
10.1128/jb.172.7.4064-4071.1990
10.1128/JB.186.12.3814-3825.2004
10.1371/journal.pone.0035620
10.1126/science.1198545
10.1038/nrmicro3199
10.1111/j.1574-6976.2012.00353.x
10.3390/life4020217
10.1073/pnas.1601626113
10.1186/1471-2180-12-32
10.1111/j.1462-2920.2011.02689.x
10.1101/gr.209536.116
10.12688/f1000research.8737.1
10.1128/mBio.00005-11
10.1038/nrmicro1204
10.1186/s12864-016-2432-9
10.1006/jtbi.2000.2179
10.1111/j.1462-2920.2012.02889.x
10.1016/j.cell.2012.06.036
10.1093/nar/gkl1096
10.1073/pnas.1315278110
10.1007/s00294-015-0520-z
10.1016/j.jmb.2005.01.012
10.1371/journal.ppat.1002241
10.1038/349029a0
10.1128/JB.181.16.5004-5016.1999
10.1128/JB.181.5.1395-1402.1999
10.1128/JB.00718-15
10.1016/j.resmic.2006.07.002
10.1111/j.1574-6968.2006.00141.x
10.1016/S0966-842X(03)00064-7
10.1111/j.1751-7915.2008.00023.x
10.1371/journal.ppat.1003003
10.1007/978-1-62703-161-5_9
10.1038/ng.3114
10.1128/JB.00476-09
10.1093/nar/gkt041
10.1128/mBio.00071-11
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Current Genetics is a copyright of Springer, 2017.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Current Genetics is a copyright of Springer, 2017.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SS
7TK
7TM
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
1XC
DOI 10.1007/s00294-016-0663-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE


ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1432-0983
EndPage 455
ExternalDocumentID oai_HAL_hal_01911298v1
27826682
10_1007_s00294_016_0663_6
Genre Journal Article
Review
GrantInformation_xml – fundername: Fondation pour la Recherche Médicale
  grantid: SPF20130526652
  funderid: http://dx.doi.org/10.13039/501100002915
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z83
Z8O
Z8P
Z8Q
Z8W
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SS
7TK
7TM
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c439t-7f633eec7b812073191533effd254dce6cd015e8df9f9266cc9719f387c1059f3
IEDL.DBID U2A
ISSN 0172-8083
IngestDate Tue Jun 17 06:52:32 EDT 2025
Fri Jul 11 00:42:29 EDT 2025
Mon Jul 21 09:43:31 EDT 2025
Fri Jul 25 19:00:23 EDT 2025
Wed Feb 19 02:40:49 EST 2025
Tue Jul 01 01:44:31 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Fri Feb 21 02:36:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Competence
HGT
Silencing
Gene regulation
sRNA
Bacterial
Transformation
RNA
Gene Expression Regulation
Genetic
Homologous Recombination
Legionella pneumophila
Molecular
Small Untranslated
DNA
Evolution
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-7f633eec7b812073191533effd254dce6cd015e8df9f9266cc9719f387c1059f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-6188-1839
0000-0001-9039-8021
PMID 27826682
PQID 1899611042
PQPubID 54061
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_01911298v1
proquest_miscellaneous_2000543551
proquest_miscellaneous_1839107236
proquest_journals_1899611042
pubmed_primary_27826682
crossref_citationtrail_10_1007_s00294_016_0663_6
crossref_primary_10_1007_s00294_016_0663_6
springer_journals_10_1007_s00294_016_0663_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170600
2017-6-00
2017-Jun
20170601
2017-06
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 6
  year: 2017
  text: 20170600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Berlin
PublicationSubtitle Microorganisms and Organelles
PublicationTitle Current genetics
PublicationTitleAbbrev Curr Genet
PublicationTitleAlternate Curr Genet
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References SextonJAVogelJPRegulation of hypercompetence in Legionella pneumophilaJ Bacteriol2004186381438251:CAS:528:DC%2BD2cXkvFOrs74%3D10.1128/JB.186.12.3814-3825.200415175295419971
ArberWHorizontal gene transfer among bacteria and its role in biological evolutionLife201442172241:CAS:528:DC%2BC2cXhtlagtrrF10.3390/life4020217253701944187160
KooninEVHorizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitionsF1000Research2016275080734962295
SeitzPBlokeschMCues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental gram-negative bacteriaFEMS Microbiol Rev2013373363631:CAS:528:DC%2BC3sXntlersrw%3D10.1111/j.1574-6976.2012.00353.x22928673
WoodburyRLWangXMoranCPSigma X induces competence gene expression in Streptococcus pyogenesRes Microbiol20061578518561:CAS:528:DC%2BD28XhtVyktr7N10.1016/j.resmic.2006.07.00216963231
CroucherNJMostowyRWymantCHorizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflictPLoS Biol201614e100239410.1371/journal.pbio.1002394269345904774983
Sánchez-BusóLComasIJorquesGGonzález-CandelasFRecombination drives genome evolution in outbreak-related Legionella pneumophila isolatesNat Genet2014461205121110.1038/ng.311425282102
CroucherNJHarrisSRFraserCRapid pneumococcal evolution in response to clinical interventionsScience20113314304341:CAS:528:DC%2BC3MXpsF2lsg%3D%3D10.1126/science.1198545212734803648787
LinJZhuLLauGWDisentangling competence for genetic transformation and virulence in Streptococcus pneumoniaeCurr Genet201662971031:CAS:528:DC%2BC2MXhsFGku7rK10.1007/s00294-015-0520-z26403231
SmithJMDowsonCGSprattBGLocalized sex in bacteriaNature199134929311:CAS:528:DyaK3MXpslynug%3D%3D10.1038/349029a01985260
DavidSRusniokCMentastiMMultiple major disease-associated clones of Legionella pneumophila have emerged recently and independentlyGenome Res2016
SlagerJKjosMAttaiechLVeeningJ-WAntibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the originCell20141573954061:CAS:528:DC%2BC2cXmslalsrs%3D10.1016/j.cell.2014.01.06824725406
BuchrieserCCharpentierXInduction of competence for natural transformation in Legionella pneumophila and exploitation for mutant constructionMethods Mol Biol Clifton NJ20139541831951:CAS:528:DC%2BC3sXlvV2isrk%3D10.1007/978-1-62703-161-5_9
JohnstonCMartinBFichantGBacterial transformation: distribution, shared mechanisms and divergent controlNat Rev Microbiol2014121811961:CAS:528:DC%2BC2cXitFamtb8%3D10.1038/nrmicro319924509783
CharpentierXFaucherSPKalachikovSShumanHALoss of RNase R induces competence development in Legionella pneumophilaJ Bacteriol2008190812681361:CAS:528:DC%2BD1cXhsV2lsLjL10.1128/JB.01035-08188494322593228
MirończukAMKovácsÁTKuipersOPInduction of natural competence in Bacillus cereus ATCC14579Microb Biotechnol2008122623510.1111/j.1751-7915.2008.00023.x212618423815884
BlokeschMChitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repressionEnviron Microbiol201214189819121:CAS:528:DC%2BC38XhtFOntbjL10.1111/j.1462-2920.2011.02689.x22222000
Overballe-PetersenSHarmsKOrlandoLAABacterial natural transformation by highly fragmented and damaged DNAProc Natl Acad Sci USA201311019860198651:CAS:528:DC%2BC3sXhvFKms73F10.1073/pnas.1315278110242483613856829
Gomez-ValeroLRusniokCJarraudSExtensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomesBMC Genom2011125361:CAS:528:DC%2BC3MXhsV2lurjK10.1186/1471-2164-12-536
SinhaSCameronADSRedfieldRJSxy induces a CRP-S regulon in Escherichia coliJ Bacteriol2009191518051951:CAS:528:DC%2BD1MXhtVSis7%2FF10.1128/JB.00476-09195023952725579
Anderson MT, Seifert HS (2011) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. mBio 2:e00005-11. doi:10.1128/mBio.00005-11
KesslerASchellUSahrTThe Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuitEnviron Microbiol2013156466621:CAS:528:DC%2BC3sXhvVCitro%3D10.1111/j.1462-2920.2012.02889.x23033905
LeeMSMorrisonDAIdentification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformationJ Bacteriol1999181500450161:CAS:528:DyaK1MXltlart7c%3D1043877393990
SchmidSBevilacquaCCrutz-Le CoqA-MAlternative sigma factor σH activates competence gene expression in Lactobacillus sakeiBMC Microbiol201212321:CAS:528:DC%2BC38Xos12mtbY%3D10.1186/1471-2180-12-32224095973364868
BhattacharjeeMKFineDHFigurskiDHtfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitansGene200739953641:CAS:528:DC%2BD2sXnvFOntrg%3D10.1016/j.gene.2007.04.026175613572080652
ClaverysJ-PMartinBBacterial “competence” genes: signatures of active transformation, or only remnants?Trends Microbiol2003111611651:CAS:528:DC%2BD3sXjtFeqtbs%3D10.1016/S0966-842X(03)00064-712706993
Lo ScrudatoMBlokeschMA transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformableNucl Acids Res201341364436581:CAS:528:DC%2BC3sXlsVCnu7g%3D10.1093/nar/gkt041233821743616704
Medrano RomeroVMorikawaKListeria monocytogenes σH contributes to expression of competence genes and intracellular growthJ Bacteriol20161981207121710.1128/JB.00718-15268334124859582
AttaiechLBoughammouraABrochier-ArmanetCSilencing of natural transformation by an RNA chaperone and a multitarget small RNAProc Natl Acad Sci USA2016113881388181:CAS:528:DC%2BC28XhtFOku7bL10.1073/pnas.1601626113274329734978251
LiuYOrsiRHBoorKJAn advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenesBMC Genom20161711510.1186/s12864-016-2432-9
BlokeschMCompetence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. choleraeBioEssays News Rev Mol Cell Dev Biol2015371163116810.1002/bies.201500101
MandinPRepoilaFVergassolaMIdentification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targetsNucl Acids Res2007359629741:CAS:528:DC%2BD2sXhvFWmur8%3D10.1093/nar/gkl1096172592221807966
ZhuLLauGWInhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptidePLoS Pathog20117e10022411:CAS:528:DC%2BC3MXht1altLfJ10.1371/journal.ppat.1002241219092803164649
JohnsborgOEldholmVHåvarsteinLSNatural genetic transformation: prevalence, mechanisms and functionRes Microbiol20071587677781:CAS:528:DC%2BD2sXhsVCksL%2FK10.1016/j.resmic.2007.09.00417997281
RabinovichLSigalNBorovokIProphage excision activates Listeria competence genes that promote phagosomal escape and virulenceCell20121507928021:CAS:528:DC%2BC38Xht1aktLvO10.1016/j.cell.2012.06.03622901809
RedfieldRJCameronADSQianQA novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzaeJ Mol Biol20053477357471:CAS:528:DC%2BD2MXitlCgurw%3D10.1016/j.jmb.2005.01.01215769466
SinhaSRedfieldRJNatural DNA uptake by Escherichia coliPLoS One20127e356201:CAS:528:DC%2BC38XmsF2rs74%3D10.1371/journal.pone.0035620225328643330819
StoneBJKwaikYANatural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV piliJ Bacteriol1999181139514021:CAS:528:DyaK1MXhslWrtrw%3D1004936893526
WydauSDervynRAnbaJConservation of key elements of natural competence in Lactococcus lactis sspFEMS Microbiol Lett200625732421:CAS:528:DC%2BD28XjslyksL0%3D10.1111/j.1574-6968.2006.00141.x16553829
GogartenJPTownsendJPHorizontal gene transfer, genome innovation and evolutionNat Rev Microbiol200536796871:CAS:528:DC%2BD2MXps1Kjtbo%3D10.1038/nrmicro120416138096
MohanSDubnauDTranscriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilisJ Bacteriol1990172406440711:CAS:528:DyaK3cXkslajtLo%3D10.1128/jb.172.7.4064-4071.19901694528213393
MorikawaKTakemuraAJInoseYExpression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureusPLoS Pathog20128e10030031:CAS:528:DC%2BC38XhslWjsbvO10.1371/journal.ppat.1003003231333873486894
MacfadyenLPRegulation of competence development in Haemophilus influenzaeJ Theor Biol20002073493591:CAS:528:DC%2BD3cXotVyntbg%3D10.1006/jtbi.2000.217911082305
Stevens KE, Chang D, Zwack EE, Sebert ME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. mBio doi:10.1128/mBio.00071-11
S Schmid (663_CR33) 2012; 12
JA Sexton (663_CR35) 2004; 186
NJ Croucher (663_CR11) 2016; 14
L Rabinovich (663_CR30) 2012; 150
C Johnston (663_CR16) 2014; 12
A Kessler (663_CR17) 2013; 15
663_CR40
JM Smith (663_CR39) 1991; 349
M Lo Scrudato (663_CR22) 2013; 41
O Johnsborg (663_CR15) 2007; 158
L Sánchez-Busó (663_CR32) 2014; 46
X Charpentier (663_CR8) 2008; 190
LP Macfadyen (663_CR23) 2000; 207
V Medrano Romero (663_CR25) 2016; 198
S David (663_CR12) 2016
Y Liu (663_CR21) 2016; 17
P Seitz (663_CR34) 2013; 37
MK Bhattacharjee (663_CR4) 2007; 399
L Attaiech (663_CR3) 2016; 113
K Morikawa (663_CR28) 2012; 8
C Buchrieser (663_CR7) 2013; 954
NJ Croucher (663_CR10) 2011; 331
663_CR1
EV Koonin (663_CR18) 2016
S Mohan (663_CR27) 1990; 172
S Sinha (663_CR36) 2012; 7
J Slager (663_CR38) 2014; 157
JP Gogarten (663_CR13) 2005; 3
RJ Redfield (663_CR31) 2005; 347
J Lin (663_CR20) 2016; 62
AM Mirończuk (663_CR26) 2008; 1
S Overballe-Petersen (663_CR29) 2013; 110
W Arber (663_CR2) 2014; 4
M Blokesch (663_CR5) 2012; 14
MS Lee (663_CR19) 1999; 181
L Zhu (663_CR44) 2011; 7
BJ Stone (663_CR41) 1999; 181
M Blokesch (663_CR6) 2015; 37
L Gomez-Valero (663_CR14) 2011; 12
S Wydau (663_CR43) 2006; 257
J-P Claverys (663_CR9) 2003; 11
S Sinha (663_CR37) 2009; 191
P Mandin (663_CR24) 2007; 35
RL Woodbury (663_CR42) 2006; 157
21909280 - PLoS Pathog. 2011 Sep;7(9):e1002241
16138096 - Nat Rev Microbiol. 2005 Sep;3(9):679-87
27432973 - Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8813-8
24725406 - Cell. 2014 Apr 10;157(2):395-406
24509783 - Nat Rev Microbiol. 2014 Mar;12(3):181-96
27508073 - F1000Res. 2016 Jul 25;5:null
11082305 - J Theor Biol. 2000 Dec 7;207(3):349-59
21273480 - Science. 2011 Jan 28;331(6016):430-4
21933920 - MBio. 2011 Sep 20;2(5):null
26833412 - J Bacteriol. 2016 Mar 31;198(8):1207-17
24248361 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19860-5
17561357 - Gene. 2007 Sep 1;399(1):53-64
22044686 - BMC Genomics. 2011 Nov 01;12:536
15175295 - J Bacteriol. 2004 Jun;186(12):3814-25
26445388 - Bioessays. 2015 Nov;37(11):1163-8
22928673 - FEMS Microbiol Rev. 2013 May;37(3):336-63
23133387 - PLoS Pathog. 2012;8(11):e1003003
26403231 - Curr Genet. 2016 Feb;62(1):97-103
22409597 - BMC Microbiol. 2012 Mar 12;12:32
16963231 - Res Microbiol. 2006 Nov;157(9):851-6
22901809 - Cell. 2012 Aug 17;150(4):792-802
22222000 - Environ Microbiol. 2012 Aug;14(8):1898-912
25370194 - Life (Basel). 2014 May 16;4(2):217-24
10438773 - J Bacteriol. 1999 Aug;181(16):5004-16
19502395 - J Bacteriol. 2009 Aug;191(16):5180-95
22532864 - PLoS One. 2012;7(4):e35620
12706993 - Trends Microbiol. 2003 Apr;11(4):161-5
17997281 - Res Microbiol. 2007 Dec;158(10):767-78
21261842 - Microb Biotechnol. 2008 May;1(3):226-35
23150395 - Methods Mol Biol. 2013;954:183-95
1694528 - J Bacteriol. 1990 Jul;172(7):4064-71
18849432 - J Bacteriol. 2008 Dec;190(24):8126-36
15769466 - J Mol Biol. 2005 Apr 8;347(4):735-47
16553829 - FEMS Microbiol Lett. 2006 Apr;257(1):32-42
10049368 - J Bacteriol. 1999 Mar;181(5):1395-402
21325040 - MBio. 2011 Feb 15;2(1):e00005-11
23033905 - Environ Microbiol. 2013 Feb;15(2):646-62
1985260 - Nature. 1991 Jan 3;349(6304):29-31
27662900 - Genome Res. 2016 Nov;26(11):1555-1564
25282102 - Nat Genet. 2014 Nov;46(11):1205-11
26934590 - PLoS Biol. 2016 Mar 02;14(3):e1002394
17259222 - Nucleic Acids Res. 2007;35(3):962-74
26880300 - BMC Genomics. 2016 Feb 16;17 :115
23382174 - Nucleic Acids Res. 2013 Apr 1;41(6):3644-58
References_xml – reference: KooninEVHorizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitionsF1000Research2016275080734962295
– reference: MorikawaKTakemuraAJInoseYExpression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureusPLoS Pathog20128e10030031:CAS:528:DC%2BC38XhslWjsbvO10.1371/journal.ppat.1003003231333873486894
– reference: SmithJMDowsonCGSprattBGLocalized sex in bacteriaNature199134929311:CAS:528:DyaK3MXpslynug%3D%3D10.1038/349029a01985260
– reference: SextonJAVogelJPRegulation of hypercompetence in Legionella pneumophilaJ Bacteriol2004186381438251:CAS:528:DC%2BD2cXkvFOrs74%3D10.1128/JB.186.12.3814-3825.200415175295419971
– reference: Medrano RomeroVMorikawaKListeria monocytogenes σH contributes to expression of competence genes and intracellular growthJ Bacteriol20161981207121710.1128/JB.00718-15268334124859582
– reference: MandinPRepoilaFVergassolaMIdentification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targetsNucl Acids Res2007359629741:CAS:528:DC%2BD2sXhvFWmur8%3D10.1093/nar/gkl1096172592221807966
– reference: ClaverysJ-PMartinBBacterial “competence” genes: signatures of active transformation, or only remnants?Trends Microbiol2003111611651:CAS:528:DC%2BD3sXjtFeqtbs%3D10.1016/S0966-842X(03)00064-712706993
– reference: RabinovichLSigalNBorovokIProphage excision activates Listeria competence genes that promote phagosomal escape and virulenceCell20121507928021:CAS:528:DC%2BC38Xht1aktLvO10.1016/j.cell.2012.06.03622901809
– reference: ArberWHorizontal gene transfer among bacteria and its role in biological evolutionLife201442172241:CAS:528:DC%2BC2cXhtlagtrrF10.3390/life4020217253701944187160
– reference: Gomez-ValeroLRusniokCJarraudSExtensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomesBMC Genom2011125361:CAS:528:DC%2BC3MXhsV2lurjK10.1186/1471-2164-12-536
– reference: GogartenJPTownsendJPHorizontal gene transfer, genome innovation and evolutionNat Rev Microbiol200536796871:CAS:528:DC%2BD2MXps1Kjtbo%3D10.1038/nrmicro120416138096
– reference: JohnstonCMartinBFichantGBacterial transformation: distribution, shared mechanisms and divergent controlNat Rev Microbiol2014121811961:CAS:528:DC%2BC2cXitFamtb8%3D10.1038/nrmicro319924509783
– reference: RedfieldRJCameronADSQianQA novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzaeJ Mol Biol20053477357471:CAS:528:DC%2BD2MXitlCgurw%3D10.1016/j.jmb.2005.01.01215769466
– reference: WydauSDervynRAnbaJConservation of key elements of natural competence in Lactococcus lactis sspFEMS Microbiol Lett200625732421:CAS:528:DC%2BD28XjslyksL0%3D10.1111/j.1574-6968.2006.00141.x16553829
– reference: BuchrieserCCharpentierXInduction of competence for natural transformation in Legionella pneumophila and exploitation for mutant constructionMethods Mol Biol Clifton NJ20139541831951:CAS:528:DC%2BC3sXlvV2isrk%3D10.1007/978-1-62703-161-5_9
– reference: Anderson MT, Seifert HS (2011) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. mBio 2:e00005-11. doi:10.1128/mBio.00005-11
– reference: LeeMSMorrisonDAIdentification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformationJ Bacteriol1999181500450161:CAS:528:DyaK1MXltlart7c%3D1043877393990
– reference: SlagerJKjosMAttaiechLVeeningJ-WAntibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the originCell20141573954061:CAS:528:DC%2BC2cXmslalsrs%3D10.1016/j.cell.2014.01.06824725406
– reference: SinhaSCameronADSRedfieldRJSxy induces a CRP-S regulon in Escherichia coliJ Bacteriol2009191518051951:CAS:528:DC%2BD1MXhtVSis7%2FF10.1128/JB.00476-09195023952725579
– reference: LiuYOrsiRHBoorKJAn advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenesBMC Genom20161711510.1186/s12864-016-2432-9
– reference: BlokeschMCompetence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: intestinal interbacterial killing by competence-induced V. choleraeBioEssays News Rev Mol Cell Dev Biol2015371163116810.1002/bies.201500101
– reference: AttaiechLBoughammouraABrochier-ArmanetCSilencing of natural transformation by an RNA chaperone and a multitarget small RNAProc Natl Acad Sci USA2016113881388181:CAS:528:DC%2BC28XhtFOku7bL10.1073/pnas.1601626113274329734978251
– reference: BhattacharjeeMKFineDHFigurskiDHtfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitansGene200739953641:CAS:528:DC%2BD2sXnvFOntrg%3D10.1016/j.gene.2007.04.026175613572080652
– reference: SinhaSRedfieldRJNatural DNA uptake by Escherichia coliPLoS One20127e356201:CAS:528:DC%2BC38XmsF2rs74%3D10.1371/journal.pone.0035620225328643330819
– reference: ZhuLLauGWInhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptidePLoS Pathog20117e10022411:CAS:528:DC%2BC3MXht1altLfJ10.1371/journal.ppat.1002241219092803164649
– reference: StoneBJKwaikYANatural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV piliJ Bacteriol1999181139514021:CAS:528:DyaK1MXhslWrtrw%3D1004936893526
– reference: Overballe-PetersenSHarmsKOrlandoLAABacterial natural transformation by highly fragmented and damaged DNAProc Natl Acad Sci USA201311019860198651:CAS:528:DC%2BC3sXhvFKms73F10.1073/pnas.1315278110242483613856829
– reference: MirończukAMKovácsÁTKuipersOPInduction of natural competence in Bacillus cereus ATCC14579Microb Biotechnol2008122623510.1111/j.1751-7915.2008.00023.x212618423815884
– reference: MohanSDubnauDTranscriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilisJ Bacteriol1990172406440711:CAS:528:DyaK3cXkslajtLo%3D10.1128/jb.172.7.4064-4071.19901694528213393
– reference: CroucherNJMostowyRWymantCHorizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflictPLoS Biol201614e100239410.1371/journal.pbio.1002394269345904774983
– reference: JohnsborgOEldholmVHåvarsteinLSNatural genetic transformation: prevalence, mechanisms and functionRes Microbiol20071587677781:CAS:528:DC%2BD2sXhsVCksL%2FK10.1016/j.resmic.2007.09.00417997281
– reference: Sánchez-BusóLComasIJorquesGGonzález-CandelasFRecombination drives genome evolution in outbreak-related Legionella pneumophila isolatesNat Genet2014461205121110.1038/ng.311425282102
– reference: SeitzPBlokeschMCues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental gram-negative bacteriaFEMS Microbiol Rev2013373363631:CAS:528:DC%2BC3sXntlersrw%3D10.1111/j.1574-6976.2012.00353.x22928673
– reference: BlokeschMChitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repressionEnviron Microbiol201214189819121:CAS:528:DC%2BC38XhtFOntbjL10.1111/j.1462-2920.2011.02689.x22222000
– reference: CharpentierXFaucherSPKalachikovSShumanHALoss of RNase R induces competence development in Legionella pneumophilaJ Bacteriol2008190812681361:CAS:528:DC%2BD1cXhsV2lsLjL10.1128/JB.01035-08188494322593228
– reference: Stevens KE, Chang D, Zwack EE, Sebert ME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. mBio doi:10.1128/mBio.00071-11
– reference: KesslerASchellUSahrTThe Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuitEnviron Microbiol2013156466621:CAS:528:DC%2BC3sXhvVCitro%3D10.1111/j.1462-2920.2012.02889.x23033905
– reference: MacfadyenLPRegulation of competence development in Haemophilus influenzaeJ Theor Biol20002073493591:CAS:528:DC%2BD3cXotVyntbg%3D10.1006/jtbi.2000.217911082305
– reference: Lo ScrudatoMBlokeschMA transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformableNucl Acids Res201341364436581:CAS:528:DC%2BC3sXlsVCnu7g%3D10.1093/nar/gkt041233821743616704
– reference: SchmidSBevilacquaCCrutz-Le CoqA-MAlternative sigma factor σH activates competence gene expression in Lactobacillus sakeiBMC Microbiol201212321:CAS:528:DC%2BC38Xos12mtbY%3D10.1186/1471-2180-12-32224095973364868
– reference: WoodburyRLWangXMoranCPSigma X induces competence gene expression in Streptococcus pyogenesRes Microbiol20061578518561:CAS:528:DC%2BD28XhtVyktr7N10.1016/j.resmic.2006.07.00216963231
– reference: LinJZhuLLauGWDisentangling competence for genetic transformation and virulence in Streptococcus pneumoniaeCurr Genet201662971031:CAS:528:DC%2BC2MXhsFGku7rK10.1007/s00294-015-0520-z26403231
– reference: CroucherNJHarrisSRFraserCRapid pneumococcal evolution in response to clinical interventionsScience20113314304341:CAS:528:DC%2BC3MXpsF2lsg%3D%3D10.1126/science.1198545212734803648787
– reference: DavidSRusniokCMentastiMMultiple major disease-associated clones of Legionella pneumophila have emerged recently and independentlyGenome Res2016
– volume: 12
  start-page: 536
  year: 2011
  ident: 663_CR14
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-12-536
– volume: 157
  start-page: 395
  year: 2014
  ident: 663_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.068
– volume: 399
  start-page: 53
  year: 2007
  ident: 663_CR4
  publication-title: Gene
  doi: 10.1016/j.gene.2007.04.026
– volume: 190
  start-page: 8126
  year: 2008
  ident: 663_CR8
  publication-title: J Bacteriol
  doi: 10.1128/JB.01035-08
– volume: 37
  start-page: 1163
  year: 2015
  ident: 663_CR6
  publication-title: BioEssays News Rev Mol Cell Dev Biol
  doi: 10.1002/bies.201500101
– volume: 14
  start-page: e1002394
  year: 2016
  ident: 663_CR11
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002394
– volume: 158
  start-page: 767
  year: 2007
  ident: 663_CR15
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2007.09.004
– volume: 172
  start-page: 4064
  year: 1990
  ident: 663_CR27
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.7.4064-4071.1990
– volume: 186
  start-page: 3814
  year: 2004
  ident: 663_CR35
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.12.3814-3825.2004
– volume: 7
  start-page: e35620
  year: 2012
  ident: 663_CR36
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035620
– volume: 331
  start-page: 430
  year: 2011
  ident: 663_CR10
  publication-title: Science
  doi: 10.1126/science.1198545
– volume: 12
  start-page: 181
  year: 2014
  ident: 663_CR16
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3199
– volume: 37
  start-page: 336
  year: 2013
  ident: 663_CR34
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2012.00353.x
– volume: 4
  start-page: 217
  year: 2014
  ident: 663_CR2
  publication-title: Life
  doi: 10.3390/life4020217
– volume: 113
  start-page: 8813
  year: 2016
  ident: 663_CR3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1601626113
– volume: 12
  start-page: 32
  year: 2012
  ident: 663_CR33
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-12-32
– volume: 14
  start-page: 1898
  year: 2012
  ident: 663_CR5
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2011.02689.x
– year: 2016
  ident: 663_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.209536.116
– year: 2016
  ident: 663_CR18
  publication-title: F1000Research
  doi: 10.12688/f1000research.8737.1
– ident: 663_CR1
  doi: 10.1128/mBio.00005-11
– volume: 3
  start-page: 679
  year: 2005
  ident: 663_CR13
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1204
– volume: 17
  start-page: 115
  year: 2016
  ident: 663_CR21
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2432-9
– volume: 207
  start-page: 349
  year: 2000
  ident: 663_CR23
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2000.2179
– volume: 15
  start-page: 646
  year: 2013
  ident: 663_CR17
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2012.02889.x
– volume: 150
  start-page: 792
  year: 2012
  ident: 663_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.036
– volume: 35
  start-page: 962
  year: 2007
  ident: 663_CR24
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkl1096
– volume: 110
  start-page: 19860
  year: 2013
  ident: 663_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1315278110
– volume: 62
  start-page: 97
  year: 2016
  ident: 663_CR20
  publication-title: Curr Genet
  doi: 10.1007/s00294-015-0520-z
– volume: 347
  start-page: 735
  year: 2005
  ident: 663_CR31
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.01.012
– volume: 7
  start-page: e1002241
  year: 2011
  ident: 663_CR44
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002241
– volume: 349
  start-page: 29
  year: 1991
  ident: 663_CR39
  publication-title: Nature
  doi: 10.1038/349029a0
– volume: 181
  start-page: 5004
  year: 1999
  ident: 663_CR19
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.16.5004-5016.1999
– volume: 181
  start-page: 1395
  year: 1999
  ident: 663_CR41
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.5.1395-1402.1999
– volume: 198
  start-page: 1207
  year: 2016
  ident: 663_CR25
  publication-title: J Bacteriol
  doi: 10.1128/JB.00718-15
– volume: 157
  start-page: 851
  year: 2006
  ident: 663_CR42
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2006.07.002
– volume: 257
  start-page: 32
  year: 2006
  ident: 663_CR43
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2006.00141.x
– volume: 11
  start-page: 161
  year: 2003
  ident: 663_CR9
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(03)00064-7
– volume: 1
  start-page: 226
  year: 2008
  ident: 663_CR26
  publication-title: Microb Biotechnol
  doi: 10.1111/j.1751-7915.2008.00023.x
– volume: 8
  start-page: e1003003
  year: 2012
  ident: 663_CR28
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003003
– volume: 954
  start-page: 183
  year: 2013
  ident: 663_CR7
  publication-title: Methods Mol Biol Clifton NJ
  doi: 10.1007/978-1-62703-161-5_9
– volume: 46
  start-page: 1205
  year: 2014
  ident: 663_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng.3114
– volume: 191
  start-page: 5180
  year: 2009
  ident: 663_CR37
  publication-title: J Bacteriol
  doi: 10.1128/JB.00476-09
– volume: 41
  start-page: 3644
  year: 2013
  ident: 663_CR22
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkt041
– ident: 663_CR40
  doi: 10.1128/mBio.00071-11
– reference: 27432973 - Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8813-8
– reference: 21933920 - MBio. 2011 Sep 20;2(5):null
– reference: 26880300 - BMC Genomics. 2016 Feb 16;17 :115
– reference: 15175295 - J Bacteriol. 2004 Jun;186(12):3814-25
– reference: 17259222 - Nucleic Acids Res. 2007;35(3):962-74
– reference: 25282102 - Nat Genet. 2014 Nov;46(11):1205-11
– reference: 17561357 - Gene. 2007 Sep 1;399(1):53-64
– reference: 27662900 - Genome Res. 2016 Nov;26(11):1555-1564
– reference: 23033905 - Environ Microbiol. 2013 Feb;15(2):646-62
– reference: 25370194 - Life (Basel). 2014 May 16;4(2):217-24
– reference: 26833412 - J Bacteriol. 2016 Mar 31;198(8):1207-17
– reference: 11082305 - J Theor Biol. 2000 Dec 7;207(3):349-59
– reference: 26403231 - Curr Genet. 2016 Feb;62(1):97-103
– reference: 24509783 - Nat Rev Microbiol. 2014 Mar;12(3):181-96
– reference: 16138096 - Nat Rev Microbiol. 2005 Sep;3(9):679-87
– reference: 17997281 - Res Microbiol. 2007 Dec;158(10):767-78
– reference: 16553829 - FEMS Microbiol Lett. 2006 Apr;257(1):32-42
– reference: 22044686 - BMC Genomics. 2011 Nov 01;12:536
– reference: 23382174 - Nucleic Acids Res. 2013 Apr 1;41(6):3644-58
– reference: 21273480 - Science. 2011 Jan 28;331(6016):430-4
– reference: 21909280 - PLoS Pathog. 2011 Sep;7(9):e1002241
– reference: 22409597 - BMC Microbiol. 2012 Mar 12;12:32
– reference: 21261842 - Microb Biotechnol. 2008 May;1(3):226-35
– reference: 26934590 - PLoS Biol. 2016 Mar 02;14(3):e1002394
– reference: 22222000 - Environ Microbiol. 2012 Aug;14(8):1898-912
– reference: 24725406 - Cell. 2014 Apr 10;157(2):395-406
– reference: 15769466 - J Mol Biol. 2005 Apr 8;347(4):735-47
– reference: 22532864 - PLoS One. 2012;7(4):e35620
– reference: 22901809 - Cell. 2012 Aug 17;150(4):792-802
– reference: 26445388 - Bioessays. 2015 Nov;37(11):1163-8
– reference: 24248361 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19860-5
– reference: 10049368 - J Bacteriol. 1999 Mar;181(5):1395-402
– reference: 19502395 - J Bacteriol. 2009 Aug;191(16):5180-95
– reference: 12706993 - Trends Microbiol. 2003 Apr;11(4):161-5
– reference: 1985260 - Nature. 1991 Jan 3;349(6304):29-31
– reference: 23133387 - PLoS Pathog. 2012;8(11):e1003003
– reference: 23150395 - Methods Mol Biol. 2013;954:183-95
– reference: 21325040 - MBio. 2011 Feb 15;2(1):e00005-11
– reference: 18849432 - J Bacteriol. 2008 Dec;190(24):8126-36
– reference: 10438773 - J Bacteriol. 1999 Aug;181(16):5004-16
– reference: 1694528 - J Bacteriol. 1990 Jul;172(7):4064-71
– reference: 16963231 - Res Microbiol. 2006 Nov;157(9):851-6
– reference: 22928673 - FEMS Microbiol Rev. 2013 May;37(3):336-63
– reference: 27508073 - F1000Res. 2016 Jul 25;5:null
SSID ssj0012897
Score 2.2286077
SecondaryResourceType review_article
Snippet Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original...
SourceID hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms Bacteria
Bacteriology
Biochemistry
Biological evolution
Biomedical and Life Sciences
Cell Biology
Chromosomes
Deoxyribonucleic acid
DNA
DNA, Bacterial - genetics
Evolution, Molecular
Exchanging
Gene expression
Gene Expression Regulation, Bacterial
genetic transformation
genome
homologous recombination
Homologous Recombination - genetics
Homology
Immunology
Legionella pneumophila
Legionella pneumophila - genetics
Legionnaires' disease bacterium
Life Sciences
Microbial Genetics and Genomics
Microbiology
Microbiology and Parasitology
non-coding RNA
phylogeny
Plant Sciences
Proteomics
Regulatory mechanisms (biology)
Review
RNA, Small Untranslated - genetics
Transformation, Bacterial - genetics
Transformation, Genetic
Transformations
Virology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELZGp0l7mWBso6MgD-1pk0UTp47NC6oQqJq2vWxIfYsS5ywqlaTQdKP_PXfODzZV9LW9No595_vO5_uOsc_aopcZOi1AGSMiabXIRjEIBeCsi6RWjg70f_xUk-vo23Q0bQ7cls21ynZP9Bt1Xlo6Iz8NMDBQ6Kui8HxxJ6hrFGVXmxYaO-wlUZeRVsfTLuDCrdfU5dIxWj1ijTarOfQkoiGR4gaKavClUP_5pZ0buhW5CTk30qXeC13tsjcNfOTjer332Aso3rJXdUPJ9T7Lfs3Ii8zXvOoAaTaHM44wj9-i3fO_6XrJs5qiOeWWihbx_3y6gGer2bwSs4Jb9KAW4TkvHUcFozpHDg91jfA7dn11-ftiIpouCsIi2KhE7JSUADbO0JejQWOAhhAPnMsxNswtKJsjJACdO-MMumtrTRwYJ3VsCXs5-Z71irKAA8Z9tGONTnGXjEajFAVDIDYZDKMBTNpnw3YOE9tQjFOni3nSkSP7aU_oWhlNe6L67Ev3k0XNr7FN-AQXppMjZuzJ-HtCnyFSJeSo_wR9NmjXLWnscZk8aU-ffeq-Rkui9EhaQLkiGYnYKQ6lel4m9BgXMRo-5kOtE91wQgRbSml8wtdWSf4ZwHPv9HH7cA_Z65CAhD_3GbBedb-CI4RBVXbsdf0Rmbf_rA
  priority: 102
  providerName: ProQuest
Title Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange
URI https://link.springer.com/article/10.1007/s00294-016-0663-6
https://www.ncbi.nlm.nih.gov/pubmed/27826682
https://www.proquest.com/docview/1899611042
https://www.proquest.com/docview/1839107236
https://www.proquest.com/docview/2000543551
https://hal.science/hal-01911298
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db9MwEMBPdBMSLwgYsI5RmYknkKU1TmyHt3ZqV_FRIaBSeYoS96xV6lK0pkD_-93lS6BtSDxFaq9Javtyv8t9GOC1dWRlTr2VqONYhspZmUUGpUb0zofKas8v9D9N9WQWvp9H87qOe9NkuzchyfJJ3Ra7cQCJMyY0V80rqTuwH5Hrznlcs2DQhg7Ig6hqpA2pOgFGE8q87RR_GaPOBadC3uTMGzHS0vSMH8HDmhnFoJrkx3AP8ydwv9pFcncA2dclm47VThQthWYrfCeI7cQlKbv4le42Iqv6MqfCcaUina-MEYhsu1wVcpkLR2bTEZOLtRe0qri4UeDvqjD4KczGo29nE1lvnSAdEUYhjddKITqTkQEnLSavjLgOvV-QQ7hwqN2COADtwsc-JhvtXGz6sVfWOAYur57BXr7O8RBE6eK42Kb0aAyjKCXBALmFDPnOiHHahdNmDBNX9xXn7S1WSdsRuRz2hHPJeNgT3YU37U9-VE01_iV8QhPTynE77MngY8KfEZ4yLtqf_S4cN_OW1Eq4SfrkS2rCmzDowqv2a1IfjomkOa63LKMImEyg9N0yQQm2BGZ0mefVmmhvJyDC0trSFd42i-SPG7jrPx39l_QLeBAwTJTvfo5hr7ja4ktCoSLrQcfMTQ_2B-PhcMrH8-8fRnQcjqafv_RKxbgGZ1UBzw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQ4i9TPym2wCD4AVk0dqp4yAhNAFTx7q9sEl9yxLnLCp16aDpRv8p_kbunCaApu1tr-01ce3zfd_5fHcAr6wjlOl6K9EkiYy0szLvxygNonc-0tZ4PtA_ODSD4-jrqD9agd9NLgxfq2xsYjDUxdTxGfm7HjkGhrAqUh_PfkjuGsXR1aaFRq0W-7i4IJdt9mHvM63va6V2vxx9GshlVwHpCHwrGXujNaKLc8I2UnByWIjyoPcF-UqFQ-MKgki0hU98QvDlXBL3Eq9t7JiLeE3PXYVbBLxddvbiUevgkalP6vTsmKwMcZsmitoNRUsVF-HtGc7519L8h4Or3_kW5mWKeyk8G1Bv9y5sLOmq2Kn16x6sYHkfbtcNLBcPIP82ZtSaLETVEuB8gu8F0UpxSnZGXGSLmcjrktCZcJwkSc8L4QmRz8eTSo5L4QixHbkDYuoFKTTnVQr8VeckP4TjG5nfR7BWTkt8AiJ4Vy6xGVnlqN_PSFAhV68htx0xyTrQbeYwdcuS5txZY5K2xZjDtKd8jY2nPTUdeNP-5Kyu53Gd8EtamFaOK3EPdoYpf0bMmJmqPe91YLtZt3S5_2fpX23twIv2a9q5HI7JSpzOWUYTV4uVNlfLqMCpiRPSax7XOtEORxG5M8bSG942SvLPAK76T5vXD_c53BkcHQzT4d7h_hasKyYx4cxpG9aqn3N8ShSsyp8FvRdwctMb7Q9GrTxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnUB7QXxTGGAQvICstXbqOEgIDbaqY6OagEl7yxLnrFUq6aApo_8afx13-QI0bW97ba-Ja5_v9zuf7w7ghXWEMj1vJZookoF2VqaDEKVB9M4H2hrPB_qfxmZ0GHw8GhytwO8mF4avVTY2sTTU2czxGflmnxwDQ1gVqE1fX4s42B6-O_0uuYMUR1qbdhqViuzh8ozct_nb3W1a65dKDXe-fhjJusOAdATEhQy90RrRhSnhHCk7OS9Ef9D7jPymzKFxGcEl2sxHPiIocy4K-5HXNnTMS7ym567CWsheUQfW3u-MDz63MQxyZapk7ZBsDjGdJqbaK0uYKi7J2zdcAUBL8x8qrp7wnczzhPdcsLbEwOFNuFGTV7FVadstWMH8Nlyr2lku70D6ZcIYNl2KoqXD6RTfCCKZ4htZHXGWLOcirQpEJ8JxyiQ9rwxWiHQxmRZykgtH-O3IORAzL0i9OctS4K8qQ_kuHF7JDN-DTj7L8QGI0tdykU3IRgeDQUKCCrmWDTnxiFHShV4zh7GrC5xzn41p3JZmLqc95kttPO2x6cKr9ienVXWPy4Sf08K0clyXe7S1H_NnxJOZt9qf_S5sNOsW19ZgHv_V3S48a7-mfczBmSTH2YJlNDG3UGlzsYwqGTYxRHrN_Uon2uEoonrGWHrD60ZJ_hnARf_p4eXDfQrXaZPF-7vjvUewrpjRlAdQG9ApfizwMfGxIn1SK76A46vea38AzstB3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silently+transformable%3A+the+many+ways+bacteria+conceal+their+built-in+capacity+of+genetic+exchange&rft.jtitle=Current+genetics&rft.au=Attaiech%2C+Laetitia&rft.au=Charpentier%2C+Xavier&rft.date=2017-06-01&rft.issn=0172-8083&rft.volume=63&rft.issue=3+p.451-455&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1007%2Fs00294-016-0663-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-8083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-8083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-8083&client=summon