Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent

High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5 GPa and 1500 °C using barium boron nitride as a solvent. Secondary ion mass spectrometry was used to analyse impurities in the crystals. Fine cBN and hBN crystals, whose oxygen and carbon...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 303; no. 2; pp. 525 - 529
Main Authors Taniguchi, T., Watanabe, K.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5 GPa and 1500 °C using barium boron nitride as a solvent. Secondary ion mass spectrometry was used to analyse impurities in the crystals. Fine cBN and hBN crystals, whose oxygen and carbon concentrations were less than 10 18 atoms/cm 3, were obtained, and their band-edge optical properties were measured by cathodoluminescence spectroscopy. High-purity hBN single crystals exhibited intense ultraviolet emission, demonstrating their promise for use as deep ultraviolet-light emitters.
AbstractList High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5GPa and 1500 deg C using barium boron nitride as a solvent. Secondary ion mass spectrometry was used to analyse impurities in the crystals. Fine cBN and hBN crystals, whose oxygen and carbon concentrations were less than 1018atoms/cm3, were obtained, and their band-edge optical properties were measured by cathodoluminescence spectroscopy. High-purity hBN single crystals exhibited intense ultraviolet emission, demonstrating their promise for use as deep ultraviolet-light emitters.
High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5 GPa and 1500 °C using barium boron nitride as a solvent. Secondary ion mass spectrometry was used to analyse impurities in the crystals. Fine cBN and hBN crystals, whose oxygen and carbon concentrations were less than 10 18 atoms/cm 3, were obtained, and their band-edge optical properties were measured by cathodoluminescence spectroscopy. High-purity hBN single crystals exhibited intense ultraviolet emission, demonstrating their promise for use as deep ultraviolet-light emitters.
Author Watanabe, K.
Taniguchi, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Taniguchi
  fullname: Taniguchi, T.
  email: taniguchi.takashi@nims.go.jp
– sequence: 2
  givenname: K.
  surname: Watanabe
  fullname: Watanabe, K.
  email: watanabe.kenji.aml@nims.go.jp
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18740117$$DView record in Pascal Francis
BookMark eNqFkc9u1DAQhy3USmxbXgH5ArcE20m8icQBWvFPqsoBOFtee7zrVWovHqdSbn0H3pAnwWELh156mbl834xmfmfkJMQAhLzkrOaMyzf7em_SjNsUa8GYrLmomeTPyIr366bqGBMnZFWqqJho--fkDHHPWDE5WxHzbQ55B-iRRkd3frurDlPyeaabmGKgwefkLVD0YTsCXRZlPSKdgoX0l6eHBIhTArqZ6bRw9FL_vv91eUMxjncQ8gU5dcWBFw_9nPz4-OH71efq-uunL1fvryvTNkOuZCukbfqh1Y5bMNZqB1bLFnrXMWtswwetO7duB97wXrrBlJuE3PCOt8YJ05yT18e5hxR_ToBZ3Xo0MI46QJxQiWHo-mZYF_DVA6jR6NElHYxHdUj-VqdZlb-1jPOFe3vkTIqICZwyPuvsY8hJ-1FxppYE1F79S0AtCSguVEmg6PKR_n_DU-K7owjlW3cekkLjIRiwPoHJykb_1Ig_CvWqCQ
CODEN JCRGAE
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c00783
crossref_primary_10_1063_1_5021788
crossref_primary_10_1103_PhysRevB_111_085304
crossref_primary_10_1063_1_4803041
crossref_primary_10_2493_jjspe_76_1329
crossref_primary_10_1103_PhysRevX_8_031073
crossref_primary_10_1002_advs_202305611
crossref_primary_10_1021_acs_nanolett_1c01144
crossref_primary_10_1088_2516_1083_abd082
crossref_primary_10_1088_2053_1583_ad96c9
crossref_primary_10_1038_srep22440
crossref_primary_10_1088_2053_1591_ac4fe1
crossref_primary_10_1126_sciadv_adi1323
crossref_primary_10_1134_S0021364024603531
crossref_primary_10_1038_s42254_020_00259_1
crossref_primary_10_1063_1_2821413
crossref_primary_10_1063_1_3604012
crossref_primary_10_1038_s41699_019_0124_4
crossref_primary_10_1021_acsami_5b10370
crossref_primary_10_3390_su14074079
crossref_primary_10_1103_PhysRevMaterials_5_094003
crossref_primary_10_1021_acs_cgd_4c01713
crossref_primary_10_1063_1_5090218
crossref_primary_10_1063_5_0152721
crossref_primary_10_3390_nano12244425
crossref_primary_10_1002_pssb_202200352
crossref_primary_10_1016_j_jmrt_2022_01_170
crossref_primary_10_1103_PhysRevB_109_035424
crossref_primary_10_7566_JPSJ_84_121013
crossref_primary_10_1063_1_4872178
crossref_primary_10_1021_acs_nanolett_9b04641
crossref_primary_10_1103_PhysRevMaterials_7_L121002
crossref_primary_10_1039_C5NR01056J
crossref_primary_10_1116_1_4938157
crossref_primary_10_1088_2053_1583_ab0776
crossref_primary_10_1002_pssb_200776109
crossref_primary_10_1039_C7TC04300G
crossref_primary_10_1016_j_diamond_2016_06_010
crossref_primary_10_1038_ncomms8507
crossref_primary_10_1021_acsnano_9b06858
crossref_primary_10_1038_s42254_018_0016_0
crossref_primary_10_1177_1847980420949349
crossref_primary_10_1002_admi_202300704
crossref_primary_10_1021_acsphotonics_0c00476
crossref_primary_10_1126_sciadv_aav0129
crossref_primary_10_1021_acs_cgd_9b00712
crossref_primary_10_1021_acs_nanolett_9b00178
crossref_primary_10_3390_cryst13081201
crossref_primary_10_1016_j_xcrp_2020_100286
crossref_primary_10_1103_PhysRevMaterials_2_011001
crossref_primary_10_1038_ncomms6221
crossref_primary_10_1016_j_diamond_2011_04_002
crossref_primary_10_1021_acs_cgd_7b00871
crossref_primary_10_7567_JJAP_55_05FD09
crossref_primary_10_1088_1742_6596_2103_1_012065
crossref_primary_10_1021_acsami_0c01157
crossref_primary_10_1021_acs_nanolett_6b01341
crossref_primary_10_1016_j_diamond_2007_12_049
crossref_primary_10_1063_1_5042327
crossref_primary_10_4279_pip_110005
crossref_primary_10_2478_v10047_011_0005_x
crossref_primary_10_1103_PhysRevLett_122_067401
crossref_primary_10_1021_acs_nanolett_9b04659
crossref_primary_10_1063_5_0092557
crossref_primary_10_1021_acs_nanolett_0c04924
crossref_primary_10_1007_s10853_022_07548_3
crossref_primary_10_1039_C6NR04959A
crossref_primary_10_1080_10584587_2015_1042788
crossref_primary_10_1021_acsami_8b18745
crossref_primary_10_1038_srep34474
crossref_primary_10_1038_ncomms7647
crossref_primary_10_1016_j_materresbull_2011_09_006
crossref_primary_10_1002_adom_202300236
crossref_primary_10_1063_5_0126357
crossref_primary_10_1016_j_apsusc_2013_08_134
crossref_primary_10_1039_b817481d
crossref_primary_10_1103_PhysRevB_96_085302
crossref_primary_10_1021_acs_jpcc_9b06163
crossref_primary_10_1016_j_jlumin_2020_117623
crossref_primary_10_1038_s41563_021_00979_4
crossref_primary_10_1063_1_5135505
crossref_primary_10_1103_PhysRevB_98_035302
crossref_primary_10_1103_PhysRevB_110_L060101
crossref_primary_10_1016_j_jlumin_2023_120118
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_3390_e17020755
crossref_primary_10_1021_acsanm_9b01603
crossref_primary_10_1016_j_jallcom_2022_168333
crossref_primary_10_1038_s41598_017_07021_1
crossref_primary_10_1021_acs_nanolett_6b01368
crossref_primary_10_1002_adma_202207901
crossref_primary_10_1039_C6NR09312D
crossref_primary_10_1103_PhysRevB_103_085204
crossref_primary_10_1088_1742_6596_1115_5_052025
crossref_primary_10_1063_1_4788818
crossref_primary_10_1039_C6CP06749B
crossref_primary_10_1063_1_5021845
crossref_primary_10_1103_PhysRevB_101_161103
crossref_primary_10_1016_j_materresbull_2012_03_048
crossref_primary_10_1515_nanoph_2020_0225
crossref_primary_10_1063_1_5038168
crossref_primary_10_1088_0957_4484_23_12_125706
crossref_primary_10_1063_1_3665405
crossref_primary_10_1103_PhysRevLett_124_257402
crossref_primary_10_1103_PhysRevMaterials_2_024001
crossref_primary_10_1063_1_4764533
crossref_primary_10_1103_PhysRevLett_124_187602
crossref_primary_10_35848_1347_4065_ac9dd5
crossref_primary_10_1103_PhysRevMaterials_6_094009
crossref_primary_10_1039_D3RA08323C
crossref_primary_10_1088_0953_8984_25_50_505304
crossref_primary_10_1088_0022_3727_45_13_135302
crossref_primary_10_1021_acsphotonics_5b00007
crossref_primary_10_1038_nnano_2015_203
crossref_primary_10_1126_science_aal2538
crossref_primary_10_1088_1361_6528_acf2a0
crossref_primary_10_1103_PhysRevLett_132_056303
crossref_primary_10_1038_srep03778
crossref_primary_10_1021_acsnano_1c11107
crossref_primary_10_1021_jp904402h
crossref_primary_10_1364_AOP_502922
crossref_primary_10_1073_pnas_2003895117
crossref_primary_10_1016_j_carbon_2024_118836
crossref_primary_10_1021_acs_jpcc_8b10645
crossref_primary_10_1016_j_radphyschem_2020_109244
crossref_primary_10_2472_jsms_67_508
crossref_primary_10_1021_acsnano_1c07086
crossref_primary_10_1038_s41598_020_66408_9
crossref_primary_10_3390_ma14020399
crossref_primary_10_1016_j_physb_2024_416588
crossref_primary_10_1021_acsomega_3c00512
crossref_primary_10_1103_PhysRevB_99_161406
crossref_primary_10_1039_C2CE26423D
crossref_primary_10_1002_anie_201600517
crossref_primary_10_1021_acsami_2c04544
crossref_primary_10_1103_PhysRevLett_131_206902
crossref_primary_10_1016_j_vacuum_2022_110935
crossref_primary_10_1002_adma_201600100
crossref_primary_10_1088_2053_1583_3_4_045008
crossref_primary_10_1063_1_4829026
crossref_primary_10_1088_2053_1583_aa77d4
crossref_primary_10_1016_j_jcrysgro_2021_126074
crossref_primary_10_1016_j_apsusc_2011_07_018
crossref_primary_10_1038_s41467_022_30334_3
crossref_primary_10_1063_1_5019629
crossref_primary_10_1016_j_matlet_2018_08_092
crossref_primary_10_1016_j_spmi_2019_05_018
crossref_primary_10_1021_acs_nanolett_3c03113
crossref_primary_10_1021_acs_nanolett_3c01177
crossref_primary_10_1038_s41586_022_04977_7
crossref_primary_10_1038_nphys4141
crossref_primary_10_1021_acsnano_1c00115
crossref_primary_10_1088_1361_6463_aa8af1
crossref_primary_10_1021_acs_jpcc_1c02082
crossref_primary_10_1088_0957_4484_22_21_215603
crossref_primary_10_35848_1882_0786_acf7aa
crossref_primary_10_1002_pssb_201900521
crossref_primary_10_1103_PhysRevApplied_14_024009
crossref_primary_10_1002_admi_202101701
crossref_primary_10_1007_s41779_018_0179_2
crossref_primary_10_4028_www_scientific_net_MSF_675_677_131
crossref_primary_10_1103_PhysRevB_108_L041102
crossref_primary_10_4131_jshpreview_28_177
crossref_primary_10_1103_PhysRevB_97_045425
crossref_primary_10_1103_PhysRevLett_119_047401
crossref_primary_10_1126_science_aaz6149
crossref_primary_10_1002_adma_202101589
crossref_primary_10_1063_5_0038679
crossref_primary_10_1103_PhysRevB_110_125431
crossref_primary_10_3390_molecules21121636
crossref_primary_10_1016_j_physb_2011_03_059
crossref_primary_10_1038_s41586_024_08052_1
crossref_primary_10_1088_2053_1583_4_1_015028
crossref_primary_10_1021_prechem_4c00014
crossref_primary_10_1039_D3TC02173D
crossref_primary_10_1038_s41467_021_24019_6
crossref_primary_10_1038_s41699_017_0021_7
crossref_primary_10_1021_acsphotonics_0c01175
crossref_primary_10_1021_acs_nanolett_9b02879
crossref_primary_10_1088_2631_7990_ac64d6
crossref_primary_10_1021_acsphotonics_8b00977
crossref_primary_10_1111_j_1744_7402_2011_02626_x
crossref_primary_10_1109_JPROC_2013_2257634
crossref_primary_10_1080_10584587_2015_1039410
crossref_primary_10_1002_pssa_202000241
crossref_primary_10_1515_nanoph_2020_0048
crossref_primary_10_1038_s41699_022_00354_0
crossref_primary_10_1016_j_ceramint_2016_11_192
crossref_primary_10_1038_nnano_2010_172
crossref_primary_10_1063_1_3561496
crossref_primary_10_1073_pnas_1902820116
crossref_primary_10_1021_cm7028382
crossref_primary_10_1088_1361_6528_aaebb4
crossref_primary_10_1088_2053_1583_aba8ad
crossref_primary_10_1364_OME_2_001186
crossref_primary_10_1063_5_0164457
crossref_primary_10_1002_smll_201001628
crossref_primary_10_1021_acs_nanolett_5b02625
crossref_primary_10_1038_s41467_022_32708_z
crossref_primary_10_1103_PhysRevB_96_014101
crossref_primary_10_1038_s41467_018_07558_3
crossref_primary_10_1063_1_4981892
crossref_primary_10_1063_5_0072746
crossref_primary_10_1103_PhysRevLett_113_155501
crossref_primary_10_1021_acs_nanolett_8b02866
crossref_primary_10_1021_acs_cgd_4c01079
crossref_primary_10_1002_pssb_201700473
crossref_primary_10_1515_nanoph_2020_0054
crossref_primary_10_1002_adom_202200207
crossref_primary_10_1088_0957_4484_27_39_395303
crossref_primary_10_1038_s42005_018_0097_1
crossref_primary_10_1073_pnas_1820835116
crossref_primary_10_1016_j_radmeas_2019_03_001
crossref_primary_10_1103_PhysRevLett_125_085902
crossref_primary_10_1038_s41467_021_27213_8
crossref_primary_10_1088_2053_1583_aa613b
crossref_primary_10_1063_1_4982647
crossref_primary_10_1038_s41467_018_06595_2
crossref_primary_10_1103_PhysRevB_100_155419
crossref_primary_10_1088_2515_7639_aac66e
crossref_primary_10_1039_D3NA00371J
crossref_primary_10_1039_C8CP07328G
crossref_primary_10_1557_s43581_024_00109_y
crossref_primary_10_1002_pssb_201900318
crossref_primary_10_1063_1_4937990
crossref_primary_10_1021_acsnano_1c08286
crossref_primary_10_1038_s41467_018_05117_4
crossref_primary_10_1038_s41563_019_0366_8
crossref_primary_10_1103_PhysRevB_108_125126
crossref_primary_10_1103_PhysRevB_78_155204
crossref_primary_10_1088_2053_1583_acc95a
crossref_primary_10_1103_RevModPhys_90_021001
crossref_primary_10_1126_sciadv_abg8568
crossref_primary_10_1088_1674_1056_27_2_023201
crossref_primary_10_1021_acsnano_1c08212
crossref_primary_10_1088_2053_1583_ab5407
crossref_primary_10_1002_aelm_201600485
crossref_primary_10_1038_s41467_020_16023_z
crossref_primary_10_1080_08957959_2013_857020
crossref_primary_10_1103_PhysRevLett_123_127401
crossref_primary_10_1038_s41563_023_01658_2
crossref_primary_10_1016_j_tsf_2014_09_065
crossref_primary_10_1557_s43578_021_00426_9
crossref_primary_10_1038_nphoton_2009_167
crossref_primary_10_1063_5_0142242
crossref_primary_10_1103_PhysRevB_101_235203
crossref_primary_10_1038_nmat2968
crossref_primary_10_1103_PhysRevResearch_5_043212
crossref_primary_10_1063_1_3602996
crossref_primary_10_1088_2053_1583_ab7bfc
crossref_primary_10_1103_PhysRevMaterials_3_094001
crossref_primary_10_1038_s41467_018_08266_8
crossref_primary_10_1002_aelm_202100002
crossref_primary_10_1088_2515_7639_abf1ab
crossref_primary_10_1002_adma_202204161
crossref_primary_10_3390_ma17164122
crossref_primary_10_1103_PhysRevB_109_085127
crossref_primary_10_1063_5_0165473
crossref_primary_10_1002_ange_201209597
crossref_primary_10_1103_PhysRevLett_110_065504
crossref_primary_10_1038_s41566_024_01568_y
crossref_primary_10_1088_2053_1583_abf08d
crossref_primary_10_1021_acsami_0c11883
crossref_primary_10_1016_j_ceramint_2018_09_283
crossref_primary_10_1039_D4TC02524E
crossref_primary_10_1038_s41467_020_18007_5
crossref_primary_10_1021_nl204036d
crossref_primary_10_1016_j_carbon_2020_05_032
crossref_primary_10_1038_nphys2008
crossref_primary_10_1021_acsomega_2c04856
crossref_primary_10_1103_PhysRevB_109_155305
crossref_primary_10_1016_j_ssc_2012_04_021
crossref_primary_10_1103_PhysRevApplied_9_024022
crossref_primary_10_1063_1_4893468
crossref_primary_10_1021_acsnano_5b00103
crossref_primary_10_1038_s41467_018_05397_w
crossref_primary_10_1038_s41699_022_00323_7
crossref_primary_10_1021_acsanm_9b02315
crossref_primary_10_1116_1_3565429
crossref_primary_10_1103_PhysRevB_108_134311
crossref_primary_10_1002_pssb_202400037
crossref_primary_10_1063_5_0179610
crossref_primary_10_1038_s41598_019_39091_8
crossref_primary_10_1080_14686996_2022_2062576
crossref_primary_10_1103_PhysRevB_96_115304
crossref_primary_10_1002_adfm_202500714
crossref_primary_10_1038_s41467_019_10228_7
crossref_primary_10_1063_5_0075554
crossref_primary_10_1103_PhysRevB_107_L161104
crossref_primary_10_1016_j_pcrysgrow_2021_100522
crossref_primary_10_1039_C4CE01756K
crossref_primary_10_1021_acs_jpcc_8b10167
crossref_primary_10_1021_acsami_1c14863
crossref_primary_10_1088_2053_1583_3_2_025027
crossref_primary_10_1021_acs_cgd_9b00698
crossref_primary_10_1021_acsnano_4c03640
crossref_primary_10_1007_s10853_015_9180_0
crossref_primary_10_1103_PhysRevB_107_195304
crossref_primary_10_2478_v10047_012_0012_6
crossref_primary_10_1007_s10853_009_3334_x
crossref_primary_10_7567_JJAP_56_05FB06
crossref_primary_10_1021_acs_nanolett_5b04414
crossref_primary_10_1063_1_3609076
crossref_primary_10_1039_C5CP00532A
crossref_primary_10_1016_j_jmst_2024_08_026
crossref_primary_10_7567_APEX_10_045201
crossref_primary_10_1088_2053_1583_ac6c31
crossref_primary_10_1063_1_4972555
crossref_primary_10_1038_s43246_024_00633_x
crossref_primary_10_1002_adom_202400908
crossref_primary_10_1038_s41467_023_41148_2
crossref_primary_10_1021_nn503093k
crossref_primary_10_1002_ange_201600517
crossref_primary_10_1039_D2CP03349F
crossref_primary_10_1364_JOSAB_35_000446
crossref_primary_10_1038_s41586_022_04937_1
crossref_primary_10_1016_j_jcrysgro_2010_08_051
crossref_primary_10_1021_nl503411a
crossref_primary_10_1021_acsnano_4c10276
crossref_primary_10_1557_s43578_023_01276_3
crossref_primary_10_1038_s41598_023_50502_9
crossref_primary_10_1126_sciadv_abq4947
crossref_primary_10_1016_j_diamond_2009_11_010
crossref_primary_10_1103_PhysRevB_94_121405
crossref_primary_10_1021_acsami_9b15457
crossref_primary_10_1103_PhysRevB_85_045440
crossref_primary_10_1103_PhysRevApplied_18_064021
crossref_primary_10_1021_acsami_0c09527
crossref_primary_10_1038_s41524_022_00731_9
crossref_primary_10_1126_sciadv_aba6173
crossref_primary_10_1021_acsphotonics_9b01648
crossref_primary_10_1103_PhysRevApplied_13_034064
crossref_primary_10_1038_s41377_024_01630_y
crossref_primary_10_1039_C6NR01253A
crossref_primary_10_7567_JJAP_56_030301
crossref_primary_10_1103_PhysRevB_100_125403
crossref_primary_10_1021_acsnano_9b02621
crossref_primary_10_1038_nphoton_2009_177
crossref_primary_10_1186_1556_276X_9_555
crossref_primary_10_1103_PhysRevLett_129_107401
crossref_primary_10_1063_1_5127770
crossref_primary_10_1021_nn504093g
crossref_primary_10_1103_PhysRevApplied_5_034005
crossref_primary_10_1021_acs_cgd_4c00478
crossref_primary_10_1038_ncomms14927
crossref_primary_10_1038_s41565_020_0695_4
crossref_primary_10_1021_nn500059s
crossref_primary_10_4131_jshpreview_21_292
crossref_primary_10_35848_1347_4065_ac093f
crossref_primary_10_1021_acs_nanolett_5b00098
crossref_primary_10_1126_science_1144216
crossref_primary_10_1103_PhysRevB_96_144106
crossref_primary_10_1021_acsphotonics_4c01416
crossref_primary_10_1016_j_radmeas_2016_01_002
crossref_primary_10_15407_mfint_44_09_1163
crossref_primary_10_1103_PhysRevLett_133_026501
crossref_primary_10_1002_adma_202209688
crossref_primary_10_1155_2020_7853623
crossref_primary_10_1021_acs_nanolett_5b04441
crossref_primary_10_1063_5_0090431
crossref_primary_10_1021_acsphotonics_0c01759
crossref_primary_10_1063_1_5118713
crossref_primary_10_1038_nnano_2015_188
crossref_primary_10_1103_PhysRevX_7_021026
crossref_primary_10_3938_jkps_64_1605
crossref_primary_10_1088_2053_1583_ace067
crossref_primary_10_1088_2515_7639_ac2b87
crossref_primary_10_1103_PhysRevB_79_193104
crossref_primary_10_1021_acs_chemmater_4c01995
crossref_primary_10_1103_PhysRevMaterials_6_014005
crossref_primary_10_1016_j_jallcom_2021_159471
crossref_primary_10_1002_pssr_202000298
crossref_primary_10_35848_1882_0786_acc442
crossref_primary_10_1002_adma_202207374
crossref_primary_10_1103_PhysRevB_97_075434
crossref_primary_10_1038_s41467_023_37380_5
crossref_primary_10_1103_PhysRevB_98_094106
crossref_primary_10_1021_acsnano_3c03455
crossref_primary_10_1021_acsnano_4c06929
crossref_primary_10_1134_S1063782623080092
crossref_primary_10_1103_PhysRevB_95_125421
crossref_primary_10_1038_s41928_020_00529_x
crossref_primary_10_2109_jcersj2_20116
crossref_primary_10_1039_C9RA07835E
crossref_primary_10_1016_j_solidstatesciences_2023_107310
crossref_primary_10_1021_acsnano_3c02348
crossref_primary_10_1021_acs_nanolett_7b04553
crossref_primary_10_1088_2053_1583_abfe9f
crossref_primary_10_1016_j_jcrysgro_2014_06_038
crossref_primary_10_1016_j_ultramic_2016_12_011
crossref_primary_10_1038_nchem_1421
crossref_primary_10_1103_PhysRevB_106_L161409
crossref_primary_10_1021_acsami_9b13763
crossref_primary_10_1111_ijac_12752
crossref_primary_10_7567_JJAP_56_055102
crossref_primary_10_1021_acs_nanolett_2c00435
crossref_primary_10_3390_ma17133104
crossref_primary_10_1103_PhysRevB_89_035414
crossref_primary_10_1103_PhysRevMaterials_3_064001
crossref_primary_10_1021_acsomega_3c05699
crossref_primary_10_1103_PhysRevApplied_19_L041003
crossref_primary_10_1016_j_surfcoat_2020_125851
crossref_primary_10_1021_acsphotonics_2c00631
crossref_primary_10_1021_acsami_7b16634
crossref_primary_10_1038_ncomms15815
crossref_primary_10_3390_polym10020206
crossref_primary_10_1021_acs_cgd_4c00313
crossref_primary_10_1364_OL_519571
crossref_primary_10_1038_s41598_017_15398_2
crossref_primary_10_1016_j_jlumin_2018_12_036
crossref_primary_10_1002_anie_201209597
crossref_primary_10_1021_acsami_6b04320
crossref_primary_10_1002_aelm_202300083
crossref_primary_10_1021_acsnano_1c04467
crossref_primary_10_1088_2053_1583_ab4f1f
crossref_primary_10_1103_PhysRevB_99_035443
crossref_primary_10_1088_1361_6463_ac8fff
crossref_primary_10_1016_j_radmeas_2017_05_003
crossref_primary_10_1103_PhysRevB_97_214104
crossref_primary_10_35848_1347_4065_ad2bbe
crossref_primary_10_1021_acs_jpclett_4c03681
crossref_primary_10_1088_2053_1583_ac6f09
crossref_primary_10_1063_1_5065568
crossref_primary_10_1021_acsnano_9b08308
crossref_primary_10_1016_j_materresbull_2015_06_032
crossref_primary_10_1021_acsnano_3c03261
crossref_primary_10_1016_j_apsusc_2014_09_192
crossref_primary_10_1557_mrc_2018_205
crossref_primary_10_1103_PhysRevB_77_235422
crossref_primary_10_1038_s41578_019_0124_1
crossref_primary_10_1016_j_physb_2013_10_068
crossref_primary_10_1021_acsami_2c21306
crossref_primary_10_1063_1_5033554
crossref_primary_10_1109_JPROC_2013_2260114
crossref_primary_10_1088_2053_1583_aad5aa
crossref_primary_10_1016_j_nantod_2023_102011
crossref_primary_10_1021_acs_jpcc_9b04582
crossref_primary_10_1038_s41467_021_23436_x
crossref_primary_10_1063_1_5097389
crossref_primary_10_1088_0256_307X_34_4_047304
crossref_primary_10_1021_acs_nanolett_7b04476
crossref_primary_10_1103_PhysRevB_92_165122
crossref_primary_10_1088_1361_6528_ad3d62
crossref_primary_10_1021_acsomega_0c04168
crossref_primary_10_1021_acs_nanolett_3c03736
crossref_primary_10_7567_1882_0786_ab0e45
crossref_primary_10_1116_1_5011280
crossref_primary_10_1016_j_jcrysgro_2023_127381
crossref_primary_10_1021_jp904583p
crossref_primary_10_2320_materia_48_311
crossref_primary_10_1021_acsaelm_1c00803
crossref_primary_10_35848_1347_4065_acb65b
crossref_primary_10_1021_acs_nanolett_2c02777
crossref_primary_10_1080_10584587_2017_1352412
crossref_primary_10_1088_0953_8984_28_44_444002
Cites_doi 10.1016/S0022-0248(00)00907-6
10.1143/JJAP.41.L109
10.1126/science.208.4446.873
10.1038/nmat1134
10.1002/pssa.200405188
10.1002/pssa.200405191
10.1016/j.diamond.2004.02.013
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2006.12.061
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-5002
EndPage 529
ExternalDocumentID 18740117
10_1016_j_jcrysgro_2006_12_061
S0022024807000486
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c439t-6426d3894af1decddafeda64e8f50dcd319aa5f74913186f9c02226b1514cf2c3
IEDL.DBID AIKHN
ISSN 0022-0248
IngestDate Fri Jul 11 02:51:06 EDT 2025
Mon Jul 21 09:13:01 EDT 2025
Thu Apr 24 22:56:29 EDT 2025
Tue Jul 01 00:45:26 EDT 2025
Fri Feb 23 02:25:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 78.55.Cr
A2. High-pressure crystal growth
B2. Semiconducting III–V materials
A2. Growth from High-temperature solutions
A1. Impurities
B1. Boron nitride
81.05.Ea
B2. Ultraviolet light luminescence
Crystal growth
Cubic lattices
Barium
Al. Impurities; A2. Growth from High-temperature solutions; A2. High-pressure crystal growth; Bl. Boron nitride; B2. Semiconducting III-V materials; B2. Ultraviolet light luminescence
Boron nitrides
Luminescence
Secondary ion mass spectrometry
Cathodoluminescence
High pressure
Monocrystals
Hexagonal crystals
Optical properties
Crystal growth from solutions
78.55.Cr; 81.05.Ea
III-V semiconductors
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-6426d3894af1decddafeda64e8f50dcd319aa5f74913186f9c02226b1514cf2c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29958397
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_29958397
pascalfrancis_primary_18740117
crossref_citationtrail_10_1016_j_jcrysgro_2006_12_061
crossref_primary_10_1016_j_jcrysgro_2006_12_061
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2006_12_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20070501
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 20070501
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Watanabe, Taniguchi, Kanda (bib8) 2004; 3
B
Fukunaga, Nakano, Taniguchi (bib11) 2004; 13
C without additives. Specimens implanted with 60-keV
Barium boron nitride was synthesised by reacting barium nitride (Ba
and BN at 1000
Taniguchi, Teraji, Koizumi, Watanabe, Yamaoka (bib4) 2002; 41
SIMS standard specimen for measuring the oxygen and carbon concentrations was prepared as follows. The cBN polycrystals for the SIMS standard specimen were prepared by HP reaction sintering from hBN at 7.7
C in a dry nitrogen atmosphere. Although the chemical composition of the synthesised compound was Ba
Watanabe, Taniguchi, Kanda (bib7) 2004; 201
GPa and 2100
.
N
Wentorf, DeVries, Bundy (bib1) 1980; 208
Taniguchi, Watanabe, Koizumi (bib6) 2004; 201
C ions were prepared to achieve concentrations of 10
ions/cm
R.C. DeVries, GE Technical Report, 72CRD178, General Electric Co., USA, 1972.
Taniguchi, Yamaoka (bib5) 2001; 222
O or 55-keV
Mishima, Era (bib3) 2000
its X-ray diffraction data was not found by JCPDS data. The composition of the compound was unknown.
10.1016/j.jcrysgro.2006.12.061_bib2
Fukunaga (10.1016/j.jcrysgro.2006.12.061_bib11) 2004; 13
Watanabe (10.1016/j.jcrysgro.2006.12.061_bib7) 2004; 201
10.1016/j.jcrysgro.2006.12.061_bib10
Mishima (10.1016/j.jcrysgro.2006.12.061_bib3) 2000
Taniguchi (10.1016/j.jcrysgro.2006.12.061_bib5) 2001; 222
Watanabe (10.1016/j.jcrysgro.2006.12.061_bib8) 2004; 3
10.1016/j.jcrysgro.2006.12.061_bib9
Taniguchi (10.1016/j.jcrysgro.2006.12.061_bib6) 2004; 201
Taniguchi (10.1016/j.jcrysgro.2006.12.061_bib4) 2002; 41
Wentorf (10.1016/j.jcrysgro.2006.12.061_bib1) 1980; 208
References_xml – volume: 41
  start-page: L109
  year: 2002
  ident: bib4
  publication-title: Jpn. J. Appl. Phys.
– volume: 208
  start-page: 873
  year: 1980
  ident: bib1
  publication-title: Science
– reference: O or 55-keV
– reference: GPa and 2100
– reference: ions/cm
– volume: 13
  start-page: 1709
  year: 2004
  ident: bib11
  publication-title: Diamond Relat. Mater.
– reference: Barium boron nitride was synthesised by reacting barium nitride (Ba
– reference: B
– reference: , its X-ray diffraction data was not found by JCPDS data. The composition of the compound was unknown.
– reference: ) and BN at 1000
– reference: R.C. DeVries, GE Technical Report, 72CRD178, General Electric Co., USA, 1972.
– reference: SIMS standard specimen for measuring the oxygen and carbon concentrations was prepared as follows. The cBN polycrystals for the SIMS standard specimen were prepared by HP reaction sintering from hBN at 7.7
– volume: 222
  start-page: 549
  year: 2001
  ident: bib5
  publication-title: J. Crystal Growth
– volume: 201
  start-page: 2573
  year: 2004
  ident: bib6
  publication-title: Phys. Stat. Sol. A
– reference: C ions were prepared to achieve concentrations of 10
– volume: 201
  start-page: 2561
  year: 2004
  ident: bib7
  publication-title: Phys. Stat. Sol. A
– reference: °C in a dry nitrogen atmosphere. Although the chemical composition of the synthesised compound was Ba
– reference: °C without additives. Specimens implanted with 60-keV
– reference: N
– start-page: 495
  year: 2000
  ident: bib3
  publication-title: Electric Refractory Materials
– volume: 3
  start-page: 404
  year: 2004
  ident: bib8
  publication-title: Nat. Mater.
– reference: .
– volume: 222
  start-page: 549
  year: 2001
  ident: 10.1016/j.jcrysgro.2006.12.061_bib5
  publication-title: J. Crystal Growth
  doi: 10.1016/S0022-0248(00)00907-6
– volume: 41
  start-page: L109
  year: 2002
  ident: 10.1016/j.jcrysgro.2006.12.061_bib4
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.41.L109
– ident: 10.1016/j.jcrysgro.2006.12.061_bib9
– volume: 208
  start-page: 873
  year: 1980
  ident: 10.1016/j.jcrysgro.2006.12.061_bib1
  publication-title: Science
  doi: 10.1126/science.208.4446.873
– ident: 10.1016/j.jcrysgro.2006.12.061_bib2
– start-page: 495
  year: 2000
  ident: 10.1016/j.jcrysgro.2006.12.061_bib3
– volume: 3
  start-page: 404
  year: 2004
  ident: 10.1016/j.jcrysgro.2006.12.061_bib8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1134
– volume: 201
  start-page: 2561
  year: 2004
  ident: 10.1016/j.jcrysgro.2006.12.061_bib7
  publication-title: Phys. Stat. Sol. A
  doi: 10.1002/pssa.200405188
– volume: 201
  start-page: 2573
  year: 2004
  ident: 10.1016/j.jcrysgro.2006.12.061_bib6
  publication-title: Phys. Stat. Sol. A
  doi: 10.1002/pssa.200405191
– volume: 13
  start-page: 1709
  year: 2004
  ident: 10.1016/j.jcrysgro.2006.12.061_bib11
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2004.02.013
– ident: 10.1016/j.jcrysgro.2006.12.061_bib10
SSID ssj0001610
Score 2.4409673
Snippet High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5 GPa and 1500 °C using barium boron nitride as a...
High-purity cubic boron nitride (cBN) and hexagonal boron nitride (hBN) single crystals were synthesised at 4.5GPa and 1500 deg C using barium boron nitride as...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 525
SubjectTerms A1. Impurities
A2. Growth from High-temperature solutions
A2. High-pressure crystal growth
B1. Boron nitride
B2. Semiconducting III–V materials
B2. Ultraviolet light luminescence
Cathodoluminescence, ionoluminescence
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Growth from solutions
Materials science
Methods of crystal growth; physics of crystal growth
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Other luminescence and radiative recombination
Physics
Title Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent
URI https://dx.doi.org/10.1016/j.jcrysgro.2006.12.061
https://www.proquest.com/docview/29958397
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xOLSoQoW2alqa-tDrktjxOuwRoqIAIpeCxM3ys0qENtFucsgF9T_0H_aXdGYfFIQQh16ttWx5xjOfZ2e-Afh2FFJlbd8lgzgQiVSoxmgDY5IJx7mNVBtJoYHLiRpfy_Ob9GYDRm0tDKVVNra_tumVtW5Ges1p9hbTKdX4CkGMXKi0FXHcJmyLQaZQtbePzy7Gk3uDjKCm35KG04QHhcKzw5kr1lRBUf-XoMig4s_5qDcLU-LJxbrlxRPrXbmk07ew22BJdlxvdw82Qr4Pr0ZtC7d92HnANvgO3I91jnCvnJZsHhnxFCeLqncds0RjwPByF1MfGEUPbgOjHSMyLxmVmRXV96zKml0Vgdk1o4z5n-zE_Pn1-2TCUIUpc_I9XJ9-vxqNk6bHQuIQiiwTfH4oj6BFmsh9cN6bGLxRMhzFtO-dxxtqTBqHMuN4-1XMHL0QlUWgIF0UbvABtvJ5Hj4C8xnHEW5Sa4W0hmfeqSilkN6h0VChA2l7qto1BOTUB-NWt5lmM91Kg7pjKs2FRml0oHc_b1FTcLw4I2uFph8pk0Y_8eLc7iMp_1uyal7Ihx342opdozjp_4rJw3xVavTsKeLN4af_WP4zvK6jx5RSeQBby2IVviDsWdoubB7e8W6j3H8BLFsGAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4BPUCFUEtBTXn50OuSeON12CNEoLSFXACJm-UnShRtot3kkAviP_Qf9pd0Zh8FhBCHXi1btjyvz-N5AHw_8Yk0pmOjbujGkZDIxqgDQ5TGlnMTKDeSXANXQzm4FT_vkrsV6De5MBRWWev-SqeX2roeade32Z6NRpTjG8dUkQuZtiwctwofBIovSefxw1OcB0KaTlMynKY_SxMeH49tvqT8iepXgvyCkr9loTZnusB7C1XDi1e6uzRIF59gq0aS7LQ67GdY8dk2rPebBm7b8PFZrcEvYK-XGYK9YlSwaWBUpTialZ3rmKEiBgxFOx85z8h3MPGMToy4vGCUZJaX81kZM7vIPTNLRvHy9-xM_3n8fTZkyMAUN7kDtxfnN_1BVHdYiCwCkXmEjw_pELIIHbjz1jkdvNNS-JOQdJx1KJ9aJ6EnUo6yL0Nq6X0oDcIEYUNsu7uwlk0z_xWYSzmOcJ0YEwujeeqsDELEwllUGdK3IGluVdm6_Dh1wZioJs5srBpqUG9MqXiskBotaP9bN6sKcLy7Im2Ipl6wkkIr8e7awxdUftqybF3Iey04asiukJz0u6IzP10UCu16gmiz9-0_tj-C9cHN1aW6_DH8tQcblR-Zgiv3YW2eL_wBAqC5OSwZ_C9Z9gbF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+high-purity+boron+nitride+single+crystals+under+high+pressure+by+using+Ba%E2%80%93BN+solvent&rft.jtitle=Journal+of+crystal+growth&rft.au=Taniguchi%2C+T.&rft.au=Watanabe%2C+K.&rft.date=2007-05-01&rft.issn=0022-0248&rft.volume=303&rft.issue=2&rft.spage=525&rft.epage=529&rft_id=info:doi/10.1016%2Fj.jcrysgro.2006.12.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcrysgro_2006_12_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon