Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes
Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes...
Saved in:
Published in | Computer aided design Vol. 58; pp. 51 - 61 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2014.08.023 |
Cover
Abstract | Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method.
•We propose two intrinsic methods for computing centroidal Voronoi tessellation (CVT) on triangle meshes.•Thanks to their intrinsic nature, our methods compute CVT using metric only.•Our results are independent of the embedding space. |
---|---|
AbstractList | Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method. Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method. •We propose two intrinsic methods for computing centroidal Voronoi tessellation (CVT) on triangle meshes.•Thanks to their intrinsic nature, our methods compute CVT using metric only.•Our results are independent of the embedding space. |
Author | Wang, Wenping Mueller-Wittig, Wolfgang Ying, Xiang Liu, Yong-Jin He, Ying Gu, Xianfeng Xin, Shi-Qing Wang, Xiaoning |
Author_xml | – sequence: 1 givenname: Xiaoning surname: Wang fullname: Wang, Xiaoning email: WANG0684@e.ntu.edu.sg organization: School of Computer Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Xiang surname: Ying fullname: Ying, Xiang email: yingxiang@ntu.edu.sg organization: School of Computer Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Yong-Jin surname: Liu fullname: Liu, Yong-Jin email: liuyongjin@tsinghua.edu.cn organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China – sequence: 4 givenname: Shi-Qing surname: Xin fullname: Xin, Shi-Qing email: xinshiqing@nbu.edu.cn organization: Faculty of Information Science and Engineering, Ningbo University, Zhejiang, China – sequence: 5 givenname: Wenping surname: Wang fullname: Wang, Wenping email: wenping@cs.hku.hk organization: Department of Computer Science, Hong Kong University, Hong Kong, China – sequence: 6 givenname: Xianfeng surname: Gu fullname: Gu, Xianfeng email: gu@cs.sunysb.edu organization: Department of Computer Science, Stony Brook University, New York, USA – sequence: 7 givenname: Wolfgang surname: Mueller-Wittig fullname: Mueller-Wittig, Wolfgang email: wolfgang.mueller-wittig@fraunhofer.sg organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore – sequence: 8 givenname: Ying surname: He fullname: He, Ying email: yhe@ntu.edu.sg organization: School of Computer Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kD1PwzAQhi1UJNrCD2DLWIaE80fSWEyoAlqpEkvparn2WbhK42KnSPx7UoWJodOddO9zunsmZNSGFgm5p1BQoNXjvjDaFgyoKKAugPErMqb1XOasqssRGQNQyIWoyxsySWkPAIxyOSbLVdtF3yZvMhMOx1OnOx_aLLjMYD8J3uom24YY2uCzDlPCphkis8V285D1zQHTJ6Zbcu10k_Dur07Jx-vLZrHM1-9vq8XzOjeCyy6vXG2EoHMndUkrBA68v9ABs1absppbKdExyyvjZCWc3HFr61pbwajTyHd8SmbD3mMMXydMnTr4ZM5XtRhOSdFKMM5K4LKP0iFqYkgpolPH6A86_igK6mxN7VVvTZ2tKahVb61n5v8Y4wcnXdS-uUg-DST23397jCoZj61B6yOaTtngL9C_aTGJMw |
CitedBy_id | crossref_primary_10_1016_j_cad_2021_103166 crossref_primary_10_1002_cpe_8018 crossref_primary_10_3390_app12041831 crossref_primary_10_1109_TVCG_2015_2505279 crossref_primary_10_1145_3658152 crossref_primary_10_1007_s41095_016_0057_1 crossref_primary_10_1016_j_cagd_2020_101848 crossref_primary_10_1109_TVCG_2018_2837115 crossref_primary_10_1155_2020_4383915 crossref_primary_10_2139_ssrn_4177990 crossref_primary_10_1007_s41095_022_0326_0 crossref_primary_10_1007_s00366_023_01928_2 crossref_primary_10_1111_cgf_14897 crossref_primary_10_1109_TVCG_2016_2621763 crossref_primary_10_1109_TVCG_2022_3209473 crossref_primary_10_3390_math11173763 crossref_primary_10_1016_j_finel_2022_103905 crossref_primary_10_1016_j_proeng_2016_11_026 crossref_primary_10_1145_3130800_3130819 crossref_primary_10_1111_cgf_13329 crossref_primary_10_1016_j_proeng_2016_11_047 crossref_primary_10_1007_s41095_015_0022_4 crossref_primary_10_1016_j_gmod_2025_101258 crossref_primary_10_1111_cgf_13929 crossref_primary_10_1007_s11042_016_3478_z crossref_primary_10_1080_17452759_2023_2285392 crossref_primary_10_1016_j_gmod_2021_101111 crossref_primary_10_1145_3272127_3275072 crossref_primary_10_1016_j_cad_2022_103333 crossref_primary_10_1016_j_cad_2023_103511 crossref_primary_10_1007_s00170_022_10585_6 crossref_primary_10_3390_pr10030464 crossref_primary_10_1007_s10878_021_00775_5 crossref_primary_10_1109_TPAMI_2022_3185644 crossref_primary_10_1145_2980179_2982424 crossref_primary_10_1145_3478513_3480554 crossref_primary_10_1007_s11081_020_09552_5 crossref_primary_10_1109_TVCG_2020_3016645 crossref_primary_10_1016_j_cag_2019_05_019 crossref_primary_10_3390_math8060946 crossref_primary_10_1007_s00170_019_03676_4 crossref_primary_10_1145_3550454_3555453 crossref_primary_10_1007_s41095_018_0107_y crossref_primary_10_1111_cgf_13116 crossref_primary_10_1016_j_cagd_2023_102216 crossref_primary_10_1016_j_addma_2024_104048 |
Cites_doi | 10.1145/2448196.2448221 10.1002/cpa.3160300502 10.1145/2508363.2508379 10.1109/TVCG.2010.53 10.1111/j.1467-8659.2010.01759.x 10.1137/S0036144599352836 10.1016/j.cad.2012.10.029 10.1145/2534161 10.1111/j.1467-8659.2008.01279.x 10.1137/0216045 10.1109/TVCG.2013.63 10.1145/98524.98601 10.1142/S0218195997000223 10.1007/978-3-642-13411-1_18 10.1016/j.cagd.2011.06.005 10.1109/TIT.1982.1056489 10.1016/j.gmod.2004.06.007 10.1145/10515.10549 10.1007/s10851-006-6228-4 10.1145/838250.838254 10.1111/j.1467-8659.2009.01521.x 10.1109/TPAMI.2010.221 10.1109/SFCS.1975.8 10.1109/TMI.2004.831226 10.1016/j.ipl.2012.12.010 10.1109/SMI.2003.1199601 10.1007/s00371-007-0136-5 10.1016/j.cad.2012.11.005 10.1145/1559755.1559758 10.1145/1559755.1559761 10.1007/978-3-642-33573-0_21 10.1145/1073204.1073228 10.1073/pnas.95.15.8431 10.1145/1141911.1141930 10.1112/plms/s3-61.2.371 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2014.08.023 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 61 |
ExternalDocumentID | 10_1016_j_cad_2014_08_023 S0010448514001924 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c439t-6f8c4417f9a516e0303268f02ddac567d99ef2d36cf964f9b3dd88ad421fae3b3 |
IEDL.DBID | AIKHN |
ISSN | 0010-4485 |
IngestDate | Fri Sep 05 08:21:19 EDT 2025 Tue Jul 01 05:02:54 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Exponential map Voronoi diagram Centroidal Voronoi tessellation (CVT) Riemannian center The L-BFGS method Discrete geodesics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-6f8c4417f9a516e0303268f02ddac567d99ef2d36cf964f9b3dd88ad421fae3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010448514001924 |
PQID | 1642325039 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1642325039 crossref_primary_10_1016_j_cad_2014_08_023 crossref_citationtrail_10_1016_j_cad_2014_08_023 elsevier_sciencedirect_doi_10_1016_j_cad_2014_08_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Computer aided design |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kimmel, Sethian (br000075) 1998 Ying, Wang, He (br000115) 2013; 32 Iri, Murota, Ohya (br000185) 1984 Lloyd (br000030) 1982; 28 Rustamov (br000175) 2010; 29 Liu Y-J, Xu C-X, He Y, Kim D-S. The duality of geodesic Voronoi/Delaunay diagrams for an intrinsic discrete Laplace–Beltrami operator on simplicial surfaces. In: Proceedings of the 26th Canadian conference on computational geometry, CCCG’14. 2014. Dyer R, Zhang H, Moller T. Surface sampling and the intrinsic Voronoi diagram. In: Proceedings of the symposium on geometry processing. 2008. p. 1393–402. Liu, Chen, Tang (br000135) 2011; 33 Shamos M, Hoey D. Closest-point problems. In: Proc. 16th annu. IEEE sympos. found. comput. sci., 1975. p. 151–62. Chen J, Han Y. Shortest paths on a polyhedron. In: SCG’90. 1990. p. 360–9. Karcher (br000165) 1977; 30 Du, Faber, Gunzburger (br000005) 1999; 41 Surazhsky, Surazhsky, Kirsanov, Gortler, Hoppe (br000090) 2005; 24 Pennec (br000170) 2006; 25 Genz, Cools (br000180) 2003; 29 Fortune S. A sweepline algorithm for Voronoi diagrams. In: Proceedings of symposium on computational geometry, SCG’86. 1986. p. 313–22. Liu, Wang, Lévy, Sun, Yan, Lu, Yang (br000035) 2009; 28 Gu, Wang, Chan, Thompson, Yau (br000060) 2004; 23 Alliez P, de Verdière ÉC, Devillers O, Isenburg M, Isotropic surface remeshing. In: Shape modeling international. 2003. pp. 49–58. Shuai, Guo, Jin (br000015) 2013; 45 Xin, Wang (br000105) 2009; 28 Rong, Liu, Wang, Yin, Gu, Guo (br000055) 2011; 17 Lévy B, Bonneel N. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st international meshing roundtable. 2013. p. 349–66. Edelsbrunner, Shah (br000145) 1997; 7 Liu, Tang (br000140) 2013; 113 Ying, Xin, He (br000110) 2014; 33 Ying, Xin, Sun, He (br000130) 2013; 19 Liu (br000100) 2013; 45 Liu, Zhou, Hu (br000095) 2007; 23 Schmidt, Grimm, Wyvill (br000120) 2006; 25 Yan, Lévy, Liu, Sun, Wang (br000010) 2009; 28 Frey P, Borouchaki H. Surface mesh evaluation. In: 6th International meshing roundtable. 1997. p. 363–74. do Carmo (br000070) 1976 Rong, Jin, Shuai, Guo (br000050) 2011; 28 Alliez, de Verdière, Devillers, Isenburg (br000045) 2005; 67 Kendall (br000160) 1990; 61 Mitchell, Mount, Papadimitriou (br000080) 1987; 16 Yan D-M, Wang W, Lévy B, Liu Y. Efficient computation of 3d clipped Voronoi diagram. In: Geometric modeling and processing, GMP. 2010. p. 269–82. Sun Q, Zhang L, Zhang M, Ying X, Xin S-Q, Xia J, He Y. Texture brush: an interactive surface texturing interface. In: ACM Symposium on interactive 3D graphics and games, I3D’13. 2013. p. 153–60. Rustamov (10.1016/j.cad.2014.08.023_br000175) 2010; 29 Kendall (10.1016/j.cad.2014.08.023_br000160) 1990; 61 Rong (10.1016/j.cad.2014.08.023_br000055) 2011; 17 Lloyd (10.1016/j.cad.2014.08.023_br000030) 1982; 28 10.1016/j.cad.2014.08.023_br000040 10.1016/j.cad.2014.08.023_br000020 Mitchell (10.1016/j.cad.2014.08.023_br000080) 1987; 16 10.1016/j.cad.2014.08.023_br000085 do Carmo (10.1016/j.cad.2014.08.023_br000070) 1976 Liu (10.1016/j.cad.2014.08.023_br000035) 2009; 28 10.1016/j.cad.2014.08.023_br000065 10.1016/j.cad.2014.08.023_br000155 Ying (10.1016/j.cad.2014.08.023_br000110) 2014; 33 Rong (10.1016/j.cad.2014.08.023_br000050) 2011; 28 Pennec (10.1016/j.cad.2014.08.023_br000170) 2006; 25 Liu (10.1016/j.cad.2014.08.023_br000140) 2013; 113 Liu (10.1016/j.cad.2014.08.023_br000100) 2013; 45 Xin (10.1016/j.cad.2014.08.023_br000105) 2009; 28 Genz (10.1016/j.cad.2014.08.023_br000180) 2003; 29 Iri (10.1016/j.cad.2014.08.023_br000185) 1984 10.1016/j.cad.2014.08.023_br000190 Karcher (10.1016/j.cad.2014.08.023_br000165) 1977; 30 Surazhsky (10.1016/j.cad.2014.08.023_br000090) 2005; 24 Alliez (10.1016/j.cad.2014.08.023_br000045) 2005; 67 Schmidt (10.1016/j.cad.2014.08.023_br000120) 2006; 25 10.1016/j.cad.2014.08.023_br000150 10.1016/j.cad.2014.08.023_br000195 Yan (10.1016/j.cad.2014.08.023_br000010) 2009; 28 Liu (10.1016/j.cad.2014.08.023_br000095) 2007; 23 Ying (10.1016/j.cad.2014.08.023_br000115) 2013; 32 Liu (10.1016/j.cad.2014.08.023_br000135) 2011; 33 10.1016/j.cad.2014.08.023_br000125 Shuai (10.1016/j.cad.2014.08.023_br000015) 2013; 45 10.1016/j.cad.2014.08.023_br000025 Kimmel (10.1016/j.cad.2014.08.023_br000075) 1998 Gu (10.1016/j.cad.2014.08.023_br000060) 2004; 23 Ying (10.1016/j.cad.2014.08.023_br000130) 2013; 19 Du (10.1016/j.cad.2014.08.023_br000005) 1999; 41 Edelsbrunner (10.1016/j.cad.2014.08.023_br000145) 1997; 7 |
References_xml | – reference: Sun Q, Zhang L, Zhang M, Ying X, Xin S-Q, Xia J, He Y. Texture brush: an interactive surface texturing interface. In: ACM Symposium on interactive 3D graphics and games, I3D’13. 2013. p. 153–60. – volume: 67 start-page: 204 year: 2005 end-page: 231 ident: br000045 article-title: Centroidal Voronoi diagrams for isotropic surface remeshing publication-title: Graph Models – volume: 23 start-page: 949 year: 2004 end-page: 958 ident: br000060 article-title: Genus zero surface conformal mapping and its application to brain surface mapping publication-title: IEEE Trans Med Imaging – reference: Yan D-M, Wang W, Lévy B, Liu Y. Efficient computation of 3d clipped Voronoi diagram. In: Geometric modeling and processing, GMP. 2010. p. 269–82. – volume: 28 start-page: 1445 year: 2009 end-page: 1454 ident: br000010 article-title: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram publication-title: Comput Graph Forum – volume: 28 start-page: 101:1 year: 2009 end-page: 101:17 ident: br000035 article-title: On centroidal Voronoi tessellation—energy smoothness and fast computation publication-title: ACM Trans Graph – reference: Dyer R, Zhang H, Moller T. Surface sampling and the intrinsic Voronoi diagram. In: Proceedings of the symposium on geometry processing. 2008. p. 1393–402. – reference: Lévy B, Bonneel N. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st international meshing roundtable. 2013. p. 349–66. – volume: 7 start-page: 365 year: 1997 end-page: 378 ident: br000145 article-title: Triangulating topological spaces publication-title: Internat J Comput Geom Appl – volume: 24 start-page: 553 year: 2005 end-page: 560 ident: br000090 article-title: Fast exact and approximate geodesics on meshes publication-title: ACM Trans Graph – volume: 41 start-page: 637 year: 1999 end-page: 676 ident: br000005 article-title: Centroidal Voronoi tessellations: applications and algorithms publication-title: SIAM Rev – volume: 23 start-page: 661 year: 2007 end-page: 668 ident: br000095 article-title: Handling degenerate cases in exact geodesic computation on triangle meshes publication-title: Vis Comput – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: br000030 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory – volume: 32 start-page: 170:1 year: 2013 end-page: 170:12 ident: br000115 article-title: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem publication-title: ACM Trans Graph – start-page: 8431 year: 1998 end-page: 8435 ident: br000075 article-title: Computing geodesic paths on manifolds publication-title: Proc Natl Acad Sci USA – reference: Alliez P, de Verdière ÉC, Devillers O, Isenburg M, Isotropic surface remeshing. In: Shape modeling international. 2003. pp. 49–58. – volume: 28 start-page: 104:1 year: 2009 end-page: 104:8 ident: br000105 article-title: Improving Chen and Han’s algorithm on the discrete geodesic problem publication-title: ACM Trans Graph – volume: 29 start-page: 297 year: 2003 end-page: 308 ident: br000180 article-title: An adaptive numerical cubature algorithm for simplices publication-title: ACM Trans Math Software – volume: 113 start-page: 132 year: 2013 end-page: 136 ident: br000140 article-title: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces publication-title: Inform Process Lett – year: 1976 ident: br000070 article-title: Differential geometry of curves and surfaces – volume: 28 start-page: 475 year: 2011 end-page: 496 ident: br000050 article-title: Centroidal Voronoi tessellation in universal covering space of manifold surfaces publication-title: Comput Aided Geom Des – volume: 25 start-page: 127 year: 2006 end-page: 154 ident: br000170 article-title: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements publication-title: J Math Imaging Vision – reference: Fortune S. A sweepline algorithm for Voronoi diagrams. In: Proceedings of symposium on computational geometry, SCG’86. 1986. p. 313–22. – volume: 16 start-page: 647 year: 1987 end-page: 668 ident: br000080 article-title: The discrete geodesic problem publication-title: SIAM J Comput – volume: 25 start-page: 605 year: 2006 end-page: 613 ident: br000120 article-title: Interactive decal compositing with discrete exponential maps publication-title: ACM Trans Graph – volume: 17 start-page: 345 year: 2011 end-page: 356 ident: br000055 article-title: GPU-assisted computation of centroidal Voronoi tessellation publication-title: IEEE Trans Vis Comput Graphics – volume: 19 start-page: 1425 year: 2013 end-page: 1437 ident: br000130 article-title: An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces publication-title: IEEE Trans Vis Comput Graphics – reference: Chen J, Han Y. Shortest paths on a polyhedron. In: SCG’90. 1990. p. 360–9. – volume: 45 start-page: 695 year: 2013 end-page: 704 ident: br000100 article-title: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures publication-title: Comput-Aided Des – reference: Shamos M, Hoey D. Closest-point problems. In: Proc. 16th annu. IEEE sympos. found. comput. sci., 1975. p. 151–62. – volume: 33 start-page: 1502 year: 2011 end-page: 1517 ident: br000135 article-title: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 30 start-page: 509 year: 1977 end-page: 541 ident: br000165 article-title: Riemannian center of mass and mollifier smoothing publication-title: Comm Pure Appl Math – volume: 33 start-page: 9:1 year: 2014 end-page: 9:11 ident: br000110 article-title: Parallel Chen–Han (PCH) algorithm for discrete geodesics publication-title: ACM Trans Graph – volume: 45 start-page: 463 year: 2013 end-page: 472 ident: br000015 article-title: GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space publication-title: Comput-Aided Des – volume: 61 start-page: 371 year: 1990 end-page: 406 ident: br000160 article-title: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence publication-title: Proc Lond Math Soc – volume: 29 start-page: 1507 year: 2010 end-page: 1516 ident: br000175 article-title: Barycentric coordinates on surfaces publication-title: Comput Graph Forum – start-page: 273 year: 1984 end-page: 288 ident: br000185 article-title: A fast Voronoi-diagram algorithm with applications to geographical optimization problems publication-title: System modelling and optimization – reference: Liu Y-J, Xu C-X, He Y, Kim D-S. The duality of geodesic Voronoi/Delaunay diagrams for an intrinsic discrete Laplace–Beltrami operator on simplicial surfaces. In: Proceedings of the 26th Canadian conference on computational geometry, CCCG’14. 2014. – reference: Frey P, Borouchaki H. Surface mesh evaluation. In: 6th International meshing roundtable. 1997. p. 363–74. – ident: 10.1016/j.cad.2014.08.023_br000125 doi: 10.1145/2448196.2448221 – volume: 30 start-page: 509 year: 1977 ident: 10.1016/j.cad.2014.08.023_br000165 article-title: Riemannian center of mass and mollifier smoothing publication-title: Comm Pure Appl Math doi: 10.1002/cpa.3160300502 – year: 1976 ident: 10.1016/j.cad.2014.08.023_br000070 – volume: 32 start-page: 170:1 issue: 6 year: 2013 ident: 10.1016/j.cad.2014.08.023_br000115 article-title: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem publication-title: ACM Trans Graph doi: 10.1145/2508363.2508379 – volume: 17 start-page: 345 issue: 3 year: 2011 ident: 10.1016/j.cad.2014.08.023_br000055 article-title: GPU-assisted computation of centroidal Voronoi tessellation publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2010.53 – volume: 29 start-page: 1507 issue: 5 year: 2010 ident: 10.1016/j.cad.2014.08.023_br000175 article-title: Barycentric coordinates on surfaces publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2010.01759.x – volume: 41 start-page: 637 issue: 4 year: 1999 ident: 10.1016/j.cad.2014.08.023_br000005 article-title: Centroidal Voronoi tessellations: applications and algorithms publication-title: SIAM Rev doi: 10.1137/S0036144599352836 – volume: 45 start-page: 463 issue: 2 year: 2013 ident: 10.1016/j.cad.2014.08.023_br000015 article-title: GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space publication-title: Comput-Aided Des doi: 10.1016/j.cad.2012.10.029 – volume: 33 start-page: 9:1 issue: 1 year: 2014 ident: 10.1016/j.cad.2014.08.023_br000110 article-title: Parallel Chen–Han (PCH) algorithm for discrete geodesics publication-title: ACM Trans Graph doi: 10.1145/2534161 – ident: 10.1016/j.cad.2014.08.023_br000155 doi: 10.1111/j.1467-8659.2008.01279.x – volume: 16 start-page: 647 issue: 4 year: 1987 ident: 10.1016/j.cad.2014.08.023_br000080 article-title: The discrete geodesic problem publication-title: SIAM J Comput doi: 10.1137/0216045 – volume: 19 start-page: 1425 issue: 9 year: 2013 ident: 10.1016/j.cad.2014.08.023_br000130 article-title: An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2013.63 – ident: 10.1016/j.cad.2014.08.023_br000085 doi: 10.1145/98524.98601 – volume: 7 start-page: 365 issue: 4 year: 1997 ident: 10.1016/j.cad.2014.08.023_br000145 article-title: Triangulating topological spaces publication-title: Internat J Comput Geom Appl doi: 10.1142/S0218195997000223 – ident: 10.1016/j.cad.2014.08.023_br000195 doi: 10.1007/978-3-642-13411-1_18 – volume: 28 start-page: 475 issue: 8 year: 2011 ident: 10.1016/j.cad.2014.08.023_br000050 article-title: Centroidal Voronoi tessellation in universal covering space of manifold surfaces publication-title: Comput Aided Geom Des doi: 10.1016/j.cagd.2011.06.005 – start-page: 273 year: 1984 ident: 10.1016/j.cad.2014.08.023_br000185 article-title: A fast Voronoi-diagram algorithm with applications to geographical optimization problems – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.cad.2014.08.023_br000030 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 67 start-page: 204 issue: 3 year: 2005 ident: 10.1016/j.cad.2014.08.023_br000045 article-title: Centroidal Voronoi diagrams for isotropic surface remeshing publication-title: Graph Models doi: 10.1016/j.gmod.2004.06.007 – ident: 10.1016/j.cad.2014.08.023_br000020 doi: 10.1145/10515.10549 – volume: 25 start-page: 127 issue: 1 year: 2006 ident: 10.1016/j.cad.2014.08.023_br000170 article-title: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements publication-title: J Math Imaging Vision doi: 10.1007/s10851-006-6228-4 – volume: 29 start-page: 297 issue: 3 year: 2003 ident: 10.1016/j.cad.2014.08.023_br000180 article-title: An adaptive numerical cubature algorithm for simplices publication-title: ACM Trans Math Software doi: 10.1145/838250.838254 – ident: 10.1016/j.cad.2014.08.023_br000190 – volume: 28 start-page: 1445 issue: 5 year: 2009 ident: 10.1016/j.cad.2014.08.023_br000010 article-title: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2009.01521.x – volume: 33 start-page: 1502 issue: 8 year: 2011 ident: 10.1016/j.cad.2014.08.023_br000135 article-title: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.221 – ident: 10.1016/j.cad.2014.08.023_br000150 – ident: 10.1016/j.cad.2014.08.023_br000025 doi: 10.1109/SFCS.1975.8 – volume: 23 start-page: 949 issue: 8 year: 2004 ident: 10.1016/j.cad.2014.08.023_br000060 article-title: Genus zero surface conformal mapping and its application to brain surface mapping publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.831226 – volume: 113 start-page: 132 issue: 4 year: 2013 ident: 10.1016/j.cad.2014.08.023_br000140 article-title: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces publication-title: Inform Process Lett doi: 10.1016/j.ipl.2012.12.010 – ident: 10.1016/j.cad.2014.08.023_br000040 doi: 10.1109/SMI.2003.1199601 – volume: 23 start-page: 661 issue: 9–11 year: 2007 ident: 10.1016/j.cad.2014.08.023_br000095 article-title: Handling degenerate cases in exact geodesic computation on triangle meshes publication-title: Vis Comput doi: 10.1007/s00371-007-0136-5 – volume: 45 start-page: 695 issue: 3 year: 2013 ident: 10.1016/j.cad.2014.08.023_br000100 article-title: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures publication-title: Comput-Aided Des doi: 10.1016/j.cad.2012.11.005 – volume: 28 start-page: 101:1 issue: 4 year: 2009 ident: 10.1016/j.cad.2014.08.023_br000035 article-title: On centroidal Voronoi tessellation—energy smoothness and fast computation publication-title: ACM Trans Graph doi: 10.1145/1559755.1559758 – volume: 28 start-page: 104:1 issue: 4 year: 2009 ident: 10.1016/j.cad.2014.08.023_br000105 article-title: Improving Chen and Han’s algorithm on the discrete geodesic problem publication-title: ACM Trans Graph doi: 10.1145/1559755.1559761 – ident: 10.1016/j.cad.2014.08.023_br000065 doi: 10.1007/978-3-642-33573-0_21 – volume: 24 start-page: 553 issue: 3 year: 2005 ident: 10.1016/j.cad.2014.08.023_br000090 article-title: Fast exact and approximate geodesics on meshes publication-title: ACM Trans Graph doi: 10.1145/1073204.1073228 – start-page: 8431 year: 1998 ident: 10.1016/j.cad.2014.08.023_br000075 article-title: Computing geodesic paths on manifolds publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.15.8431 – volume: 25 start-page: 605 issue: 3 year: 2006 ident: 10.1016/j.cad.2014.08.023_br000120 article-title: Interactive decal compositing with discrete exponential maps publication-title: ACM Trans Graph doi: 10.1145/1141911.1141930 – volume: 61 start-page: 371 issue: 2 year: 1990 ident: 10.1016/j.cad.2014.08.023_br000160 article-title: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence publication-title: Proc Lond Math Soc doi: 10.1112/plms/s3-61.2.371 |
SSID | ssj0002139 |
Score | 2.38679 |
Snippet | Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 51 |
SubjectTerms | Algorithms Center of mass Centroidal Voronoi tessellation (CVT) Computation Discrete geodesics Exponential map Finite element method Mathematical models Parametrization Riemannian center Tessellation The L-BFGS method Topology Voronoi diagram |
Title | Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes |
URI | https://dx.doi.org/10.1016/j.cad.2014.08.023 https://www.proquest.com/docview/1642325039 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL3ouNGF-MTxRQUXKlSbRx9ZyuAwKrhScReSJsERbcUZt367N2k7qKALd21JQjlNTk6am3MBDhNiTM5LEQuV6RhnPBUrqosY2bIocWDmXIcA2ZtsdMevHtKHORh0Z2F8WGXL_Q2nB7Zun5y1aJ69jsf-jC8uJTgqBh50Cp-HBcpElvZg4fzyenQzI2RKWKOCkXJ8hW5zM4R5lcr7hRIejDwp-216-kHUYfYZrsByKxuj8-bNVmHOVmuw9MVMcB1Gl9UUrxD1qAypGgLmUe2iEIBZjw02cO8NC-px5AWmj3sKRY4G97fHEV682MmjnWzA3fDidjCK2zwJcYngTuPMIayc5E6olGQWhy1qssIl1BhVplluhLCOGpaVTmTcCc2MKQplOCVOWabZJvSqurJbEHHsWIQ4RjVh3pteaX_Ig-Y5AqwdT_qQdPDIsjUR97ksnmUXLfYkEVHpEZU-vyVlfTiZVXltHDT-Ksw7zOW3biCR4f-qdtB9H4nDw-95qMrW7xOJq0HUjGnCxPb_mt6BRbxLm78uu9Cbvr3bPdQhU70P86cfZL_tbZ9EItpi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwGA3jeFAP4orjWsGDCnWapdtRBodxPY3iLSRNghVtxalXf7tf0tYNnIO30iahvCYvL83L9yF0EGClYpalfioi6cOMJ3xBZOIDWyYZDMyYSWeQvYlGt-ziPrzvoEF7FsbaKhvurzndsXVzp9-g2X_Jc3vGF5YSDBQDczqFzaBZFtLY-vpO3r98HgTTWgMD4dji7damM3llwkYLxcyF8ST0r8npF027uWe4hBYb0eid1u-1jDq6WEEL30IJrqLReVHBFWDuZS5Rg0PcK43n7JdlrqCBOxuuoMw9Ky-t68kVORzcjY88uHjWkwc9WUO3w7PxYOQ3WRL8DKCt_MgAqAzHJhUhjjQMWlBkiQmIUiILo1ilqTZE0SgzacRMKqlSSSIUI9gITSVdR92iLPQG8hh0K4wNJRJTG5leSHvEg8QxwCsNC3ooaOHhWRNC3GayeOKtV-yRA6LcIsptdktCe-j4s8pLHT9jWmHWYs5_dAIO_D6t2n77fTgMDrvjIQpdvk04rAVBMYYBTTf_1_QemhuNr6_41fnN5Raahydh_f9lG3Wr1ze9A4qkkruux30AFq3bLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+computation+of+centroidal+Voronoi+tessellation+%28CVT%29+on+meshes&rft.jtitle=Computer+aided+design&rft.au=Wang%2C+Xiaoning&rft.au=Ying%2C+Xiang&rft.au=Liu%2C+Yong-Jin&rft.au=Xin%2C+Shi-Qing&rft.date=2015-01-01&rft.issn=0010-4485&rft.volume=58&rft.spage=51&rft.epage=61&rft_id=info:doi/10.1016%2Fj.cad.2014.08.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |