A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I
Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplifica...
Saved in:
Published in | Analyst (London) Vol. 144; no. 5; pp. 1582 - 1589 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
25.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL
−1
) and a good linearity was obtained in a range of 0.01-1000 ng mL
−1
. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.
A multiple signal amplification of a SERS biosensor was developed for sensitive detection of cTnI with the aid of GO/AuNP complexes. |
---|---|
AbstractList | Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP–functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, “capture probe/target/SERS nanotags”, were formed through antibody–antigen–antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL −1 ) and a good linearity was obtained in a range of 0.01–1000 ng mL −1 . In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease.Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL-1) and a good linearity was obtained in a range of 0.01-1000 ng mL-1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP–functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, “capture probe/target/SERS nanotags”, were formed through antibody–antigen–antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL−1) and a good linearity was obtained in a range of 0.01–1000 ng mL−1. In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for cardiac damage and showing little or no changes in patients with a skeletal muscle disease or trauma. Herein, a new signal amplification surface-enhanced Raman scattering (SERS) platform was developed for recognition and detection of cTnI by using gold nanoparticles (AuNPs), graphene oxide (GO) and magnetic beads (MB). Here, antibody/Raman reporter labeled AuNP-functionalized GO were employed as both SERS nanotags and signal amplification carriers. Monoclonal antibody modified MB were applied as the capture probe and separation agents. In the presence of cTnI, sandwich type immunocomplexes, "capture probe/target/SERS nanotags", were formed through antibody-antigen-antibody interactions. Due to the strong SERS enhancement ability of the designed GO/AuNP complexes and a high binding chance between cTnI and the GO/AuNP complexes, the proposed SERS-based immunoassay could selectively detect cTnI with a high sensitivity (detection limit of 5 pg mL −1 ) and a good linearity was obtained in a range of 0.01-1000 ng mL −1 . In addition, this method was also successfully applied for detecting cTnI in serum substitute media with a similar linear range. Furthermore, this strategy can be constructed with different kinds of antibodies and Raman reporters, and thus can be easily used for simultaneous detection of multiple biomarkers. Therefore, this proposed SERS-based signal amplification technique shows strong potential for the clinical diagnosis of AMI disease. A multiple signal amplification of a SERS biosensor was developed for sensitive detection of cTnI with the aid of GO/AuNP complexes. |
Author | Li, Jingwen Liu, Yongming Fu, Longwen Liu, Huitao Fu, Xiuli Wei, Peihai Wang, Yunqing Chen, Lingxin Wen, Jiahui |
AuthorAffiliation | Chinese Academy of Sciences Yantai Institute of Coastal Zone Research Qilu Normal University Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai University School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Yantai Institute of Coastal Zone Research – sequence: 0 name: Key Laboratory of Coastal Environmental Processes and Ecological Remediation – sequence: 0 name: Qilu Normal University – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Yantai University |
Author_xml | – sequence: 1 givenname: Xiuli surname: Fu fullname: Fu, Xiuli – sequence: 2 givenname: Yunqing surname: Wang fullname: Wang, Yunqing – sequence: 3 givenname: Yongming surname: Liu fullname: Liu, Yongming – sequence: 4 givenname: Huitao surname: Liu fullname: Liu, Huitao – sequence: 5 givenname: Longwen surname: Fu fullname: Fu, Longwen – sequence: 6 givenname: Jiahui surname: Wen fullname: Wen, Jiahui – sequence: 7 givenname: Jingwen surname: Li fullname: Li, Jingwen – sequence: 8 givenname: Peihai surname: Wei fullname: Wei, Peihai – sequence: 9 givenname: Lingxin surname: Chen fullname: Chen, Lingxin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30666995$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UFLHTEQB_AgFn1qL96VQC-lsJpNNtnk-HhoK0gFbc_LmMz6IrvJmuxC_fbu81kL0lMY-M1MmP8B2Q0xICHHJTsrmTDnVkNgnHEOO2RRClUVUnK9SxaMMVFwJat9cpDz41yWTLI9si-YUsoYuSDrJX1IMKwxII1_vMPzh9g5GiDEAdLobYfFPWR0FPqh8623MPoYaI_jOjraxkTvLm7vqO_7KUTIGZ5pbKmF5DxYOqY4xOADvToin1roMn5-ew_J78uLX6sfxfXN96vV8rqwlTBjobg0quZOgkBurGqlM84htxIqsE5KrWTNsK6NrlFXTrWcM83K1lXGaQPikHzdzh1SfJowj03vs8Wug4Bxyg0va1NxqUU50y8f6GOcUph_Nyu9WWXYRp2-qem-R9cMyfeQnpu_N5zBty2wKeacsH0nJWs2ATUrvfz5GtByxuwDtn58PemYwHf_bznZtqRs30f_y1y8AFqsmvU |
CitedBy_id | crossref_primary_10_1016_j_foodres_2022_111805 crossref_primary_10_3390_bios13040474 crossref_primary_10_3389_fchem_2022_1017305 crossref_primary_10_34133_research_0483 crossref_primary_10_1016_j_actbio_2021_06_047 crossref_primary_10_1016_j_bios_2022_114148 crossref_primary_10_3390_mi10030203 crossref_primary_10_1016_j_bioelechem_2022_108348 crossref_primary_10_3390_ijms25042080 crossref_primary_10_1021_acsabm_3c00223 crossref_primary_10_1007_s11274_024_04072_1 crossref_primary_10_1016_j_aiepr_2023_03_001 crossref_primary_10_1021_acsomega_9b03976 crossref_primary_10_1021_acssensors_0c00395 crossref_primary_10_1016_j_ab_2019_113444 crossref_primary_10_1002_jrs_6464 crossref_primary_10_3390_bios13060632 crossref_primary_10_2217_nnm_2020_0361 crossref_primary_10_1021_acs_bioconjchem_9b00874 crossref_primary_10_1039_C9NR04864B crossref_primary_10_1002_asia_202300264 crossref_primary_10_1016_j_envres_2023_116933 crossref_primary_10_1016_j_snb_2021_130399 crossref_primary_10_1021_acs_jafc_1c03469 crossref_primary_10_1016_j_mtcomm_2023_107283 crossref_primary_10_1016_j_aca_2022_339562 crossref_primary_10_1039_C9AN00733D crossref_primary_10_1016_j_cep_2023_109343 crossref_primary_10_1039_D0NA00472C crossref_primary_10_1016_j_aca_2021_339082 crossref_primary_10_1016_j_foodcont_2019_106989 crossref_primary_10_1002_adhm_202100506 crossref_primary_10_1016_j_talanta_2023_124818 crossref_primary_10_1246_cl_210521 crossref_primary_10_1016_j_cej_2024_150067 crossref_primary_10_1039_D4AN00247D crossref_primary_10_1021_acsomega_3c00230 crossref_primary_10_1021_acsomega_3c06571 crossref_primary_10_1080_07388551_2020_1808582 crossref_primary_10_1088_1361_6528_ab477c crossref_primary_10_3390_ma13225219 crossref_primary_10_3390_nano11113020 crossref_primary_10_1007_s00604_019_3359_z crossref_primary_10_1016_j_colcom_2022_100596 crossref_primary_10_1021_acsnano_3c10468 crossref_primary_10_1016_j_tifs_2021_05_007 crossref_primary_10_1080_10826068_2021_1894441 crossref_primary_10_1016_j_jim_2021_113108 crossref_primary_10_1039_C9AN01990A crossref_primary_10_1016_j_apsb_2021_05_004 crossref_primary_10_1039_D3RA03977C crossref_primary_10_1515_revac_2021_0132 crossref_primary_10_3390_chemosensors10110455 crossref_primary_10_1016_j_bios_2020_112480 crossref_primary_10_1016_j_microc_2020_105369 crossref_primary_10_1016_j_biotechadv_2019_107442 crossref_primary_10_1039_C9AN00964G crossref_primary_10_1016_j_apsusc_2022_153264 crossref_primary_10_1016_j_ccr_2022_214711 crossref_primary_10_1016_j_msec_2020_110809 crossref_primary_10_1016_j_bioelechem_2022_108167 crossref_primary_10_3390_s22041620 crossref_primary_10_1177_00037028231187963 crossref_primary_10_1039_D0NJ05774F crossref_primary_10_3390_mi11010060 crossref_primary_10_1002_jmr_2893 crossref_primary_10_3390_bios13020296 crossref_primary_10_3390_chemosensors10080317 crossref_primary_10_1016_j_nanoso_2020_100604 crossref_primary_10_3390_nano10071402 crossref_primary_10_1016_j_talanta_2024_126131 crossref_primary_10_1016_j_bios_2020_112370 crossref_primary_10_1039_C9AN01260E crossref_primary_10_3390_s19245471 crossref_primary_10_1039_D0AN00060D crossref_primary_10_3390_ijms23147728 crossref_primary_10_1002_nano_202100255 crossref_primary_10_1186_s11671_023_03886_6 crossref_primary_10_1021_acsbiomaterials_0c00955 crossref_primary_10_1016_j_microc_2024_112479 crossref_primary_10_1016_j_trac_2024_117964 crossref_primary_10_1039_D0NR02234A crossref_primary_10_3390_nano10020209 crossref_primary_10_1038_s41378_023_00600_5 crossref_primary_10_1039_C9CC09102E crossref_primary_10_1039_D0NJ00726A crossref_primary_10_1557_s43578_021_00320_4 crossref_primary_10_1016_j_sna_2023_114758 crossref_primary_10_1039_D4RA03816A crossref_primary_10_3390_chemosensors9040067 crossref_primary_10_1007_s12551_022_00990_2 crossref_primary_10_1021_acs_analchem_0c05219 |
Cites_doi | 10.1038/srep14848 10.1021/cr300120g 10.1016/j.snb.2012.05.077 10.1021/ac5028885 10.1016/j.ijcard.2018.05.136 10.1016/j.jpba.2018.07.021 10.1021/acs.analchem.5b00921 10.1016/j.bios.2015.10.089 10.1021/am5045828 10.1021/ac302422k 10.1016/j.bios.2018.08.015 10.1021/j100214a025 10.1016/j.bios.2012.02.008 10.1016/j.bios.2016.01.093 10.1016/j.bios.2012.06.061 10.1039/C5CC07277H 10.1021/ac101715s 10.1002/smll.200901680 10.1021/acs.analchem.6b02945 10.1039/C4TB00541D 10.1016/j.jbiotec.2015.05.002 10.1039/C4NR00983E 10.1021/cr980133r 10.1021/acsnano.7b01536 10.1016/j.bios.2015.11.099 10.1021/acsami.5b10996 10.1016/j.bios.2011.02.036 10.1039/B917103G 10.1016/j.snb.2017.05.149 10.1093/clinchem/38.11.2203 10.1016/j.aca.2015.12.023 10.1373/clinchem.2015.252569 10.1039/C6RA04785H 10.1016/j.bios.2018.08.020 10.1016/j.bios.2015.03.037 10.3390/s16050669 10.1016/j.ahj.2015.11.010 10.1021/acs.analchem.6b02251 10.1016/j.bios.2015.11.083 10.1038/physci241020a0 10.1016/S0002-8703(97)70044-9 10.1007/s00604-017-2245-9 10.1016/j.aca.2016.04.027 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c8an02022a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 1589 |
ExternalDocumentID | 30666995 10_1039_C8AN02022A c8an02022a |
Genre | Journal Article |
GroupedDBID | --- -JG -~X .HR 0-7 0R~ 23M 2WC 4.4 5RE 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABGFH ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R7B R7E RAOCF RCNCU RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c439t-6259672d5a3e29c6f5d9dde2c5a4acd5586570e77987e84d6f220801fd49d89a3 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 00:55:53 EDT 2025 Mon Jun 30 04:09:00 EDT 2025 Thu Apr 03 06:58:47 EDT 2025 Tue Jul 01 01:56:54 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Dec 17 21:00:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-6259672d5a3e29c6f5d9dde2c5a4acd5586570e77987e84d6f220801fd49d89a3 |
Notes | 10.1039/c8an02022a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3764-3515 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2019/an/c8an02022a |
PMID | 30666995 |
PQID | 2185586901 |
PQPubID | 2047505 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C8AN02022A pubmed_primary_30666995 proquest_miscellaneous_2179425831 proquest_journals_2185586901 crossref_citationtrail_10_1039_C8AN02022A rsc_primary_c8an02022a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190225 |
PublicationDateYYYYMMDD | 2019-02-25 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190225 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (C8AN02022A-(cit16)/*[position()=1]) 2016; 909 Kim (C8AN02022A-(cit13)/*[position()=1]) 2016; 16 Wang (C8AN02022A-(cit31)/*[position()=1]) 2016; 8 Fu (C8AN02022A-(cit37)/*[position()=1]) 2012; 34 Sharma (C8AN02022A-(cit39)/*[position()=1]) 2013; 39 Dreyer (C8AN02022A-(cit38)/*[position()=1]) 2010; 39 Wang (C8AN02022A-(cit34)/*[position()=1]) 2013; 113 Wu (C8AN02022A-(cit18)/*[position()=1]) 2017; 184 Zhang (C8AN02022A-(cit23)/*[position()=1]) 2016; 77 Cheng (C8AN02022A-(cit30)/*[position()=1]) 2017; 11 Hermanson (C8AN02022A-(cit41)/*[position()=1]) 2008 Li (C8AN02022A-(cit26)/*[position()=1]) 2015; 51 Wang (C8AN02022A-(cit28)/*[position()=1]) 2014; 2 Frens (C8AN02022A-(cit40)/*[position()=1]) 1973; 241 Chao (C8AN02022A-(cit21)/*[position()=1]) 2016; 81 Negahdary (C8AN02022A-(cit9)/*[position()=1]) 2017; 252 Si (C8AN02022A-(cit25)/*[position()=1]) 2014; 86 Tang (C8AN02022A-(cit17)/*[position()=1]) 2013; 85 Lim (C8AN02022A-(cit11)/*[position()=1]) 2015; 5 Wu (C8AN02022A-(cit22)/*[position()=1]) 2014; 6 Rezaei (C8AN02022A-(cit4)/*[position()=1]) 2016; 78 Lee (C8AN02022A-(cit20)/*[position()=1]) 2015; 87 Lee (C8AN02022A-(cit36)/*[position()=1]) 1982; 86 Trambas (C8AN02022A-(cit8)/*[position()=1]) 2016; 62 Dorraj (C8AN02022A-(cit19)/*[position()=1]) 2015; 208 Zhang (C8AN02022A-(cit43)/*[position()=1]) 2010; 6 Qureshi (C8AN02022A-(cit5)/*[position()=1]) 2012; 171–172 Du (C8AN02022A-(cit42)/*[position()=1]) 2011; 83 Tanasijevic (C8AN02022A-(cit44)/*[position()=1]) 1997; 134 Zhou (C8AN02022A-(cit24)/*[position()=1]) 2016; 88 Vdovenko (C8AN02022A-(cit12)/*[position()=1]) 2016; 6 Fu (C8AN02022A-(cit35)/*[position()=1]) 2016; 78 Fu (C8AN02022A-(cit32)/*[position()=1]) 2017; 89 Kneipp (C8AN02022A-(cit33)/*[position()=1]) 1999; 99 Bakirhan (C8AN02022A-(cit2)/*[position()=1]) 2018; 159 Song (C8AN02022A-(cit15)/*[position()=1]) 2011; 26 Wang (C8AN02022A-(cit27)/*[position()=1]) 2014; 6 Wildi (C8AN02022A-(cit7)/*[position()=1]) 2018; 270 Fathil (C8AN02022A-(cit1)/*[position()=1]) 2015; 70 Sirkka (C8AN02022A-(cit14)/*[position()=1]) 2016; 925 Lee (C8AN02022A-(cit3)/*[position()=1]) 2016; 173 Zhang (C8AN02022A-(cit6)/*[position()=1]) 2018; 119 Bodor (C8AN02022A-(cit10)/*[position()=1]) 1992; 38 Gao (C8AN02022A-(cit29)/*[position()=1]) 2018; 119 |
References_xml | – issn: 2008 publication-title: Bioconjugate Techniques doi: Hermanson – volume: 5 start-page: 14848 year: 2015 ident: C8AN02022A-(cit11)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep14848 – volume: 113 start-page: 1391 year: 2013 ident: C8AN02022A-(cit34)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300120g – volume: 171–172 start-page: 62 year: 2012 ident: C8AN02022A-(cit5)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2012.05.077 – volume: 86 start-page: 10406 year: 2014 ident: C8AN02022A-(cit25)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac5028885 – volume-title: Bioconjugate Techniques year: 2008 ident: C8AN02022A-(cit41)/*[position()=1] – volume: 270 start-page: 14 year: 2018 ident: C8AN02022A-(cit7)/*[position()=1] publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2018.05.136 – volume: 159 start-page: 406 year: 2018 ident: C8AN02022A-(cit2)/*[position()=1] publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2018.07.021 – volume: 87 start-page: 5004 year: 2015 ident: C8AN02022A-(cit20)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00921 – volume: 77 start-page: 1078 year: 2016 ident: C8AN02022A-(cit23)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.10.089 – volume: 6 start-page: 16974 year: 2014 ident: C8AN02022A-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5045828 – volume: 85 start-page: 1431 year: 2013 ident: C8AN02022A-(cit17)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac302422k – volume: 119 start-page: 126 year: 2018 ident: C8AN02022A-(cit29)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.015 – volume: 86 start-page: 3391 year: 1982 ident: C8AN02022A-(cit36)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100214a025 – volume: 34 start-page: 227 year: 2012 ident: C8AN02022A-(cit37)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.02.008 – volume: 81 start-page: 92 year: 2016 ident: C8AN02022A-(cit21)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.093 – volume: 39 start-page: 99 year: 2013 ident: C8AN02022A-(cit39)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.06.061 – volume: 51 start-page: 16131 year: 2015 ident: C8AN02022A-(cit26)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC07277H – volume: 83 start-page: 746 year: 2011 ident: C8AN02022A-(cit42)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac101715s – volume: 6 start-page: 537 year: 2010 ident: C8AN02022A-(cit43)/*[position()=1] publication-title: Small doi: 10.1002/smll.200901680 – volume: 88 start-page: 9830 year: 2016 ident: C8AN02022A-(cit24)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02945 – volume: 2 start-page: 4442 year: 2014 ident: C8AN02022A-(cit28)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00541D – volume: 208 start-page: 80 year: 2015 ident: C8AN02022A-(cit19)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.05.002 – volume: 6 start-page: 8107 year: 2014 ident: C8AN02022A-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR00983E – volume: 99 start-page: 2957 year: 1999 ident: C8AN02022A-(cit33)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr980133r – volume: 11 start-page: 4926 year: 2017 ident: C8AN02022A-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01536 – volume: 78 start-page: 530 year: 2016 ident: C8AN02022A-(cit35)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.11.099 – volume: 8 start-page: 10665 year: 2016 ident: C8AN02022A-(cit31)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10996 – volume: 26 start-page: 3818 year: 2011 ident: C8AN02022A-(cit15)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.02.036 – volume: 39 start-page: 228 year: 2010 ident: C8AN02022A-(cit38)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B917103G – volume: 252 start-page: 62 year: 2017 ident: C8AN02022A-(cit9)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.05.149 – volume: 38 start-page: 2203 issue: 11 year: 1992 ident: C8AN02022A-(cit10)/*[position()=1] publication-title: Clin. Chem. doi: 10.1093/clinchem/38.11.2203 – volume: 909 start-page: 1 year: 2016 ident: C8AN02022A-(cit16)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.12.023 – volume: 62 start-page: 831 year: 2016 ident: C8AN02022A-(cit8)/*[position()=1] publication-title: Clin. Chem. doi: 10.1373/clinchem.2015.252569 – volume: 6 start-page: 48827 year: 2016 ident: C8AN02022A-(cit12)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04785H – volume: 119 start-page: 176 year: 2018 ident: C8AN02022A-(cit6)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.020 – volume: 70 start-page: 209 year: 2015 ident: C8AN02022A-(cit1)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.03.037 – volume: 16 start-page: 669 year: 2016 ident: C8AN02022A-(cit13)/*[position()=1] publication-title: Sensors doi: 10.3390/s16050669 – volume: 173 start-page: 8 year: 2016 ident: C8AN02022A-(cit3)/*[position()=1] publication-title: Am. Heart J. doi: 10.1016/j.ahj.2015.11.010 – volume: 89 start-page: 124 year: 2017 ident: C8AN02022A-(cit32)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02251 – volume: 78 start-page: 513 year: 2016 ident: C8AN02022A-(cit4)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.11.083 – volume: 241 start-page: 20 year: 1973 ident: C8AN02022A-(cit40)/*[position()=1] publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 – volume: 134 start-page: 622 issue: 4 year: 1997 ident: C8AN02022A-(cit44)/*[position()=1] publication-title: Am. Heart J. doi: 10.1016/S0002-8703(97)70044-9 – volume: 184 start-page: 2395 year: 2017 ident: C8AN02022A-(cit18)/*[position()=1] publication-title: Microchim. Acta doi: 10.1007/s00604-017-2245-9 – volume: 925 start-page: 82 year: 2016 ident: C8AN02022A-(cit14)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.04.027 |
SSID | ssj0001050 |
Score | 2.568812 |
Snippet | Cardiac troponin I (cTnI) was considered as the "gold standard" for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for... Cardiac troponin I (cTnI) was considered as the “gold standard” for acute myocardial infarction (AMI) diagnosis owing to its superior cardiac specificity for... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1582 |
SubjectTerms | Amplification Beads Biomarkers Diagnosis Graphene Immunoassay Linearity Monoclonal antibodies Muscles Myocardial infarction Nanoparticles Raman spectra |
Title | A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30666995 https://www.proquest.com/docview/2185586901 https://www.proquest.com/docview/2179425831 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk2AviK9BYSAjeEFVtsaO8_EYVataBHuhk7qnyLWTLVKXjJFIiL-euzhOMjok4CWqnEtS-ffL-c65D0I-ZAIzJgPmgP8jHM-XnrNxtXaEv3EzBQZImKGj-OXUX5x5n9Zi_Vt2SbU5Uj_vzCv5H1RhDHDFLNl_QLa7KQzAb8AXjoAwHP8K43jS1JsGdTUpf-RYQHd-UW71pJAF-MJG3sF1Sk8kRo5n7QZd2ze6CTH8ijkGOWaJlGBHy-aDu2pooyYVtlDA6qvLoQ1r6phUw2Yg3W7CvEbM1nm9zfuteqNOzuvim10nMQIob0TPy-Liand4UeeVLIdbEpgFxRyTvnyUGjXKfc8Rok37tnrWFHpsCSUGWtMVpgHRjjqfcqyGqkJZgFXLmBwKARTXVw2wHH2wKBL9ktYFGtpT98keAz-CjchefLJafu4WazAvp7ZqLY-O-0ftkwf24tsmy44fAlbJje0W01glq8fkUetO0Nhg_YTcS4un5OHMdvF7Ri5jajlCG44cI0PoLkPoLYZQwxAKDKHIEDpgCC0z2jKEWobQ5XNyNj9ZzRZO213DUWCEVg46vn7AtJA8ZZHyM6EjWOuYEtKTSgsRYlRUGgRRGKShp_2MMXAv3Ex7kQ4jyQ_IqCiL9CWhoRZqE0m4ow48wZSceppz33V5gCULgzH5aCcwUW3peeyAsk2aEAgeJbMwPm3mPR6T953stSm4cqfUocUhaV_I7wlYq_ivwcIdk3fdaZhv_AYmi7SsUQYWICZCDjIvDH7dYyzeY3IAgHbDPSde_fGS12S_fxEOyai6qdM3YK1Wm7ct434Bo7KTFw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graphene+oxide%2Fgold+nanoparticle-based+amplification+method+for+SERS+immunoassay+of+cardiac+troponin+I&rft.jtitle=Analyst+%28London%29&rft.au=Fu%2C+Xiuli&rft.au=Wang%2C+Yunqing&rft.au=Liu%2C+Yongming&rft.au=Liu%2C+Huitao&rft.date=2019-02-25&rft.eissn=1364-5528&rft.volume=144&rft.issue=5&rft.spage=1582&rft_id=info:doi/10.1039%2Fc8an02022a&rft_id=info%3Apmid%2F30666995&rft.externalDocID=30666995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |