A comprehensive model for the proliferation–quiescence decision in response to endogenous DNA damage in human cells
Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a m...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 10; pp. 2532 - 2537 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
06.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli. |
---|---|
AbstractList | Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli. Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli. Controlled transitions of human cells between proliferating and nonproliferating states are essential for normal development and tissue homeostasis. To understand how the decision to proliferate is made in response to positive input from growth factors and negative input from the DNA damage response, we have built a mathematical model of the underlying molecular network, based on data from live cell-imaging experiments. Our model suggests that two major cell-cycle transitions are crucial for decision making: the restriction point, which integrates pro- and antiproliferative signals, and the G1/S transition, which temporarily insulates cells from some aspects of the DNA damage response. Together, our model gives mechanistic insight into how cells maintain both sensitivity and robustness to external signals. Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli. |
Author | Novák, Béla Heldt, Frank S. Barr, Alexis R. Cooper, Sam Bakal, Chris |
Author_xml | – sequence: 1 givenname: Frank S. surname: Heldt fullname: Heldt, Frank S. organization: Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom – sequence: 2 givenname: Alexis R. surname: Barr fullname: Barr, Alexis R. organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom – sequence: 3 givenname: Sam surname: Cooper fullname: Cooper, Sam organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom – sequence: 4 givenname: Chris surname: Bakal fullname: Bakal, Chris organization: Division of Cancer Biology, The Institute of Cancer Research, SW3 6JB London, United Kingdom – sequence: 5 givenname: Béla surname: Novák fullname: Novák, Béla organization: Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29463760$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtr3DAUhUVJaCZp1121CLrpxokelmVtCkP6CoR2k72Q5esZDbbkSHYgu_6H_sP-ksqdpHlAV4Kr7xzOvecYHfjgAaE3lJxSIvnZ6E06pZIKXgpKxQu0okTRoioVOUArQpgs6pKVR-g4pR0hRImavERHTJUVlxVZoXmNbRjGCFvwyd0AHkILPe5CxNMW8BhD7zqIZnLB__7563p2kCx4C7gF61KeYudxhDQGnwBPAYNvwwZ8mBP-9H2NWzOYDSzQdh6Mxxb6Pr1Ch53pE7y-e0_Q1ZfPV-ffissfXy_O15eFLbmaClkZpmjdtYaAtarlwhrTclXZzkBTSUtqYlXV1UJa2kEteSMVX2jTtA3lJ-jj3nacmwHanHuKptdjdIOJtzoYp5_-eLfVm3CjRS2lKlk2-HBnEMP1DGnSg0vLBsZDXlAzQiSlTNQio--fobswR5-3yxRjlCrKyky9e5zoX5T7QjIg9oCNIaUInbZu-nv9HND1mhK9FK-X4vVD8Vl39kx3b_1_xdu9YpemEB-SVILIfEn-B-wYvkA |
CitedBy_id | crossref_primary_10_1016_j_bpj_2020_11_2279 crossref_primary_10_1371_journal_pcbi_1011151 crossref_primary_10_1371_journal_pone_0198420 crossref_primary_10_3934_math_2023621 crossref_primary_10_1016_j_ceb_2019_05_005 crossref_primary_10_1002_1873_3468_13241 crossref_primary_10_1016_j_cub_2019_12_026 crossref_primary_10_1093_humrep_deaa255 crossref_primary_10_7554_eLife_44571 crossref_primary_10_1016_j_celrep_2023_113079 crossref_primary_10_1038_s41467_021_27124_8 crossref_primary_10_1038_s41467_020_19602_2 crossref_primary_10_1093_nar_gkaa1002 crossref_primary_10_1016_j_molcel_2020_08_020 crossref_primary_10_1016_j_coisb_2024_100533 crossref_primary_10_1038_s41523_021_00269_x crossref_primary_10_1038_s41598_022_20769_5 crossref_primary_10_1111_febs_15831 crossref_primary_10_1142_S1793524521500832 crossref_primary_10_1016_j_isci_2020_101063 crossref_primary_10_1038_s41467_020_17146_z crossref_primary_10_1371_journal_pone_0309076 crossref_primary_10_2139_ssrn_3188455 crossref_primary_10_1080_2314808X_2019_1676003 crossref_primary_10_15252_msb_20188604 crossref_primary_10_3390_jcm9082582 crossref_primary_10_1049_syb2_12017 crossref_primary_10_3390_ijms24032282 crossref_primary_10_7554_eLife_51107 crossref_primary_10_1002_1873_3468_13867 crossref_primary_10_1002_1873_3468_13628 crossref_primary_10_1038_s41467_024_46696_9 crossref_primary_10_1126_sciadv_abe3882 crossref_primary_10_1038_s41540_024_00428_3 crossref_primary_10_1186_s13059_023_02963_4 crossref_primary_10_1016_j_isci_2023_106379 crossref_primary_10_1016_j_coisb_2019_04_003 crossref_primary_10_1016_j_exger_2018_04_020 crossref_primary_10_1016_j_dnarep_2024_103752 crossref_primary_10_1016_j_plaphy_2021_11_029 crossref_primary_10_1073_pnas_2321216121 crossref_primary_10_1016_j_envpol_2020_113984 crossref_primary_10_3390_math10142426 crossref_primary_10_1073_pnas_1722446115 crossref_primary_10_3389_fcell_2021_698659 crossref_primary_10_3390_biology12040612 crossref_primary_10_1038_s42003_021_01979_5 crossref_primary_10_1016_j_nls_2024_100004 crossref_primary_10_3389_fcell_2021_698066 crossref_primary_10_1098_rsob_210125 crossref_primary_10_1371_journal_pone_0280621 crossref_primary_10_1016_j_celrep_2023_112031 crossref_primary_10_1016_j_chaos_2024_114479 crossref_primary_10_1038_s41467_024_46578_0 |
Cites_doi | 10.1038/ncomms14728 10.1063/1.4822377 10.1038/nrc2657 10.1093/nar/gku1181 10.1093/bioinformatics/btx404 10.1137/1.9780898718195 10.1016/j.cell.2007.05.003 10.1038/sj.onc.1201543 10.1038/ncb1711 10.1101/gad.843200 10.1038/nature03094 10.1016/0092-8674(93)90500-P 10.1038/nrm2510 10.1016/j.tcb.2011.10.004 10.1038/35106065 10.1016/j.celrep.2017.04.055 10.1016/j.cell.2016.05.077 10.1016/j.cels.2017.09.015 10.1146/annurev.physchem.58.032806.104637 10.1073/pnas.71.4.1286 10.1128/MCB.18.1.546 10.1016/0955-0674(95)80067-0 10.1016/j.celrep.2017.05.022 10.1016/j.cels.2016.01.001 10.1038/nature23880 10.1038/nrm1493 10.1016/j.str.2004.09.018 10.1101/gad.1272305 10.1016/j.compbiolchem.2005.10.007 10.1101/gad.847700 10.1073/pnas.82.16.5365 10.1093/bioinformatics/bti799 10.1016/S0955-0674(03)00017-6 10.1242/jcs.01227 10.1016/j.cell.2013.08.062 10.1126/science.287.5459.1804 10.1126/science.274.5293.1672 10.1016/S0092-8674(03)01080-8 10.1038/369574a0 10.1098/rsfs.2013.0074 10.1016/j.tibs.2004.06.006 10.1038/nrm3629 10.1073/pnas.1409797111 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 6, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 6, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1715345115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2537 |
ExternalDocumentID | PMC5877942 29463760 10_1073_pnas_1715345115 26507873 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M00354X/1 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/M00354X/1 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c439t-76a2918fda0ecc9d35caad396cfaeb67c080c96f857c1fe873b793da0eabdb13 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:17:50 EDT 2025 Fri Jul 11 01:35:37 EDT 2025 Mon Jun 30 08:09:26 EDT 2025 Thu Apr 03 06:58:46 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Tue Jul 01 03:19:46 EDT 2025 Fri May 30 11:18:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | proliferation–quiescence decision mathematical modelling cell cycle DNA damage live-cell imaging |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-76a2918fda0ecc9d35caad396cfaeb67c080c96f857c1fe873b793da0eabdb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: F.S.H., A.R.B., C.B., and B.N. designed research; F.S.H., A.R.B., C.B., and B.N. performed research; F.S.H., A.R.B., S.C., and B.N. analyzed data; and F.S.H., A.R.B., and B.N. wrote the paper. Edited by Tim Hunt, Cancer Research UK, London, United Kingdom, and approved January 29, 2018 (received for review August 31, 2017) 1F.S.H. and A.R.B. contributed equally to this work. |
ORCID | 0000-0002-9276-5013 |
OpenAccessLink | https://www.pnas.org/content/pnas/115/10/2532.full.pdf |
PMID | 29463760 |
PQID | 2022119124 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5877942 proquest_miscellaneous_2007112585 proquest_journals_2022119124 pubmed_primary_29463760 crossref_citationtrail_10_1073_pnas_1715345115 crossref_primary_10_1073_pnas_1715345115 jstor_primary_26507873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-06 |
PublicationDateYYYYMMDD | 2018-03-06 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Martín-Caballero J (e_1_3_3_11_2) 2001; 61 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 28514656 - Cell Rep. 2017 May 16;19(7):1351-1364 28869970 - Nature. 2017 Sep 21;549(7672):404-408 11114893 - Genes Dev. 2000 Dec 1;14(23):3051-64 14744433 - Cell. 2004 Jan 23;116(2):221-34 8242752 - Cell. 1993 Nov 19;75(4):817-25 9467956 - Oncogene. 1998 Jan 22;16(3):311-20 18813291 - Nat Rev Mol Cell Biol. 2008 Nov;9(11):910-6 4524638 - Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286-90 15362224 - Trends Biochem Sci. 2004 Aug;29(8):409-17 11902577 - Nat Rev Cancer. 2001 Dec;1(3):222-31 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31 15126619 - J Cell Sci. 2004 May 1;117(Pt 11):2173-81 24075009 - Cell. 2013 Oct 10;155(2):369-83 17037977 - Annu Rev Phys Chem. 2007;58:35-55 8939849 - Science. 1996 Dec 6;274(5293):1672-7 19440234 - Nat Rev Cancer. 2009 Jun;9(6):400-14 7911228 - Nature. 1994 Jun 16;369(6481):574-8 11114892 - Genes Dev. 2000 Dec 1;14(23):3037-50 27368103 - Cell. 2016 Jun 30;166(1):167-80 15576034 - Structure. 2004 Dec;12(12):2209-19 16321569 - Comput Biol Chem. 2006 Feb;30(1):39-49 25414348 - Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8 28317845 - Nat Commun. 2017 Mar 20;8:14728 24904737 - Interface Focus. 2014 Jun 6;4(3):20130074 23877564 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):518-28 10710306 - Science. 2000 Mar 10;287(5459):1804-8 15549091 - Nature. 2004 Nov 18;432(7015):298-306 18364697 - Nat Cell Biol. 2008 Apr;10(4):476-82 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10 ):792-804 8608014 - Curr Opin Cell Biol. 1995 Dec;7(6):835-42 27136687 - Cell Syst. 2016 Jan 27;2(1):27-37 15769947 - Genes Dev. 2005 Mar 15;19(6):756-67 9418901 - Mol Cell Biol. 1998 Jan;18(1):546-57 16317076 - Bioinformatics. 2006 Feb 15;22(4):514-5 17512402 - Cell. 2007 May 18;129(4):665-79 11507077 - Cancer Res. 2001 Aug 15;61(16):6234-8 29102360 - Cell Syst. 2017 Nov 22;5(5):445-459.e5 28564611 - Cell Rep. 2017 May 30;19(9):1953-1966 28637183 - Bioinformatics. 2017 Oct 15;33(20):3320-3322 25267623 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4386-93 3860868 - Proc Natl Acad Sci U S A. 1985 Aug;82(16):5365-9 22154077 - Trends Cell Biol. 2012 Jan;22(1):33-41 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1038/ncomms14728 – ident: e_1_3_3_40_2 doi: 10.1063/1.4822377 – ident: e_1_3_3_6_2 doi: 10.1038/nrc2657 – volume: 61 start-page: 6234 year: 2001 ident: e_1_3_3_11_2 article-title: Tumor susceptibility of p21(Waf1/Cip1)-deficient mice publication-title: Cancer Res – ident: e_1_3_3_44_2 doi: 10.1093/nar/gku1181 – ident: e_1_3_3_38_2 doi: 10.1093/bioinformatics/btx404 – ident: e_1_3_3_41_2 doi: 10.1137/1.9780898718195 – ident: e_1_3_3_7_2 doi: 10.1016/j.cell.2007.05.003 – ident: e_1_3_3_10_2 doi: 10.1038/sj.onc.1201543 – ident: e_1_3_3_27_2 doi: 10.1038/ncb1711 – ident: e_1_3_3_32_2 doi: 10.1101/gad.843200 – ident: e_1_3_3_21_2 doi: 10.1038/nature03094 – ident: e_1_3_3_5_2 doi: 10.1016/0092-8674(93)90500-P – ident: e_1_3_3_3_2 doi: 10.1038/nrm2510 – ident: e_1_3_3_22_2 doi: 10.1016/j.tcb.2011.10.004 – ident: e_1_3_3_30_2 doi: 10.1038/35106065 – ident: e_1_3_3_17_2 doi: 10.1016/j.celrep.2017.04.055 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2016.05.077 – ident: e_1_3_3_36_2 doi: 10.1016/j.cels.2017.09.015 – ident: e_1_3_3_42_2 doi: 10.1146/annurev.physchem.58.032806.104637 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.71.4.1286 – ident: e_1_3_3_24_2 doi: 10.1128/MCB.18.1.546 – ident: e_1_3_3_28_2 doi: 10.1016/0955-0674(95)80067-0 – ident: e_1_3_3_37_2 doi: 10.1016/j.celrep.2017.05.022 – ident: e_1_3_3_23_2 doi: 10.1016/j.cels.2016.01.001 – ident: e_1_3_3_35_2 doi: 10.1038/nature23880 – ident: e_1_3_3_25_2 doi: 10.1038/nrm1493 – ident: e_1_3_3_9_2 doi: 10.1016/j.str.2004.09.018 – ident: e_1_3_3_13_2 doi: 10.1101/gad.1272305 – ident: e_1_3_3_43_2 doi: 10.1016/j.compbiolchem.2005.10.007 – ident: e_1_3_3_31_2 doi: 10.1101/gad.847700 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.82.16.5365 – ident: e_1_3_3_39_2 doi: 10.1093/bioinformatics/bti799 – ident: e_1_3_3_26_2 doi: 10.1016/S0955-0674(03)00017-6 – ident: e_1_3_3_19_2 doi: 10.1242/jcs.01227 – ident: e_1_3_3_14_2 doi: 10.1016/j.cell.2013.08.062 – ident: e_1_3_3_12_2 doi: 10.1126/science.287.5459.1804 – ident: e_1_3_3_29_2 doi: 10.1126/science.274.5293.1672 – ident: e_1_3_3_2_2 doi: 10.1016/S0092-8674(03)01080-8 – ident: e_1_3_3_8_2 doi: 10.1038/369574a0 – ident: e_1_3_3_1_2 doi: 10.1098/rsfs.2013.0074 – ident: e_1_3_3_20_2 doi: 10.1016/j.tibs.2004.06.006 – ident: e_1_3_3_4_2 doi: 10.1038/nrm3629 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.1409797111 – reference: 15576034 - Structure. 2004 Dec;12(12):2209-19 – reference: 18364697 - Nat Cell Biol. 2008 Apr;10(4):476-82 – reference: 10710306 - Science. 2000 Mar 10;287(5459):1804-8 – reference: 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31 – reference: 11507077 - Cancer Res. 2001 Aug 15;61(16):6234-8 – reference: 4524638 - Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286-90 – reference: 28564611 - Cell Rep. 2017 May 30;19(9):1953-1966 – reference: 25414348 - Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8 – reference: 28317845 - Nat Commun. 2017 Mar 20;8:14728 – reference: 24904737 - Interface Focus. 2014 Jun 6;4(3):20130074 – reference: 15362224 - Trends Biochem Sci. 2004 Aug;29(8):409-17 – reference: 27136687 - Cell Syst. 2016 Jan 27;2(1):27-37 – reference: 28637183 - Bioinformatics. 2017 Oct 15;33(20):3320-3322 – reference: 15126619 - J Cell Sci. 2004 May 1;117(Pt 11):2173-81 – reference: 29102360 - Cell Syst. 2017 Nov 22;5(5):445-459.e5 – reference: 19440234 - Nat Rev Cancer. 2009 Jun;9(6):400-14 – reference: 7911228 - Nature. 1994 Jun 16;369(6481):574-8 – reference: 24075009 - Cell. 2013 Oct 10;155(2):369-83 – reference: 14744433 - Cell. 2004 Jan 23;116(2):221-34 – reference: 28514656 - Cell Rep. 2017 May 16;19(7):1351-1364 – reference: 23877564 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):518-28 – reference: 16317076 - Bioinformatics. 2006 Feb 15;22(4):514-5 – reference: 15549091 - Nature. 2004 Nov 18;432(7015):298-306 – reference: 3860868 - Proc Natl Acad Sci U S A. 1985 Aug;82(16):5365-9 – reference: 15769947 - Genes Dev. 2005 Mar 15;19(6):756-67 – reference: 9467956 - Oncogene. 1998 Jan 22;16(3):311-20 – reference: 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10 ):792-804 – reference: 8939849 - Science. 1996 Dec 6;274(5293):1672-7 – reference: 28869970 - Nature. 2017 Sep 21;549(7672):404-408 – reference: 16321569 - Comput Biol Chem. 2006 Feb;30(1):39-49 – reference: 11114893 - Genes Dev. 2000 Dec 1;14(23):3051-64 – reference: 8242752 - Cell. 1993 Nov 19;75(4):817-25 – reference: 8608014 - Curr Opin Cell Biol. 1995 Dec;7(6):835-42 – reference: 11902577 - Nat Rev Cancer. 2001 Dec;1(3):222-31 – reference: 17037977 - Annu Rev Phys Chem. 2007;58:35-55 – reference: 22154077 - Trends Cell Biol. 2012 Jan;22(1):33-41 – reference: 18813291 - Nat Rev Mol Cell Biol. 2008 Nov;9(11):910-6 – reference: 25267623 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4386-93 – reference: 11114892 - Genes Dev. 2000 Dec 1;14(23):3037-50 – reference: 17512402 - Cell. 2007 May 18;129(4):665-79 – reference: 9418901 - Mol Cell Biol. 1998 Jan;18(1):546-57 – reference: 27368103 - Cell. 2016 Jun 30;166(1):167-80 |
SSID | ssj0009580 |
Score | 2.4825292 |
Snippet | Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is... Controlled transitions of human cells between proliferating and nonproliferating states are essential for normal development and tissue homeostasis. To... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2532 |
SubjectTerms | Biological Sciences Bistability Cancer Cell cycle Cell Cycle - genetics Cell Cycle - physiology Cell proliferation Cell Proliferation - genetics Cell Proliferation - physiology Cells Cells, Cultured Control systems Control theory Cyclin-dependent kinase Cyclin-dependent kinase inhibitor p21 Cyclin-Dependent Kinase Inhibitor p21 - genetics Cyclin-Dependent Kinase Inhibitor p21 - metabolism Damage Deoxyribonucleic acid DNA DNA damage DNA Damage - genetics DNA Damage - physiology Enzyme inhibitors External stimuli Feedback loops Gene Knockout Techniques Humans Kinases Mathematical models Mitogens - genetics Mitogens - metabolism Models, Biological Mutation Positive feedback Robustness (mathematics) S phase Single-Cell Analysis Switches |
Title | A comprehensive model for the proliferation–quiescence decision in response to endogenous DNA damage in human cells |
URI | https://www.jstor.org/stable/26507873 https://www.ncbi.nlm.nih.gov/pubmed/29463760 https://www.proquest.com/docview/2022119124 https://www.proquest.com/docview/2007112585 https://pubmed.ncbi.nlm.nih.gov/PMC5877942 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwFLRIHIoih_hzvUdTWlWomB5cKTdrvV6rUVs7xM6F_8B_ZnbXazsllQoXK7InTuT3MjO7mXmD0Mc8zKOoCHybeoVv-7zgNvMot8tAypkJiIhMNjh_T8KzS__bIlhMJr9HVUubNp_xXzv7Sv4HVTgHuMou2X9Atr8pnIDXgC8cAWE4PgjjWFWEr8VVV4Wuxtr0hYMrOZCnFBpi--dmqZSbuGyU0nN1dC-LqpFVAzREVdSdZuvXJJ4W7FYW9ICRHuQn9_ibcTJ70Qe_xpQaJGZvMR46VTr30Uzt6UUyzD2GgFe0Jne-HrZgv7D12rTeLJuhoPG4rlfdlDB2Oxhfq4kFWiRhvIXhqJ6-eTjyupC02KGv54bOxI5zxlXr1k_DyfnY8wZ6n_SvkAA-TM4xrlgzcwj4dynIFgzRz_zjn_zITi_Pz7P0ZJE-Qo9dWHW4ys-PNZwjLW7RfTOjFEW8z3duv5Xk6DrXXSuYu4W4o8wmfYaedksSHGt-7aOJqJ6jfYMaPuqUyT-9QE2MtwiHFeEwEA4D-Pg-wmFDOLyssCEcbms8EA4D4bAmnDRShMOKcC9RenqSHp_Z3dQOm0Ny29okZC51orJgc3APtPACzljh0ZCXTOQhkdL2nIZlFBDulCIiXg4xQlqzvMgd7wDtVXUlXiNcuiSHBNZnjst9Ps-pUzqUiyAgopxTQS00M085452ivRyscpOpygriZRKWbIDFQkf9G1ZazOV-0wMFW2_nwlIGgptnoUODY9a5giZzIROWSomub6EP_WVw1PJBsUrAc5TzXgksbmB5bqFXGvbh5tQPZXWahcgWIXoDKQK_faVaXikx-CAiEFLdNw_43LfoyfDrO0R77Xoj3kFK3ebvFdH_AGHs0QI |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+model+for+the+proliferation-quiescence+decision+in+response+to+endogenous+DNA+damage+in+human+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Heldt%2C+Frank+S&rft.au=Barr%2C+Alexis+R&rft.au=Cooper%2C+Sam&rft.au=Bakal%2C+Chris&rft.date=2018-03-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=10&rft.spage=2532&rft_id=info:doi/10.1073%2Fpnas.1715345115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |