A comprehensive model for the proliferation–quiescence decision in response to endogenous DNA damage in human cells

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a m...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 10; pp. 2532 - 2537
Main Authors Heldt, Frank S., Barr, Alexis R., Cooper, Sam, Bakal, Chris, Novák, Béla
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 06.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.
AbstractList Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.
Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.
Controlled transitions of human cells between proliferating and nonproliferating states are essential for normal development and tissue homeostasis. To understand how the decision to proliferate is made in response to positive input from growth factors and negative input from the DNA damage response, we have built a mathematical model of the underlying molecular network, based on data from live cell-imaging experiments. Our model suggests that two major cell-cycle transitions are crucial for decision making: the restriction point, which integrates pro- and antiproliferative signals, and the G1/S transition, which temporarily insulates cells from some aspects of the DNA damage response. Together, our model gives mechanistic insight into how cells maintain both sensitivity and robustness to external signals. Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.
Author Novák, Béla
Heldt, Frank S.
Barr, Alexis R.
Cooper, Sam
Bakal, Chris
Author_xml – sequence: 1
  givenname: Frank S.
  surname: Heldt
  fullname: Heldt, Frank S.
  organization: Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
– sequence: 2
  givenname: Alexis R.
  surname: Barr
  fullname: Barr, Alexis R.
  organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom
– sequence: 3
  givenname: Sam
  surname: Cooper
  fullname: Cooper, Sam
  organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom
– sequence: 4
  givenname: Chris
  surname: Bakal
  fullname: Bakal, Chris
  organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom
– sequence: 5
  givenname: Béla
  surname: Novák
  fullname: Novák, Béla
  organization: Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29463760$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtr3DAUhUVJaCZp1121CLrpxokelmVtCkP6CoR2k72Q5esZDbbkSHYgu_6H_sP-ksqdpHlAV4Kr7xzOvecYHfjgAaE3lJxSIvnZ6E06pZIKXgpKxQu0okTRoioVOUArQpgs6pKVR-g4pR0hRImavERHTJUVlxVZoXmNbRjGCFvwyd0AHkILPe5CxNMW8BhD7zqIZnLB__7563p2kCx4C7gF61KeYudxhDQGnwBPAYNvwwZ8mBP-9H2NWzOYDSzQdh6Mxxb6Pr1Ch53pE7y-e0_Q1ZfPV-ffissfXy_O15eFLbmaClkZpmjdtYaAtarlwhrTclXZzkBTSUtqYlXV1UJa2kEteSMVX2jTtA3lJ-jj3nacmwHanHuKptdjdIOJtzoYp5_-eLfVm3CjRS2lKlk2-HBnEMP1DGnSg0vLBsZDXlAzQiSlTNQio--fobswR5-3yxRjlCrKyky9e5zoX5T7QjIg9oCNIaUInbZu-nv9HND1mhK9FK-X4vVD8Vl39kx3b_1_xdu9YpemEB-SVILIfEn-B-wYvkA
CitedBy_id crossref_primary_10_1016_j_bpj_2020_11_2279
crossref_primary_10_1371_journal_pcbi_1011151
crossref_primary_10_1371_journal_pone_0198420
crossref_primary_10_3934_math_2023621
crossref_primary_10_1016_j_ceb_2019_05_005
crossref_primary_10_1002_1873_3468_13241
crossref_primary_10_1016_j_cub_2019_12_026
crossref_primary_10_1093_humrep_deaa255
crossref_primary_10_7554_eLife_44571
crossref_primary_10_1016_j_celrep_2023_113079
crossref_primary_10_1038_s41467_021_27124_8
crossref_primary_10_1038_s41467_020_19602_2
crossref_primary_10_1093_nar_gkaa1002
crossref_primary_10_1016_j_molcel_2020_08_020
crossref_primary_10_1016_j_coisb_2024_100533
crossref_primary_10_1038_s41523_021_00269_x
crossref_primary_10_1038_s41598_022_20769_5
crossref_primary_10_1111_febs_15831
crossref_primary_10_1142_S1793524521500832
crossref_primary_10_1016_j_isci_2020_101063
crossref_primary_10_1038_s41467_020_17146_z
crossref_primary_10_1371_journal_pone_0309076
crossref_primary_10_2139_ssrn_3188455
crossref_primary_10_1080_2314808X_2019_1676003
crossref_primary_10_15252_msb_20188604
crossref_primary_10_3390_jcm9082582
crossref_primary_10_1049_syb2_12017
crossref_primary_10_3390_ijms24032282
crossref_primary_10_7554_eLife_51107
crossref_primary_10_1002_1873_3468_13867
crossref_primary_10_1002_1873_3468_13628
crossref_primary_10_1038_s41467_024_46696_9
crossref_primary_10_1126_sciadv_abe3882
crossref_primary_10_1038_s41540_024_00428_3
crossref_primary_10_1186_s13059_023_02963_4
crossref_primary_10_1016_j_isci_2023_106379
crossref_primary_10_1016_j_coisb_2019_04_003
crossref_primary_10_1016_j_exger_2018_04_020
crossref_primary_10_1016_j_dnarep_2024_103752
crossref_primary_10_1016_j_plaphy_2021_11_029
crossref_primary_10_1073_pnas_2321216121
crossref_primary_10_1016_j_envpol_2020_113984
crossref_primary_10_3390_math10142426
crossref_primary_10_1073_pnas_1722446115
crossref_primary_10_3389_fcell_2021_698659
crossref_primary_10_3390_biology12040612
crossref_primary_10_1038_s42003_021_01979_5
crossref_primary_10_1016_j_nls_2024_100004
crossref_primary_10_3389_fcell_2021_698066
crossref_primary_10_1098_rsob_210125
crossref_primary_10_1371_journal_pone_0280621
crossref_primary_10_1016_j_celrep_2023_112031
crossref_primary_10_1016_j_chaos_2024_114479
crossref_primary_10_1038_s41467_024_46578_0
Cites_doi 10.1038/ncomms14728
10.1063/1.4822377
10.1038/nrc2657
10.1093/nar/gku1181
10.1093/bioinformatics/btx404
10.1137/1.9780898718195
10.1016/j.cell.2007.05.003
10.1038/sj.onc.1201543
10.1038/ncb1711
10.1101/gad.843200
10.1038/nature03094
10.1016/0092-8674(93)90500-P
10.1038/nrm2510
10.1016/j.tcb.2011.10.004
10.1038/35106065
10.1016/j.celrep.2017.04.055
10.1016/j.cell.2016.05.077
10.1016/j.cels.2017.09.015
10.1146/annurev.physchem.58.032806.104637
10.1073/pnas.71.4.1286
10.1128/MCB.18.1.546
10.1016/0955-0674(95)80067-0
10.1016/j.celrep.2017.05.022
10.1016/j.cels.2016.01.001
10.1038/nature23880
10.1038/nrm1493
10.1016/j.str.2004.09.018
10.1101/gad.1272305
10.1016/j.compbiolchem.2005.10.007
10.1101/gad.847700
10.1073/pnas.82.16.5365
10.1093/bioinformatics/bti799
10.1016/S0955-0674(03)00017-6
10.1242/jcs.01227
10.1016/j.cell.2013.08.062
10.1126/science.287.5459.1804
10.1126/science.274.5293.1672
10.1016/S0092-8674(03)01080-8
10.1038/369574a0
10.1098/rsfs.2013.0074
10.1016/j.tibs.2004.06.006
10.1038/nrm3629
10.1073/pnas.1409797111
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 6, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 6, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1715345115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2537
ExternalDocumentID PMC5877942
29463760
10_1073_pnas_1715345115
26507873
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M00354X/1
– fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/M00354X/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c439t-76a2918fda0ecc9d35caad396cfaeb67c080c96f857c1fe873b793da0eabdb13
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:17:50 EDT 2025
Fri Jul 11 01:35:37 EDT 2025
Mon Jun 30 08:09:26 EDT 2025
Thu Apr 03 06:58:46 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Tue Jul 01 03:19:46 EDT 2025
Fri May 30 11:18:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords proliferation–quiescence decision
mathematical modelling
cell cycle
DNA damage
live-cell imaging
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-76a2918fda0ecc9d35caad396cfaeb67c080c96f857c1fe873b793da0eabdb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: F.S.H., A.R.B., C.B., and B.N. designed research; F.S.H., A.R.B., C.B., and B.N. performed research; F.S.H., A.R.B., S.C., and B.N. analyzed data; and F.S.H., A.R.B., and B.N. wrote the paper.
Edited by Tim Hunt, Cancer Research UK, London, United Kingdom, and approved January 29, 2018 (received for review August 31, 2017)
1F.S.H. and A.R.B. contributed equally to this work.
ORCID 0000-0002-9276-5013
OpenAccessLink https://www.pnas.org/content/pnas/115/10/2532.full.pdf
PMID 29463760
PQID 2022119124
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5877942
proquest_miscellaneous_2007112585
proquest_journals_2022119124
pubmed_primary_29463760
crossref_citationtrail_10_1073_pnas_1715345115
crossref_primary_10_1073_pnas_1715345115
jstor_primary_26507873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-06
PublicationDateYYYYMMDD 2018-03-06
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Martín-Caballero J (e_1_3_3_11_2) 2001; 61
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
28514656 - Cell Rep. 2017 May 16;19(7):1351-1364
28869970 - Nature. 2017 Sep 21;549(7672):404-408
11114893 - Genes Dev. 2000 Dec 1;14(23):3051-64
14744433 - Cell. 2004 Jan 23;116(2):221-34
8242752 - Cell. 1993 Nov 19;75(4):817-25
9467956 - Oncogene. 1998 Jan 22;16(3):311-20
18813291 - Nat Rev Mol Cell Biol. 2008 Nov;9(11):910-6
4524638 - Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286-90
15362224 - Trends Biochem Sci. 2004 Aug;29(8):409-17
11902577 - Nat Rev Cancer. 2001 Dec;1(3):222-31
12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31
15126619 - J Cell Sci. 2004 May 1;117(Pt 11):2173-81
24075009 - Cell. 2013 Oct 10;155(2):369-83
17037977 - Annu Rev Phys Chem. 2007;58:35-55
8939849 - Science. 1996 Dec 6;274(5293):1672-7
19440234 - Nat Rev Cancer. 2009 Jun;9(6):400-14
7911228 - Nature. 1994 Jun 16;369(6481):574-8
11114892 - Genes Dev. 2000 Dec 1;14(23):3037-50
27368103 - Cell. 2016 Jun 30;166(1):167-80
15576034 - Structure. 2004 Dec;12(12):2209-19
16321569 - Comput Biol Chem. 2006 Feb;30(1):39-49
25414348 - Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8
28317845 - Nat Commun. 2017 Mar 20;8:14728
24904737 - Interface Focus. 2014 Jun 6;4(3):20130074
23877564 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):518-28
10710306 - Science. 2000 Mar 10;287(5459):1804-8
15549091 - Nature. 2004 Nov 18;432(7015):298-306
18364697 - Nat Cell Biol. 2008 Apr;10(4):476-82
15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10 ):792-804
8608014 - Curr Opin Cell Biol. 1995 Dec;7(6):835-42
27136687 - Cell Syst. 2016 Jan 27;2(1):27-37
15769947 - Genes Dev. 2005 Mar 15;19(6):756-67
9418901 - Mol Cell Biol. 1998 Jan;18(1):546-57
16317076 - Bioinformatics. 2006 Feb 15;22(4):514-5
17512402 - Cell. 2007 May 18;129(4):665-79
11507077 - Cancer Res. 2001 Aug 15;61(16):6234-8
29102360 - Cell Syst. 2017 Nov 22;5(5):445-459.e5
28564611 - Cell Rep. 2017 May 30;19(9):1953-1966
28637183 - Bioinformatics. 2017 Oct 15;33(20):3320-3322
25267623 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4386-93
3860868 - Proc Natl Acad Sci U S A. 1985 Aug;82(16):5365-9
22154077 - Trends Cell Biol. 2012 Jan;22(1):33-41
References_xml – ident: e_1_3_3_16_2
  doi: 10.1038/ncomms14728
– ident: e_1_3_3_40_2
  doi: 10.1063/1.4822377
– ident: e_1_3_3_6_2
  doi: 10.1038/nrc2657
– volume: 61
  start-page: 6234
  year: 2001
  ident: e_1_3_3_11_2
  article-title: Tumor susceptibility of p21(Waf1/Cip1)-deficient mice
  publication-title: Cancer Res
– ident: e_1_3_3_44_2
  doi: 10.1093/nar/gku1181
– ident: e_1_3_3_38_2
  doi: 10.1093/bioinformatics/btx404
– ident: e_1_3_3_41_2
  doi: 10.1137/1.9780898718195
– ident: e_1_3_3_7_2
  doi: 10.1016/j.cell.2007.05.003
– ident: e_1_3_3_10_2
  doi: 10.1038/sj.onc.1201543
– ident: e_1_3_3_27_2
  doi: 10.1038/ncb1711
– ident: e_1_3_3_32_2
  doi: 10.1101/gad.843200
– ident: e_1_3_3_21_2
  doi: 10.1038/nature03094
– ident: e_1_3_3_5_2
  doi: 10.1016/0092-8674(93)90500-P
– ident: e_1_3_3_3_2
  doi: 10.1038/nrm2510
– ident: e_1_3_3_22_2
  doi: 10.1016/j.tcb.2011.10.004
– ident: e_1_3_3_30_2
  doi: 10.1038/35106065
– ident: e_1_3_3_17_2
  doi: 10.1016/j.celrep.2017.04.055
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2016.05.077
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cels.2017.09.015
– ident: e_1_3_3_42_2
  doi: 10.1146/annurev.physchem.58.032806.104637
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.71.4.1286
– ident: e_1_3_3_24_2
  doi: 10.1128/MCB.18.1.546
– ident: e_1_3_3_28_2
  doi: 10.1016/0955-0674(95)80067-0
– ident: e_1_3_3_37_2
  doi: 10.1016/j.celrep.2017.05.022
– ident: e_1_3_3_23_2
  doi: 10.1016/j.cels.2016.01.001
– ident: e_1_3_3_35_2
  doi: 10.1038/nature23880
– ident: e_1_3_3_25_2
  doi: 10.1038/nrm1493
– ident: e_1_3_3_9_2
  doi: 10.1016/j.str.2004.09.018
– ident: e_1_3_3_13_2
  doi: 10.1101/gad.1272305
– ident: e_1_3_3_43_2
  doi: 10.1016/j.compbiolchem.2005.10.007
– ident: e_1_3_3_31_2
  doi: 10.1101/gad.847700
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.82.16.5365
– ident: e_1_3_3_39_2
  doi: 10.1093/bioinformatics/bti799
– ident: e_1_3_3_26_2
  doi: 10.1016/S0955-0674(03)00017-6
– ident: e_1_3_3_19_2
  doi: 10.1242/jcs.01227
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cell.2013.08.062
– ident: e_1_3_3_12_2
  doi: 10.1126/science.287.5459.1804
– ident: e_1_3_3_29_2
  doi: 10.1126/science.274.5293.1672
– ident: e_1_3_3_2_2
  doi: 10.1016/S0092-8674(03)01080-8
– ident: e_1_3_3_8_2
  doi: 10.1038/369574a0
– ident: e_1_3_3_1_2
  doi: 10.1098/rsfs.2013.0074
– ident: e_1_3_3_20_2
  doi: 10.1016/j.tibs.2004.06.006
– ident: e_1_3_3_4_2
  doi: 10.1038/nrm3629
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.1409797111
– reference: 15576034 - Structure. 2004 Dec;12(12):2209-19
– reference: 18364697 - Nat Cell Biol. 2008 Apr;10(4):476-82
– reference: 10710306 - Science. 2000 Mar 10;287(5459):1804-8
– reference: 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31
– reference: 11507077 - Cancer Res. 2001 Aug 15;61(16):6234-8
– reference: 4524638 - Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286-90
– reference: 28564611 - Cell Rep. 2017 May 30;19(9):1953-1966
– reference: 25414348 - Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8
– reference: 28317845 - Nat Commun. 2017 Mar 20;8:14728
– reference: 24904737 - Interface Focus. 2014 Jun 6;4(3):20130074
– reference: 15362224 - Trends Biochem Sci. 2004 Aug;29(8):409-17
– reference: 27136687 - Cell Syst. 2016 Jan 27;2(1):27-37
– reference: 28637183 - Bioinformatics. 2017 Oct 15;33(20):3320-3322
– reference: 15126619 - J Cell Sci. 2004 May 1;117(Pt 11):2173-81
– reference: 29102360 - Cell Syst. 2017 Nov 22;5(5):445-459.e5
– reference: 19440234 - Nat Rev Cancer. 2009 Jun;9(6):400-14
– reference: 7911228 - Nature. 1994 Jun 16;369(6481):574-8
– reference: 24075009 - Cell. 2013 Oct 10;155(2):369-83
– reference: 14744433 - Cell. 2004 Jan 23;116(2):221-34
– reference: 28514656 - Cell Rep. 2017 May 16;19(7):1351-1364
– reference: 23877564 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):518-28
– reference: 16317076 - Bioinformatics. 2006 Feb 15;22(4):514-5
– reference: 15549091 - Nature. 2004 Nov 18;432(7015):298-306
– reference: 3860868 - Proc Natl Acad Sci U S A. 1985 Aug;82(16):5365-9
– reference: 15769947 - Genes Dev. 2005 Mar 15;19(6):756-67
– reference: 9467956 - Oncogene. 1998 Jan 22;16(3):311-20
– reference: 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10 ):792-804
– reference: 8939849 - Science. 1996 Dec 6;274(5293):1672-7
– reference: 28869970 - Nature. 2017 Sep 21;549(7672):404-408
– reference: 16321569 - Comput Biol Chem. 2006 Feb;30(1):39-49
– reference: 11114893 - Genes Dev. 2000 Dec 1;14(23):3051-64
– reference: 8242752 - Cell. 1993 Nov 19;75(4):817-25
– reference: 8608014 - Curr Opin Cell Biol. 1995 Dec;7(6):835-42
– reference: 11902577 - Nat Rev Cancer. 2001 Dec;1(3):222-31
– reference: 17037977 - Annu Rev Phys Chem. 2007;58:35-55
– reference: 22154077 - Trends Cell Biol. 2012 Jan;22(1):33-41
– reference: 18813291 - Nat Rev Mol Cell Biol. 2008 Nov;9(11):910-6
– reference: 25267623 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4386-93
– reference: 11114892 - Genes Dev. 2000 Dec 1;14(23):3037-50
– reference: 17512402 - Cell. 2007 May 18;129(4):665-79
– reference: 9418901 - Mol Cell Biol. 1998 Jan;18(1):546-57
– reference: 27368103 - Cell. 2016 Jun 30;166(1):167-80
SSID ssj0009580
Score 2.4825292
Snippet Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is...
Controlled transitions of human cells between proliferating and nonproliferating states are essential for normal development and tissue homeostasis. To...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2532
SubjectTerms Biological Sciences
Bistability
Cancer
Cell cycle
Cell Cycle - genetics
Cell Cycle - physiology
Cell proliferation
Cell Proliferation - genetics
Cell Proliferation - physiology
Cells
Cells, Cultured
Control systems
Control theory
Cyclin-dependent kinase
Cyclin-dependent kinase inhibitor p21
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Damage
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - genetics
DNA Damage - physiology
Enzyme inhibitors
External stimuli
Feedback loops
Gene Knockout Techniques
Humans
Kinases
Mathematical models
Mitogens - genetics
Mitogens - metabolism
Models, Biological
Mutation
Positive feedback
Robustness (mathematics)
S phase
Single-Cell Analysis
Switches
Title A comprehensive model for the proliferation–quiescence decision in response to endogenous DNA damage in human cells
URI https://www.jstor.org/stable/26507873
https://www.ncbi.nlm.nih.gov/pubmed/29463760
https://www.proquest.com/docview/2022119124
https://www.proquest.com/docview/2007112585
https://pubmed.ncbi.nlm.nih.gov/PMC5877942
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwFLRIHIoih_hzvUdTWlWomB5cKTdrvV6rUVs7xM6F_8B_ZnbXazsllQoXK7InTuT3MjO7mXmD0Mc8zKOoCHybeoVv-7zgNvMot8tAypkJiIhMNjh_T8KzS__bIlhMJr9HVUubNp_xXzv7Sv4HVTgHuMou2X9Atr8pnIDXgC8cAWE4PgjjWFWEr8VVV4Wuxtr0hYMrOZCnFBpi--dmqZSbuGyU0nN1dC-LqpFVAzREVdSdZuvXJJ4W7FYW9ICRHuQn9_ibcTJ70Qe_xpQaJGZvMR46VTr30Uzt6UUyzD2GgFe0Jne-HrZgv7D12rTeLJuhoPG4rlfdlDB2Oxhfq4kFWiRhvIXhqJ6-eTjyupC02KGv54bOxI5zxlXr1k_DyfnY8wZ6n_SvkAA-TM4xrlgzcwj4dynIFgzRz_zjn_zITi_Pz7P0ZJE-Qo9dWHW4ys-PNZwjLW7RfTOjFEW8z3duv5Xk6DrXXSuYu4W4o8wmfYaedksSHGt-7aOJqJ6jfYMaPuqUyT-9QE2MtwiHFeEwEA4D-Pg-wmFDOLyssCEcbms8EA4D4bAmnDRShMOKcC9RenqSHp_Z3dQOm0Ny29okZC51orJgc3APtPACzljh0ZCXTOQhkdL2nIZlFBDulCIiXg4xQlqzvMgd7wDtVXUlXiNcuiSHBNZnjst9Ps-pUzqUiyAgopxTQS00M085452ivRyscpOpygriZRKWbIDFQkf9G1ZazOV-0wMFW2_nwlIGgptnoUODY9a5giZzIROWSomub6EP_WVw1PJBsUrAc5TzXgksbmB5bqFXGvbh5tQPZXWahcgWIXoDKQK_faVaXikx-CAiEFLdNw_43LfoyfDrO0R77Xoj3kFK3ebvFdH_AGHs0QI
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+model+for+the+proliferation-quiescence+decision+in+response+to+endogenous+DNA+damage+in+human+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Heldt%2C+Frank+S&rft.au=Barr%2C+Alexis+R&rft.au=Cooper%2C+Sam&rft.au=Bakal%2C+Chris&rft.date=2018-03-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=10&rft.spage=2532&rft_id=info:doi/10.1073%2Fpnas.1715345115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon