Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent eve...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 45; no. 7; pp. 1260 - 1276
Main Authors Lin, Li-An, Luo, Sheng, Davis, Barry R.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Ltd 01.01.2018
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
DOI10.1080/02664763.2017.1367368

Cover

Loading…
Abstract In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).
AbstractList In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).
In the course of hypertension, cardiovascular disease events (e.g. stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times comes from two sources: subject-specific heterogeneity (e.g. varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e. event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).
In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).
Author Davis, Barry R.
Lin, Li-An
Luo, Sheng
AuthorAffiliation Department of Biostatistics, The University of Texas School of Public Health, Houston, TX, USA
AuthorAffiliation_xml – name: Department of Biostatistics, The University of Texas School of Public Health, Houston, TX, USA
Author_xml – sequence: 1
  givenname: Li-An
  orcidid: 0000-0003-2731-1346
  surname: Lin
  fullname: Lin, Li-An
  organization: Department of Biostatistics, The University of Texas School of Public Health, Houston, TX, USA
– sequence: 2
  givenname: Sheng
  orcidid: 0000-0003-4214-5809
  surname: Luo
  fullname: Luo, Sheng
  organization: Department of Biostatistics, The University of Texas School of Public Health, Houston, TX, USA
– sequence: 3
  givenname: Barry R.
  surname: Davis
  fullname: Davis, Barry R.
  organization: Department of Biostatistics, The University of Texas School of Public Health, Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29755162$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaBy3P6FloZde1tXHarVLoZCGfkEgl-QsxtqRrbCWUknrkn9fLbZLm0Mv-ph5ZvRq3kty5oNHQt4wumK0ox8ob9tGtWLFKVMrJlol2u4FWZQTrakU_IwsZqaeoQtymdIDpbRjUrwkF7xXUrKWL8j2MzxhcuCriJuIKbngq10YcKxsiCVophjR5wr38zpAhuqXy9vDvd5DfHJ-U5lQTg4yVmgtmpwq8MOx5hB5Rc4tjAlfH_cluf_65e76e31z--3H9dVNbRrR51qZBhQq6EVnpLUNrBvLQK5thyi61vZDDwWwzAplxZrh0NsyhzktG96hWJJPh76P03qHgykKIoz6Mbpd0aoDOP1vxrut3oS9ln0jWa9Kg_fHBjH8nDBlvXPJ4DiCxzAlzanoFGWyzHhJ3j1DH8IUffleoThnZeC8LdTbvxX9kXIyoQAfD4CJIaWIVhuXIRcnikA3akb1bLk-Wa5ny_XR8lItn1WfHvh_3W_7nrEk
CitedBy_id crossref_primary_10_1515_ijb_2018_0088
crossref_primary_10_1007_s12561_024_09429_6
crossref_primary_10_1002_sim_9528
crossref_primary_10_1007_s00180_024_01464_7
crossref_primary_10_1016_j_ress_2020_107054
Cites_doi 10.1161/CIR.0b013e31820a55f5
10.1080/01621459.1989.10478873
10.1198/1061860043010
10.1007/978-94-015-7983-4_14
10.1080/01621459.1979.10481632
10.1111/j.1541-0420.2006.00719.x
10.1002/sim.4780100806
10.1001/archinte.1991.00400060077013
10.1093/biomet/62.2.269
10.1016/0895-7061(96)00037-4
10.1111/j.0006-341X.2002.00510.x
10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5
10.1001/jama.288.23.2998
10.1080/01621459.1992.10476248
10.1111/1467-9868.00353
10.1214/aos/1176345976
10.1093/biomet/asm087
10.1111/1467-9876.00229
10.1007/978-1-4612-1304-8
10.1214/ss/1038425655
10.1017/CBO9780511755453
10.1007/s10985-010-9180-y
10.1093/biomet/68.2.373
10.1214/06-BA122
10.1161/01.STR.13.3.290
10.1201/b16018
10.1002/sim.2434
10.2307/2533493
10.1016/j.csda.2006.05.021
10.1007/BF00985760
10.1007/978-1-4757-3294-8
10.1038/nrcardio.2014.26
10.1214/11-STS361
10.1016/0370-2693(87)91197-X
10.1002/sim.2394
10.1161/01.CIR.0000019552.77778.04
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02664763.2017.1367368
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1276
ExternalDocumentID PMC5945197
29755162
10_1080_02664763_2017_1367368
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HHSN268201100036C
– fundername: NHLBI NIH HHS
  grantid: N01 HC035130
– fundername: NINDS NIH HHS
  grantid: U01 NS043127
– fundername: NINDS NIH HHS
  grantid: R01 NS091307
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AMVHM
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07G
1TA
8C1
8FE
8FG
8G5
AAIKQ
AAKBW
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
COF
CRFIH
DMQIW
DWIFK
DWQXO
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K6V
K7-
L6V
LJTGL
M0C
M2O
M7S
NHB
NPM
NUSFT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UU8
V3K
V4Q
VH1
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c439t-7c4a7e7a938c5ff4ab4f1a5bf8ee386f9d9aa7ef1f37f3b1ed9f647f8ee5428e3
ISSN 0266-4763
IngestDate Thu Aug 21 13:25:44 EDT 2025
Sun Aug 24 04:09:45 EDT 2025
Wed Aug 13 07:47:01 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
Tue Jul 01 02:25:11 EDT 2025
Thu Apr 24 22:52:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Event dependence
Frailty model
Heterogeneity
Markov Chain Monte Carlo
Survival model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-7c4a7e7a938c5ff4ab4f1a5bf8ee386f9d9aa7ef1f37f3b1ed9f647f8ee5428e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4214-5809
0000-0003-2731-1346
OpenAccessLink http://doi.org/10.1080/02664763.2017.1367368
PMID 29755162
PQID 2022100026
PQPubID 32901
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5945197
proquest_miscellaneous_2038701505
proquest_journals_2022100026
pubmed_primary_29755162
crossref_citationtrail_10_1080_02664763_2017_1367368
crossref_primary_10_1080_02664763_2017_1367368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2018
Publisher Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Ltd
References CIT0030
Cook R.J. (CIT0007) 2007
CIT0010
Ghosh D. (CIT0017) 2002; 12
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Fuster V. (CIT0014) 2010
CIT0036
CIT0013
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0039
CIT0019
Keele L.J. (CIT0029) 2008
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
Carlin B. (CIT0005) 2009
CIT0023
Homan M.D. (CIT0022) 2014; 15
Mendis S. (CIT0035) 2011
CIT0003
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0021
  doi: 10.1161/CIR.0b013e31820a55f5
– ident: CIT0042
  doi: 10.1080/01621459.1989.10478873
– ident: CIT0031
  doi: 10.1198/1061860043010
– ident: CIT0032
  doi: 10.1007/978-94-015-7983-4_14
– volume-title: Bayesian Methods for Data Analysis
  year: 2009
  ident: CIT0005
– ident: CIT0015
  doi: 10.1080/01621459.1979.10481632
– ident: CIT0026
  doi: 10.1111/j.1541-0420.2006.00719.x
– ident: CIT0001
  doi: 10.1002/sim.4780100806
– ident: CIT0033
  doi: 10.1001/archinte.1991.00400060077013
– volume-title: Promoting Cardiovascular Health in the Developing World: a Critical Challenge to Achieve Global Health
  year: 2010
  ident: CIT0014
– ident: CIT0008
  doi: 10.1093/biomet/62.2.269
– ident: CIT0009
  doi: 10.1016/0895-7061(96)00037-4
– ident: CIT0027
  doi: 10.1111/j.0006-341X.2002.00510.x
– ident: CIT0030
  doi: 10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5
– ident: CIT0002
  doi: 10.1001/jama.288.23.2998
– volume: 12
  start-page: 663
  year: 2002
  ident: CIT0017
  publication-title: Stat. Sin.
– ident: CIT0020
  doi: 10.1080/01621459.1992.10476248
– volume: 15
  start-page: 1593
  year: 2014
  ident: CIT0022
  publication-title: J. Mach. Learn. Res.h
– ident: CIT0040
  doi: 10.1111/1467-9868.00353
– ident: CIT0003
  doi: 10.1214/aos/1176345976
– ident: CIT0037
  doi: 10.1093/biomet/asm087
– ident: CIT0013
  doi: 10.1111/1467-9876.00229
– ident: CIT0024
  doi: 10.1007/978-1-4612-1304-8
– ident: CIT0012
  doi: 10.1214/ss/1038425655
– ident: CIT0038
  doi: 10.1017/CBO9780511755453
– ident: CIT0018
  doi: 10.1007/s10985-010-9180-y
– volume-title: Semiparametric Regression for the Social Sciences
  year: 2008
  ident: CIT0029
– volume-title: The Statistical Analysis of Recurrent Events
  year: 2007
  ident: CIT0007
– ident: CIT0036
  doi: 10.1093/biomet/68.2.373
– ident: CIT0006
  doi: 10.1214/06-BA122
– ident: CIT0039
  doi: 10.1161/01.STR.13.3.290
– ident: CIT0016
  doi: 10.1201/b16018
– ident: CIT0004
  doi: 10.1002/sim.2434
– ident: CIT0010
  doi: 10.2307/2533493
– ident: CIT0028
  doi: 10.1016/j.csda.2006.05.021
– ident: CIT0023
  doi: 10.1007/BF00985760
– volume-title: Global Atlas on Cardiovascular Disease Prevention and Control
  year: 2011
  ident: CIT0035
– ident: CIT0041
  doi: 10.1007/978-1-4757-3294-8
– ident: CIT0043
  doi: 10.1038/nrcardio.2014.26
– ident: CIT0034
  doi: 10.1214/11-STS361
– ident: CIT0011
  doi: 10.1016/0370-2693(87)91197-X
– ident: CIT0019
  doi: 10.1002/sim.2394
– ident: CIT0025
  doi: 10.1161/01.CIR.0000019552.77778.04
SSID ssj0008153
Score 2.1610243
Snippet In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such...
In the course of hypertension, cardiovascular disease events (e.g. stroke, heart failure) occur frequently and recurrently. The scientific interest in such...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1260
SubjectTerms Bayesian analysis
Correlation
Diuretics
Heart
Hypertension
Regression models
Statistical methods
Title Bayesian regression model for recurrent event data with event-varying covariate effects and event effect
URI https://www.ncbi.nlm.nih.gov/pubmed/29755162
https://www.proquest.com/docview/2022100026
https://www.proquest.com/docview/2038701505
https://pubmed.ncbi.nlm.nih.gov/PMC5945197
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdhkHBONXYCAjcUOZmjiOkwtSB5sq1I3DWlFxiezUXiehDGUtUvnreS923IQNMbhEqeMfVb4v9rP93mdC3uKZIZopHUaZiMNEpGmoDBuGizKORQkmcpph7PDpWTqeJZ_mfD4YvO94La1X6rD8eWtcyf-gCmmAK0bJ_gOyvlJIgHvAF66AMFzvhPGR3OgmCLLWF9aftbJH2zTOgzUupTfiS41K0zt0BrXrrs3v8IesNzbkFu4Aoa1zBy6m2zI25Q8WrHQWLAYlWb1n795jlQkml-Fo6_KzblZlz5faDZZdjYMjWdcb57zo1iCirLMGYbsqGOYRaNbtV61MpOOP6HSSUWyPELjRezt3R6gM60K_O4FueILZk3f6atlnn4uT2WRSTI_n03tkNxYCt-l3R-OPX7_4sTiLrA5p-__aGC5UV7-tmb51cmPK8bvnbMcUmT4kDxwCdGQJ8YgMdLVP7p96Ad7rfbJ37jF5TJYtT-iWJ7ThCQWeUM8T2mBOkScUeUJ7PKGeJ9TxhAJPXBmb8oTMTo6nH8ahO2EjLMEQXYWiTKTQQuYsK7kxiVSJiSRXJtOaZanJF7mEDCYyTBimIr3IDbw0fMxh3qrZU7JTXVX6OaFg6sFHLhY8zcpEZUJFQ5EujFJDzo1Ik4Ak7ZstSic_j6egfCuiVqXWAVIgIIUDJCCHvth3q7_ytwIHLWyF-1SvIUMc40ZWnAbkjX8MHSnujslKX60xD4OxC-ZHPCDPLMq-RQw_51EaB0T08PcZUKS9_6S6XDZi7TxHASfx4g7tviR724_rgOys6rV-BSbvSr12vP4Fn4atLQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+regression+model+for+recurrent+event+data+with+event-varying+covariate+effects+and+event+effect&rft.jtitle=Journal+of+applied+statistics&rft.au=Lin%2C+Li-An&rft.au=Luo%2C+Sheng&rft.au=Davis%2C+Barry+R&rft.date=2018-01-01&rft.issn=0266-4763&rft.volume=45&rft.issue=7&rft.spage=1260&rft_id=info:doi/10.1080%2F02664763.2017.1367368&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon