Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review

Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environ...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 656696
Main Authors Kong, Lingan, Zhang, Yunxiu, Du, Wanying, Xia, Haiyong, Fan, Shoujin, Zhang, Bin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 31.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis . Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
AbstractList Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis . Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Author Xia, Haiyong
Zhang, Bin
Zhang, Yunxiu
Du, Wanying
Kong, Lingan
Fan, Shoujin
AuthorAffiliation 2 College of Life Science, Shandong Normal University , Jinan , China
1 Crop Research Institute, Shandong Academy of Agricultural Sciences , Jinan , China
AuthorAffiliation_xml – name: 2 College of Life Science, Shandong Normal University , Jinan , China
– name: 1 Crop Research Institute, Shandong Academy of Agricultural Sciences , Jinan , China
Author_xml – sequence: 1
  givenname: Lingan
  surname: Kong
  fullname: Kong, Lingan
– sequence: 2
  givenname: Yunxiu
  surname: Zhang
  fullname: Zhang, Yunxiu
– sequence: 3
  givenname: Wanying
  surname: Du
  fullname: Du, Wanying
– sequence: 4
  givenname: Haiyong
  surname: Xia
  fullname: Xia, Haiyong
– sequence: 5
  givenname: Shoujin
  surname: Fan
  fullname: Fan, Shoujin
– sequence: 6
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
BookMark eNp1ksFvFCEYxSemxtbau0eOXnbLMAwDHkyaxm2bNG5jNfVGvmG-2aWZhRGYNf4B_t-yuzWxJnKB8N77QeC9Lo6cd1gUb0s6ryqpzvtxiHNGWTkXtRBKvChOSiH4jAv27eiv9XFxFuMjzaOmVKnmVXFc8bKqFStPil_3duVgsG5FPmMcvYsYSfLkE7lPELaQrHfvycKbKe483pGHNUIi4DqysMM-mNZI7qaUvVskVzBG8mDTOsuuy3IkyzaBddgR68gymwO5G8ClOCcX-dCtxR9vipc9DBHPnubT4uvi45fL69nt8urm8uJ2Znil0kwwaSgFTnkvoKEgO8Be8RZZXwrFeYcouamxaSVrKTWIpqe0baSQ0LZSVqfFzYHbeXjUY7AbCD-1B6v3Gz6sNIRkzYCaNrU0jWCdUT03rG6bUjXYKW5aAb2BzPpwYI1Tu8HOoEsBhmfQ54qza73yWy0ZpaJRGfDuCRD89wlj0hsbDQ75bdBPUbOas0pwxmm2ioPVBB9jwF4bm_Z_k8l20CXVu0roXSX0rhL6UIkcpP8E_9zvv5HfQcO9PQ
CitedBy_id crossref_primary_10_3390_ijms242216321
crossref_primary_10_3389_fpls_2022_932720
crossref_primary_10_1016_j_scienta_2023_112735
crossref_primary_10_3390_agronomy13040968
crossref_primary_10_3390_ijms24043631
crossref_primary_10_1111_plb_13550
crossref_primary_10_3390_plants12142725
crossref_primary_10_3390_f13101629
crossref_primary_10_1007_s00344_022_10646_w
crossref_primary_10_1186_s40538_025_00754_6
crossref_primary_10_3390_biology10080787
crossref_primary_10_3390_plants13030371
crossref_primary_10_1007_s10142_022_00904_1
crossref_primary_10_1007_s00468_023_02414_4
Cites_doi 10.1016/j.bbrc.2015.10.164
10.1093/jxb/eraa242
10.1016/j.envpol.2019.113701
10.4161/auto.36261
10.1111/pbi.13103
10.1186/s12864-018-4897-1
10.3389/fpls.2019.00584
10.3390/ijms21082880
10.1074/jbc.M411428200
10.1104/pp.19.00190
10.1016/s1671-2927(12)60780-9
10.1093/jxb/eru284
10.1007/s12042-019-09220-8
10.1104/pp.18.01028
10.1093/emboj/cdg118
10.1186/s12870-018-1512-1
10.1007/s00299-014-1648-x
10.1186/s40659-019-0228-5
10.1093/jxb/eraa210
10.1016/j.jplph.2018.06.012
10.1093/jxb/ern244
10.1186/s12870-018-1507-y
10.1038/s41598-018-25430-8
10.1093/jxb/erv030
10.1007/s11105-016-0973-3
10.1016/j.jplph.2020.153281
10.1007/s11738-018-2758-9
10.1038/ncomms2621
10.1111/j.1365-3040.2011.02478.x
10.1007/s11103-005-5441-7
10.3390/ijms20194956
10.1093/jxb/erm114
10.3390/ijms20153636
10.1038/srep27795
10.1111/ppl.12261
10.1111/j.1469-8137.2011.03647.x
10.1104/pp.113.218453
10.4161/psb.20462
10.1186/s12864-020-6769-8
10.1007/s11103-011-9838-1
10.14348/molcells.2017.2261
10.1016/j.envexpbot.2017.06.006
10.1074/jbc.M004892200
10.1016/j.bbrc.2015.11.035
10.18805/IJARe.A-4905
10.1046/j.1365-313x.2001.01185.x
10.3389/fpls.2018.01539
10.1104/pp.17.00094
10.3389/fpls.2019.00151
10.1371/journal.pone.0223011
10.1073/pnas.0909571107
10.1007/s10142-013-0311-x
10.3389/fpls.2015.00232
10.1007/s40502-020-00503-x
10.1093/pcp/pci145
10.1105/tpc.109.072959
10.1007/s12038-012-9242-2
10.1038/s41598-019-40569-8
10.3390/cells9041021
10.3390/ijms19092827
10.1371/journal.pone.0028009
10.1007/s11240-017-1176-9
10.1007/s11104-019-04260-1
10.1093/jxb/erq419
10.1111/j.1467-7652.2011.00592.x
10.1007/s13562-014-0256-8
10.1073/pnas.1615676114
10.1016/j.tplants.2012.04.006
10.1016/j.gene.2014.11.021
10.1371/journal.pone.0211492
10.1007/s11105-010-0268-z
10.1016/j.jplph.2020.153137
10.1104/pp.109.139139
10.1105/tpc.15.00158
10.1016/j.plaphy.2016.03.023
10.1016/j.molcel.2004.05.027
10.1371/journal.pone.0050261
10.1016/j.plaphy.2020.01.018
10.1111/j.1365-313X.2008.03685.x
10.1093/pcp/pcy169
10.3390/genes8120356
10.1016/j.tplants.2018.08.012
10.1093/pcp/pci105
10.3390/ijms20194856
10.1007/s12010-015-1815-8
10.1111/ppl.12305
10.1016/j.jplph.2007.02.011
10.3390/plants8080294
10.1073/pnas.0709559105
10.1111/j.1365-313X.2007.03050.x
10.1371/journal.pone.0208409
10.1111/ppl.12716
10.1007/s00344-014-9435-z
10.1016/j.devcel.2010.05.008
10.1111/j.1365-313X.2006.02887.x
10.3389/fpls.2016.00720
10.1134/S1021443716020175
10.1038/s41598-017-04473-4473
10.1371/journal.pone.0235975
10.1186/s12870-020-2296-7
10.1111/tpj.12446
10.1371/journal.pone.0029669
10.1016/j.jplph.2013.08.004
10.1073/pnas.0402267101
10.1186/s12870-018-1374-6
10.1111/pce.13110
10.1371/journal.pone.0048951
10.1007/s11104-019-04385-3
10.1111/j.1365-313X.2008.03695.x
10.3389/fpls.2017.01637
10.1186/s12870-019-1768-0
10.3390/plants8040098
10.1016/j.plaphy.2018.08.013
10.1016/B978-0-12-811308-0.00010-7
10.1104/pp.19.01482
10.1111/j.1469-8137.2012.04084.x
10.3389/fpls.2020.00588
10.1016/j.plantsci.2013.03.016
10.1038/srep19355
10.1104/pp.114.246959
10.3390/ijms21165759
10.1371/journal.pone.0037217
10.1007/s10142-018-0619-7
10.1111/tpj.12448
10.1007/s13562-013-0246-2
10.1093/jxb/eru231
10.1007/s13258-019-00848-0
10.1111/pce.12709
10.1016/j.molp.2018.03.013
10.3389/fpls.2020.00369
10.1016/j.jgg.2015.12.002
10.1007/s00425-016-2588-1
10.1111/nph.14396
10.1007/s00299-020-02564-6
10.1093/jxb/err264
10.1371/journal.pone.0183253
10.1371/journal.pone.0190269
10.1093/jxb/erz515
10.1038/s41598-020-72642-y
10.3389/fpls.2018.00300
10.1104/pp.105.075721
10.1007/s13562-012-0117-2
10.1105/tpc.105.030841
10.1016/j.plaphy.2013.06.023
10.1038/s41598-017-01377-0
10.1104/pp.15.00568
10.1093/jxb/erq410
10.3389/fgene.2020.583785
10.1038/s41598-018-29784-x
10.1093/jxb/eru029
10.1093/pcp/pcy214
10.1093/jxb/eru261
10.1071/FP15041
10.1371/journal.pone.0120291
10.1038/s41598-018-30632-1
10.1007/s00344-020-10112-5
ContentType Journal Article
Copyright Copyright © 2021 Kong, Zhang, Du, Xia, Fan and Zhang.
Copyright © 2021 Kong, Zhang, Du, Xia, Fan and Zhang. 2021 Kong, Zhang, Du, Xia, Fan and Zhang
Copyright_xml – notice: Copyright © 2021 Kong, Zhang, Du, Xia, Fan and Zhang.
– notice: Copyright © 2021 Kong, Zhang, Du, Xia, Fan and Zhang. 2021 Kong, Zhang, Du, Xia, Fan and Zhang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2021.656696
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_0758c762dc9f4c25b7197ed94cb6afca
PMC8200679
10_3389_fpls_2021_656696
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-628c00a404f6a70a8daef94be2f16944dee84c5e7b82b00ceecf00b7868abb883
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 00:58:43 EDT 2025
Thu Aug 21 14:02:06 EDT 2025
Fri Jul 11 14:29:16 EDT 2025
Tue Jul 01 03:27:51 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-628c00a404f6a70a8daef94be2f16944dee84c5e7b82b00ceecf00b7868abb883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Shi Xiao, Sun Yat-sen University, China
This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science
Reviewed by: Fabien Chardon, INRA UMR 1318 Institut Jean-Pierre Bourgin, France; Mo-Xian Chen, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), China
These authors have contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.656696
PMID 34135921
PQID 2542364240
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0758c762dc9f4c25b7197ed94cb6afca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8200679
proquest_miscellaneous_2542364240
crossref_citationtrail_10_3389_fpls_2021_656696
crossref_primary_10_3389_fpls_2021_656696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-31
PublicationDateYYYYMMDD 2021-05-31
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Krouk (B43) 2010; 18
Huang (B31) 2018; 9
Masclaux-Daubresse (B66) 2016; 12
Li (B51) 2017; 8
Nischal (B70) 2012; 7
Li (B49) 2016; 43
Melino (B67) 2018; 9
Shin (B84) 2018; 19
Sun (B95); 11
Wan (B109) 2017; 7
Zhen (B152); 14
Hou (B28) 2020; 20
Shi (B82) 2020; 39
Guo (B25) 2014; 33
Liu (B55) 2003; 22
Yang (B133); 41
Peng (B75) 2007; 50
Sharma (B81) 2017
Guiboileau (B23) 2012; 194
Gojon (B20) 2011; 62
Pant (B72) 2009; 150
Xia (B124) 2012; 7
Liang (B53) 2012; 7
Ma (B61) 2015; 468
Młodzińska (B69) 2015; 154
Yang (B135) 2016; 104
Khan (B38) 2019; 20
Ma (B60) 2020; 447
Sun (B98); 246
Yousuf (B136) 2017; 8
Zhang (B142) 2012; 63
Hsieh (B29) 2018; 8
Kumar (B44) 2018; 13
Wang (B112); 182
Xiong (B126) 2019; 14
Bedu (B4) 2020; 9
Gao (B18) 2016; 34
Shin (B83) 2005; 46
Guan (B22) 2017; 114
Kováčik (B42) 2014; 171
Wang (B119) 2016; 7
Liu (B57) 2018; 18
Ding (B16) 2011; 29
Li (B47); 27
Sultana (B91) 2020; 11
Signora (B85) 2001; 28
Yu (B138) 2016; 6
Sun (B96); 41
Subudhi (B90) 2020; 21
Ikeda (B32) 2000; 275
Wakayama (B108) 2011; 9
Wu (B123) 2017; 40
Xing (B125) 2018; 59
David (B13) 2016; 244
Ma (B62) 2014; 78
Yang (B132); 17
Lian (B52) 2006; 60
Zhen (B151); 20
Wang (B113); 21
Sun (B93) 2015; 66
Zhang (B140) 2007; 58
Sinha (B87) 2020; 148
Zörb (B153) 2018; 23
Sun (B97) 2014; 65
Castaings (B7) 2009; 57
Balotf (B3) 2018; 13
Cai (B6) 2012; 37
Remans (B78) 2006; 140
Bajgain (B2) 2018; 8
Yang (B134) 2015; 555
Gupta (B26) 2009; 36
Konishi (B41) 2013; 4
Trevisan (B105); 7
Xu (B127); 10
Gifford (B19) 2008; 105
Sun (B99); 254
Jones-Rhoades (B35) 2004; 14
Wang (B110); 11
Wang (B116); 12
Wang (B111); 71
Vidal (B107) 2010; 107
Sinha (B88) 2015; 177
Maghiaoui (B63) 2020; 71
Chen (B10) 2017; 129
Guo (B24) 2005; 17
Zuluaga (B155) 2018; 18
Yu (B137) 2019; 10
He (B27) 2015; 169
Zhao (B147) 2012; 7
Tang (B102) 2018; 130
Kurai (B157) 2011; 9
Waqas (B121) 2018; 19
Liao (B54) 2020; 71
Noguero (B71) 2013; 209
Sun (B94); 8
Chen (B11) 2011; 77
Sun (B92) 2016; 39
Ladha (B46) 2016; 6
Dechorgnat (B15) 2019; 9
Yanagisawa (B131) 2004; 101
Xu (B128); 52
Tian (B104) 2008; 165
Zhao (B148) 2013; 22
Talboys (B101) 2014; 65
Asim (B1) 2020; 21
Kwade (B45) 2005; 280
Jiao (B34) 2020; 182
Wang (B114); 165
Yue (B139) 2018; 229
Loqué (B58) 2006; 48
Sun (B100) 2012; 11
Wang (B115); 8
Shao (B79) 2017; 174
Paul (B73) 2015; 6
Fan (B17) 2020; 11
Gruber (B21) 2013; 163
Zhang (B144) 2013; 71
Pei (B74) 2014; 33
Hu (B30) 2009; 57
Singh (B86) 2018; 52
Wang (B118) 2010; 22
Kang (B37) 2019; 444
Wen (B122) 2015; 24
Zhao (B150) 2020; 10
Melino (B68) 2015; 42
Buchner (B5) 2014; 65
Slavikova (B89) 2008; 59
Zhang (B143) 2016; 63
Jiang (B33) 2017; 141
Zhang (B141) 2015; 153
Qiao (B76) 2018; 40
Li (B50) 2020; 258
Zhao (B149) 2015; 24
Zuluaga (B156) 2019; 8
Chardin (B8) 2014; 65
David (B14) 2019; 9
Lv (B59) 2021; 40
Wang (B120) 2012; 17
Qu (B77) 2015; 167
Li (B48); 468
Yan (B130) 2014; 78
Zhao (B146) 2011; 190
Kiba (B39) 2011; 62
Mahmoud (B64) 2020; 25
Mascia (B65) 2019; 20
Kichey (B40) 2005; 46
Jung (B36) 2018; 8
Liu (B56) 2017; 214
Chen (B9) 2019; 60
Shao (B80) 2020; 15
Wang (B117); 179
Zuluaga (B154) 2017; 12
Taulemesse (B103) 2015; 10
Curci (B12) 2017; 7
Xu (B129) 2011; 6
Zhang (B145) 2018; 18
Trevisan (B106); 35
References_xml – volume: 468
  start-page: 59
  year: 2015
  ident: B61
  article-title: The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis.
  publication-title: Biochem. Bioph. Res. Commun.
  doi: 10.1016/j.bbrc.2015.10.164
– volume: 71
  start-page: 4480
  year: 2020
  ident: B63
  article-title: The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport for regulating root branching in response to nitrate.
  publication-title: J. Expe. Bot.
  doi: 10.1093/jxb/eraa242
– volume: 258
  year: 2020
  ident: B50
  article-title: miR398 is involved in the relief of phenanthrene-induced oxidative toxicity in wheat roots.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113701
– volume: 12
  start-page: 896
  year: 2016
  ident: B66
  article-title: Autophagy controls carbon, nitrogen, and redox homeostasis in plants.
  publication-title: Autophagy
  doi: 10.4161/auto.36261
– volume: 17
  start-page: 1823
  ident: B132
  article-title: Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13103
– volume: 19
  year: 2018
  ident: B84
  article-title: Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4897-1
– volume: 10
  year: 2019
  ident: B137
  article-title: Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE).
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00584
– volume: 21
  year: 2020
  ident: B1
  article-title: Signalling overlaps between nitrate and auxin in regulation of the root system architecture: insights from the Arabidopsis thaliana.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082880
– volume: 280
  start-page: 17512
  year: 2005
  ident: B45
  article-title: Identification of four adenosine kinase isoforms in tobacco By-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411428200
– volume: 182
  start-page: 1454
  year: 2020
  ident: B34
  article-title: Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00190
– volume: 11
  start-page: 31
  year: 2012
  ident: B100
  article-title: Molecular characterization and expression analysis of TaZFP15, a C2H2-type zinc finger transcription factor gene in wheat (Triticum aestivum L.).
  publication-title: J. Integr. Agr.
  doi: 10.1016/s1671-2927(12)60780-9
– volume: 65
  start-page: 5023
  year: 2014
  ident: B101
  article-title: Phosphate depletion modulates auxin transport in Triticum aestivum leading to altered root branching.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru284
– volume: 12
  start-page: 133
  ident: B116
  article-title: Genome-wide analysis of nitrate transporter (NRT/NPF) family in Sugarcane Saccharum spontaneum L.
  publication-title: Trop. Plant Biol.
  doi: 10.1007/s12042-019-09220-8
– volume: 179
  start-page: 671
  ident: B117
  article-title: BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01028
– volume: 22
  start-page: 1005
  year: 2003
  ident: B55
  article-title: Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg118
– volume: 8
  year: 2018
  ident: B36
  article-title: CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1512-1
– volume: 33
  start-page: 1697
  year: 2014
  ident: B74
  article-title: Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1648-x
– volume: 52
  ident: B128
  article-title: Identification and characterization of CircRNAs involved in the regulation of wheat root length.
  publication-title: Biol. Res.
  doi: 10.1186/s40659-019-0228-5
– volume: 71
  start-page: 4531
  ident: B111
  article-title: Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa210
– volume: 229
  start-page: 7
  year: 2018
  ident: B139
  article-title: Genome-wide sequence and expressional analysis of autophagy gene family in bread wheat (Triticum aestivum L.).
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2018.06.012
– volume: 59
  start-page: 4029
  year: 2008
  ident: B89
  article-title: An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern244
– volume: 18
  year: 2018
  ident: B145
  article-title: Integrated physiologic, genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1507-y
– volume: 8
  year: 2018
  ident: B2
  article-title: Phylogenetic analyses and in-seedling expression of ammonium and nitrate transporters in wheat.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25430-8
– volume: 66
  start-page: 2449
  year: 2015
  ident: B93
  article-title: Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv030
– volume: 34
  start-page: 931
  year: 2016
  ident: B18
  article-title: Wheat microRNA member TamiR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress.
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-016-0973-3
– volume: 254
  ident: B99
  article-title: Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2020.153281
– volume: 40
  year: 2018
  ident: B76
  article-title: Wheat miRNA member TamiR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition-associated process.
  publication-title: Acta Physiol. Plantarum
  doi: 10.1007/s11738-018-2758-9
– volume: 4
  year: 2013
  ident: B41
  article-title: Arabidopsis NIN-like transcription factors have a central role in nitrate signalling.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2621
– volume: 35
  start-page: 1137
  ident: B106
  article-title: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02478.x
– volume: 60
  start-page: 617
  year: 2006
  ident: B52
  article-title: Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-005-5441-7
– volume: 20
  ident: B151
  article-title: OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194956
– volume: 58
  start-page: 2329
  year: 2007
  ident: B140
  article-title: Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm114
– volume: 20
  year: 2019
  ident: B38
  article-title: Exploring the potential of overexpressed OsCIPK2 rice as a nitrogen utilization efficient crop and analysis of its associated rhizo-compartmental microbial communities.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20153636
– volume: 6
  year: 2016
  ident: B138
  article-title: Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.
  publication-title: Sci. Rep.
  doi: 10.1038/srep27795
– volume: 153
  start-page: 538
  year: 2015
  ident: B141
  article-title: A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis.
  publication-title: Physiol. Plantarum
  doi: 10.1111/ppl.12261
– volume: 190
  start-page: 906
  year: 2011
  ident: B146
  article-title: Involvement of miR169 in the nitrogen starvation responses in Arabidopsis.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03647.x
– volume: 163
  start-page: 161
  year: 2013
  ident: B21
  article-title: Plasticity of the Arabidopsis root system under nutrient deficiencies.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.218453
– volume: 7
  start-page: 822
  ident: B105
  article-title: The miRNA-mediated post-transcriptional regulation of maize response to nitrate.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.20462
– volume: 21
  ident: B113
  article-title: High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6769-8
– volume: 77
  start-page: 619
  year: 2011
  ident: B11
  article-title: Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9838-1
– volume: 40
  start-page: 178
  year: 2017
  ident: B123
  article-title: Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots.
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2017.2261
– volume: 141
  start-page: 28
  year: 2017
  ident: B33
  article-title: Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat (Triticum aestivum L.).
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.06.006
– volume: 275
  start-page: 31695
  year: 2000
  ident: B32
  article-title: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004892200
– volume: 468
  start-page: 800
  ident: B48
  article-title: Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.). confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.
  publication-title: Biochem. Bioph. Res. Commun.
  doi: 10.1016/j.bbrc.2015.11.035
– volume: 52
  start-page: 40
  year: 2018
  ident: B86
  article-title: Morpho-physiological and oxidative responses of nitrogen and phosphorus deficiency in wheat (Triticum aestivum L.).
  publication-title: Indian J. Agr. Res.
  doi: 10.18805/IJARe.A-4905
– volume: 28
  start-page: 655
  year: 2001
  ident: B85
  article-title: ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2001.01185.x
– volume: 9
  year: 2018
  ident: B67
  article-title: RNA catabolites contribute to the nitrogen pool and support growth recovery of wheat.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01539
– volume: 174
  start-page: 2274
  year: 2017
  ident: B79
  article-title: The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2. 1-3A increases grain yield of wheat.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00094
– volume: 10
  ident: B127
  article-title: Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00151
– volume: 14
  ident: B152
  article-title: Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0223011
– volume: 107
  start-page: 4477
  year: 2010
  ident: B107
  article-title: Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0909571107
– volume: 36
  start-page: 2209
  year: 2009
  ident: B26
  article-title: Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet.
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s10142-013-0311-x
– volume: 6
  year: 2015
  ident: B73
  article-title: miRNA regulation of nutrient homeostasis in plants.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00232
– volume: 25
  start-page: 200
  year: 2020
  ident: B64
  article-title: Regulation of expression of genes associated with nitrate response by osmotic stress and combined osmotic and nitrogen deficiency stress in bread wheat (Triticum aestivum L.).
  publication-title: Plant Physiol. Rep.
  doi: 10.1007/s40502-020-00503-x
– volume: 46
  start-page: 1350
  year: 2005
  ident: B83
  article-title: Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci145
– volume: 22
  start-page: 2981
  year: 2010
  ident: B118
  article-title: Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072959
– volume: 37
  start-page: 731
  year: 2012
  ident: B6
  article-title: Transcriptome response to nitrogen starvation in rice.
  publication-title: J. Biosci.
  doi: 10.1007/s12038-012-9242-2
– volume: 9
  year: 2019
  ident: B14
  article-title: Developmental and physiological responses of Brachypodium distachyon to fluctuating nitrogen availability.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40569-8
– volume: 9
  year: 2020
  ident: B4
  article-title: Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in Arabidopsis thaliana.
  publication-title: Cells
  doi: 10.3390/cells9041021
– volume: 19
  year: 2018
  ident: B121
  article-title: Protein phosphatase (PP2C9) induces protein expression differentially to mediate nitrogen utilization efficiency in rice under nitrogen-deficient condition.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19092827
– volume: 6
  year: 2011
  ident: B129
  article-title: Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028009
– volume: 129
  start-page: 271
  year: 2017
  ident: B10
  article-title: Wheat ZFP gene TaZFP593;l mediates the N-starvation adaptation of plants through regulating N acquisition and the ROS metabolism.
  publication-title: Plant Cell Tiss. Org.
  doi: 10.1007/s11240-017-1176-9
– volume: 444
  start-page: 177
  year: 2019
  ident: B37
  article-title: Proteomics combined with BSMV-VIGS methods identified some N deficiency-responsive protein species and ABA role in wheat seedling.
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04260-1
– volume: 62
  start-page: 2299
  year: 2011
  ident: B20
  article-title: Nitrate transceptor(s) in plants.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq419
– volume: 9
  start-page: 826
  year: 2011
  ident: B157
  article-title: Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00592.x
– volume: 24
  start-page: 184
  year: 2015
  ident: B122
  article-title: Characterization and expression analysis of mitogen-activated protein kinase cascade genes in wheat subjected to phosphorus and nitrogen deprivation, high salinity, and drought.
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-014-0256-8
– volume: 114
  start-page: 2419
  year: 2017
  ident: B22
  article-title: Interacting TCP and NLP transcription factors control plant responses to nitrate availability.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.1615676114
– volume: 17
  start-page: 458
  year: 2012
  ident: B120
  article-title: Uptake, allocation and signaling of nitrate.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.006
– volume: 555
  start-page: 305
  year: 2015
  ident: B134
  article-title: RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies.
  publication-title: Gene
  doi: 10.1016/j.gene.2014.11.021
– volume: 14
  year: 2019
  ident: B126
  article-title: A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0211492
– volume: 29
  start-page: 618
  year: 2011
  ident: B16
  article-title: Proteomic analysis of low nitrogen stress-responsive proteins in roots of rice.
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-010-0268-z
– volume: 246
  ident: B98
  article-title: Transcriptome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2020.153137
– volume: 150
  start-page: 1541
  year: 2009
  ident: B72
  article-title: Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing.
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.139139
– volume: 27
  start-page: 1389
  ident: B47
  article-title: Autophagic recycling plays a central role in maize nitrogen remobilization.
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00158
– volume: 104
  start-page: 99
  year: 2016
  ident: B135
  article-title: TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.03.023
– volume: 9
  start-page: 826
  year: 2011
  ident: B108
  article-title: Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00592.x
– volume: 14
  start-page: 787
  year: 2004
  ident: B35
  article-title: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.
  publication-title: Mol. Cells
  doi: 10.1016/j.molcel.2004.05.027
– volume: 7
  year: 2012
  ident: B70
  article-title: Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050261
– volume: 148
  start-page: 246
  year: 2020
  ident: B87
  article-title: Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.01.018
– volume: 57
  start-page: 264
  year: 2009
  ident: B30
  article-title: AtCIPK8, CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03685.x
– volume: 59
  start-page: 2512
  year: 2018
  ident: B125
  article-title: Nitrogen metabolism is affected in the nitrogen-deficient rice mutant esl4 with a calcium-dependent protein kinase gene mutation.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy169
– volume: 8
  year: 2017
  ident: B136
  article-title: Responsive proteins in wheat cultivars with contrasting nitrogen efficiencies under the combined stress of high temperature and low nitrogen.
  publication-title: Genes
  doi: 10.3390/genes8120356
– volume: 23
  start-page: 1029
  year: 2018
  ident: B153
  article-title: Perspective on wheat yield and quality with reduced nitrogen supply.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.08.012
– volume: 46
  start-page: 964
  year: 2005
  ident: B40
  article-title: Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.).
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci105
– volume: 20
  year: 2019
  ident: B65
  article-title: Nitrogen starvation differentially influences transcriptional and uptake rate profiles in roots of two maize inbred lines with different NUE.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194856
– volume: 177
  start-page: 1299
  year: 2015
  ident: B88
  article-title: Nitrate starvation induced changes in root system architecture, carbon:nitrogen metabolism, and miRNA expression in nitrogen-responsive wheat genotypes.
  publication-title: App. Biochem. Biotechnol.
  doi: 10.1007/s12010-015-1815-8
– volume: 154
  start-page: 270
  year: 2015
  ident: B69
  article-title: The plasma membrane H+−ATPase AHA2 contributes to the root architecture in response to different nitrogen supply.
  publication-title: Physiol. Plantarum
  doi: 10.1111/ppl.12305
– volume: 165
  start-page: 942
  year: 2008
  ident: B104
  article-title: Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2007.02.011
– volume: 8
  year: 2019
  ident: B156
  article-title: The Use of nitrogen and its regulation in cereals: structural genes, transcription factors, and the role of miRNAs.
  publication-title: Plants
  doi: 10.3390/plants8080294
– volume: 105
  start-page: 803
  year: 2008
  ident: B19
  article-title: Cell-specific nitrogen responses mediate developmental plasticity.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0709559105
– volume: 50
  start-page: 320
  year: 2007
  ident: B75
  article-title: A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03050.x
– volume: 13
  year: 2018
  ident: B44
  article-title: Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.).
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208409
– volume: 165
  start-page: 498
  ident: B114
  article-title: Identification and molecular characterization of the Brachypodium distachyon NRT2 family, with a major role of BdNRT2.1.
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12716
– volume: 33
  start-page: 837
  year: 2014
  ident: B25
  article-title: Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-014-9435-z
– volume: 18
  start-page: 927
  year: 2010
  ident: B43
  article-title: Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.05.008
– volume: 48
  start-page: 522
  year: 2006
  ident: B58
  article-title: Additive contribution of AMT1; 1 and AMT1; 3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02887.x
– volume: 7
  year: 2016
  ident: B119
  article-title: Characterization of an autophagy-related gene MdATG8i from apple.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00720
– volume: 63
  start-page: 365
  year: 2016
  ident: B143
  article-title: Comparative transcriptome analysis of Triticum aestivum in response to nitrogen stress.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443716020175
– volume: 7
  year: 2017
  ident: B109
  article-title: Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04473-4473
– volume: 15
  year: 2020
  ident: B80
  article-title: Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0235975
– volume: 20
  year: 2020
  ident: B28
  article-title: Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2296-7
– volume: 78
  start-page: 44
  year: 2014
  ident: B130
  article-title: MiR444a has multiple functions in the rice nitrate-signaling pathway.
  publication-title: Plant J.
  doi: 10.1111/tpj.12446
– volume: 7
  year: 2012
  ident: B147
  article-title: Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029669
– volume: 171
  start-page: 260
  year: 2014
  ident: B42
  article-title: Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.08.004
– volume: 101
  start-page: 7833
  year: 2004
  ident: B131
  article-title: Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0402267101
– volume: 18
  year: 2018
  ident: B57
  article-title: TaNBP1, a guanine nucleotide-binding subunit gene of wheat, is essential in the regulation of N starvation adaptation via modulating N acquisition and ROS homeostasis.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1374-6
– volume: 41
  start-page: 469
  ident: B96
  article-title: MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13110
– volume: 7
  year: 2012
  ident: B53
  article-title: Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048951
– volume: 447
  start-page: 637
  year: 2020
  ident: B60
  article-title: Transcriptome analysis of maize seedling roots in response to nitrogen-, phosphorus-, and potassium deficiency.
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04385-3
– volume: 57
  start-page: 426
  year: 2009
  ident: B7
  article-title: The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03695.x
– volume: 8
  year: 2017
  ident: B51
  article-title: Wheat ammonium transporter (AMT) gene family: diversity and possible role in host-pathogen interaction with stem rust.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01637
– volume: 9
  year: 2019
  ident: B15
  article-title: Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1768-0
– volume: 8
  ident: B115
  article-title: Morphological and transcriptome analysis of wheat seedlings response to low nitrogen stress.
  publication-title: Plants
  doi: 10.3390/plants8040098
– volume: 130
  start-page: 577
  year: 2018
  ident: B102
  article-title: Enhanced photorespiration in transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.08.013
– start-page: 181
  year: 2017
  ident: B81
  article-title: The role of calcium in plant signal transduction under macronutrient deficiency stress
  publication-title: Plant Macronutrient Use Efficiency
  doi: 10.1016/B978-0-12-811308-0.00010-7
– volume: 182
  start-page: 1440
  ident: B112
  article-title: TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01482
– volume: 194
  start-page: 732
  year: 2012
  ident: B23
  article-title: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04084.x
– volume: 11
  year: 2020
  ident: B17
  article-title: A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00588
– volume: 209
  start-page: 32
  year: 2013
  ident: B71
  article-title: The role of the DNA-binding One Zinc Finger (DOF). transcription factor family in plants.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.03.016
– volume: 6
  year: 2016
  ident: B46
  article-title: Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems.
  publication-title: Sci. Rep.
  doi: 10.1038/srep19355
– volume: 167
  start-page: 411
  year: 2015
  ident: B77
  article-title: A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.246959
– volume: 21
  year: 2020
  ident: B90
  article-title: Comparative transcriptomics of rice genotypes with contrasting responses to nitrogen stress reveals genes influencing nitrogen uptake through the regulation of root architecture.
  publication-title: Int J. Mol, Sci.
  doi: 10.3390/ijms21165759
– volume: 7
  year: 2012
  ident: B124
  article-title: Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037217
– volume: 18
  start-page: 645
  year: 2018
  ident: B155
  article-title: MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress.
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-018-0619-7
– volume: 78
  start-page: 70
  year: 2014
  ident: B62
  article-title: Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis.
  publication-title: Plant J.
  doi: 10.1111/tpj.12448
– volume: 24
  start-page: 143
  year: 2015
  ident: B149
  article-title: Expression pattern analysis of microRNAs in root tissue of wheat (Triticum aestivum L.) under normal nitrogen and low nitrogen conditions.
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-013-0246-2
– volume: 65
  start-page: 5697
  year: 2014
  ident: B5
  article-title: Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru231
– volume: 41
  start-page: 1183
  ident: B133
  article-title: Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
  publication-title: Genes Genomics
  doi: 10.1007/s13258-019-00848-0
– volume: 39
  start-page: 1473
  year: 2016
  ident: B92
  article-title: Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12709
– volume: 11
  start-page: 806
  ident: B95
  article-title: MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions.
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.03.013
– volume: 11
  ident: B110
  article-title: Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00369
– volume: 43
  start-page: 651
  year: 2016
  ident: B49
  article-title: Identification of microRNAs in rice root in response to nitrate and ammonium.
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2015.12.002
– volume: 244
  start-page: 1315
  year: 2016
  ident: B13
  article-title: N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis.
  publication-title: Planta
  doi: 10.1007/s00425-016-2588-1
– volume: 214
  start-page: 734
  year: 2017
  ident: B56
  article-title: Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis.
  publication-title: New Phytol.
  doi: 10.1111/nph.14396
– volume: 39
  start-page: 1285
  year: 2020
  ident: B82
  article-title: Characterization on TaMPK14, an MAPK family gene of wheat, in modulating N-starvation response through regulating N uptake and ROS homeostasis.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02564-6
– volume: 63
  start-page: 203
  year: 2012
  ident: B142
  article-title: Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err264
– volume: 12
  year: 2017
  ident: B154
  article-title: Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183253
– volume: 13
  year: 2018
  ident: B3
  article-title: How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0190269
– volume: 71
  start-page: 1723
  year: 2020
  ident: B54
  article-title: Combating stress: the interplay between hormone signaling and autophagy in plants.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz515
– volume: 10
  year: 2020
  ident: B150
  article-title: Global identification and characterization of miRNA family members responsive to potassium deprivation in wheat (Triticum aestivum L.).
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72642-y
– volume: 9
  year: 2018
  ident: B31
  article-title: Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00300
– volume: 140
  start-page: 909
  year: 2006
  ident: B78
  article-title: A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.075721
– volume: 22
  start-page: 113
  year: 2013
  ident: B148
  article-title: Identification and characterization of microRNAs from wheat (Triticum aestivum L.). under phosphorus deprivation.
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-012-0117-2
– volume: 17
  start-page: 1376
  year: 2005
  ident: B24
  article-title: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development.
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.030841
– volume: 71
  start-page: 49
  year: 2013
  ident: B144
  article-title: Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.).
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.06.023
– volume: 7
  year: 2017
  ident: B12
  article-title: Transcriptomic response of durum wheat to nitrogen starvation.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01377-0
– volume: 169
  start-page: 1991
  year: 2015
  ident: B27
  article-title: The nitrate inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00568
– volume: 62
  start-page: 1399
  year: 2011
  ident: B39
  article-title: Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq410
– volume: 11
  year: 2020
  ident: B91
  article-title: Transcriptomic study for identification of major nitrogen stress responsive genes in Australian bread wheat cultivars.
  publication-title: Front. Genetics
  doi: 10.3389/fgene.2020.583785
– volume: 8
  ident: B94
  article-title: OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29784-x
– volume: 65
  start-page: 6735
  year: 2014
  ident: B97
  article-title: Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru029
– volume: 60
  start-page: 343
  year: 2019
  ident: B9
  article-title: Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy214
– volume: 65
  start-page: 5577
  year: 2014
  ident: B8
  article-title: The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru261
– volume: 42
  start-page: 942
  year: 2015
  ident: B68
  article-title: Genetic diversity for root plasticity and nitrogen uptake in wheat seedling.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP15041
– volume: 10
  year: 2015
  ident: B103
  article-title: Post-floweringnitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120291
– volume: 8
  year: 2018
  ident: B29
  article-title: Early molecular events associated with nitrogen deficiency in rice seedling roots.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30632-1
– volume: 40
  start-page: 436
  year: 2021
  ident: B59
  article-title: Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: roles of phytohormone signaling.
  publication-title: J. Plant Growth Reg.
  doi: 10.1007/s00344-020-10112-5
SSID ssj0000500997
Score 2.3616498
SecondaryResourceType review_article
Snippet Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 656696
SubjectTerms microRNA
nitrogen starvation
phytohormone
Plant Science
root system architecture
signal
wheat
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4imWAhokLhzSzWad2ObWIpYKiRYBFb1Ffm4jVc6KzR74AfxvZuy02lzgwjV2YsczznwznnzD2BuvGrtEuReVVbzg1rjCOL8sdF0HoSurjabQwOez5vSCf7qsL_dKfVFOWKYHzgs3R5MmLe5YZ1XgtqqNWCjhncLHNjrYBI3Q5u05U5nVm6CPyOeS6IWpedhcEzt3tTgiBEMc_Xt2KNH1TzDmNENyz-SsHrD7I1aE4zzHh-yOj4_Y3ZMe8dyvx-z3t25NKDqu4WtOdPVbGHo4AwSQY6T1Hax6S6nta-gjpA8v6Ohg1SUqbkD0B192QyL_ho96s4Uf3XCFzelfly2cG4oceAddhHOCikBFjobtERxDPlV4wi5WH76_Py3GogqFRewxFE0lbVlqXvLQaFFq6bQPihtfhUWjOHfeS25rL4yscEuiDbWhLI2QjdTGSLl8yg5iH_0zBtLrqnS-MUYbbn1pnJaBvN7gF7VTYsbmN0vc2pFxnApfXLfoeZBQWhJKS0Jps1Bm7O3tHZvMtvGXvicktdt-xJOdLqD2tKP2tP_Snhl7fSPzFvcVHZbo6PsdjlRz4tZHwDNjYqIMkxGnLbG7SgzdkgI1Qj3_H1M8ZPforXPGwgt2MPzc-ZcIhAbzKun8H5m6DCE
  priority: 102
  providerName: Directory of Open Access Journals
Title Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review
URI https://www.proquest.com/docview/2542364240
https://pubmed.ncbi.nlm.nih.gov/PMC8200679
https://doaj.org/article/0758c762dc9f4c25b7197ed94cb6afca
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCeIptoRokLhyyzWad2EZCqEVsK6S2CFixt8jPbaRVsmyyUvsD-N_MJGkhUsWJSw6JLSceT-ab8fgbxt54ldkpyj1KrOIRt8ZFxvlppNM0CJ1YbTSFBk7PspM5_7xIF3-OR_cTWN_q2lE9qflmNb78efUBFf49eZxobw_CekXE28lkTOBEZXfZPbRLguoZnPZgv2P6Jjgkur3KWzsObFNL4T_AncOsyb_M0OwRe9jjRzjsBP6Y3fHlE3b_qEKMd_WU_fpWLAlZl0v42iW_-hqaCs4AQWUffX0Hs8pSuvsSqhLanzHo0sGsaOm5AREhfNk2LSE4HOt1DT-K5gIft-dfajg3FE3wDooSzgk-AhU-auoxHEK30_CMzWefvn88ifpCC5FFPNJEWSJtHGse85BpEWvptA-KG5-ESaY4d95LblMvjExQTdGu2hDHRshMamOknD5nO2VV-hcMpNdJ7HxmjDbc-tg4LQN5wsFPUqfEiB1cT3FuexZyKoaxytEbIaHkJJSchJJ3Qhmxtzc91h0Dxz_aHpHUbtoRd3Z7o9os814VcwRJ0qINcFYFbpPUiIkS3ilcqJkOVo_Y62uZ56hrtIGiS19tcaSUE98-gqARE4PFMBhx-KQsLlrWbknBG6F2_8cr7rEH9NVdFsNLttNstv4VgqPG7LdBBbweLyb77fr_Ddd1FZQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signaling+Responses+to+N+Starvation%3A+Focusing+on+Wheat+and+Filling+the+Putative+Gaps+With+Findings+Obtained+in+Other+Plants.+A+Review&rft.jtitle=Frontiers+in+plant+science&rft.au=Lingan+Kong&rft.au=Lingan+Kong&rft.au=Yunxiu+Zhang&rft.au=Wanying+Du&rft.date=2021-05-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.656696&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0758c762dc9f4c25b7197ed94cb6afca
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon