A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I

Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplifica...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 144; no. 5; pp. 1582 - 1589
Main Authors Fu, Xiuli, Wang, Yunqing, Liu, Yongming, Liu, Huitao, Fu, Longwen, Wen, Jiahui, Li, Jingwen, Wei, Peihai, Chen, Lingxin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL −1 ) and a good linearity was obtained in a range of 0.01-1000 ng mL −1 . In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. A multiple signal amplification of a SERS biosensor was developed for sensitive detection of cTnI with the aid of GO/AuNP complexes.
AbstractList Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.
Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP–functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, “capture probe/target/SERS nanotags”, were formed through antibody–antigen–antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL −1 ) and a good linearity was obtained in a range of 0.01–1000 ng mL −1 . In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.
Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.
Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP–functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, “capture probe/target/SERS nanotags”, were formed through antibody–antigen–antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL−1) and a good linearity was obtained in a range of 0.01–1000 ng mL−1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.
Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL −1 ) and a good linearity was obtained in a range of 0.01-1000 ng mL −1 . In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. A multiple signal amplification of a SERS biosensor was developed for sensitive detection of cTnI with the aid of GO/AuNP complexes.
Author Li, Jingwen
Liu, Yongming
Fu, Longwen
Liu, Huitao
Fu, Xiuli
Wei, Peihai
Wang, Yunqing
Chen, Lingxin
Wen, Jiahui
AuthorAffiliation Chinese Academy of Sciences
Yantai Institute of Coastal Zone Research
Qilu Normal University
Key Laboratory of Coastal Environmental Processes and Ecological Remediation
Yantai University
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Yantai Institute of Coastal Zone Research
– sequence: 0
  name: Key Laboratory of Coastal Environmental Processes and Ecological Remediation
– sequence: 0
  name: Qilu Normal University
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Yantai University
Author_xml – sequence: 1
  givenname: Xiuli
  surname: Fu
  fullname: Fu, Xiuli
– sequence: 2
  givenname: Yunqing
  surname: Wang
  fullname: Wang, Yunqing
– sequence: 3
  givenname: Yongming
  surname: Liu
  fullname: Liu, Yongming
– sequence: 4
  givenname: Huitao
  surname: Liu
  fullname: Liu, Huitao
– sequence: 5
  givenname: Longwen
  surname: Fu
  fullname: Fu, Longwen
– sequence: 6
  givenname: Jiahui
  surname: Wen
  fullname: Wen, Jiahui
– sequence: 7
  givenname: Jingwen
  surname: Li
  fullname: Li, Jingwen
– sequence: 8
  givenname: Peihai
  surname: Wei
  fullname: Wei, Peihai
– sequence: 9
  givenname: Lingxin
  surname: Chen
  fullname: Chen, Lingxin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30666995$$D View this record in MEDLINE/PubMed
BookMark eNpt0UFLHTEQB_AgFn1qL96VQC-lsJpNNtnk-HhoK0gFbc_LmMz6IrvJmuxC_fbu81kL0lMY-M1MmP8B2Q0xICHHJTsrmTDnVkNgnHEOO2RRClUVUnK9SxaMMVFwJat9cpDz41yWTLI9si-YUsoYuSDrJX1IMKwxII1_vMPzh9g5GiDEAdLobYfFPWR0FPqh8623MPoYaI_jOjraxkTvLm7vqO_7KUTIGZ5pbKmF5DxYOqY4xOADvToin1roMn5-ew_J78uLX6sfxfXN96vV8rqwlTBjobg0quZOgkBurGqlM84htxIqsE5KrWTNsK6NrlFXTrWcM83K1lXGaQPikHzdzh1SfJowj03vs8Wug4Bxyg0va1NxqUU50y8f6GOcUph_Nyu9WWXYRp2-qem-R9cMyfeQnpu_N5zBty2wKeacsH0nJWs2ATUrvfz5GtByxuwDtn58PemYwHf_bznZtqRs30f_y1y8AFqsmvU
CitedBy_id crossref_primary_10_1016_j_foodres_2022_111805
crossref_primary_10_3390_bios13040474
crossref_primary_10_3389_fchem_2022_1017305
crossref_primary_10_34133_research_0483
crossref_primary_10_1016_j_actbio_2021_06_047
crossref_primary_10_1016_j_bios_2022_114148
crossref_primary_10_3390_mi10030203
crossref_primary_10_1016_j_bioelechem_2022_108348
crossref_primary_10_3390_ijms25042080
crossref_primary_10_1021_acsabm_3c00223
crossref_primary_10_1007_s11274_024_04072_1
crossref_primary_10_1016_j_aiepr_2023_03_001
crossref_primary_10_1021_acsomega_9b03976
crossref_primary_10_1021_acssensors_0c00395
crossref_primary_10_1016_j_ab_2019_113444
crossref_primary_10_1002_jrs_6464
crossref_primary_10_3390_bios13060632
crossref_primary_10_2217_nnm_2020_0361
crossref_primary_10_1021_acs_bioconjchem_9b00874
crossref_primary_10_1039_C9NR04864B
crossref_primary_10_1002_asia_202300264
crossref_primary_10_1016_j_envres_2023_116933
crossref_primary_10_1016_j_snb_2021_130399
crossref_primary_10_1021_acs_jafc_1c03469
crossref_primary_10_1016_j_mtcomm_2023_107283
crossref_primary_10_1016_j_aca_2022_339562
crossref_primary_10_1039_C9AN00733D
crossref_primary_10_1016_j_cep_2023_109343
crossref_primary_10_1039_D0NA00472C
crossref_primary_10_1016_j_aca_2021_339082
crossref_primary_10_1016_j_foodcont_2019_106989
crossref_primary_10_1002_adhm_202100506
crossref_primary_10_1016_j_talanta_2023_124818
crossref_primary_10_1246_cl_210521
crossref_primary_10_1016_j_cej_2024_150067
crossref_primary_10_1039_D4AN00247D
crossref_primary_10_1021_acsomega_3c00230
crossref_primary_10_1021_acsomega_3c06571
crossref_primary_10_1080_07388551_2020_1808582
crossref_primary_10_1088_1361_6528_ab477c
crossref_primary_10_3390_ma13225219
crossref_primary_10_3390_nano11113020
crossref_primary_10_1007_s00604_019_3359_z
crossref_primary_10_1016_j_colcom_2022_100596
crossref_primary_10_1021_acsnano_3c10468
crossref_primary_10_1016_j_tifs_2021_05_007
crossref_primary_10_1080_10826068_2021_1894441
crossref_primary_10_1016_j_jim_2021_113108
crossref_primary_10_1039_C9AN01990A
crossref_primary_10_1016_j_apsb_2021_05_004
crossref_primary_10_1039_D3RA03977C
crossref_primary_10_1515_revac_2021_0132
crossref_primary_10_3390_chemosensors10110455
crossref_primary_10_1016_j_bios_2020_112480
crossref_primary_10_1016_j_microc_2020_105369
crossref_primary_10_1016_j_biotechadv_2019_107442
crossref_primary_10_1039_C9AN00964G
crossref_primary_10_1016_j_apsusc_2022_153264
crossref_primary_10_1016_j_ccr_2022_214711
crossref_primary_10_1016_j_msec_2020_110809
crossref_primary_10_1016_j_bioelechem_2022_108167
crossref_primary_10_3390_s22041620
crossref_primary_10_1177_00037028231187963
crossref_primary_10_1039_D0NJ05774F
crossref_primary_10_3390_mi11010060
crossref_primary_10_1002_jmr_2893
crossref_primary_10_3390_bios13020296
crossref_primary_10_3390_chemosensors10080317
crossref_primary_10_1016_j_nanoso_2020_100604
crossref_primary_10_3390_nano10071402
crossref_primary_10_1016_j_talanta_2024_126131
crossref_primary_10_1016_j_bios_2020_112370
crossref_primary_10_1039_C9AN01260E
crossref_primary_10_3390_s19245471
crossref_primary_10_1039_D0AN00060D
crossref_primary_10_3390_ijms23147728
crossref_primary_10_1002_nano_202100255
crossref_primary_10_1186_s11671_023_03886_6
crossref_primary_10_1021_acsbiomaterials_0c00955
crossref_primary_10_1016_j_microc_2024_112479
crossref_primary_10_1016_j_trac_2024_117964
crossref_primary_10_1039_D0NR02234A
crossref_primary_10_3390_nano10020209
crossref_primary_10_1038_s41378_023_00600_5
crossref_primary_10_1039_C9CC09102E
crossref_primary_10_1039_D0NJ00726A
crossref_primary_10_1557_s43578_021_00320_4
crossref_primary_10_1016_j_sna_2023_114758
crossref_primary_10_1039_D4RA03816A
crossref_primary_10_3390_chemosensors9040067
crossref_primary_10_1007_s12551_022_00990_2
crossref_primary_10_1021_acs_analchem_0c05219
Cites_doi 10.1038/srep14848
10.1021/cr300120g
10.1016/j.snb.2012.05.077
10.1021/ac5028885
10.1016/j.ijcard.2018.05.136
10.1016/j.jpba.2018.07.021
10.1021/acs.analchem.5b00921
10.1016/j.bios.2015.10.089
10.1021/am5045828
10.1021/ac302422k
10.1016/j.bios.2018.08.015
10.1021/j100214a025
10.1016/j.bios.2012.02.008
10.1016/j.bios.2016.01.093
10.1016/j.bios.2012.06.061
10.1039/C5CC07277H
10.1021/ac101715s
10.1002/smll.200901680
10.1021/acs.analchem.6b02945
10.1039/C4TB00541D
10.1016/j.jbiotec.2015.05.002
10.1039/C4NR00983E
10.1021/cr980133r
10.1021/acsnano.7b01536
10.1016/j.bios.2015.11.099
10.1021/acsami.5b10996
10.1016/j.bios.2011.02.036
10.1039/B917103G
10.1016/j.snb.2017.05.149
10.1093/clinchem/38.11.2203
10.1016/j.aca.2015.12.023
10.1373/clinchem.2015.252569
10.1039/C6RA04785H
10.1016/j.bios.2018.08.020
10.1016/j.bios.2015.03.037
10.3390/s16050669
10.1016/j.ahj.2015.11.010
10.1021/acs.analchem.6b02251
10.1016/j.bios.2015.11.083
10.1038/physci241020a0
10.1016/S0002-8703(97)70044-9
10.1007/s00604-017-2245-9
10.1016/j.aca.2016.04.027
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c8an02022a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 1589
ExternalDocumentID 30666995
10_1039_C8AN02022A
c8an02022a
Genre Journal Article
GroupedDBID ---
-JG
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABGFH
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R7B
R7E
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c439t-6259672d5a3e29c6f5d9dde2c5a4acd5586570e77987e84d6f220801fd49d89a3
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 00:55:53 EDT 2025
Mon Jun 30 04:09:00 EDT 2025
Thu Apr 03 06:58:47 EDT 2025
Tue Jul 01 01:56:54 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Tue Dec 17 21:00:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-6259672d5a3e29c6f5d9dde2c5a4acd5586570e77987e84d6f220801fd49d89a3
Notes 10.1039/c8an02022a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3764-3515
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2019/an/c8an02022a
PMID 30666995
PQID 2185586901
PQPubID 2047505
PageCount 8
ParticipantIDs crossref_primary_10_1039_C8AN02022A
pubmed_primary_30666995
proquest_miscellaneous_2179425831
proquest_journals_2185586901
crossref_citationtrail_10_1039_C8AN02022A
rsc_primary_c8an02022a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190225
PublicationDateYYYYMMDD 2019-02-25
PublicationDate_xml – month: 2
  year: 2019
  text: 20190225
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (C8AN02022A-(cit16)/*[position()=1]) 2016; 909
Kim (C8AN02022A-(cit13)/*[position()=1]) 2016; 16
Wang (C8AN02022A-(cit31)/*[position()=1]) 2016; 8
Fu (C8AN02022A-(cit37)/*[position()=1]) 2012; 34
Sharma (C8AN02022A-(cit39)/*[position()=1]) 2013; 39
Dreyer (C8AN02022A-(cit38)/*[position()=1]) 2010; 39
Wang (C8AN02022A-(cit34)/*[position()=1]) 2013; 113
Wu (C8AN02022A-(cit18)/*[position()=1]) 2017; 184
Zhang (C8AN02022A-(cit23)/*[position()=1]) 2016; 77
Cheng (C8AN02022A-(cit30)/*[position()=1]) 2017; 11
Hermanson (C8AN02022A-(cit41)/*[position()=1]) 2008
Li (C8AN02022A-(cit26)/*[position()=1]) 2015; 51
Wang (C8AN02022A-(cit28)/*[position()=1]) 2014; 2
Frens (C8AN02022A-(cit40)/*[position()=1]) 1973; 241
Chao (C8AN02022A-(cit21)/*[position()=1]) 2016; 81
Negahdary (C8AN02022A-(cit9)/*[position()=1]) 2017; 252
Si (C8AN02022A-(cit25)/*[position()=1]) 2014; 86
Tang (C8AN02022A-(cit17)/*[position()=1]) 2013; 85
Lim (C8AN02022A-(cit11)/*[position()=1]) 2015; 5
Wu (C8AN02022A-(cit22)/*[position()=1]) 2014; 6
Rezaei (C8AN02022A-(cit4)/*[position()=1]) 2016; 78
Lee (C8AN02022A-(cit20)/*[position()=1]) 2015; 87
Lee (C8AN02022A-(cit36)/*[position()=1]) 1982; 86
Trambas (C8AN02022A-(cit8)/*[position()=1]) 2016; 62
Dorraj (C8AN02022A-(cit19)/*[position()=1]) 2015; 208
Zhang (C8AN02022A-(cit43)/*[position()=1]) 2010; 6
Qureshi (C8AN02022A-(cit5)/*[position()=1]) 2012; 171–172
Du (C8AN02022A-(cit42)/*[position()=1]) 2011; 83
Tanasijevic (C8AN02022A-(cit44)/*[position()=1]) 1997; 134
Zhou (C8AN02022A-(cit24)/*[position()=1]) 2016; 88
Vdovenko (C8AN02022A-(cit12)/*[position()=1]) 2016; 6
Fu (C8AN02022A-(cit35)/*[position()=1]) 2016; 78
Fu (C8AN02022A-(cit32)/*[position()=1]) 2017; 89
Kneipp (C8AN02022A-(cit33)/*[position()=1]) 1999; 99
Bakirhan (C8AN02022A-(cit2)/*[position()=1]) 2018; 159
Song (C8AN02022A-(cit15)/*[position()=1]) 2011; 26
Wang (C8AN02022A-(cit27)/*[position()=1]) 2014; 6
Wildi (C8AN02022A-(cit7)/*[position()=1]) 2018; 270
Fathil (C8AN02022A-(cit1)/*[position()=1]) 2015; 70
Sirkka (C8AN02022A-(cit14)/*[position()=1]) 2016; 925
Lee (C8AN02022A-(cit3)/*[position()=1]) 2016; 173
Zhang (C8AN02022A-(cit6)/*[position()=1]) 2018; 119
Bodor (C8AN02022A-(cit10)/*[position()=1]) 1992; 38
Gao (C8AN02022A-(cit29)/*[position()=1]) 2018; 119
References_xml – issn: 2008
  publication-title: Bioconjugate Techniques
  doi: Hermanson
– volume: 5
  start-page: 14848
  year: 2015
  ident: C8AN02022A-(cit11)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep14848
– volume: 113
  start-page: 1391
  year: 2013
  ident: C8AN02022A-(cit34)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300120g
– volume: 171–172
  start-page: 62
  year: 2012
  ident: C8AN02022A-(cit5)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2012.05.077
– volume: 86
  start-page: 10406
  year: 2014
  ident: C8AN02022A-(cit25)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac5028885
– volume-title: Bioconjugate Techniques
  year: 2008
  ident: C8AN02022A-(cit41)/*[position()=1]
– volume: 270
  start-page: 14
  year: 2018
  ident: C8AN02022A-(cit7)/*[position()=1]
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2018.05.136
– volume: 159
  start-page: 406
  year: 2018
  ident: C8AN02022A-(cit2)/*[position()=1]
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2018.07.021
– volume: 87
  start-page: 5004
  year: 2015
  ident: C8AN02022A-(cit20)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00921
– volume: 77
  start-page: 1078
  year: 2016
  ident: C8AN02022A-(cit23)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.10.089
– volume: 6
  start-page: 16974
  year: 2014
  ident: C8AN02022A-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5045828
– volume: 85
  start-page: 1431
  year: 2013
  ident: C8AN02022A-(cit17)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac302422k
– volume: 119
  start-page: 126
  year: 2018
  ident: C8AN02022A-(cit29)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.015
– volume: 86
  start-page: 3391
  year: 1982
  ident: C8AN02022A-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100214a025
– volume: 34
  start-page: 227
  year: 2012
  ident: C8AN02022A-(cit37)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.02.008
– volume: 81
  start-page: 92
  year: 2016
  ident: C8AN02022A-(cit21)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.01.093
– volume: 39
  start-page: 99
  year: 2013
  ident: C8AN02022A-(cit39)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.06.061
– volume: 51
  start-page: 16131
  year: 2015
  ident: C8AN02022A-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07277H
– volume: 83
  start-page: 746
  year: 2011
  ident: C8AN02022A-(cit42)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac101715s
– volume: 6
  start-page: 537
  year: 2010
  ident: C8AN02022A-(cit43)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200901680
– volume: 88
  start-page: 9830
  year: 2016
  ident: C8AN02022A-(cit24)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02945
– volume: 2
  start-page: 4442
  year: 2014
  ident: C8AN02022A-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00541D
– volume: 208
  start-page: 80
  year: 2015
  ident: C8AN02022A-(cit19)/*[position()=1]
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.05.002
– volume: 6
  start-page: 8107
  year: 2014
  ident: C8AN02022A-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR00983E
– volume: 99
  start-page: 2957
  year: 1999
  ident: C8AN02022A-(cit33)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr980133r
– volume: 11
  start-page: 4926
  year: 2017
  ident: C8AN02022A-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01536
– volume: 78
  start-page: 530
  year: 2016
  ident: C8AN02022A-(cit35)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.11.099
– volume: 8
  start-page: 10665
  year: 2016
  ident: C8AN02022A-(cit31)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10996
– volume: 26
  start-page: 3818
  year: 2011
  ident: C8AN02022A-(cit15)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.02.036
– volume: 39
  start-page: 228
  year: 2010
  ident: C8AN02022A-(cit38)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B917103G
– volume: 252
  start-page: 62
  year: 2017
  ident: C8AN02022A-(cit9)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.05.149
– volume: 38
  start-page: 2203
  issue: 11
  year: 1992
  ident: C8AN02022A-(cit10)/*[position()=1]
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/38.11.2203
– volume: 909
  start-page: 1
  year: 2016
  ident: C8AN02022A-(cit16)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.12.023
– volume: 62
  start-page: 831
  year: 2016
  ident: C8AN02022A-(cit8)/*[position()=1]
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2015.252569
– volume: 6
  start-page: 48827
  year: 2016
  ident: C8AN02022A-(cit12)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04785H
– volume: 119
  start-page: 176
  year: 2018
  ident: C8AN02022A-(cit6)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.020
– volume: 70
  start-page: 209
  year: 2015
  ident: C8AN02022A-(cit1)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.03.037
– volume: 16
  start-page: 669
  year: 2016
  ident: C8AN02022A-(cit13)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s16050669
– volume: 173
  start-page: 8
  year: 2016
  ident: C8AN02022A-(cit3)/*[position()=1]
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2015.11.010
– volume: 89
  start-page: 124
  year: 2017
  ident: C8AN02022A-(cit32)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02251
– volume: 78
  start-page: 513
  year: 2016
  ident: C8AN02022A-(cit4)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.11.083
– volume: 241
  start-page: 20
  year: 1973
  ident: C8AN02022A-(cit40)/*[position()=1]
  publication-title: Nat. Phys. Sci.
  doi: 10.1038/physci241020a0
– volume: 134
  start-page: 622
  issue: 4
  year: 1997
  ident: C8AN02022A-(cit44)/*[position()=1]
  publication-title: Am. Heart J.
  doi: 10.1016/S0002-8703(97)70044-9
– volume: 184
  start-page: 2395
  year: 2017
  ident: C8AN02022A-(cit18)/*[position()=1]
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-017-2245-9
– volume: 925
  start-page: 82
  year: 2016
  ident: C8AN02022A-(cit14)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.04.027
SSID ssj0001050
Score 2.568812
Snippet Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for...
Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1582
SubjectTerms Amplification
Beads
Biomarkers
Diagnosis
Graphene
Immunoassay
Linearity
Monoclonal antibodies
Muscles
Myocardial infarction
Nanoparticles
Raman spectra
Title A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I
URI https://www.ncbi.nlm.nih.gov/pubmed/30666995
https://www.proquest.com/docview/2185586901
https://www.proquest.com/docview/2179425831
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk2AviK9BYSAjeEFVtsaO8_EYVataBHuhk7qnyLWTLVKXjJFIiL-euzhOMjok4CWqnEtS-ffL-c65D0I-ZAIzJgPmgP8jHM-XnrNxtXaEv3EzBQZImKGj-OXUX5x5n9Zi_Vt2SbU5Uj_vzCv5H1RhDHDFLNl_QLa7KQzAb8AXjoAwHP8K43jS1JsGdTUpf-RYQHd-UW71pJAF-MJG3sF1Sk8kRo5n7QZd2ze6CTH8ijkGOWaJlGBHy-aDu2pooyYVtlDA6qvLoQ1r6phUw2Yg3W7CvEbM1nm9zfuteqNOzuvim10nMQIob0TPy-Liand4UeeVLIdbEpgFxRyTvnyUGjXKfc8Rok37tnrWFHpsCSUGWtMVpgHRjjqfcqyGqkJZgFXLmBwKARTXVw2wHH2wKBL9ktYFGtpT98keAz-CjchefLJafu4WazAvp7ZqLY-O-0ftkwf24tsmy44fAlbJje0W01glq8fkUetO0Nhg_YTcS4un5OHMdvF7Ri5jajlCG44cI0PoLkPoLYZQwxAKDKHIEDpgCC0z2jKEWobQ5XNyNj9ZzRZO213DUWCEVg46vn7AtJA8ZZHyM6EjWOuYEtKTSgsRYlRUGgRRGKShp_2MMXAv3Ex7kQ4jyQ_IqCiL9CWhoRZqE0m4ow48wZSceppz33V5gCULgzH5aCcwUW3peeyAsk2aEAgeJbMwPm3mPR6T953stSm4cqfUocUhaV_I7wlYq_ivwcIdk3fdaZhv_AYmi7SsUQYWICZCDjIvDH7dYyzeY3IAgHbDPSde_fGS12S_fxEOyai6qdM3YK1Wm7ct434Bo7KTFw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graphene+oxide%2Fgold+nanoparticle-based+amplification+method+for+SERS+immunoassay+of+cardiac+troponin+I&rft.jtitle=Analyst+%28London%29&rft.au=Fu%2C+Xiuli&rft.au=Wang%2C+Yunqing&rft.au=Liu%2C+Yongming&rft.au=Liu%2C+Huitao&rft.date=2019-02-25&rft.eissn=1364-5528&rft.volume=144&rft.issue=5&rft.spage=1582&rft_id=info:doi/10.1039%2Fc8an02022a&rft_id=info%3Apmid%2F30666995&rft.externalDocID=30666995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon