Automatic reconstruction of parametric building models from indoor point clouds
We present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this domain focus on mere local surface reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric bui...
Saved in:
Published in | Computers & graphics Vol. 54; pp. 94 - 103 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this domain focus on mere local surface reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric building model that additionally incorporates contextual information such as global wall connectivity. In contrast to pure surface reconstructions, our representation thereby allows more comprehensive use: first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping which always result in a topologically consistent representation. Second, it enables easy taking of measurements like e.g. determining wall thickness or room areas. These properties render our reconstruction method especially beneficial to architects or engineers for planning renovation or retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling problem which is solved by an energy minimization. This global optimization approach allows for the reconstruction of wall elements shared between rooms while simultaneously maintaining plausible connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the energy minimization. The reconstructed model is further enriched by detected doors and windows. We demonstrate the applicability and reconstruction power of our new approach on a variety of complex real-world datasets requiring little or no parameter adjustment.
[Display omitted]
•Reconstruction of high-level, parametric building models from indoor scans.•Goes beyond mere surface reconstruction of previous reconstruction methods.•Plausible configuration of walls determined by means of global optimization.•Enables intuitive editing on level of building elements, e.g. moving whole walls. |
---|---|
AbstractList | We present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this domain focus on mere local surface reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric building model that additionally incorporates contextual information such as global wall connectivity. In contrast to pure surface reconstructions, our representation thereby allows more comprehensive use: first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping which always result in a topologically consistent representation. Second, it enables easy taking of measurements like e.g. determining wall thickness or room areas. These properties render our reconstruction method especially beneficial to architects or engineers for planning renovation or retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling problem which is solved by an energy minimization. This global optimization approach allows for the reconstruction of wall elements shared between rooms while simultaneously maintaining plausible connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the energy minimization. The reconstructed model is further enriched by detected doors and windows. We demonstrate the applicability and reconstruction power of our new approach on a variety of complex real-world datasets requiring little or no parameter adjustment.
[Display omitted]
•Reconstruction of high-level, parametric building models from indoor scans.•Goes beyond mere surface reconstruction of previous reconstruction methods.•Plausible configuration of walls determined by means of global optimization.•Enables intuitive editing on level of building elements, e.g. moving whole walls. We present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this domain focus on mere local surface reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric building model that additionally incorporates contextual information such as global wall connectivity. In contrast to pure surface reconstructions, our representation thereby allows more comprehensive use: first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping which always result in a topologically consistent representation. Second, it enables easy taking of measurements like e.g. determining wall thickness or room areas. These properties render our reconstruction method especially beneficial to architects or engineers for planning renovation or retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling problem which is solved by an energy minimization. This global optimization approach allows for the reconstruction of wall elements shared between rooms while simultaneously maintaining plausible connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the energy minimization. The reconstructed model is further enriched by detected doors and windows. We demonstrate the applicability and reconstruction power of our new approach on a variety of complex real-world datasets requiring little or no parameter adjustment. |
Author | Wessel, Raoul Klein, Reinhard Vock, Richard Ochmann, Sebastian |
Author_xml | – sequence: 1 givenname: Sebastian surname: Ochmann fullname: Ochmann, Sebastian email: ochmann@cs.uni-bonn.de – sequence: 2 givenname: Richard surname: Vock fullname: Vock, Richard – sequence: 3 givenname: Raoul surname: Wessel fullname: Wessel, Raoul – sequence: 4 givenname: Reinhard surname: Klein fullname: Klein, Reinhard |
BookMark | eNp9kD1rwzAQhkVJoUnaH9DNYxe7kmxLMp1C6BcEsrSzUKRzULAlV5IL_fe1SacOmW6493m5e1Zo4bwDhO4JLggm7PFUaHUsKCZ1gXmBsbhCSyJ4mXMmqgVaYtzwXFRNeYNWMZ4wxpSyaon2mzH5XiWrswDau5jCqJP1LvNtNqigekhhWh5G2xnrjlnvDXQxa4PvM-uM9yEbvHUp050fTbxF163qItz9zTX6fHn-2L7lu_3r-3azy3VVNinndWumu8vDgRFdmabBNWW6BADGBKUNKF4qirkwNRWUqaYCwRXVek6WXJVr9HDuHYL_GiEm2duooeuUAz9GSQStq1o0jE5Rfo7q4GMM0Eptk5p_TEHZThIsZ4XyJCeFclYoMZeTwokk_8gh2F6Fn4vM05mZLMG3hSCjtuA0GDsJTtJ4e4H-BWKPi88 |
CitedBy_id | crossref_primary_10_1061__ASCE_CO_1943_7862_0002227 crossref_primary_10_3390_rs14174275 crossref_primary_10_1016_j_autcon_2022_104571 crossref_primary_10_1080_14942119_2023_2217065 crossref_primary_10_1016_j_cag_2022_01_008 crossref_primary_10_3390_rs11192262 crossref_primary_10_1145_3592122 crossref_primary_10_3390_app8091529 crossref_primary_10_1016_j_culher_2020_03_010 crossref_primary_10_1109_LGRS_2018_2880042 crossref_primary_10_3390_app11052268 crossref_primary_10_3390_geosciences7040096 crossref_primary_10_3390_ijgi6070206 crossref_primary_10_1515_ijeeps_2015_0077 crossref_primary_10_3390_s23135934 crossref_primary_10_3390_rs11171972 crossref_primary_10_3390_rs9101014 crossref_primary_10_3390_s21103493 crossref_primary_10_1016_j_autcon_2023_105097 crossref_primary_10_1108_IJBPA_04_2019_0036 crossref_primary_10_1016_j_autcon_2024_105392 crossref_primary_10_3390_rs10081281 crossref_primary_10_1016_j_aei_2018_10_007 crossref_primary_10_3390_app14104078 crossref_primary_10_1016_j_autcon_2020_103131 crossref_primary_10_1080_17538947_2023_2246937 crossref_primary_10_1109_LRA_2022_3186495 crossref_primary_10_1007_s00371_019_01711_9 crossref_primary_10_1111_cgf_13015 crossref_primary_10_1016_j_aei_2024_102643 crossref_primary_10_3390_ijgi10080564 crossref_primary_10_1016_j_isprsjprs_2021_06_007 crossref_primary_10_1016_j_biosystemseng_2020_07_004 crossref_primary_10_3390_rs13193796 crossref_primary_10_1111_tgis_12686 crossref_primary_10_1016_j_autcon_2019_103053 crossref_primary_10_1109_JSTARS_2020_2969119 crossref_primary_10_1109_LRA_2017_2651939 crossref_primary_10_1109_ACCESS_2023_3270709 crossref_primary_10_3390_s18061838 crossref_primary_10_1155_2021_9931112 crossref_primary_10_1016_j_jobe_2024_110874 crossref_primary_10_1016_j_jobe_2022_105486 crossref_primary_10_1016_j_autcon_2019_102837 crossref_primary_10_1016_j_autcon_2021_103582 crossref_primary_10_3390_ijgi11100530 crossref_primary_10_1016_j_autcon_2021_103855 crossref_primary_10_3390_rs10111754 crossref_primary_10_1016_j_aei_2018_08_012 crossref_primary_10_1016_j_autcon_2021_103856 crossref_primary_10_3233_HIS_160218 crossref_primary_10_20965_jrm_2023_p0470 crossref_primary_10_1016_j_isprsjprs_2019_03_017 crossref_primary_10_1061__ASCE_CP_1943_5487_0000896 crossref_primary_10_1016_j_apenergy_2018_04_046 crossref_primary_10_1016_j_autcon_2017_09_021 crossref_primary_10_1111_mice_13153 crossref_primary_10_1016_j_aei_2017_10_001 crossref_primary_10_1016_j_cag_2023_03_003 crossref_primary_10_1186_s40327_017_0042_5 crossref_primary_10_1016_j_autcon_2021_103576 crossref_primary_10_1109_LRA_2019_2893417 crossref_primary_10_1111_mice_12345 crossref_primary_10_1007_s41693_022_00068_1 crossref_primary_10_1016_j_aei_2020_101131 crossref_primary_10_1680_jsmic_21_00035 crossref_primary_10_1007_s00521_024_09624_y crossref_primary_10_3390_rs15112856 crossref_primary_10_3390_app10228073 crossref_primary_10_3390_ijgi9110618 crossref_primary_10_1016_j_isprsjprs_2021_02_012 crossref_primary_10_1061_JCCEE5_CPENG_5751 crossref_primary_10_1016_j_autcon_2020_103286 crossref_primary_10_1016_j_cag_2020_10_002 crossref_primary_10_1016_j_jag_2024_103685 crossref_primary_10_1111_cgf_142640 crossref_primary_10_3390_app14103974 crossref_primary_10_3390_ijgi10010026 crossref_primary_10_1109_LRA_2020_2976327 crossref_primary_10_1016_j_isprsjprs_2020_02_018 crossref_primary_10_1109_JSTARS_2019_2918937 crossref_primary_10_3390_rs10111815 crossref_primary_10_3390_rs13234930 crossref_primary_10_1016_j_gmod_2019_101039 crossref_primary_10_1111_tgis_13063 crossref_primary_10_1016_j_autcon_2024_105474 crossref_primary_10_1016_j_jobe_2024_109238 crossref_primary_10_1016_j_buildenv_2019_03_057 crossref_primary_10_1007_s41064_023_00243_1 crossref_primary_10_1016_j_robot_2022_104282 crossref_primary_10_3390_rs12142224 crossref_primary_10_1111_cgf_14021 crossref_primary_10_1109_LRA_2017_2715378 crossref_primary_10_1016_j_jag_2024_104265 crossref_primary_10_1111_cgf_13451 crossref_primary_10_1007_s12205_023_2406_9 crossref_primary_10_3390_s23146503 crossref_primary_10_1016_j_autcon_2021_104127 crossref_primary_10_1016_j_autcon_2019_102963 crossref_primary_10_1016_j_jobe_2023_107270 crossref_primary_10_1016_j_autcon_2022_104422 crossref_primary_10_1680_jsmic_19_00012 crossref_primary_10_1016_j_isprsjprs_2021_04_019 crossref_primary_10_3390_rs15184421 crossref_primary_10_3390_sym14020377 crossref_primary_10_1016_j_isprsjprs_2018_03_025 crossref_primary_10_1016_j_rser_2020_109979 crossref_primary_10_3389_frvir_2022_782564 crossref_primary_10_36680_j_itcon_2020_011 crossref_primary_10_1016_j_egypro_2017_12_567 crossref_primary_10_3390_math11163564 crossref_primary_10_3390_rs11131586 crossref_primary_10_3390_rs14184675 crossref_primary_10_3390_jimaging10100261 crossref_primary_10_1016_j_autcon_2019_102913 crossref_primary_10_6106_KJCEM_2016_17_3_032 crossref_primary_10_1016_j_vrih_2020_05_003 crossref_primary_10_1111_tgis_12308 crossref_primary_10_1016_j_neucom_2022_01_071 crossref_primary_10_1016_j_rser_2020_109742 crossref_primary_10_3390_ijgi6030090 crossref_primary_10_1016_j_autcon_2020_103338 crossref_primary_10_3390_ijgi8030102 crossref_primary_10_3390_s19030533 crossref_primary_10_3390_rs13101947 crossref_primary_10_1016_j_autcon_2019_102905 crossref_primary_10_1016_j_isprsjprs_2023_01_020 crossref_primary_10_3390_math11051149 crossref_primary_10_3390_rs11060635 crossref_primary_10_1109_ACCESS_2019_2891959 crossref_primary_10_3390_electronics14010108 crossref_primary_10_1016_j_autcon_2019_103037 crossref_primary_10_1007_s00371_017_1405_6 crossref_primary_10_1016_j_aei_2016_08_003 crossref_primary_10_1016_j_aei_2017_03_008 crossref_primary_10_1016_j_engappai_2022_104910 crossref_primary_10_4018_IJ3DIM_2017100102 crossref_primary_10_3390_w15010104 crossref_primary_10_1016_j_kscej_2024_100005 crossref_primary_10_3390_heritage3010004 crossref_primary_10_1680_jmuen_17_00038 crossref_primary_10_3390_ijgi9050330 crossref_primary_10_3390_ijgi8010009 crossref_primary_10_3390_rs12050838 crossref_primary_10_3390_rs15184440 crossref_primary_10_1016_j_autcon_2020_103109 crossref_primary_10_3390_rs10091412 crossref_primary_10_1016_j_eswa_2024_126011 crossref_primary_10_1016_j_isprsjprs_2020_11_004 crossref_primary_10_1109_JSTARS_2021_3060568 |
Cites_doi | 10.1016/j.autcon.2012.10.006 10.1109/JSTSP.2014.2381153 10.1109/34.969114 10.1007/978-3-319-25117-2_3 10.1260/1478-0771.8.1.55 10.1109/ICIP.2012.6467225 10.1145/2766995 10.1145/1961189.1961199 10.1016/j.isprsjprs.2014.02.004 10.1109/TPAMI.2004.60 10.1016/j.cag.2014.07.005 10.1111/j.1467-8659.2007.01016.x 10.1109/TPAMI.2004.1262177 10.1007/978-3-642-33718-5_48 10.1109/3DIMPVT.2011.42 |
ContentType | Journal Article |
Copyright | 2015 The Authors |
Copyright_xml | – notice: 2015 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cag.2015.07.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7684 |
EndPage | 103 |
ExternalDocumentID | 10_1016_j_cag_2015_07_008 S0097849315001119 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c439t-75fd1013bb61c4d990526c3eee668229ea73a2078d52826a94e87a2cc990537a3 |
IEDL.DBID | .~1 |
ISSN | 0097-8493 |
IngestDate | Fri Jul 11 00:36:07 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Tue Jul 01 03:26:51 EDT 2025 Fri Feb 23 02:31:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Indoor scene reconstruction Parametric models Point cloud processing |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-75fd1013bb61c4d990526c3eee668229ea73a2078d52826a94e87a2cc990537a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0097849315001119 |
PQID | 1825458962 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1825458962 crossref_citationtrail_10_1016_j_cag_2015_07_008 crossref_primary_10_1016_j_cag_2015_07_008 elsevier_sciencedirect_doi_10_1016_j_cag_2015_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computers & graphics |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ochmann S, Vock R, Wessel R, Tamke M, Klein R. Automatic generation of structural building descriptions from 3D point cloud scans. In: GRAPP; 2014. Mura C, Jaspe Villanueva A, Mattausch O, Gobbetti E, Pajarola R. Reconstructing complex indoor environments with arbitrary wall orientations. In: Proceedings of EG posters; 2014. Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection. In: Computer graphics forum, vol. 26. Wiley Online Library; 2007. p. 214–226. Boykov, Kolmogorov (bib2) 2004; 26 Okorn B, Xiong X, Akinci B, Huber D, Toward automated modeling of floor plans. In: Proceedings of the symposium on 3D data processing, visualization and transmission, vol. 2; 2010. Boykov, Veksler, Zabih (bib3) 2001; 23 Rusu RB, Cousins S. 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA), Shanghai, China; May 9–13, 2011. Monszpart A, Mellado N, Brostow G, Mitra N. RAP ter: rebuilding man-made scenes with regular arrangements of planes. In: ACM SIGGRAPH 2015; 2015. . Xiao J, Furukawa Y. Reconstructing the world׳s museums. In: Computer vision, ECCV 2012. Springer; 2012. p. 668–81. Tamke M, Blümel I, Ochmann S, Vock R, Wessel R. From point clouds to definitions of architectural space. In: eCAADe 2014; September 2014. Oesau, Lafarge, Alliez (bib12) 2014; 90 Budroni A, Boehm J, Automated 3d reconstruction of interiors from point clouds. Int J Archit Comput; 2010 Mura, Mattausch, Jaspe Villanueva, Gobbetti, Pajarola (bib9) 2014; 44 Turner E, Zakhor A. Floor plan generation and room labeling of indoor environments from laser range data. In: GRAPP; 2014. Chang, Lin (bib5) 2011; 2:27 Oesau S, Lafarge F, Alliez P. Indoor scene reconstruction using primitive-driven space partitioning and graph-cut. In: Eurographics workshop on urban data modelling and visualisation; 2013. Turner, Cheng, Zakhor (bib18) 2015; 9 Kolmogorov, Zabin (bib6) 2004; 26 Xiong, Adan, Akinci, Huber (bib21) 2013; 31 Adan A, Huber D. 3d reconstruction of interior wall surfaces under occlusion and clutter. In: Proceedings of international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT); 2011. p. 275–81. Sanchez V, Zakhor A. Planar 3d modeling of building interiors from point cloud data. In: 2012 19th IEEE international conference on image processing (ICIP); 2012. p 1777–80. 10.1016/j.cag.2015.07.008_bib19 Xiong (10.1016/j.cag.2015.07.008_bib21) 2013; 31 Kolmogorov (10.1016/j.cag.2015.07.008_bib6) 2004; 26 10.1016/j.cag.2015.07.008_bib15 10.1016/j.cag.2015.07.008_bib16 10.1016/j.cag.2015.07.008_bib17 10.1016/j.cag.2015.07.008_bib11 Boykov (10.1016/j.cag.2015.07.008_bib2) 2004; 26 Turner (10.1016/j.cag.2015.07.008_bib18) 2015; 9 Mura (10.1016/j.cag.2015.07.008_bib9) 2014; 44 10.1016/j.cag.2015.07.008_bib13 Boykov (10.1016/j.cag.2015.07.008_bib3) 2001; 23 10.1016/j.cag.2015.07.008_bib14 10.1016/j.cag.2015.07.008_bib20 10.1016/j.cag.2015.07.008_bib1 10.1016/j.cag.2015.07.008_bib10 10.1016/j.cag.2015.07.008_bib7 10.1016/j.cag.2015.07.008_bib4 10.1016/j.cag.2015.07.008_bib8 Chang (10.1016/j.cag.2015.07.008_bib5) 2011; 2:27 Oesau (10.1016/j.cag.2015.07.008_bib12) 2014; 90 |
References_xml | – reference: Okorn B, Xiong X, Akinci B, Huber D, Toward automated modeling of floor plans. In: Proceedings of the symposium on 3D data processing, visualization and transmission, vol. 2; 2010. – volume: 44 year: 2014 ident: bib9 article-title: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts publication-title: Comput Graph – volume: 2:27 start-page: 1 year: 2011 end-page: 27 ident: bib5 article-title: LIBSVM publication-title: ACM Trans Intell Syst Technol – reference: Budroni A, Boehm J, Automated 3d reconstruction of interiors from point clouds. Int J Archit Comput; 2010, – reference: Tamke M, Blümel I, Ochmann S, Vock R, Wessel R. From point clouds to definitions of architectural space. In: eCAADe 2014; September 2014. – reference: . – reference: Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection. In: Computer graphics forum, vol. 26. Wiley Online Library; 2007. p. 214–226. – reference: Ochmann S, Vock R, Wessel R, Tamke M, Klein R. Automatic generation of structural building descriptions from 3D point cloud scans. In: GRAPP; 2014. – reference: Adan A, Huber D. 3d reconstruction of interior wall surfaces under occlusion and clutter. In: Proceedings of international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT); 2011. p. 275–81. – volume: 90 year: 2014 ident: bib12 article-title: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut publication-title: ISPRS J Photogramm Remote Sens – volume: 31 start-page: 325 year: 2013 end-page: 337 ident: bib21 article-title: Automatic creation of semantically rich 3d building models from laser scanner data publication-title: Autom Constr – reference: Rusu RB, Cousins S. 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA), Shanghai, China; May 9–13, 2011. – reference: Xiao J, Furukawa Y. Reconstructing the world׳s museums. In: Computer vision, ECCV 2012. Springer; 2012. p. 668–81. – reference: Sanchez V, Zakhor A. Planar 3d modeling of building interiors from point cloud data. In: 2012 19th IEEE international conference on image processing (ICIP); 2012. p 1777–80. – reference: Monszpart A, Mellado N, Brostow G, Mitra N. RAP ter: rebuilding man-made scenes with regular arrangements of planes. In: ACM SIGGRAPH 2015; 2015. – volume: 9 start-page: 409 year: 2015 end-page: 421 ident: bib18 article-title: Fast automated scalable generation of textured 3d models of indoor environments publication-title: IEEE J Sel Top Signal Process – reference: Oesau S, Lafarge F, Alliez P. Indoor scene reconstruction using primitive-driven space partitioning and graph-cut. In: Eurographics workshop on urban data modelling and visualisation; 2013. – volume: 26 start-page: 147 year: 2004 end-page: 159 ident: bib6 article-title: What energy functions can be minimized via graph cuts? publication-title: IEEE Trans Pattern Anal Mach Intell – reference: Turner E, Zakhor A. Floor plan generation and room labeling of indoor environments from laser range data. In: GRAPP; 2014. – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: bib2 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 23 start-page: 1222 year: 2001 end-page: 1239 ident: bib3 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans Pattern Anal Mach Intell – reference: Mura C, Jaspe Villanueva A, Mattausch O, Gobbetti E, Pajarola R. Reconstructing complex indoor environments with arbitrary wall orientations. In: Proceedings of EG posters; 2014. – volume: 31 start-page: 325 year: 2013 ident: 10.1016/j.cag.2015.07.008_bib21 article-title: Automatic creation of semantically rich 3d building models from laser scanner data publication-title: Autom Constr doi: 10.1016/j.autcon.2012.10.006 – volume: 90 issue: April (68–82) year: 2014 ident: 10.1016/j.cag.2015.07.008_bib12 article-title: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut publication-title: ISPRS J Photogramm Remote Sens – volume: 9 start-page: 409 issue: April (3) year: 2015 ident: 10.1016/j.cag.2015.07.008_bib18 article-title: Fast automated scalable generation of textured 3d models of indoor environments publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2014.2381153 – ident: 10.1016/j.cag.2015.07.008_bib13 – ident: 10.1016/j.cag.2015.07.008_bib14 – ident: 10.1016/j.cag.2015.07.008_bib17 – volume: 23 start-page: 1222 issue: 11 year: 2001 ident: 10.1016/j.cag.2015.07.008_bib3 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.969114 – ident: 10.1016/j.cag.2015.07.008_bib19 doi: 10.1007/978-3-319-25117-2_3 – ident: 10.1016/j.cag.2015.07.008_bib4 doi: 10.1260/1478-0771.8.1.55 – ident: 10.1016/j.cag.2015.07.008_bib15 doi: 10.1109/ICIP.2012.6467225 – ident: 10.1016/j.cag.2015.07.008_bib7 doi: 10.1145/2766995 – volume: 2:27 start-page: 1 issue: 27 year: 2011 ident: 10.1016/j.cag.2015.07.008_bib5 article-title: LIBSVM publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – ident: 10.1016/j.cag.2015.07.008_bib11 doi: 10.1016/j.isprsjprs.2014.02.004 – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 10.1016/j.cag.2015.07.008_bib2 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.60 – volume: 44 year: 2014 ident: 10.1016/j.cag.2015.07.008_bib9 article-title: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts publication-title: Comput Graph doi: 10.1016/j.cag.2014.07.005 – ident: 10.1016/j.cag.2015.07.008_bib16 doi: 10.1111/j.1467-8659.2007.01016.x – volume: 26 start-page: 147 issue: 2 year: 2004 ident: 10.1016/j.cag.2015.07.008_bib6 article-title: What energy functions can be minimized via graph cuts? publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1262177 – ident: 10.1016/j.cag.2015.07.008_bib20 doi: 10.1007/978-3-642-33718-5_48 – ident: 10.1016/j.cag.2015.07.008_bib1 doi: 10.1109/3DIMPVT.2011.42 – ident: 10.1016/j.cag.2015.07.008_bib8 – ident: 10.1016/j.cag.2015.07.008_bib10 |
SSID | ssj0002264 |
Score | 2.5069509 |
Snippet | We present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Automation Buildings Indoor scene reconstruction Minimization Optimization Parametric models Point cloud processing Reconstruction Representations Three dimensional models Walls |
Title | Automatic reconstruction of parametric building models from indoor point clouds |
URI | https://dx.doi.org/10.1016/j.cag.2015.07.008 https://www.proquest.com/docview/1825458962 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqIzEhBTaxo6djFVFVUCUhUrdLMdxUFFJKpqu_HbunKQ8hDowJrKj5Hy-R3z3fYRcSc6ZTPFHldDG44anXmyY9SITi24cslDG2I38OBajCb-fBtMGGdS9MFhWWdn-0qY7a13d6VTS7CxmM-zxhQyIRwxCGiRMxyY-ziVq-c3HV5kHNoqWSJRgjWF0fbLparyMfsHqrsDhdyLD5N--6ZeVdq5nuEd2q5iR9svX2icNmx2QnW9Igofkqb8qcoe-Sl2Ku4aFpXlKEd77DZmzDI0rFmzqGHCWFLtLKKTlef5OF_ksK6iZ56tkeUQmw9vnwciruBI8AyFF4ckgTeCjWByLnuEJ-JjAFyB0a4VATHerJdM-xANJAEmW0BG3odS-MTiSSc2OSTPLM3tCaJRoE2mptQ1xhydhyniqNYe5vm_StEW6tZSUqYDEkc9iruqKsVcFglUoWNXF4-2wRa7XUxYlisamwbwWvfqhCgqs_KZpl_UyKdgieO6hM5uvlqqHWXAQRsI__d-jz8g2XFXF2uekCUtoLyAWKeK2U7Y22erfPYzGn5JJ3kM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKd4EyROSNW2Jk3b44RAG3twYdJuUZqmaAjaiW3_H7tLJ0CIA9c2rlonceza_j6Am1AIHmb0o0pq4wkjMi8x3HqxSWQriXgUJtSNPBzJ7lg8ToJJDe6qXhgqq3S2f2XTS2vtrjSdNpuz6ZR6fDECEjFHl4YI0-MNaBA6VVCHRqfX747WBpl6RVdglGiQUaBKbpZlXka_UIFXUEJ4Esnk78fTD0Ndnj4Pu7Dj3EbWWb3ZHtRsvg_bX8AED-Cps1wUJQArK6PcNTIsKzJGCN_vRJ5lWOKIsFlJgjNn1GDCMDIvig82K6b5gpm3YpnOD2H8cP981_UcXYJn0KtYeGGQpfhRPElk24gUj5nAl6h3a6UkWHerQ659dAnSAOMsqWNho1D7xtBIHmp-BPW8yO0xsDjVJtah1jaiTZ5GGReZ1gJlfd9k2Qm0Ki0p47DEidLiTVVFY68KFatIsapFGe7oBG7XIrMVkMZfg0WlevVtNSg09H-JXVfTpHCXUOpD57ZYzlWbAuEgiqV_-r9HX8Fm93k4UIPeqH8GW3jH1W6fQx2n016ga7JILt3S-wQ7FuD0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+reconstruction+of+parametric+building+models+from+indoor+point+clouds&rft.jtitle=Computers+%26+graphics&rft.au=Ochmann%2C+Sebastian&rft.au=Vock%2C+Richard&rft.au=Wessel%2C+Raoul&rft.au=Klein%2C+Reinhard&rft.date=2016-02-01&rft.issn=0097-8493&rft.volume=54&rft.spage=94&rft.epage=103&rft_id=info:doi/10.1016%2Fj.cag.2015.07.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |