Eigen-based clutter filter design for ultrasound color flow imaging: a review

Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression methods, the eigen- based filter has shown potential because it can theoretically adapt its stopband to the actual clutter characteristics even w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 57; no. 5; pp. 1096 - 1111
Main Authors Yu, Alfred, Lovstakken, Lasse
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
1525-8955
DOI10.1109/TUFFC.2010.1521

Cover

Abstract Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression methods, the eigen- based filter has shown potential because it can theoretically adapt its stopband to the actual clutter characteristics even when tissue motion is present. This paper presents a formative review on how eigen-based filters should be designed to improve their practical efficacy in adaptively suppressing clutter without affecting the blood flow echoes. Our review is centered around a comparative assessment of two eigen-filter design considerations: 1) eigen-component estimation approach (single-ensemble vs. multi-ensemble formulations), and 2) filter order selection mechanism (eigenvalue-based vs. frequencybased algorithms). To evaluate the practical efficacy of existing eigen-filter designs, we analyzed their clutter suppression level in two in vivo scenarios with substantial tissue motion (intra-operative coronary imaging and thyroid imaging). Our analysis shows that, as compared with polynomial regression filters (with or without instantaneous clutter downmixing), eigen-filters that use a frequency-based algorithm for filter order selection generally give Doppler power images with better contrast between blood and tissue regions. Results also suggest that both multi-ensemble and single-ensemble eigen-estimation approaches have their own advantages and weaknesses in different imaging scenarios. It may be beneficial to develop an algorithmic way of defining the eigen-filter formulation so that its performance advantages can be better realized.
AbstractList Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression methods, the eigen- based filter has shown potential because it can theoretically adapt its stopband to the actual clutter characteristics even when tissue motion is present. This paper presents a formative review on how eigen-based filters should be designed to improve their practical efficacy in adaptively suppressing clutter without affecting the blood flow echoes. Our review is centered around a comparative assessment of two eigen-filter design considerations: 1) eigen-component estimation approach (single-ensemble vs. multi-ensemble formulations), and 2) filter order selection mechanism (eigenvalue-based vs. frequencybased algorithms). To evaluate the practical efficacy of existing eigen-filter designs, we analyzed their clutter suppression level in two in vivo scenarios with substantial tissue motion (intra-operative coronary imaging and thyroid imaging). Our analysis shows that, as compared with polynomial regression filters (with or without instantaneous clutter downmixing), eigen-filters that use a frequency-based algorithm for filter order selection generally give Doppler power images with better contrast between blood and tissue regions. Results also suggest that both multi-ensemble and single-ensemble eigen-estimation approaches have their own advantages and weaknesses in different imaging scenarios. It may be beneficial to develop an algorithmic way of defining the eigen-filter formulation so that its performance advantages can be better realized.
Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression methods, the eigen-based filter has shown potential because it can theoretically adapt its stopband to the actual clutter characteristics even when tissue motion is present. This paper presents a formative review on how eigen-based filters should be designed to improve their practical efficacy in adaptively suppressing clutter without affecting the blood flow echoes. Our review is centered around a comparative assessment of two eigen-filter design considerations: 1) eigen-component estimation approach (single-ensemble vs. multi-ensemble formulations), and 2) filter order selection mechanism (eigenvalue-based vs. frequencybased algorithms). To evaluate the practical efficacy of existing eigen-filter designs, we analyzed their clutter suppression level in two in vivo scenarios with substantial tissue motion (intra-operative coronary imaging and thyroid imaging). Our analysis shows that, as compared with polynomial regression filters (with or without instantaneous clutter downmixing), eigen-filters that use a frequency-based algorithm for filter order selection generally give Doppler power images with better contrast between blood and tissue regions. Results also suggest that both multi-ensemble and single-ensemble eigen-estimation approaches have their own advantages and weaknesses in different imaging scenarios. It may be beneficial to develop an algorithmic way of defining the eigen-filter formulation so that its performance advantages can be better realized.Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression methods, the eigen-based filter has shown potential because it can theoretically adapt its stopband to the actual clutter characteristics even when tissue motion is present. This paper presents a formative review on how eigen-based filters should be designed to improve their practical efficacy in adaptively suppressing clutter without affecting the blood flow echoes. Our review is centered around a comparative assessment of two eigen-filter design considerations: 1) eigen-component estimation approach (single-ensemble vs. multi-ensemble formulations), and 2) filter order selection mechanism (eigenvalue-based vs. frequencybased algorithms). To evaluate the practical efficacy of existing eigen-filter designs, we analyzed their clutter suppression level in two in vivo scenarios with substantial tissue motion (intra-operative coronary imaging and thyroid imaging). Our analysis shows that, as compared with polynomial regression filters (with or without instantaneous clutter downmixing), eigen-filters that use a frequency-based algorithm for filter order selection generally give Doppler power images with better contrast between blood and tissue regions. Results also suggest that both multi-ensemble and single-ensemble eigen-estimation approaches have their own advantages and weaknesses in different imaging scenarios. It may be beneficial to develop an algorithmic way of defining the eigen-filter formulation so that its performance advantages can be better realized.
Author Yu, Alfred
Lovstakken, Lasse
Author_xml – sequence: 1
  givenname: Alfred
  surname: Yu
  fullname: Yu, Alfred
  email: alfred.yu@hku.hk
  organization: Med. Eng. Program, Univ. of Hong Kong, Pokfulam, China
– sequence: 2
  givenname: Lasse
  surname: Lovstakken
  fullname: Lovstakken, Lasse
  email: lasse.lovstakken@ntnu.no
  organization: Dept. of Circulation & Med. Imaging, Norwegian Univ. of Sci. & Technol., Trondheim, Norway
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23118243$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20442020$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r3DAQxUVJaTbbnnMIBEMpPTnRpy3lVpZsW0jpJTkLWR4vClopkews-e8rd7cp5NCeHtL83gwz7wQdhRgAoVOCLwjB6vL2br1eXVA8vwUlb9CiiKilEuIILbCUomaleIxOcr7HmHCu6Dt0TDHnFFO8QD-u3QZC3ZkMfWX9NI6QqsH5WXrIbhOqIaZq8mMyOU6hQNGXj8HHXeW2ZuPC5qoyVYInB7v36O1gfIYPB12iu_X17epbffPz6_fVl5vacqbGuqGGDNCJ3jRUciy57BVjqmuthN4YwRmjREFrcUclGTgo1SrCOgvQAAXDlujzvu9Dio8T5FFvXbbgvQkQp6wVLY0FVc1_ybbM5S0htJAfX5H3cUqhrKEJpi1pBWaqUOcHauq20OuHVI6QnvWfixbg0wEw2Ro_JBOsy385RoikZcElutxzNsWcEwwvCMF6zlb_zlbP2eo52-IQrxzWjWZ0MZRsnP-H72zvcwDwMkVw0VAh2S9FT64D
CODEN ITUCER
CitedBy_id crossref_primary_10_1016_j_ultrasmedbio_2019_11_005
crossref_primary_10_1186_s12938_020_00778_z
crossref_primary_10_7567_1347_4065_ab0ffa
crossref_primary_10_1016_j_ultrasmedbio_2019_03_008
crossref_primary_10_1109_ACCESS_2023_3292212
crossref_primary_10_1109_TMI_2016_2605819
crossref_primary_10_1088_0031_9155_57_16_5275
crossref_primary_10_1109_TUFFC_2021_3086564
crossref_primary_10_3233_BME_161573
crossref_primary_10_1109_JBHI_2016_2580708
crossref_primary_10_20965_jaciii_2012_p0087
crossref_primary_10_7498_aps_70_20201878
crossref_primary_10_1109_OJUFFC_2022_3184909
crossref_primary_10_1016_j_neuroimage_2020_117183
crossref_primary_10_3390_app10217604
crossref_primary_10_1109_TUFFC_2018_2846416
crossref_primary_10_1109_TMI_2019_2941865
crossref_primary_10_1109_TUFFC_2021_3136620
crossref_primary_10_1016_j_pacs_2023_100450
crossref_primary_10_1109_TBME_2013_2276088
crossref_primary_10_1109_TUFFC_2019_2906384
crossref_primary_10_1109_TUFFC_2023_3279452
crossref_primary_10_1002_mp_14918
crossref_primary_10_1109_OJUFFC_2022_3184914
crossref_primary_10_1109_TUFFC_2017_2784183
crossref_primary_10_1016_j_ultras_2022_106907
crossref_primary_10_1121_1_5089826
crossref_primary_10_1109_TUFFC_2018_2842427
crossref_primary_10_3390_app132011231
crossref_primary_10_1109_TUFFC_2018_2872870
crossref_primary_10_1016_j_ultrasmedbio_2019_11_020
crossref_primary_10_1109_TUFFC_2019_2898127
crossref_primary_10_1038_s41598_024_73787_w
crossref_primary_10_1016_j_ultrasmedbio_2023_12_006
crossref_primary_10_3390_app10165595
crossref_primary_10_1016_j_ultras_2023_107006
crossref_primary_10_1109_TMI_2024_3439615
crossref_primary_10_1109_TUFFC_2019_2906390
crossref_primary_10_1016_j_ultras_2023_107088
crossref_primary_10_1038_s41598_017_06474_8
crossref_primary_10_1109_TMI_2015_2428634
crossref_primary_10_1109_TUFFC_2019_2906434
crossref_primary_10_1109_TUFFC_2020_3028155
crossref_primary_10_1109_TBME_2018_2878887
crossref_primary_10_3390_s19020245
crossref_primary_10_1038_s41598_019_49448_8
crossref_primary_10_1109_TUFFC_2021_3056932
crossref_primary_10_7567_JJAP_52_07HC15
crossref_primary_10_1016_j_artmed_2023_102664
crossref_primary_10_1109_TUFFC_2017_2676091
crossref_primary_10_1109_TUFFC_2016_2571979
crossref_primary_10_1016_j_ultras_2024_107379
crossref_primary_10_1016_j_ultras_2020_106163
crossref_primary_10_1109_TUFFC_2020_2975483
crossref_primary_10_3179_jjmu_JJMU_R_187
crossref_primary_10_1016_j_ultras_2020_106200
crossref_primary_10_1038_s41598_019_41373_0
crossref_primary_10_1109_TUFFC_2017_2762860
crossref_primary_10_1109_TUFFC_2021_3064612
crossref_primary_10_1109_TUFFC_2012_2184
crossref_primary_10_1109_TUFFC_2021_3073292
crossref_primary_10_1002_mp_17564
crossref_primary_10_1109_TUFFC_2022_3176742
crossref_primary_10_1109_TUFFC_2013_2592
crossref_primary_10_1177_0954411919900720
crossref_primary_10_1109_TUFFC_2018_2827241
crossref_primary_10_1109_JPROC_2019_2932116
crossref_primary_10_1109_TMI_2019_2953657
crossref_primary_10_1016_j_ultras_2021_106650
crossref_primary_10_1109_TBME_2021_3137265
crossref_primary_10_1109_TUFFC_2016_2598180
crossref_primary_10_3389_fneur_2019_00279
crossref_primary_10_1109_TMI_2018_2789499
crossref_primary_10_1088_1361_6560_62_1_31
crossref_primary_10_1098_rsfs_2011_0017
crossref_primary_10_1016_j_ultrasmedbio_2022_09_013
crossref_primary_10_1016_j_ultras_2020_106093
crossref_primary_10_1088_1361_6560_acabfb
crossref_primary_10_1109_TMI_2016_2518638
crossref_primary_10_17816_DD76511
crossref_primary_10_1364_BOE_471198
crossref_primary_10_1109_TUFFC_2017_2665342
crossref_primary_10_1016_j_ultrasmedbio_2023_02_013
crossref_primary_10_1109_TMI_2019_2941271
crossref_primary_10_3390_app8071143
crossref_primary_10_1109_TUFFC_2017_2719942
crossref_primary_10_1109_TMI_2019_2951465
crossref_primary_10_1109_TBME_2018_2858205
crossref_primary_10_1109_TMI_2011_2160075
crossref_primary_10_1016_j_ultrasmedbio_2021_08_021
crossref_primary_10_1016_j_cmpb_2021_106036
crossref_primary_10_1016_j_ultras_2022_106825
crossref_primary_10_1109_TUFFC_2016_2606598
crossref_primary_10_7498_aps_72_20222106
crossref_primary_10_1109_TBME_2021_3100649
crossref_primary_10_7567_1347_4065_ab0ad6
crossref_primary_10_1109_TUFFC_2020_3033719
crossref_primary_10_1109_TUFFC_2018_2834724
crossref_primary_10_1109_TUFFC_2023_3289235
crossref_primary_10_1016_j_ultrasmedbio_2011_07_005
crossref_primary_10_1016_j_ultrasmedbio_2013_09_013
crossref_primary_10_3390_app13010378
crossref_primary_10_1109_TUFFC_2018_2868441
crossref_primary_10_1016_j_ultrasmedbio_2022_03_016
crossref_primary_10_1016_j_ultrasmedbio_2018_10_028
crossref_primary_10_1109_TBME_2012_2234123
crossref_primary_10_1109_TUFFC_2020_3005426
crossref_primary_10_1109_TUFFC_2013_2579
crossref_primary_10_1109_TUFFC_2021_3055498
crossref_primary_10_1134_S1063771018010128
crossref_primary_10_1109_TUFFC_2019_2918180
crossref_primary_10_1109_TMI_2016_2610758
Cites_doi 10.1109/TUFFC.2009.1261
10.1109/58.585126
10.1016/j.ultras.2006.06.039
10.1109/ULTSYM.2006.515
10.1109/TUFFC.2002.1041080
10.1109/TUFFC.2006.1678188
10.1109/ULTSYM.1985.198654
10.1177/016173460202400401
10.1109/TUFFC.2002.1009328
10.1109/58.710568
10.1109/ULTSYM.2007.278
10.1109/TUFFC.2008.682
10.1109/58.535496
10.1109/ULTSYM.2007.611
10.1177/016173469701900101
10.1109/TUFFC.2009.1304
10.1109/TUFFC.2003.1214502
10.1109/58.985705
10.1016/S0003-4975(02)04058-4
10.1109/TUFFC.2008.835
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
7QO
P64
DOI 10.1109/TUFFC.2010.1521
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
Engineering Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 1111
ExternalDocumentID 2716750571
20442020
23118243
10_1109_TUFFC_2010_1521
5456258
Genre orig-research
Journal Article
Review
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
RIG
IQODW
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
7QO
P64
ID FETCH-LOGICAL-c439t-62a1feb5da62840848d9339b7c8edaa5433219e7c0b281f4e997913bcee6e2ea3
IEDL.DBID RIE
ISSN 0885-3010
1525-8955
IngestDate Fri Sep 05 08:32:39 EDT 2025
Fri Sep 05 09:20:15 EDT 2025
Mon Jun 30 04:20:18 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Mon Jul 21 09:15:30 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 00:46:01 EDT 2025
Tue Aug 26 17:11:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
Ultrasound imaging
Noise reduction
Eigenvalue
Thyroid gland
Doppler effect
Clutter
Modeling
Color image
Blood
Blood flow
Tissue
Energy gap
Filter
Medical imagery
Eigenvalue problem
Circulatory system
Hemodynamics
Frequency filtering
Acoustic image
Image contrast
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-62a1feb5da62840848d9339b7c8edaa5433219e7c0b281f4e997913bcee6e2ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 20442020
PQID 1027175039
PQPubID 85455
PageCount 16
ParticipantIDs pubmed_primary_20442020
crossref_citationtrail_10_1109_TUFFC_2010_1521
proquest_miscellaneous_926285296
proquest_miscellaneous_733947112
pascalfrancis_primary_23118243
proquest_journals_1027175039
crossref_primary_10_1109_TUFFC_2010_1521
ieee_primary_5456258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref19
yu (ref3) 2007; 35
ref18
ref8
moon (ref16) 2000
ref7
li (ref12) 2008; 55
ref9
ref4
ref6
ref5
References_xml – ident: ref19
  doi: 10.1109/TUFFC.2009.1261
– ident: ref1
  doi: 10.1109/58.585126
– ident: ref9
  doi: 10.1016/j.ultras.2006.06.039
– ident: ref20
  doi: 10.1109/ULTSYM.2006.515
– ident: ref10
  doi: 10.1109/TUFFC.2002.1041080
– ident: ref13
  doi: 10.1109/TUFFC.2006.1678188
– ident: ref18
  doi: 10.1109/ULTSYM.1985.198654
– year: 2000
  ident: ref16
  publication-title: Mathematical Methods and Algorithms for Signal Processing
– ident: ref11
  doi: 10.1177/016173460202400401
– ident: ref7
  doi: 10.1109/TUFFC.2002.1009328
– ident: ref5
  doi: 10.1109/58.710568
– volume: 35
  start-page: 11
  year: 2007
  ident: ref3
  article-title: Frequency-based signal processing in ultrasound color flow imaging
  publication-title: Can Acoust
– ident: ref17
  doi: 10.1109/ULTSYM.2007.278
– ident: ref15
  doi: 10.1109/TUFFC.2008.682
– ident: ref4
  doi: 10.1109/58.535496
– ident: ref21
  doi: 10.1109/ULTSYM.2007.611
– ident: ref6
  doi: 10.1177/016173469701900101
– ident: ref14
  doi: 10.1109/TUFFC.2009.1304
– ident: ref8
  doi: 10.1109/TUFFC.2003.1214502
– ident: ref2
  doi: 10.1109/58.985705
– ident: ref22
  doi: 10.1016/S0003-4975(02)04058-4
– volume: 55
  start-page: 1582
  year: 2008
  ident: ref12
  article-title: Adaptive clutter filtering based on sparse component analysis in ultrasound color flow imaging
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2008.835
SSID ssj0014492
Score 2.3889003
SecondaryResourceType review_article
Snippet Proper suppression of tissue clutter is a prerequisite for visualizing flow accurately in ultrasound color flow imaging. Among various clutter suppression...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1096
SubjectTerms Acoustic signal processing
Acoustics
Adaptive filters
Algorithm design and analysis
Algorithms
Biological and medical sciences
Blood flow
Cardiovascular system
Carotid Arteries - diagnostic imaging
Design
Echocardiography
Exact sciences and technology
Frequency
Fundamental areas of phenomenology (including applications)
Humans
Image analysis
Image motion analysis
In vivo
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Motion analysis
Physics
Signal Processing, Computer-Assisted
Studies
Thyroid Gland - diagnostic imaging
Ultrasonic imaging
Ultrasonic investigative techniques
Ultrasonography, Doppler, Color - methods
Visualization
Title Eigen-based clutter filter design for ultrasound color flow imaging: a review
URI https://ieeexplore.ieee.org/document/5456258
https://www.ncbi.nlm.nih.gov/pubmed/20442020
https://www.proquest.com/docview/1027175039
https://www.proquest.com/docview/733947112
https://www.proquest.com/docview/926285296
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE5tGmebjdBhxxyiDeyLdtSbyXsEgrbUxZyM5IsQ8hmN8Q2gf76zsheNylZ6M1GsiXPg5nxjL4BONdlrHJDVY0u5SFqIg-VtFGIwUZlEoJw83AMs1_ZzVz8vEvvtuByOAvjnPPFZ25Mlz6XX65sS7_KrlLvrstt2EYx685qDRkDIXwDZFSaNESh5T2MT8TV1e18Or3uqrjIWhH-LxcCo37-xhj57ipUG6lrJE_V9bXY7Hh6AzT9DLP11ru6k4dx25ix_f0PquP_ftsefOo9UfajE50vsOWW-7D7Cp9wHz74-lBbH8BsQqidIdm8ktmF727NqntKtbPSF4Ew9H5Zu2iedU2dmhihYeOUxeqF3T_6VkjfmWbdSZlDmE8nt9c3Yd-JIbTosDRhFuuociYtdYbmjCD4S5UkyuRWulLrlEDQIuVyy00so0o4pXIVJQYtcOZip5Mj2Fmulu4EmBIZvjO1iRRWWF1JXZWSO7zn1khtAhivWVLYHqacumUsCh-ucFV4dhbEzoLYGcDF8MBTh9CxeeoBEX6Y1tM8gLM3PB_G0ffF8EskAYzWQlD0Kl7jGjGGwilPVABsGEblpIyLXrpVWxc5EgmtfxRvnkJ4jZKS3wEcd-L1d_leSr--v-1v8HFdysCjEew0z607RQ-pMWdeNf4A9eEJcA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGEAIe-Nj4KIyRBx54oLe0TdqENzTtdMBuT3fS3qokTaVpxx1aWyHx12OnvcIQJ_HWKm6TxrZs187PAO9MlerCUlWjlzxGTeSxVi6JMdiobUYQbgGOYX6Rz5biy6W83IMP41kY730oPvMTugy5_GrjOvpVdiKDu67uwF28ErI_rTXmDIQILZBRbWSMYssHIJ-E65PFcjo97eu4yF4RAjAXAuN-fsschf4qVB1pGtyguu9ssdv1DCZo-hjm28X3lSfXk661E_fzL1zH__26J_Bo8EXZp154nsKeXx_Awz8QCg_gXqgQdc0hzM8ItzMmq1cxtwr9rVl9Rcl2VoUyEIb-L-tW7Y1pqFcTIzxsJFltfrCrb6EZ0kdmWH9W5hksp2eL01k89GKIHbosbZynJqm9lZXJ0aARCH-ls0zbwilfGSMJBi3RvnDcpiqphde60Elm0QbnPvUmew77683avwSmRY7vlC5TwglnamXqSnGP99xZZWwEky1LSjcAlVO_jFUZAhauy8DOkthZEjsjeD8-8L3H6NhNekgbP5INex7B8S2ej-Po_WIAJrIIjrZCUA5K3uAcKQbDkmc6AjYOo3pSzsWs_aZrygI3Ce1_ku4mIcRGRenvCF704vV7-kFKX_172W_h_mwxPy_PP198fQ0PtoUNPDmC_fam82_QX2rtcVCTX_qzDL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigen-based+clutter+filter+design+for+ultrasound+color+flow+imaging%3A+a+review&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Yu%2C+Alfred+CH&rft.au=Lovstakken%2C+Lasse&rft.date=2010-05-01&rft.issn=0885-3010&rft.volume=57&rft.issue=1-5&rft.spage=1096&rft.epage=1111&rft_id=info:doi/10.1109%2FTUFFC.2010.1521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon