Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes

Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 58; pp. 51 - 61
Main Authors Wang, Xiaoning, Ying, Xiang, Liu, Yong-Jin, Xin, Shi-Qing, Wang, Wenping, Gu, Xianfeng, Mueller-Wittig, Wolfgang, He, Ying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2014.08.023

Cover

Abstract Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method. •We propose two intrinsic methods for computing centroidal Voronoi tessellation (CVT) on triangle meshes.•Thanks to their intrinsic nature, our methods compute CVT using metric only.•Our results are independent of the embedding space.
AbstractList Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method.
Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the surface). Therefore, these approaches often fail on models with complicated geometry and/or topology. This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram to its mass center. Based on the discrete exponential map, our method can efficiently compute the Riemannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods are independent of the embedding space, and work well for models with arbitrary topology and complicated geometry, where the existing extrinsic approaches often fail. The promising experimental results show the advantages of our method. •We propose two intrinsic methods for computing centroidal Voronoi tessellation (CVT) on triangle meshes.•Thanks to their intrinsic nature, our methods compute CVT using metric only.•Our results are independent of the embedding space.
Author Wang, Wenping
Mueller-Wittig, Wolfgang
Ying, Xiang
Liu, Yong-Jin
He, Ying
Gu, Xianfeng
Xin, Shi-Qing
Wang, Xiaoning
Author_xml – sequence: 1
  givenname: Xiaoning
  surname: Wang
  fullname: Wang, Xiaoning
  email: WANG0684@e.ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Xiang
  surname: Ying
  fullname: Ying, Xiang
  email: yingxiang@ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Yong-Jin
  surname: Liu
  fullname: Liu, Yong-Jin
  email: liuyongjin@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Shi-Qing
  surname: Xin
  fullname: Xin, Shi-Qing
  email: xinshiqing@nbu.edu.cn
  organization: Faculty of Information Science and Engineering, Ningbo University, Zhejiang, China
– sequence: 5
  givenname: Wenping
  surname: Wang
  fullname: Wang, Wenping
  email: wenping@cs.hku.hk
  organization: Department of Computer Science, Hong Kong University, Hong Kong, China
– sequence: 6
  givenname: Xianfeng
  surname: Gu
  fullname: Gu, Xianfeng
  email: gu@cs.sunysb.edu
  organization: Department of Computer Science, Stony Brook University, New York, USA
– sequence: 7
  givenname: Wolfgang
  surname: Mueller-Wittig
  fullname: Mueller-Wittig, Wolfgang
  email: wolfgang.mueller-wittig@fraunhofer.sg
  organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore
– sequence: 8
  givenname: Ying
  surname: He
  fullname: He, Ying
  email: yhe@ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological University, Singapore
BookMark eNp9kD1PwzAQhi1UJNrCD2DLWIaE80fSWEyoAlqpEkvparn2WbhK42KnSPx7UoWJodOddO9zunsmZNSGFgm5p1BQoNXjvjDaFgyoKKAugPErMqb1XOasqssRGQNQyIWoyxsySWkPAIxyOSbLVdtF3yZvMhMOx1OnOx_aLLjMYD8J3uom24YY2uCzDlPCphkis8V285D1zQHTJ6Zbcu10k_Dur07Jx-vLZrHM1-9vq8XzOjeCyy6vXG2EoHMndUkrBA68v9ABs1absppbKdExyyvjZCWc3HFr61pbwajTyHd8SmbD3mMMXydMnTr4ZM5XtRhOSdFKMM5K4LKP0iFqYkgpolPH6A86_igK6mxN7VVvTZ2tKahVb61n5v8Y4wcnXdS-uUg-DST23397jCoZj61B6yOaTtngL9C_aTGJMw
CitedBy_id crossref_primary_10_1016_j_cad_2021_103166
crossref_primary_10_1002_cpe_8018
crossref_primary_10_3390_app12041831
crossref_primary_10_1109_TVCG_2015_2505279
crossref_primary_10_1145_3658152
crossref_primary_10_1007_s41095_016_0057_1
crossref_primary_10_1016_j_cagd_2020_101848
crossref_primary_10_1109_TVCG_2018_2837115
crossref_primary_10_1155_2020_4383915
crossref_primary_10_2139_ssrn_4177990
crossref_primary_10_1007_s41095_022_0326_0
crossref_primary_10_1007_s00366_023_01928_2
crossref_primary_10_1111_cgf_14897
crossref_primary_10_1109_TVCG_2016_2621763
crossref_primary_10_1109_TVCG_2022_3209473
crossref_primary_10_3390_math11173763
crossref_primary_10_1016_j_finel_2022_103905
crossref_primary_10_1016_j_proeng_2016_11_026
crossref_primary_10_1145_3130800_3130819
crossref_primary_10_1111_cgf_13329
crossref_primary_10_1016_j_proeng_2016_11_047
crossref_primary_10_1007_s41095_015_0022_4
crossref_primary_10_1016_j_gmod_2025_101258
crossref_primary_10_1111_cgf_13929
crossref_primary_10_1007_s11042_016_3478_z
crossref_primary_10_1080_17452759_2023_2285392
crossref_primary_10_1016_j_gmod_2021_101111
crossref_primary_10_1145_3272127_3275072
crossref_primary_10_1016_j_cad_2022_103333
crossref_primary_10_1016_j_cad_2023_103511
crossref_primary_10_1007_s00170_022_10585_6
crossref_primary_10_3390_pr10030464
crossref_primary_10_1007_s10878_021_00775_5
crossref_primary_10_1109_TPAMI_2022_3185644
crossref_primary_10_1145_2980179_2982424
crossref_primary_10_1145_3478513_3480554
crossref_primary_10_1007_s11081_020_09552_5
crossref_primary_10_1109_TVCG_2020_3016645
crossref_primary_10_1016_j_cag_2019_05_019
crossref_primary_10_3390_math8060946
crossref_primary_10_1007_s00170_019_03676_4
crossref_primary_10_1145_3550454_3555453
crossref_primary_10_1007_s41095_018_0107_y
crossref_primary_10_1111_cgf_13116
crossref_primary_10_1016_j_cagd_2023_102216
crossref_primary_10_1016_j_addma_2024_104048
Cites_doi 10.1145/2448196.2448221
10.1002/cpa.3160300502
10.1145/2508363.2508379
10.1109/TVCG.2010.53
10.1111/j.1467-8659.2010.01759.x
10.1137/S0036144599352836
10.1016/j.cad.2012.10.029
10.1145/2534161
10.1111/j.1467-8659.2008.01279.x
10.1137/0216045
10.1109/TVCG.2013.63
10.1145/98524.98601
10.1142/S0218195997000223
10.1007/978-3-642-13411-1_18
10.1016/j.cagd.2011.06.005
10.1109/TIT.1982.1056489
10.1016/j.gmod.2004.06.007
10.1145/10515.10549
10.1007/s10851-006-6228-4
10.1145/838250.838254
10.1111/j.1467-8659.2009.01521.x
10.1109/TPAMI.2010.221
10.1109/SFCS.1975.8
10.1109/TMI.2004.831226
10.1016/j.ipl.2012.12.010
10.1109/SMI.2003.1199601
10.1007/s00371-007-0136-5
10.1016/j.cad.2012.11.005
10.1145/1559755.1559758
10.1145/1559755.1559761
10.1007/978-3-642-33573-0_21
10.1145/1073204.1073228
10.1073/pnas.95.15.8431
10.1145/1141911.1141930
10.1112/plms/s3-61.2.371
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2014.08.023
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 61
ExternalDocumentID 10_1016_j_cad_2014_08_023
S0010448514001924
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c439t-6f8c4417f9a516e0303268f02ddac567d99ef2d36cf964f9b3dd88ad421fae3b3
IEDL.DBID AIKHN
ISSN 0010-4485
IngestDate Fri Sep 05 08:21:19 EDT 2025
Tue Jul 01 05:02:54 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Exponential map
Voronoi diagram
Centroidal Voronoi tessellation (CVT)
Riemannian center
The L-BFGS method
Discrete geodesics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-6f8c4417f9a516e0303268f02ddac567d99ef2d36cf964f9b3dd88ad421fae3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010448514001924
PQID 1642325039
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1642325039
crossref_primary_10_1016_j_cad_2014_08_023
crossref_citationtrail_10_1016_j_cad_2014_08_023
elsevier_sciencedirect_doi_10_1016_j_cad_2014_08_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Computer aided design
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kimmel, Sethian (br000075) 1998
Ying, Wang, He (br000115) 2013; 32
Iri, Murota, Ohya (br000185) 1984
Lloyd (br000030) 1982; 28
Rustamov (br000175) 2010; 29
Liu Y-J, Xu C-X, He Y, Kim D-S. The duality of geodesic Voronoi/Delaunay diagrams for an intrinsic discrete Laplace–Beltrami operator on simplicial surfaces. In: Proceedings of the 26th Canadian conference on computational geometry, CCCG’14. 2014.
Dyer R, Zhang H, Moller T. Surface sampling and the intrinsic Voronoi diagram. In: Proceedings of the symposium on geometry processing. 2008. p. 1393–402.
Liu, Chen, Tang (br000135) 2011; 33
Shamos M, Hoey D. Closest-point problems. In: Proc. 16th annu. IEEE sympos. found. comput. sci., 1975. p. 151–62.
Chen J, Han Y. Shortest paths on a polyhedron. In: SCG’90. 1990. p. 360–9.
Karcher (br000165) 1977; 30
Du, Faber, Gunzburger (br000005) 1999; 41
Surazhsky, Surazhsky, Kirsanov, Gortler, Hoppe (br000090) 2005; 24
Pennec (br000170) 2006; 25
Genz, Cools (br000180) 2003; 29
Fortune S. A sweepline algorithm for Voronoi diagrams. In: Proceedings of symposium on computational geometry, SCG’86. 1986. p. 313–22.
Liu, Wang, Lévy, Sun, Yan, Lu, Yang (br000035) 2009; 28
Gu, Wang, Chan, Thompson, Yau (br000060) 2004; 23
Alliez P, de Verdière ÉC, Devillers O, Isenburg M, Isotropic surface remeshing. In: Shape modeling international. 2003. pp. 49–58.
Shuai, Guo, Jin (br000015) 2013; 45
Xin, Wang (br000105) 2009; 28
Rong, Liu, Wang, Yin, Gu, Guo (br000055) 2011; 17
Lévy B, Bonneel N. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st international meshing roundtable. 2013. p. 349–66.
Edelsbrunner, Shah (br000145) 1997; 7
Liu, Tang (br000140) 2013; 113
Ying, Xin, He (br000110) 2014; 33
Ying, Xin, Sun, He (br000130) 2013; 19
Liu (br000100) 2013; 45
Liu, Zhou, Hu (br000095) 2007; 23
Schmidt, Grimm, Wyvill (br000120) 2006; 25
Yan, Lévy, Liu, Sun, Wang (br000010) 2009; 28
Frey P, Borouchaki H. Surface mesh evaluation. In: 6th International meshing roundtable. 1997. p. 363–74.
do Carmo (br000070) 1976
Rong, Jin, Shuai, Guo (br000050) 2011; 28
Alliez, de Verdière, Devillers, Isenburg (br000045) 2005; 67
Kendall (br000160) 1990; 61
Mitchell, Mount, Papadimitriou (br000080) 1987; 16
Yan D-M, Wang W, Lévy B, Liu Y. Efficient computation of 3d clipped Voronoi diagram. In: Geometric modeling and processing, GMP. 2010. p. 269–82.
Sun Q, Zhang L, Zhang M, Ying X, Xin S-Q, Xia J, He Y. Texture brush: an interactive surface texturing interface. In: ACM Symposium on interactive 3D graphics and games, I3D’13. 2013. p. 153–60.
Rustamov (10.1016/j.cad.2014.08.023_br000175) 2010; 29
Kendall (10.1016/j.cad.2014.08.023_br000160) 1990; 61
Rong (10.1016/j.cad.2014.08.023_br000055) 2011; 17
Lloyd (10.1016/j.cad.2014.08.023_br000030) 1982; 28
10.1016/j.cad.2014.08.023_br000040
10.1016/j.cad.2014.08.023_br000020
Mitchell (10.1016/j.cad.2014.08.023_br000080) 1987; 16
10.1016/j.cad.2014.08.023_br000085
do Carmo (10.1016/j.cad.2014.08.023_br000070) 1976
Liu (10.1016/j.cad.2014.08.023_br000035) 2009; 28
10.1016/j.cad.2014.08.023_br000065
10.1016/j.cad.2014.08.023_br000155
Ying (10.1016/j.cad.2014.08.023_br000110) 2014; 33
Rong (10.1016/j.cad.2014.08.023_br000050) 2011; 28
Pennec (10.1016/j.cad.2014.08.023_br000170) 2006; 25
Liu (10.1016/j.cad.2014.08.023_br000140) 2013; 113
Liu (10.1016/j.cad.2014.08.023_br000100) 2013; 45
Xin (10.1016/j.cad.2014.08.023_br000105) 2009; 28
Genz (10.1016/j.cad.2014.08.023_br000180) 2003; 29
Iri (10.1016/j.cad.2014.08.023_br000185) 1984
10.1016/j.cad.2014.08.023_br000190
Karcher (10.1016/j.cad.2014.08.023_br000165) 1977; 30
Surazhsky (10.1016/j.cad.2014.08.023_br000090) 2005; 24
Alliez (10.1016/j.cad.2014.08.023_br000045) 2005; 67
Schmidt (10.1016/j.cad.2014.08.023_br000120) 2006; 25
10.1016/j.cad.2014.08.023_br000150
10.1016/j.cad.2014.08.023_br000195
Yan (10.1016/j.cad.2014.08.023_br000010) 2009; 28
Liu (10.1016/j.cad.2014.08.023_br000095) 2007; 23
Ying (10.1016/j.cad.2014.08.023_br000115) 2013; 32
Liu (10.1016/j.cad.2014.08.023_br000135) 2011; 33
10.1016/j.cad.2014.08.023_br000125
Shuai (10.1016/j.cad.2014.08.023_br000015) 2013; 45
10.1016/j.cad.2014.08.023_br000025
Kimmel (10.1016/j.cad.2014.08.023_br000075) 1998
Gu (10.1016/j.cad.2014.08.023_br000060) 2004; 23
Ying (10.1016/j.cad.2014.08.023_br000130) 2013; 19
Du (10.1016/j.cad.2014.08.023_br000005) 1999; 41
Edelsbrunner (10.1016/j.cad.2014.08.023_br000145) 1997; 7
References_xml – reference: Sun Q, Zhang L, Zhang M, Ying X, Xin S-Q, Xia J, He Y. Texture brush: an interactive surface texturing interface. In: ACM Symposium on interactive 3D graphics and games, I3D’13. 2013. p. 153–60.
– volume: 67
  start-page: 204
  year: 2005
  end-page: 231
  ident: br000045
  article-title: Centroidal Voronoi diagrams for isotropic surface remeshing
  publication-title: Graph Models
– volume: 23
  start-page: 949
  year: 2004
  end-page: 958
  ident: br000060
  article-title: Genus zero surface conformal mapping and its application to brain surface mapping
  publication-title: IEEE Trans Med Imaging
– reference: Yan D-M, Wang W, Lévy B, Liu Y. Efficient computation of 3d clipped Voronoi diagram. In: Geometric modeling and processing, GMP. 2010. p. 269–82.
– volume: 28
  start-page: 1445
  year: 2009
  end-page: 1454
  ident: br000010
  article-title: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram
  publication-title: Comput Graph Forum
– volume: 28
  start-page: 101:1
  year: 2009
  end-page: 101:17
  ident: br000035
  article-title: On centroidal Voronoi tessellation—energy smoothness and fast computation
  publication-title: ACM Trans Graph
– reference: Dyer R, Zhang H, Moller T. Surface sampling and the intrinsic Voronoi diagram. In: Proceedings of the symposium on geometry processing. 2008. p. 1393–402.
– reference: Lévy B, Bonneel N. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st international meshing roundtable. 2013. p. 349–66.
– volume: 7
  start-page: 365
  year: 1997
  end-page: 378
  ident: br000145
  article-title: Triangulating topological spaces
  publication-title: Internat J Comput Geom Appl
– volume: 24
  start-page: 553
  year: 2005
  end-page: 560
  ident: br000090
  article-title: Fast exact and approximate geodesics on meshes
  publication-title: ACM Trans Graph
– volume: 41
  start-page: 637
  year: 1999
  end-page: 676
  ident: br000005
  article-title: Centroidal Voronoi tessellations: applications and algorithms
  publication-title: SIAM Rev
– volume: 23
  start-page: 661
  year: 2007
  end-page: 668
  ident: br000095
  article-title: Handling degenerate cases in exact geodesic computation on triangle meshes
  publication-title: Vis Comput
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: br000030
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
– volume: 32
  start-page: 170:1
  year: 2013
  end-page: 170:12
  ident: br000115
  article-title: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem
  publication-title: ACM Trans Graph
– start-page: 8431
  year: 1998
  end-page: 8435
  ident: br000075
  article-title: Computing geodesic paths on manifolds
  publication-title: Proc Natl Acad Sci USA
– reference: Alliez P, de Verdière ÉC, Devillers O, Isenburg M, Isotropic surface remeshing. In: Shape modeling international. 2003. pp. 49–58.
– volume: 28
  start-page: 104:1
  year: 2009
  end-page: 104:8
  ident: br000105
  article-title: Improving Chen and Han’s algorithm on the discrete geodesic problem
  publication-title: ACM Trans Graph
– volume: 29
  start-page: 297
  year: 2003
  end-page: 308
  ident: br000180
  article-title: An adaptive numerical cubature algorithm for simplices
  publication-title: ACM Trans Math Software
– volume: 113
  start-page: 132
  year: 2013
  end-page: 136
  ident: br000140
  article-title: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces
  publication-title: Inform Process Lett
– year: 1976
  ident: br000070
  article-title: Differential geometry of curves and surfaces
– volume: 28
  start-page: 475
  year: 2011
  end-page: 496
  ident: br000050
  article-title: Centroidal Voronoi tessellation in universal covering space of manifold surfaces
  publication-title: Comput Aided Geom Des
– volume: 25
  start-page: 127
  year: 2006
  end-page: 154
  ident: br000170
  article-title: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements
  publication-title: J Math Imaging Vision
– reference: Fortune S. A sweepline algorithm for Voronoi diagrams. In: Proceedings of symposium on computational geometry, SCG’86. 1986. p. 313–22.
– volume: 16
  start-page: 647
  year: 1987
  end-page: 668
  ident: br000080
  article-title: The discrete geodesic problem
  publication-title: SIAM J Comput
– volume: 25
  start-page: 605
  year: 2006
  end-page: 613
  ident: br000120
  article-title: Interactive decal compositing with discrete exponential maps
  publication-title: ACM Trans Graph
– volume: 17
  start-page: 345
  year: 2011
  end-page: 356
  ident: br000055
  article-title: GPU-assisted computation of centroidal Voronoi tessellation
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 19
  start-page: 1425
  year: 2013
  end-page: 1437
  ident: br000130
  article-title: An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces
  publication-title: IEEE Trans Vis Comput Graphics
– reference: Chen J, Han Y. Shortest paths on a polyhedron. In: SCG’90. 1990. p. 360–9.
– volume: 45
  start-page: 695
  year: 2013
  end-page: 704
  ident: br000100
  article-title: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures
  publication-title: Comput-Aided Des
– reference: Shamos M, Hoey D. Closest-point problems. In: Proc. 16th annu. IEEE sympos. found. comput. sci., 1975. p. 151–62.
– volume: 33
  start-page: 1502
  year: 2011
  end-page: 1517
  ident: br000135
  article-title: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 30
  start-page: 509
  year: 1977
  end-page: 541
  ident: br000165
  article-title: Riemannian center of mass and mollifier smoothing
  publication-title: Comm Pure Appl Math
– volume: 33
  start-page: 9:1
  year: 2014
  end-page: 9:11
  ident: br000110
  article-title: Parallel Chen–Han (PCH) algorithm for discrete geodesics
  publication-title: ACM Trans Graph
– volume: 45
  start-page: 463
  year: 2013
  end-page: 472
  ident: br000015
  article-title: GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space
  publication-title: Comput-Aided Des
– volume: 61
  start-page: 371
  year: 1990
  end-page: 406
  ident: br000160
  article-title: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence
  publication-title: Proc Lond Math Soc
– volume: 29
  start-page: 1507
  year: 2010
  end-page: 1516
  ident: br000175
  article-title: Barycentric coordinates on surfaces
  publication-title: Comput Graph Forum
– start-page: 273
  year: 1984
  end-page: 288
  ident: br000185
  article-title: A fast Voronoi-diagram algorithm with applications to geographical optimization problems
  publication-title: System modelling and optimization
– reference: Liu Y-J, Xu C-X, He Y, Kim D-S. The duality of geodesic Voronoi/Delaunay diagrams for an intrinsic discrete Laplace–Beltrami operator on simplicial surfaces. In: Proceedings of the 26th Canadian conference on computational geometry, CCCG’14. 2014.
– reference: Frey P, Borouchaki H. Surface mesh evaluation. In: 6th International meshing roundtable. 1997. p. 363–74.
– ident: 10.1016/j.cad.2014.08.023_br000125
  doi: 10.1145/2448196.2448221
– volume: 30
  start-page: 509
  year: 1977
  ident: 10.1016/j.cad.2014.08.023_br000165
  article-title: Riemannian center of mass and mollifier smoothing
  publication-title: Comm Pure Appl Math
  doi: 10.1002/cpa.3160300502
– year: 1976
  ident: 10.1016/j.cad.2014.08.023_br000070
– volume: 32
  start-page: 170:1
  issue: 6
  year: 2013
  ident: 10.1016/j.cad.2014.08.023_br000115
  article-title: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem
  publication-title: ACM Trans Graph
  doi: 10.1145/2508363.2508379
– volume: 17
  start-page: 345
  issue: 3
  year: 2011
  ident: 10.1016/j.cad.2014.08.023_br000055
  article-title: GPU-assisted computation of centroidal Voronoi tessellation
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2010.53
– volume: 29
  start-page: 1507
  issue: 5
  year: 2010
  ident: 10.1016/j.cad.2014.08.023_br000175
  article-title: Barycentric coordinates on surfaces
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2010.01759.x
– volume: 41
  start-page: 637
  issue: 4
  year: 1999
  ident: 10.1016/j.cad.2014.08.023_br000005
  article-title: Centroidal Voronoi tessellations: applications and algorithms
  publication-title: SIAM Rev
  doi: 10.1137/S0036144599352836
– volume: 45
  start-page: 463
  issue: 2
  year: 2013
  ident: 10.1016/j.cad.2014.08.023_br000015
  article-title: GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2012.10.029
– volume: 33
  start-page: 9:1
  issue: 1
  year: 2014
  ident: 10.1016/j.cad.2014.08.023_br000110
  article-title: Parallel Chen–Han (PCH) algorithm for discrete geodesics
  publication-title: ACM Trans Graph
  doi: 10.1145/2534161
– ident: 10.1016/j.cad.2014.08.023_br000155
  doi: 10.1111/j.1467-8659.2008.01279.x
– volume: 16
  start-page: 647
  issue: 4
  year: 1987
  ident: 10.1016/j.cad.2014.08.023_br000080
  article-title: The discrete geodesic problem
  publication-title: SIAM J Comput
  doi: 10.1137/0216045
– volume: 19
  start-page: 1425
  issue: 9
  year: 2013
  ident: 10.1016/j.cad.2014.08.023_br000130
  article-title: An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2013.63
– ident: 10.1016/j.cad.2014.08.023_br000085
  doi: 10.1145/98524.98601
– volume: 7
  start-page: 365
  issue: 4
  year: 1997
  ident: 10.1016/j.cad.2014.08.023_br000145
  article-title: Triangulating topological spaces
  publication-title: Internat J Comput Geom Appl
  doi: 10.1142/S0218195997000223
– ident: 10.1016/j.cad.2014.08.023_br000195
  doi: 10.1007/978-3-642-13411-1_18
– volume: 28
  start-page: 475
  issue: 8
  year: 2011
  ident: 10.1016/j.cad.2014.08.023_br000050
  article-title: Centroidal Voronoi tessellation in universal covering space of manifold surfaces
  publication-title: Comput Aided Geom Des
  doi: 10.1016/j.cagd.2011.06.005
– start-page: 273
  year: 1984
  ident: 10.1016/j.cad.2014.08.023_br000185
  article-title: A fast Voronoi-diagram algorithm with applications to geographical optimization problems
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.cad.2014.08.023_br000030
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 67
  start-page: 204
  issue: 3
  year: 2005
  ident: 10.1016/j.cad.2014.08.023_br000045
  article-title: Centroidal Voronoi diagrams for isotropic surface remeshing
  publication-title: Graph Models
  doi: 10.1016/j.gmod.2004.06.007
– ident: 10.1016/j.cad.2014.08.023_br000020
  doi: 10.1145/10515.10549
– volume: 25
  start-page: 127
  issue: 1
  year: 2006
  ident: 10.1016/j.cad.2014.08.023_br000170
  article-title: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements
  publication-title: J Math Imaging Vision
  doi: 10.1007/s10851-006-6228-4
– volume: 29
  start-page: 297
  issue: 3
  year: 2003
  ident: 10.1016/j.cad.2014.08.023_br000180
  article-title: An adaptive numerical cubature algorithm for simplices
  publication-title: ACM Trans Math Software
  doi: 10.1145/838250.838254
– ident: 10.1016/j.cad.2014.08.023_br000190
– volume: 28
  start-page: 1445
  issue: 5
  year: 2009
  ident: 10.1016/j.cad.2014.08.023_br000010
  article-title: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2009.01521.x
– volume: 33
  start-page: 1502
  issue: 8
  year: 2011
  ident: 10.1016/j.cad.2014.08.023_br000135
  article-title: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.221
– ident: 10.1016/j.cad.2014.08.023_br000150
– ident: 10.1016/j.cad.2014.08.023_br000025
  doi: 10.1109/SFCS.1975.8
– volume: 23
  start-page: 949
  issue: 8
  year: 2004
  ident: 10.1016/j.cad.2014.08.023_br000060
  article-title: Genus zero surface conformal mapping and its application to brain surface mapping
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.831226
– volume: 113
  start-page: 132
  issue: 4
  year: 2013
  ident: 10.1016/j.cad.2014.08.023_br000140
  article-title: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces
  publication-title: Inform Process Lett
  doi: 10.1016/j.ipl.2012.12.010
– ident: 10.1016/j.cad.2014.08.023_br000040
  doi: 10.1109/SMI.2003.1199601
– volume: 23
  start-page: 661
  issue: 9–11
  year: 2007
  ident: 10.1016/j.cad.2014.08.023_br000095
  article-title: Handling degenerate cases in exact geodesic computation on triangle meshes
  publication-title: Vis Comput
  doi: 10.1007/s00371-007-0136-5
– volume: 45
  start-page: 695
  issue: 3
  year: 2013
  ident: 10.1016/j.cad.2014.08.023_br000100
  article-title: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2012.11.005
– volume: 28
  start-page: 101:1
  issue: 4
  year: 2009
  ident: 10.1016/j.cad.2014.08.023_br000035
  article-title: On centroidal Voronoi tessellation—energy smoothness and fast computation
  publication-title: ACM Trans Graph
  doi: 10.1145/1559755.1559758
– volume: 28
  start-page: 104:1
  issue: 4
  year: 2009
  ident: 10.1016/j.cad.2014.08.023_br000105
  article-title: Improving Chen and Han’s algorithm on the discrete geodesic problem
  publication-title: ACM Trans Graph
  doi: 10.1145/1559755.1559761
– ident: 10.1016/j.cad.2014.08.023_br000065
  doi: 10.1007/978-3-642-33573-0_21
– volume: 24
  start-page: 553
  issue: 3
  year: 2005
  ident: 10.1016/j.cad.2014.08.023_br000090
  article-title: Fast exact and approximate geodesics on meshes
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073228
– start-page: 8431
  year: 1998
  ident: 10.1016/j.cad.2014.08.023_br000075
  article-title: Computing geodesic paths on manifolds
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.15.8431
– volume: 25
  start-page: 605
  issue: 3
  year: 2006
  ident: 10.1016/j.cad.2014.08.023_br000120
  article-title: Interactive decal compositing with discrete exponential maps
  publication-title: ACM Trans Graph
  doi: 10.1145/1141911.1141930
– volume: 61
  start-page: 371
  issue: 2
  year: 1990
  ident: 10.1016/j.cad.2014.08.023_br000160
  article-title: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence
  publication-title: Proc Lond Math Soc
  doi: 10.1112/plms/s3-61.2.371
SSID ssj0002139
Score 2.38679
Snippet Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Algorithms
Center of mass
Centroidal Voronoi tessellation (CVT)
Computation
Discrete geodesics
Exponential map
Finite element method
Mathematical models
Parametrization
Riemannian center
Tessellation
The L-BFGS method
Topology
Voronoi diagram
Title Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes
URI https://dx.doi.org/10.1016/j.cad.2014.08.023
https://www.proquest.com/docview/1642325039
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL3ouNGF-MTxRQUXKlSbRx9ZyuAwKrhScReSJsERbcUZt367N2k7qKALd21JQjlNTk6am3MBDhNiTM5LEQuV6RhnPBUrqosY2bIocWDmXIcA2ZtsdMevHtKHORh0Z2F8WGXL_Q2nB7Zun5y1aJ69jsf-jC8uJTgqBh50Cp-HBcpElvZg4fzyenQzI2RKWKOCkXJ8hW5zM4R5lcr7hRIejDwp-216-kHUYfYZrsByKxuj8-bNVmHOVmuw9MVMcB1Gl9UUrxD1qAypGgLmUe2iEIBZjw02cO8NC-px5AWmj3sKRY4G97fHEV682MmjnWzA3fDidjCK2zwJcYngTuPMIayc5E6olGQWhy1qssIl1BhVplluhLCOGpaVTmTcCc2MKQplOCVOWabZJvSqurJbEHHsWIQ4RjVh3pteaX_Ig-Y5AqwdT_qQdPDIsjUR97ksnmUXLfYkEVHpEZU-vyVlfTiZVXltHDT-Ksw7zOW3biCR4f-qdtB9H4nDw-95qMrW7xOJq0HUjGnCxPb_mt6BRbxLm78uu9Cbvr3bPdQhU70P86cfZL_tbZ9EItpi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwGA3jeFAP4orjWsGDCnWapdtRBodxPY3iLSRNghVtxalXf7tf0tYNnIO30iahvCYvL83L9yF0EGClYpalfioi6cOMJ3xBZOIDWyYZDMyYSWeQvYlGt-ziPrzvoEF7FsbaKhvurzndsXVzp9-g2X_Jc3vGF5YSDBQDczqFzaBZFtLY-vpO3r98HgTTWgMD4dji7damM3llwkYLxcyF8ST0r8npF027uWe4hBYb0eid1u-1jDq6WEEL30IJrqLReVHBFWDuZS5Rg0PcK43n7JdlrqCBOxuuoMw9Ky-t68kVORzcjY88uHjWkwc9WUO3w7PxYOQ3WRL8DKCt_MgAqAzHJhUhjjQMWlBkiQmIUiILo1ilqTZE0SgzacRMKqlSSSIUI9gITSVdR92iLPQG8hh0K4wNJRJTG5leSHvEg8QxwCsNC3ooaOHhWRNC3GayeOKtV-yRA6LcIsptdktCe-j4s8pLHT9jWmHWYs5_dAIO_D6t2n77fTgMDrvjIQpdvk04rAVBMYYBTTf_1_QemhuNr6_41fnN5Raahydh_f9lG3Wr1ze9A4qkkruux30AFq3bLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+computation+of+centroidal+Voronoi+tessellation+%28CVT%29+on+meshes&rft.jtitle=Computer+aided+design&rft.au=Wang%2C+Xiaoning&rft.au=Ying%2C+Xiang&rft.au=Liu%2C+Yong-Jin&rft.au=Xin%2C+Shi-Qing&rft.date=2015-01-01&rft.issn=0010-4485&rft.volume=58&rft.spage=51&rft.epage=61&rft_id=info:doi/10.1016%2Fj.cad.2014.08.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon