Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data

With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 120; p. 103345
Main Authors Li, Yansheng, Li, Xinwei, Zhang, Yongjun, Peng, Daifeng, Bruzzone, Lorenzo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD. •WSDL is a promising solution in RSBD mining.•Most of articles are around WSDL-based methods.•Future perspectives around WSDL-based RSBD mining are outlined.
AbstractList With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD.
With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD. •WSDL is a promising solution in RSBD mining.•Most of articles are around WSDL-based methods.•Future perspectives around WSDL-based RSBD mining are outlined.
ArticleNumber 103345
Author Bruzzone, Lorenzo
Li, Yansheng
Zhang, Yongjun
Peng, Daifeng
Li, Xinwei
Author_xml – sequence: 1
  givenname: Yansheng
  orcidid: 0000-0001-8203-1246
  surname: Li
  fullname: Li, Yansheng
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 2
  givenname: Xinwei
  surname: Li
  fullname: Li, Xinwei
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 3
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zhangyj@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 4
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 5
  givenname: Lorenzo
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy
BookMark eNp9kc1u1DAUhS3USrSFB2DnJZsM_kliG1ZoRKFSJTagsrM8zvXgkNiD7Zm2r8BT45kgFl105WPrnHN1_V2isxADIPSGkhUltH83rkazXTHCeL1z3nYv0AWVgjWS9T_Oqu561ciWs5foMueRECpELy_Qn3XMpQHnvPUQCvbBxTSb4mPA8FCSsSfpUpzxbHL2B8AJ5lgAZwjZhy0eTDHv8d1PCPgezK_pEef9DtLBZxjwALDDE5gUjtYZoOSn-Y1fOl6hc2emDK__nVfo-_Wnb-svze3Xzzfrj7eNbbkqTSd6YR2XTArbtkC4UGCkZZxWTQUQUZejihCu3MAtVcwOHWzkRhBoXef4FbpZeodoRr1LfjbpUUfj9ekhpq02qXg7gWaWAgXF6MCG1tXxTDiqFO8YUCYdrV1vl65dir_3kIuefbYwTSZA3GfNJG-ZIJ3sqpUuVptizgnc_9GU6CNDPerKUB8Z6oVhzYgnGevLCU4l46dnkx-WJNSfPHhIOh8BWxh8Alvqqv6Z9F-72Lmc
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_1109_JSTARS_2024_3471804
crossref_primary_10_1080_01431161_2024_2413026
crossref_primary_10_1109_JSTARS_2024_3459792
crossref_primary_10_1109_TGRS_2024_3418850
crossref_primary_10_1111_phor_12495
Cites_doi 10.1016/j.cageo.2017.02.018
10.1109/CVPR.2018.00780
10.1109/CVPR.2018.00141
10.1109/TGRS.2020.2991407
10.1109/TGRS.2019.2909781
10.1109/CVPRW.2019.00182
10.1007/s11432-022-3599-y
10.1109/ICCV.2019.00588
10.1016/j.inffus.2023.02.002
10.1109/CVPR.2016.311
10.1016/j.isprsjprs.2021.02.009
10.1016/j.patcog.2016.01.015
10.1109/CVPR.2017.355
10.1109/TGRS.2020.2991657
10.1109/JSTARS.2021.3073965
10.3389/frai.2020.534696
10.1109/TIP.2020.3011807
10.1109/LGRS.2018.2886534
10.1080/2150704X.2018.1492172
10.1109/JSTARS.2020.3009352
10.1109/LGRS.2015.2503142
10.1109/CVPR.2019.00734
10.1109/TPAMI.2016.2636150
10.1109/ACCESS.2020.3019956
10.1016/j.jvcir.2018.11.004
10.1016/j.rse.2019.111595
10.1016/j.rse.2019.111626
10.1109/TGRS.2019.2958123
10.3390/rs71115014
10.1109/JSTARS.2021.3049527
10.1016/j.landurbplan.2006.02.014
10.1109/LGRS.2020.2975541
10.1109/CVPR.2017.653
10.1109/TGRS.2017.2685945
10.1016/j.isprsjprs.2021.03.021
10.1109/TPAMI.2018.2876304
10.1109/TGRS.2014.2377785
10.1080/07038992.2019.1569507
10.1016/j.patcog.2017.12.012
10.1109/ACCESS.2020.3044192
10.1016/j.isprsjprs.2021.08.001
10.1109/TGRS.2020.3045708
10.1109/TGRS.2017.2756911
10.1007/s11263-020-01373-4
10.1109/ICCV.2019.00851
10.1109/TGRS.2020.2985989
10.1007/s11760-015-0804-2
10.1109/TGRS.2020.3020804
10.1109/CVPR.2017.326
10.1038/nature14967
10.3390/rs10030410
10.1016/j.jue.2006.12.006
10.1109/JAS.2022.106082
10.1109/ICCV.2015.203
10.14358/PERS.83.8.567
10.1109/JPROC.2012.2229082
10.1609/aaai.v32i1.11716
10.1109/TGRS.2019.2951779
10.1155/2017/1796728
10.1109/CVPRW53098.2021.00129
10.1016/j.neucom.2018.05.083
10.1016/j.isprsjprs.2018.04.014
10.1109/CVPR52688.2022.00421
10.3390/rs9020173
10.1109/TNNLS.2020.2979670
10.1109/CVPR.2017.553
10.1109/JPROC.2021.3079176
10.1109/CVPR.2018.00759
10.1109/JSTARS.2021.3063849
10.1016/j.isprsjprs.2019.11.023
10.1162/neco_a_00990
10.1016/j.scib.2019.03.002
10.1109/LGRS.2019.2906279
10.3390/rs13010108
10.1109/LGRS.2015.2475299
10.1109/JPROC.2015.2449668
10.1109/CVPR.2017.473
10.1109/JSTARS.2010.2081349
10.1117/1.JRS.12.016036
10.1038/nature14539
10.1109/LGRS.2020.2985340
10.1109/JSTARS.2021.3056661
10.1109/CVPR42600.2020.01273
10.1016/j.isprsjprs.2022.02.013
10.1109/TGRS.2003.814625
10.1109/JSTARS.2020.3025174
10.3390/rs13030394
10.1016/j.knosys.2022.108469
10.1007/s11069-017-2755-0
10.1109/ACCESS.2019.2956508
10.1109/JPROC.2016.2598228
10.1109/CVPR46437.2021.00264
10.1109/TGRS.2017.2783902
10.1038/s42254-021-00314-5
10.1007/s11045-015-0370-3
10.1080/19475683.2018.1450787
10.1080/2150704X.2020.1752410
10.1016/j.isprsjprs.2018.09.014
10.1016/j.isprsjprs.2021.04.006
10.1109/LGRS.2019.2930462
10.1109/CVPR.2018.00392
10.1109/JSTARS.2016.2634863
10.1109/LGRS.2017.2766840
10.1109/CVPR.2017.181
10.1109/LGRS.2017.2758900
10.1109/MGRS.2016.2540798
10.1109/LGRS.2018.2889307
10.1109/TCYB.2020.2989241
10.1109/ICCV.2015.191
10.1109/JSTARS.2011.2168317
10.1109/JPROC.2021.3087029
10.1109/ACCESS.2020.2968771
10.1109/ACCESS.2018.2873761
10.1109/TGRS.2017.2778300
10.1109/TGRS.2017.2686450
10.1109/ICCV.2019.00967
10.3390/rs12203276
10.1109/CVPR.2014.81
10.1016/j.inffus.2021.06.008
10.1109/JSTARS.2021.3063788
10.3390/rs11111309
10.1016/j.isprsjprs.2020.01.013
10.1016/j.isprsjprs.2017.11.004
10.1016/j.inffus.2020.10.008
10.1016/j.rse.2020.112045
10.1109/LGRS.2019.2914490
10.1109/TGRS.2018.2845668
10.1109/TGRS.2016.2601622
10.1038/nature16961
10.1109/JSTARS.2018.2887108
10.1109/CVPR.2016.344
10.1109/ICCV.2019.01002
10.1007/s00521-018-3468-3
10.1109/TGRS.2016.2569141
10.1109/CVPR.2019.00534
10.1109/JSTARS.2021.3078177
10.1109/TGRS.2017.2689071
10.1016/j.rse.2019.111322
10.1016/j.isprsjprs.2018.04.003
10.1080/01431161.2015.1093195
10.1109/TGRS.2017.2754648
10.1016/S0924-2716(98)00027-6
10.1016/j.isprsjprs.2014.10.002
10.3390/rs71114680
10.1038/s41586-019-0912-1
10.1016/j.ins.2016.07.042
10.1109/JAS.2022.105686
10.1016/j.isprsjprs.2021.05.016
10.3390/rs10060846
10.1093/nsr/nwx106
10.1109/CVPR.2016.319
10.1145/1869790.1869829
10.1109/TCYB.2018.2856821
10.1109/MGRS.2017.2762307
10.1109/TGRS.2018.2839705
10.1109/LGRS.2017.2780890
10.1109/JPROC.2019.2948454
10.1109/MGRS.2020.2994107
10.1109/LGRS.2020.2990284
10.1109/TGRS.2019.2921396
10.1109/LGRS.2019.2896411
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2023.103345
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_2c1e1e921d2d4f43927f199352e128f1
10_1016_j_jag_2023_103345
S156984322300167X
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c439t-5767cf38287c44e0379ea8c231e0317e07001190039fd3c192cd5eb8b70e4f5f3
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:13:33 EDT 2025
Fri Jul 11 09:53:28 EDT 2025
Tue Jul 01 02:15:23 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 23 02:38:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Future research directions
Remote sensing big data mining
Weakly supervised deep learning
Cost-efficient information extraction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-5767cf38287c44e0379ea8c231e0317e07001190039fd3c192cd5eb8b70e4f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8203-1246
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S156984322300167X
PQID 2834270585
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_2c1e1e921d2d4f43927f199352e128f1
proquest_miscellaneous_2834270585
crossref_primary_10_1016_j_jag_2023_103345
crossref_citationtrail_10_1016_j_jag_2023_103345
elsevier_sciencedirect_doi_10_1016_j_jag_2023_103345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhu, Shi, Chen, Shi, Do, Qin (b234) 2016; 21
Mondal, Agarwal, Dolz, Desrosiers (b133) 2019
Wang, Y.X., Ramanan, D., Hebert, M., 2019a. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9925–9934.
Otter, Medina, Kalita (b135) 2020; 32
Li, Deng, Fang (b95) 2021
Dai, J., He, K., Sun, J., 2015. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1635–1643.
Li, Chen, Chen, Shi (b90) 2021
Liu, Chen, Xu, Li, Yan, Diao, Sun (b123) 2019
Crowther, Glick, Covey, Bettigole, Maynard, Thomas, Smith, Hintler, Duguid, Amatulli (b33) 2015; 525
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M., 2018. Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7472–7481.
Bruzzone (b12) 2019
Wang, T., Zhang, X., Yuan, L., Feng, J., 2019b. Few-shot adaptive faster r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7173–7182.
Martinuzzi, Gould, González (b129) 2007; 79
Lu, Chen, Shi, Zhang, Ma (b125) 2020; 12
Tao, Yeh, Wang (b174) 2017
Zhou, Cheng, Liu, Bu, Hu (b231) 2016; 27
Li, Zhang, Zhu (b118) 2021; 51
Tao, Qi, Lu, Wang, Li (b173) 2020
Huang, Yu, Feng (b69) 2019; 58
Alajaji, Alhichri, Ammour, Alajlan (b1) 2020
Daudt, Saux, Boulch, Gousseau (b37) 2019; 187
Li, Kong, Zhang, Tan, Chen (b99) 2021; 179
Rafique, Jacobs (b144) 2019
Sumbul, Cinbis, Aksoy (b169) 2017; 56
Xue, Dai, Liu (b203) 2020; 8
Kodirov, E., Xiang, T., Gong, S., 2017. Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3174–3183.
Tang, Wang, Bai, Shen, Bai, Liu, Yuille (b172) 2018; 42
Weinstein, Marconi, Bohlman, Zare, White (b196) 2019; 11
Yan, Zheng, Chang, Luo, Yeh, Hauptman (b209) 2020; 29
Das, Chandran (b36) 2021
Zhang, Xu, Tian, Jiang, Ma (b225) 2021; 76
Schmitt, Prexl, Ebel, Liebel, Zhu (b160) 2020
Chen, He, Zhang, Sun, Deng (b15) 2020; 12
Zhang, Chen, Peng, Benediktsson, Liu, Zou, Li, Plaza (b220) 2019; 107
Bilen, H., Vedaldi, A., 2016. Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2846–2854.
Thoonen, Mahmood, Peeters, Scheunders (b175) 2011; 5
Zhou, Siddiquee, Tajbakhsh, Liang (b233) 2018
Li, Tao, Tan, Shang, Tian (b106) 2016; 13
Lake, Salakhutdinov, Tenenbaum (b86) 2013
Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y., 2017e. Zero-shot recognition using dual visual-semantic mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3279–3287.
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b235) 2017; 5
Li, Shi, Zhang, Chen, Wang, Li (b105) 2021; 175
Hu, Xia, Hu, Zhang (b65) 2015; 7
Li, Lu, Wang, Xiang, Wen (b102) 2017; 55
Robinson, Malkin, Jojic, Chen, Qin, Xiao, Schmitt, Ghamisi, Hänsch (b150) 2021; 14
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b81) 2021; 3
Zhang, Du, Zhang, Xu (b221) 2016; 54
Chen, Wan, Zhu, Xu, Deng (b19) 2019; 17
Zhao, Luo, Li, Chen, Piao (b229) 2020; 12
Saha, Solano-Correa, Bovolo, Bruzzone (b155) 2020; 18
Elhoseiny, M., Elfeki, M., 2019. Creativity inspired zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5784–5793.
Gao, Gao, Dong, Wang (b48) 2019; 16
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587.
Yan, Fan, Liu, Huo, Xiang, Pan (b206) 2019; 58
Bhatta (b9) 2010
Kemker, Salvaggio, Kanan (b83) 2018; 145
Huang, Wang, Li (b68) 2018; 24
Jiao, Zhao (b74) 2019; 7
Xiao, Zhong, Quan, Yin, Xue (b202) 2020
LeCun, Bengio, Hinton (b87) 2015; 521
Li, Ouyang, Zhang (b104) 2022; 243
Gong, Yang, Zhan, Niu, Li (b56) 2019; 12
Yan, Fan, Xiang, Pan (b208) 2021
Li, Zhang, Huang, Ma (b113) 2018; 56
Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N., 2017. Aga: Attribute-guided augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7455–7463.
Tang, P., Wang, X., Bai, X., Liu, W., 2017. Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2843–2851.
Zhang, Tang, Corpetti, Zhao (b224) 2021; 13
Wei, Liang, Chen, Jie, Xiao, Zhao, Yan (b191) 2016; 59
Xue, Tong (b204) 2019; 49
Gómez-Chova, Tuia, Moser, Camps-Valls (b54) 2015; 103
Li, Zhang, Xiao, Zheng (b116) 2021; 14
Li, Zhou, Zhang, Zhong, Wang, Chen (b119) 2022; 186
Jing, Tian (b76) 2020
Fu, Lu, Diao, Yan, Sun, Zhang, Sun (b47) 2018; 10
Yao, Feng, Han, Cheng, Guo (b214) 2020; 59
Li, Dang, Li, Zhang (b94) 2023
Li, Zhang, Huang, Yuille (b114) 2018; 146
Kellenberger, B., Marcos, D., Tuia, D., 2019. When a few clicks make all the difference: improving weakly-supervised wildlife detection in uav images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0.
Shimoda, Yanai (b161) 2016
Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X., 2022. Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4248–4257.
Ibrahim, M.S., Vahdat, A., Ranjbar, M., Macready, W.G., 2020. Semi-supervised semantic image segmentation with self-correcting networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12715–12725.
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (b149) 2019; 566
He, Fang, Li, Plaza, Plaza (b61) 2018; 56
Hsieh, Lo, Chen, Liu (b64) 2019
Dong, Xu, Zhao, Jiao, An (b44) 2019; 57
Li, Dou, Tao, Hou, Chen, Peng, Deng, Zhao (b96) 2017
Li, Zhang (b112) 2018; 77
Stojnic, V., Risojevic, V., 2021. Self-supervised learning of remote sensing scene representations using contrastive multiview coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1182–1191.
Hua, Mou, Lin, Heidler, Zhu (b67) 2021; 177
Yuan, Huang, Li, Luo (b215) 2020; 9
Wu, Sun, Zhang, Wei, Chanussot (b197) 2021
Tong, Chen, Han, Li, Wang (b176) 2020; 13
Yan, Fan, Xiang, Pan (b207) 2018
Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279.
Zhang, Ma (b222) 2021
Rosser, Leibovici, Jackson (b151) 2017; 87
Pan, Tai, Zheng, Zhao (b136) 2017; 2017
Pelletier, Valero, Inglada, Champion, Sicre, Dedieu (b139) 2017; 9
Chen, Zhong, Zheng, Ma, Lu (b25) 2021; 178
Li, Chen, Huang, Gao, Li, He, Zhang (b91) 2023; 66
Saito, K., Watanabe, K., Ushiku, Y., Harada, T., 2018. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3723–3732.
Wu, Weise, Wang, Wang (b198) 2020; 8
Yang, Newsam (b211) 2008
Guo, Xia, Luo (b59) 2020
Jin, Xia, Hu, Lu, Zhang (b75) 2018
Li, Liu, Lei, Wang (b101) 2021
Wang, Deng (b184) 2018; 312
Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B., 2017. Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 876–885.
Li, Ma, Zhang (b103) 2021; 67
Tuia, Persello, Bruzzone (b180) 2021
Dirscherl, Dietz, Dech, Kuenzer (b42) 2020; 237
Song, Yu, Miao, Zhang, Lin, Wang (b167) 2019; 16
Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L., 2015. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1742–1750.
Zhan, Hu, Wang, Yu (b217) 2017; 15
Singh, Bruzzone (b163) 2021
Schmitt, Hughes, Qiu, Zhu (b159) 2019
Matasci, Volpi, Kanevski, Bruzzone, Tuia (b130) 2015; 53
Rasti, Ghamisi, Gloaguen (b147) 2017; 55
Bratasanu, Nedelcu, Datcu (b11) 2010; 4
Xiao, Qi, Xue, Zhong (b201) 2021; 14
Saha, Bovolo, Bruzzone (b153) 2020
Zou, Ni, Zhang, Wang (b236) 2015; 12
Gong, Xie, Liu, Shi, Zheng (b55) 2018; 10
Zhou (b230) 2018; 5
Li, Cheng, Bu, You (b93) 2017; 56
Malkin, Robinson, Jojic (b128) 2021
Amiri, Farah (b2) 2018; 44
Kang, Fernandez-Beltran, Kang, Ni, Plaza (b78) 2021; 14
Saha, Mou, Zhu, Bovolo, Bruzzone (b154) 2020; 18
Li, Zhang, Yu, Tan, Tian, Ma (b117) 2016; 369
Lin, D., Dai, J., Jia, J., He, K., Sun, J., 2016. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3159–3167.
Zeng, Y., Zhuge, Y., Lu, H., Zhang, L., 2019. Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7223–7233.
Kang, Fernandez-Beltran, Duan, Kang, Plaza (b77) 2020
Zhang (b218) 1999; 54
Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S., 2018. Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7268–7277.
Peng, Bruzzone, Zhang, Guan, Ding, Huang (b140) 2020
Xia, Wang, Xiong, Zhang (b200) 2015; 7
Chen, Bruzzone (b14) 2021
Tong, Xia, Lu, Shen, Li, You, Zhang (b177) 2020; 237
Rahman, Khan, Porikli (b145) 2019; vol. 11361
Zhang, Ma, Lv, Chen (b223) 2019; 17
Ma, Tang, Fan, Huang, Mei, Ma (b127) 2022; 9
Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J., 2017. From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1627–1636.
Girshick (b52) 2015
Lee (b88) 2013
Jia, Kuo, Crawford (b73) 2013; 101
Wang, Chen, Xie, Azzari, Lobell (b183)
Li (10.1016/j.jag.2023.103345_b116) 2021; 14
Qiao (10.1016/j.jag.2023.103345_b142) 2020; 11
Das (10.1016/j.jag.2023.103345_b36) 2021
Kemker (10.1016/j.jag.2023.103345_b83) 2018; 145
Li (10.1016/j.jag.2023.103345_b91) 2023; 66
10.1016/j.jag.2023.103345_b205
Connors (10.1016/j.jag.2023.103345_b32) 2017
10.1016/j.jag.2023.103345_b34
Liu (10.1016/j.jag.2023.103345_b123) 2019
Tong (10.1016/j.jag.2023.103345_b177) 2020; 237
Xiao (10.1016/j.jag.2023.103345_b201) 2021; 14
10.1016/j.jag.2023.103345_b212
Li (10.1016/j.jag.2023.103345_b95) 2021
Chi (10.1016/j.jag.2023.103345_b31) 2016; 104
Tong (10.1016/j.jag.2023.103345_b176) 2020; 13
Li (10.1016/j.jag.2023.103345_b117) 2016; 369
Xiao (10.1016/j.jag.2023.103345_b202) 2020
Li (10.1016/j.jag.2023.103345_b113) 2018; 56
Malkin (10.1016/j.jag.2023.103345_b128) 2021
Hua (10.1016/j.jag.2023.103345_b67) 2021; 177
Robinson (10.1016/j.jag.2023.103345_b150) 2021; 14
10.1016/j.jag.2023.103345_b216
Paris (10.1016/j.jag.2023.103345_b138) 2021
Daudt (10.1016/j.jag.2023.103345_b37) 2019; 187
10.1016/j.jag.2023.103345_b45
Gómez-Chova (10.1016/j.jag.2023.103345_b54) 2015; 103
Hong (10.1016/j.jag.2023.103345_b62) 2018
Li (10.1016/j.jag.2023.103345_b118) 2021; 51
Chen (10.1016/j.jag.2023.103345_b23) 2018; 10
10.1016/j.jag.2023.103345_b43
Wu (10.1016/j.jag.2023.103345_b197) 2021
Zhang (10.1016/j.jag.2023.103345_b222) 2021
Chen (10.1016/j.jag.2023.103345_b18) 2021
Matasci (10.1016/j.jag.2023.103345_b130) 2015; 53
Gao (10.1016/j.jag.2023.103345_b49) 2018; 10
Zhao (10.1016/j.jag.2023.103345_b228) 2017; 6
LeCun (10.1016/j.jag.2023.103345_b87) 2015; 521
Hu (10.1016/j.jag.2023.103345_b65) 2015; 7
Singh (10.1016/j.jag.2023.103345_b163) 2021
Zhou (10.1016/j.jag.2023.103345_b233) 2018
Bearman (10.1016/j.jag.2023.103345_b6) 2016
Andrés S. Arvor (10.1016/j.jag.2023.103345_b3) 2017; 102
Chen (10.1016/j.jag.2023.103345_b21) 2019; 64
Otter (10.1016/j.jag.2023.103345_b135) 2020; 32
10.1016/j.jag.2023.103345_b10
Song (10.1016/j.jag.2023.103345_b167) 2019; 16
Fu (10.1016/j.jag.2023.103345_b47) 2018; 10
Girshick (10.1016/j.jag.2023.103345_b52) 2015
Li (10.1016/j.jag.2023.103345_b90) 2021
Han (10.1016/j.jag.2023.103345_b60) 2018; 145
Bruzzone (10.1016/j.jag.2023.103345_b12) 2019
Li (10.1016/j.jag.2023.103345_b98) 2020; 49
Bansal (10.1016/j.jag.2023.103345_b5) 2018; vol. 11205
Rahman (10.1016/j.jag.2023.103345_b145) 2019; vol. 11361
10.1016/j.jag.2023.103345_b22
Lee (10.1016/j.jag.2023.103345_b88) 2013
Li (10.1016/j.jag.2023.103345_b99) 2021; 179
Gong (10.1016/j.jag.2023.103345_b56) 2019; 12
Hsieh (10.1016/j.jag.2023.103345_b64) 2019
10.1016/j.jag.2023.103345_b20
Cheng (10.1016/j.jag.2023.103345_b27) 2014; 98
Wu (10.1016/j.jag.2023.103345_b198) 2020; 8
Li (10.1016/j.jag.2023.103345_b109) 2023; 94
Lu (10.1016/j.jag.2023.103345_b125) 2020; 12
Zhang (10.1016/j.jag.2023.103345_b220) 2019; 107
Perantoni (10.1016/j.jag.2023.103345_b141) 2021
Yan (10.1016/j.jag.2023.103345_b208) 2021
Deng (10.1016/j.jag.2023.103345_b39) 2018; 145
Randin (10.1016/j.jag.2023.103345_b146) 2020; 239
Zhan (10.1016/j.jag.2023.103345_b217) 2017; 15
Li (10.1016/j.jag.2023.103345_b100) 2021
Ding (10.1016/j.jag.2023.103345_b41) 2021
Tuia (10.1016/j.jag.2023.103345_b180) 2021
Li (10.1016/j.jag.2023.103345_b93) 2017; 56
Li (10.1016/j.jag.2023.103345_b111) 2018; 6
Rasti (10.1016/j.jag.2023.103345_b147) 2017; 55
Dai (10.1016/j.jag.2023.103345_b35) 2019; 16
Benjdira (10.1016/j.jag.2023.103345_b8) 2019; 11
Reichstein (10.1016/j.jag.2023.103345_b149) 2019; 566
Gao (10.1016/j.jag.2023.103345_b48) 2019; 16
Li (10.1016/j.jag.2023.103345_b92) 2020; 250
Tang (10.1016/j.jag.2023.103345_b170) 2022; 9
Thoonen (10.1016/j.jag.2023.103345_b175) 2011; 5
Silver (10.1016/j.jag.2023.103345_b162) 2016; 529
Li (10.1016/j.jag.2023.103345_b96) 2017
Hua (10.1016/j.jag.2023.103345_b66) 2020
Tao (10.1016/j.jag.2023.103345_b173) 2020
Zhu (10.1016/j.jag.2023.103345_b234) 2016; 21
Dong (10.1016/j.jag.2023.103345_b44) 2019; 57
Vargas-Munoz (10.1016/j.jag.2023.103345_b181) 2020; 9
Schmieder (10.1016/j.jag.2023.103345_b158) 2020
Chan (10.1016/j.jag.2023.103345_b13) 2021; 129
Yan (10.1016/j.jag.2023.103345_b207) 2018
Li (10.1016/j.jag.2023.103345_b107) 2020; 159
Wang (10.1016/j.jag.2023.103345_b187) 2018; 9
Benediktsson (10.1016/j.jag.2023.103345_b7) 2003; 41
Hou (10.1016/j.jag.2023.103345_b63) 2017; 14
Wei (10.1016/j.jag.2023.103345_b193) 2021; 14
Yao (10.1016/j.jag.2023.103345_b214) 2020; 59
Wang (10.1016/j.jag.2023.103345_b183) 2020; 12
10.1016/j.jag.2023.103345_b194
Wei (10.1016/j.jag.2023.103345_b190) 2021
Zhao (10.1016/j.jag.2023.103345_b229) 2020; 12
Saha (10.1016/j.jag.2023.103345_b155) 2020; 18
Zou (10.1016/j.jag.2023.103345_b236) 2015; 12
Diakogiannis (10.1016/j.jag.2023.103345_b40) 2020; 162
Tao (10.1016/j.jag.2023.103345_b174) 2017
Li (10.1016/j.jag.2023.103345_b115) 2018; 56
Jiao (10.1016/j.jag.2023.103345_b74) 2019; 7
Peng (10.1016/j.jag.2023.103345_b140) 2020
Yan (10.1016/j.jag.2023.103345_b206) 2019; 58
Chen (10.1016/j.jag.2023.103345_b14) 2021
Li (10.1016/j.jag.2023.103345_b101) 2021
Amiri (10.1016/j.jag.2023.103345_b2) 2018; 44
Zhang (10.1016/j.jag.2023.103345_b224) 2021; 13
Jia (10.1016/j.jag.2023.103345_b73) 2013; 101
Song (10.1016/j.jag.2023.103345_b165) 2020
Lei (10.1016/j.jag.2023.103345_b89) 2019; 16
Wei (10.1016/j.jag.2023.103345_b192) 2016; 39
Li (10.1016/j.jag.2023.103345_b94) 2023
Ji (10.1016/j.jag.2023.103345_b72) 2020; 59
Schmitt (10.1016/j.jag.2023.103345_b160) 2020
Li (10.1016/j.jag.2023.103345_b105) 2021; 175
Li (10.1016/j.jag.2023.103345_b114) 2018; 146
Chen (10.1016/j.jag.2023.103345_b16) 2019
Pelletier (10.1016/j.jag.2023.103345_b139) 2017; 9
10.1016/j.jag.2023.103345_b178
Rosser (10.1016/j.jag.2023.103345_b151) 2017; 87
Huang (10.1016/j.jag.2023.103345_b69) 2019; 58
10.1016/j.jag.2023.103345_b171
Zhu (10.1016/j.jag.2023.103345_b235) 2017; 5
Xue (10.1016/j.jag.2023.103345_b204) 2019; 49
Pan (10.1016/j.jag.2023.103345_b136) 2017; 2017
Saha (10.1016/j.jag.2023.103345_b154) 2020; 18
Schmitt (10.1016/j.jag.2023.103345_b159) 2019
Chen (10.1016/j.jag.2023.103345_b19) 2019; 17
Chen (10.1016/j.jag.2023.103345_b24) 2016; 10
10.1016/j.jag.2023.103345_b188
10.1016/j.jag.2023.103345_b185
10.1016/j.jag.2023.103345_b186
10.1016/j.jag.2023.103345_b182
Sirmacek (10.1016/j.jag.2023.103345_b164) 2008
Gong (10.1016/j.jag.2023.103345_b55) 2018; 10
Rafique (10.1016/j.jag.2023.103345_b144) 2019
Yang (10.1016/j.jag.2023.103345_b213) 2019; 31
Bratasanu (10.1016/j.jag.2023.103345_b11) 2010; 4
Li (10.1016/j.jag.2023.103345_b119) 2022; 186
Bhatta (10.1016/j.jag.2023.103345_b9) 2010
Lake (10.1016/j.jag.2023.103345_b86) 2013
10.1016/j.jag.2023.103345_b156
Li (10.1016/j.jag.2023.103345_b102) 2017; 55
Wei (10.1016/j.jag.2023.103345_b191) 2016; 59
Lu (10.1016/j.jag.2023.103345_b126) 2020; 58
Martinuzzi (10.1016/j.jag.2023.103345_b129) 2007; 79
Mittal (10.1016/j.jag.2023.103345_b131) 2019
Dirscherl (10.1016/j.jag.2023.103345_b42) 2020; 237
Hung (10.1016/j.jag.2023.103345_b70) 2018
Li (10.1016/j.jag.2023.103345_b110) 2019
Zhou (10.1016/j.jag.2023.103345_b230) 2018; 5
Xia (10.1016/j.jag.2023.103345_b199) 2017; 55
Tang (10.1016/j.jag.2023.103345_b172) 2018; 42
Zhang (10.1016/j.jag.2023.103345_b225) 2021; 76
Zhang (10.1016/j.jag.2023.103345_b223) 2019; 17
Cheng (10.1016/j.jag.2023.103345_b29) 2018; 56
10.1016/j.jag.2023.103345_b168
Sumbul (10.1016/j.jag.2023.103345_b169) 2017; 56
Zhang (10.1016/j.jag.2023.103345_b227) 2016; 4
Yuan (10.1016/j.jag.2023.103345_b215) 2020; 9
Zhang (10.1016/j.jag.2023.103345_b226) 2020
Roy (10.1016/j.jag.2023.103345_b152) 2018
Wang (10.1016/j.jag.2023.103345_b184) 2018; 312
Weikmann (10.1016/j.jag.2023.103345_b195) 2021; 14
Mondal (10.1016/j.jag.2023.103345_b133) 2019
Xia (10.1016/j.jag.2023.103345_b200) 2015; 7
10.1016/j.jag.2023.103345_b71
Ghamisi (10.1016/j.jag.2023.103345_b50) 2016; 10
Zhang (10.1016/j.jag.2023.103345_b218) 1999; 54
Li (10.1016/j.jag.2023.103345_b120) 2021
Rawat (10.1016/j.jag.2023.103345_b148) 2017; 29
10.1016/j.jag.2023.103345_b79
Saha (10.1016/j.jag.2023.103345_b153) 2020
Quan (10.1016/j.jag.2023.103345_b143) 2018
Weinstein (10.1016/j.jag.2023.103345_b196) 2019; 11
Jin (10.1016/j.jag.2023.103345_b75) 2018
Cheng (10.1016/j.jag.2023.103345_b30) 2016; 54
Deng (10.1016/j.jag.2023.103345_b38) 2008; 63
Xue (10.1016/j.jag.2023.103345_b203) 2020; 8
Shimoda (10.1016/j.jag.2023.103345_b161) 2016
Wei (10.1016/j.jag.2023.103345_b189) 2021
Sarker (10.1016/j.jag.2023.103345_b157) 2017
10.1016/j.jag.2023.103345_b80
Song (10.1016/j.jag.2023.103345_b166) 2017; 14
10.1016/j.jag.2023.103345_b82
10.1016/j.jag.2023.103345_b137
Feng (10.1016/j.jag.2023.103345_b46) 2020; 58
10.1016/j.jag.2023.103345_b84
10.1016/j.jag.2023.103345_b85
Cheng (10.1016/j.jag.2023.103345_b26) 2021
Zhang (10.1016/j.jag.2023.103345_b219) 2021; 13
Li (10.1016/j.jag.2023.103345_b112) 2018; 77
Huang (10.1016/j.jag.2023.103345_b68) 2018; 24
Kang (10.1016/j.jag.2023.103345_b78) 2021; 14
Li (10.1016/j.jag.2023.103345_b104) 2022; 243
Crowther (10.1016/j.jag.2023.103345_b33) 2015; 525
Tu (10.1016/j.jag.2023.103345_b179) 2020; 13
He (10.1016/j.jag.2023.103345_b61) 2018; 56
Cheng (10.1016/j.jag.2023.103345_b28) 2021
Li (10.1016/j.jag.2023.103345_b97) 2017; 83
10.1016/j.jag.2023.103345_b108
Aygunes (10.1016/j.jag.2023.103345_b4) 2021; 176
Chen (10.1016/j.jag.2023.103345_b25) 2021; 178
Mora (10.1016/j.jag.2023.103345_b134) 2014
Zhang (10.1016/j.jag.2023.103345_b221) 2016; 54
10.1016/j.jag.2023.103345_b232
Grekousis (10.1016/j.jag.2023.103345_b57) 2015; 36
10.1016/j.jag.2023.103345_b53
Gibril (10.1016/j.jag.2023.103345_b51) 2018; 12
Guo (10.1016/j.jag.2023.103345_b59) 2020
Li (10.1016/j.jag.2023.103345_b103) 2021; 67
Guo (10.1016/j.jag.2023.103345_b58) 2017
Chen (10.1016/j.jag.2023.103345_b15) 2020; 12
Kang (10.1016/j.jag.2023.103345_b77) 2020
Zhou (10.1016/j.jag.2023.103345_b231) 2016; 27
Ma (10.1016/j.jag.2023.103345_b127) 2022; 9
Li (10.1016/j.jag.2023.103345_b106) 2016; 13
Alajaji (10.1016/j.jag.2023.103345_b1) 2020
Yang (10.1016/j.jag.2023.103345_b210) 2019; 57
Karniadakis (10.1016/j.jag.2023.103345_b81) 2021; 3
10.1016/j.jag.2023.103345_b122
10.1016/j.jag.2023.103345_b124
Lian (10.1016/j.jag.2023.103345_b121) 2021
Yan (10.1016/j.jag.2023.103345_b209) 2020; 29
Mohanty (10.1016/j.jag.2023.103345_b132) 2020; 3
J
References_xml – volume: 239
  year: 2020
  ident: b146
  article-title: Monitoring biodiversity in the anthropocene using remote sensing in species distribution models
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 1425
  year: 2016
  end-page: 1439
  ident: b234
  article-title: Research status and development trends of remote sensing big data
  publication-title: J. Image Graph.
– year: 2010
  ident: b9
  article-title: Analysis of Urban Growth and Sprawl from Remote Sensing Data
– start-page: 896
  year: 2013
  ident: b88
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on Challenges in Representation Learning
– start-page: 115840Z
  year: 2020
  ident: b202
  article-title: Few-shot object detection with feature attention highlight module in remote sensing images
  publication-title: 2020 International Conference on Image, Video Processing and Artificial Intelligence
– year: 2019
  ident: b131
  article-title: Semi-supervised semantic segmentation with high-and low-level consistency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 2352
  year: 2017
  end-page: 2449
  ident: b148
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
– volume: 44
  start-page: 551
  year: 2018
  end-page: 574
  ident: b2
  article-title: Graph of concepts for semantic annotation of remotely sensed images based on direct neighbors in rag
  publication-title: Can. J. Remote Sens.
– reference: Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M., 2018. Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7472–7481.
– year: 2021
  ident: b197
  article-title: Recent developments in parallel and distributed computing for remotely sensed big data processing
  publication-title: Proc. IEEE
– volume: 6
  start-page: 57376
  year: 2018
  end-page: 57388
  ident: b111
  article-title: Greedy annotation of remote sensing image scenes based on automatic aggregation via hierarchical similarity diffusion
  publication-title: IEEE Access
– year: 2020
  ident: b59
  article-title: Gan-based semisupervised scene classification of remote sensing image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 243
  year: 2022
  ident: b104
  article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b90
  article-title: Geographical knowledge-driven representation learning for remote sensing images
– volume: 10
  start-page: 846
  year: 2018
  ident: b49
  article-title: A deep convolutional generative adversarial networks (dcgans)-based semi-supervised method for object recognition in synthetic aperture radar (sar) images
  publication-title: Remote Sens.
– volume: 9
  start-page: 184
  year: 2020
  end-page: 199
  ident: b181
  article-title: Openstreetmap: Challenges and opportunities in machine learning and remote sensing
  publication-title: IEEE Geosci. Remote Sens. Mag.
– year: 2019
  ident: b159
  article-title: Sen12ms–a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion
– volume: 6
  start-page: 514
  year: 2017
  end-page: 523
  ident: b228
  article-title: Convolutional neural network-based sar image classification with noisy labels
  publication-title: J. Radars
– volume: 186
  start-page: 170
  year: 2022
  end-page: 189
  ident: b119
  article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 146
  start-page: 182
  year: 2018
  end-page: 196
  ident: b114
  article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  year: 2020
  ident: b183
  article-title: Weakly supervised deep learning for segmentation of remote sensing imagery
  publication-title: Remote Sens.
– volume: 13
  start-page: 108
  year: 2021
  ident: b219
  article-title: Few-shot classification of aerial scene images via meta-learning
  publication-title: Remote Sens.
– volume: 64
  start-page: 370
  year: 2019
  end-page: 373
  ident: b21
  article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
– volume: 10
  year: 2018
  ident: b23
  article-title: End-to-end airplane detection using transfer learning in remote sensing images
  publication-title: Remote Sens.
– volume: 32
  start-page: 604
  year: 2020
  end-page: 624
  ident: b135
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2008
  end-page: 5
  ident: b164
  article-title: Building detection from aerial images using invariant color features and shadow information
  publication-title: 2008 23rd International Symposium on Computer and Information Sciences
– reference: Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L., 2015. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1742–1750.
– volume: 12
  year: 2020
  ident: b15
  article-title: Spmf-net: Weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion
  publication-title: Remote Sens.
– volume: 77
  start-page: 113
  year: 2018
  end-page: 125
  ident: b112
  article-title: Robust infrared small target detection using local steering kernel reconstruction
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 923
  year: 2018
  end-page: 932
  ident: b187
  article-title: Change detection based on faster r-cnn for high-resolution remote sensing images
  publication-title: Remote Sens. Lett.
– year: 2019
  ident: b64
  article-title: One-shot object detection with co-attention and co-excitation
– year: 2017
  ident: b96
  article-title: Rsi-cb: A large scale remote sensing image classification benchmark via crowdsource data
– volume: 49
  start-page: 1564
  year: 2020
  ident: b98
  article-title: Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 12
  year: 2020
  ident: b125
  article-title: Weakly supervised change detection based on edge mapping and sdae network in high-resolution remote sensing images
  publication-title: Remote Sens.
– volume: 2017
  year: 2017
  ident: b136
  article-title: Cascade convolutional neural network based on transfer-learning for aircraft detection on high-resolution remote sensing images
  publication-title: J. Sensors
– volume: 59
  start-page: 675
  year: 2020
  end-page: 685
  ident: b214
  article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 233
  year: 2019
  end-page: 244
  ident: b69
  article-title: Hyperspectral remote sensing image change detection based on tensor and deep learning
  publication-title: J. Vis. Commun. Image Represent.
– reference: Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279.
– volume: 55
  start-page: 3965
  year: 2017
  end-page: 3981
  ident: b199
  article-title: Aid: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 321
  year: 2019
  end-page: 333
  ident: b56
  article-title: A generative discriminatory classified network for change detection in multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 24
  start-page: 113
  year: 2018
  end-page: 123
  ident: b68
  article-title: A near real-time flood-mapping approach by integrating social media and post-event satellite imagery
  publication-title: Ann. GIS
– volume: 55
  start-page: 3997
  year: 2017
  end-page: 4007
  ident: b147
  article-title: Hyperspectral and lidar fusion using extinction profiles and total variation component analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 4699
  year: 2021
  end-page: 4708
  ident: b195
  article-title: Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 101
  start-page: 676
  year: 2013
  end-page: 697
  ident: b73
  article-title: Feature mining for hyperspectral image classification
  publication-title: Proc. IEEE
– volume: 103
  start-page: 1560
  year: 2015
  end-page: 1584
  ident: b54
  article-title: Multimodal classification of remote sensing images: A review and future directions
  publication-title: Proc. IEEE
– start-page: 4721
  year: 2018
  end-page: 4724
  ident: b75
  article-title: Aid++: An updated version of aid on scene classification
  publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 14
  start-page: 2551
  year: 2021
  end-page: 2562
  ident: b78
  article-title: Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 9
  start-page: 19891
  year: 2020
  end-page: 19901
  ident: b215
  article-title: Few-shot scene classification with multi-attention deepemd network in remote sensing
  publication-title: IEEE Access
– volume: 11
  start-page: 1309
  year: 2019
  ident: b196
  article-title: Individual tree-crown detection in rgb imagery using semi-supervised deep learning neural networks
  publication-title: Remote Sens.
– year: 2020
  ident: b77
  article-title: Robust normalized softmax loss for deep metric learning-based characterization of remote sensing images with label noise
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 117
  year: 2019
  end-page: 121
  ident: b223
  article-title: Hierarchical weakly supervised learning for residential area semantic segmentation in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2021
  ident: b180
  article-title: Recent advances in domain adaptation for the classification of remote sensing data
– volume: 13
  start-page: 4121
  year: 2020
  end-page: 4132
  ident: b176
  article-title: Channel-attention-based densenet network for remote sensing image scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 684
  year: 2018
  end-page: 688
  ident: b152
  article-title: Semantic-fusion gans for semi-supervised satellite image classification
  publication-title: 2018 25th IEEE International Conference on Image Processing
– start-page: 1583
  year: 2018
  end-page: 1587
  ident: b207
  article-title: Adversarial domain adaptation with a domain similarity discriminator for semantic segmentation of urban areas
  publication-title: 2018 25th IEEE International Conference on Image Processing
– start-page: 3955
  year: 2019
  end-page: 3958
  ident: b144
  article-title: Weakly supervised building segmentation from aerial images
  publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
– start-page: 549
  year: 2016
  end-page: 565
  ident: b6
  article-title: What’s the point: Semantic segmentation with point supervision
  publication-title: European Conference on Computer Vision
– volume: 18
  start-page: 607
  year: 2020
  end-page: 611
  ident: b154
  article-title: Semisupervised change detection using graph convolutional network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Tang, P., Wang, X., Bai, X., Liu, W., 2017. Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2843–2851.
– volume: 9
  start-page: 1200
  year: 2022
  end-page: 1217
  ident: b127
  article-title: Swinfusion: Cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE/CAA J. Autom. Sin.
– reference: Chen, H., Wang, Y., Wang, G., Qiao, Y., 2018a. Lstd: A low-shot transfer detector for object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence.
– year: 2020
  ident: b165
  article-title: Learning from noisy labels with deep neural networks: A survey
– volume: 13
  start-page: 157
  year: 2016
  end-page: 161
  ident: b106
  article-title: Unsupervised multilayer feature learning for satellite image scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 687
  year: 2019
  end-page: 693
  ident: b16
  article-title: Generalized zero-shot vehicle detection in remote sensing imagery via coarse-to-fine framework
  publication-title: IJCAI
– year: 2021
  ident: b95
  article-title: Few-shot object detection on remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 1756
  year: 2021
  end-page: 1768
  ident: b118
  article-title: Error-tolerant deep learning for remote sensing image scene classification
  publication-title: IEEE Trans. Cybern.
– start-page: 11
  year: 2014
  end-page: 30
  ident: b134
  article-title: Global Land Cover Mapping: Current Status and Future Trends
– volume: 36
  start-page: 5309
  year: 2015
  end-page: 5335
  ident: b57
  article-title: An overview of 21 global and 43 regional land-cover mapping products
  publication-title: Int. J. Remote Sens.
– volume: 98
  start-page: 119
  year: 2014
  end-page: 132
  ident: b27
  article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 15
  start-page: 212
  year: 2017
  end-page: 216
  ident: b217
  article-title: Semisupervised hyperspectral image classification based on generative adversarial networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2021
  ident: b222
  article-title: Salient object detection based on progressively supervised learning for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J., 2017. From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1627–1636.
– year: 2017
  ident: b58
  article-title: Synthesizing samples fro zero-shot learning
  publication-title: IJCAI
– volume: 63
  start-page: 96
  year: 2008
  end-page: 115
  ident: b38
  article-title: Growth, population and industrialization, and urban land expansion of china
  publication-title: J. Urban Econ.
– volume: 42
  start-page: 176
  year: 2018
  end-page: 191
  ident: b172
  article-title: Pcl: Proposal cluster learning for weakly supervised object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 3276
  year: 2020
  ident: b229
  article-title: When self-supervised learning meets scene classification: Remote sensing scene classification based on a multitask learning framework
  publication-title: Remote Sens.
– volume: 145
  start-page: 23
  year: 2018
  end-page: 43
  ident: b60
  article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 129
  start-page: 361
  year: 2021
  end-page: 384
  ident: b13
  article-title: A comprehensive analysis of weakly-supervised semantic segmentation in different image domains
  publication-title: Int. J. Comput. Vis.
– volume: 29
  start-page: 8163
  year: 2020
  end-page: 8176
  ident: b209
  article-title: Semantics-preserving graph propagation for zero-shot object detection
  publication-title: IEEE Trans. Image Process.
– reference: Elhoseiny, M., Elfeki, M., 2019. Creativity inspired zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5784–5793.
– volume: 31
  start-page: 6469
  year: 2019
  end-page: 6478
  ident: b213
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Comput. Appl.
– reference: Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T., 2019. Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8420–8429.
– year: 2019
  ident: b133
  article-title: Revisiting cyclegan for semi-supervised segmentation
– volume: 59
  start-page: 234
  year: 2016
  end-page: 244
  ident: b191
  article-title: Learning to segment with image-level annotations
  publication-title: Pattern Recognit.
– volume: 14
  start-page: 1832
  year: 2021
  end-page: 1847
  ident: b193
  article-title: Combining multiple classifiers for domain adaptation of remote sensing image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 11
  year: 2019
  ident: b8
  article-title: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images
  publication-title: Remote Sens.
– volume: 12
  start-page: 2321
  year: 2015
  end-page: 2325
  ident: b236
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 237
  year: 2020
  ident: b177
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: b28
  article-title: Prototype-cnn for few-shot object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b41
  article-title: Object detection in aerial images: A large-scale benchmark and challenges
– volume: 177
  start-page: 89
  year: 2021
  end-page: 102
  ident: b67
  article-title: Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 14
  start-page: 2418
  year: 2017
  end-page: 2422
  ident: b63
  article-title: Change detection based on deep features and low rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016b. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b81
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– reference: Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S., 2018. Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7268–7277.
– reference: Dai, J., He, K., Sun, J., 2015. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1635–1643.
– volume: 66
  year: 2023
  ident: b91
  article-title: Mfvnet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation
  publication-title: Sci. China Inf. Sci.
– volume: 56
  start-page: 770
  year: 2017
  end-page: 779
  ident: b169
  article-title: Fine-grained object recognition and zero-shot learning in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: b173
  article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 525
  start-page: 201
  year: 2015
  end-page: 205
  ident: b33
  article-title: Mapping tree density at a global scale
  publication-title: Nature
– start-page: 4799
  year: 2019
  end-page: 4802
  ident: b12
  article-title: Multisource labeled data: An opportunity for training deep learning network
  publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
– year: 2021
  ident: b190
  article-title: Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 950
  year: 2018
  end-page: 965
  ident: b115
  article-title: Large-scale remote sensing image retrieval by deep hashing neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 67
  start-page: 94
  year: 2021
  end-page: 115
  ident: b103
  article-title: Image retrieval from remote sensing big data: A survey
  publication-title: Inf. Fusion
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b87
  article-title: Deep learning
  publication-title: Nature
– year: 2020
  ident: b158
  article-title: Remote sensing and on-site characterization of wetlands as potential habitats for malaria vectors - A pilot study in southern Germany
  publication-title: IEEE Global Humanitarian Technology Conference Proceedings
– volume: 145
  start-page: 3
  year: 2018
  end-page: 22
  ident: b39
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 58
  start-page: 3558
  year: 2019
  end-page: 3573
  ident: b206
  article-title: Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 2337
  year: 2017
  end-page: 2348
  ident: b93
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b208
  article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 74
  year: 2019
  end-page: 77
  ident: b123
  article-title: Semi-supervised change detection based on graphs with generative adversarial networks
  publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 14
  start-page: 3185
  year: 2021
  end-page: 3199
  ident: b150
  article-title: Global land-cover mapping with weak supervision: Outcome of the 2020 ieee grss data fusion contest
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 5
  start-page: 44
  year: 2018
  end-page: 53
  ident: b230
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
– reference: Bilen, H., Vedaldi, A., 2016. Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2846–2854.
– volume: 9
  year: 2020
  ident: b17
  article-title: Fcc-net: A full-coverage collaborative network for weakly supervised remote sensing object detection
  publication-title: Electronics
– volume: 39
  start-page: 2314
  year: 2016
  end-page: 2320
  ident: b192
  article-title: Stc: A simple to complex framework for weakly-supervised semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 369
  start-page: 548
  year: 2016
  end-page: 563
  ident: b117
  article-title: A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences
  publication-title: Inform. Sci.
– volume: 3
  year: 2020
  ident: b132
  article-title: Deep learning for understanding satellite imagery: An experimental survey
  publication-title: Front. Artif. Intell.
– reference: Wang, Y.X., Ramanan, D., Hebert, M., 2019a. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9925–9934.
– volume: 107
  start-page: 2294
  year: 2019
  end-page: 2301
  ident: b220
  article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view]
  publication-title: Proc. IEEE
– reference: Wang, T., Zhang, X., Yuan, L., Feng, J., 2019b. Few-shot adaptive faster r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7173–7182.
– year: 2021
  ident: b14
  article-title: Self-supervised change detection in multi-view remote sensing images
– volume: 4
  start-page: 193
  year: 2010
  end-page: 204
  ident: b11
  article-title: Bridging the semantic gap for satellite image annotation and automatic mapping applications
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Zeng, Y., Zhuge, Y., Lu, H., Zhang, L., 2019. Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7223–7233.
– reference: Kellenberger, B., Marcos, D., Tuia, D., 2019. When a few clicks make all the difference: improving weakly-supervised wildlife detection in uav images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0.
– start-page: 1335
  year: 2018
  end-page: 1344
  ident: b62
  article-title: Conditional generative adversarial network for structured domain adaptation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 179
  start-page: 145
  year: 2021
  end-page: 158
  ident: b99
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Stojnic, V., Risojevic, V., 2021. Self-supervised learning of remote sensing scene representations using contrastive multiview coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1182–1191.
– volume: 8
  start-page: 158097
  year: 2020
  end-page: 158106
  ident: b198
  article-title: Convolutional neural network based weakly supervised learning for aircraft detection from remote sensing image
  publication-title: IEEE Access
– volume: 178
  start-page: 345
  year: 2021
  end-page: 365
  ident: b25
  article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N., 2017. Aga: Attribute-guided augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7455–7463.
– volume: 49
  start-page: 3991
  year: 2019
  end-page: 4003
  ident: b204
  article-title: Diod: Fast and efficient weakly semi-supervised deep complex isar object detection
  publication-title: IEEE Trans. Cybern.
– reference: Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B., 2017. Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 876–885.
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: b227
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
– year: 2020
  ident: b160
  article-title: Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: b65
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– year: 2021
  ident: b141
  article-title: A novel technique for robust training of deep networks with multisource weak labeled remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 796
  year: 2021
  end-page: 801
  ident: b36
  article-title: Transfer learning with res2net for remote sensing scene classification
  publication-title: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence)
– year: 2021
  ident: b138
  article-title: An interactive strategy for the training set definition based on active self-paced learning implemented on a cloud-computing platform
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 410
  year: 2018
  ident: b55
  article-title: Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery
  publication-title: Remote Sens.
– year: 2021
  ident: b121
  article-title: Weakly supervised road segmentation in high-resolution remote sensing images using point annotations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 6521
  year: 2018
  end-page: 6536
  ident: b113
  article-title: Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 525
  year: 2020
  end-page: 528
  ident: b66
  article-title: Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings
  publication-title: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium
– reference: Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X., 2022. Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4248–4257.
– start-page: 17
  year: 2018
  end-page: 21
  ident: b143
  article-title: Structural alignment based zero-shot classification for remote sensing scenes
  publication-title: 2018 IEEE International Conference on Electronics and Communication Engineering
– year: 2018
  ident: b70
  article-title: Adversarial learning for semi-supervised semantic segmentation
– volume: 56
  start-page: 2811
  year: 2018
  end-page: 2821
  ident: b29
  article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 3550
  year: 2015
  end-page: 3564
  ident: b130
  article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b189
  article-title: Graph convolutional networks for the automated production of building vector maps from aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: b110
  article-title: Zero-shot object detection with textual descriptions
  publication-title: Thirty-Third Aaai Conference on Artificial Intelligence / Thirty-First Innovative Applications of Artificial Intelligence Conference / Ninth Aaai Symposium on Educational Advances in Artificial Intelligence
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: b235
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
– reference: Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L., 2019a. Meta r-cnn: Towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9577–9586.
– volume: 10
  start-page: 3011
  year: 2016
  end-page: 3024
  ident: b50
  article-title: Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Karlinsky, L., Shtok, J., Harary, S., Schwartz, E., Aides, A., Feris, R., Giryes, R., Bronstein, A.M., 2019. Repmet: Representative-based metric learning for classification and few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5197–5206.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b233
  article-title: Unet++: A Nested U-Net Architecture for Medical Image Segmentation
– volume: 176
  start-page: 262
  year: 2021
  end-page: 274
  ident: b4
  article-title: Weakly supervised instance attention for multisource fine-grained object recognition with an application to tree species classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1063
  year: 2017
  end-page: 1066
  ident: b32
  article-title: Semi-supervised deep generative models for change detection in very high resolution imagery
  publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium
– volume: 12
  year: 2018
  ident: b51
  article-title: Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data
  publication-title: J. Appl. Remote Sens.
– year: 2017
  ident: b157
  article-title: Explaining trained neural networks with semantic web technologies: First steps
– volume: 10
  start-page: 745
  year: 2016
  end-page: 752
  ident: b24
  article-title: Land-use scene classification using multi-scale completed local binary patterns
  publication-title: Signal Image Video Process.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: b149
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: vol. 11205
  start-page: 397
  year: 2018
  end-page: 414
  ident: b5
  publication-title: Zero-Shot Object Detection
– reference: Lin, D., Dai, J., Jia, J., He, K., Sun, J., 2016. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3159–3167.
– year: 2017
  ident: b174
  article-title: Semantics-preserving locality embedding for zero-shot learning
  publication-title: BMVC
– volume: 54
  start-page: 5553
  year: 2016
  end-page: 5563
  ident: b221
  article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  start-page: 869
  year: 2019
  end-page: 873
  ident: b35
  article-title: Semisupervised scene classification for remote sensing images: A method based on convolutional neural networks and ensemble learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 18
  start-page: 856
  year: 2020
  end-page: 860
  ident: b155
  article-title: Unsupervised deep transfer learning-based change detection for hr multispectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 79
  start-page: 288
  year: 2007
  end-page: 297
  ident: b129
  article-title: Land development, land use, and urban sprawl in puerto rico integrating remote sensing and population census data
  publication-title: Landsc. Urban Plan.
– reference: Girshick, R., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587.
– volume: 9
  start-page: 2121
  year: 2022
  end-page: 2137
  ident: b170
  article-title: Superfusion: A versatile image registration and fusion network with semantic awareness
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 76
  start-page: 323
  year: 2021
  end-page: 336
  ident: b225
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Inf. Fusion
– reference: Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q., 2018. Min-entropy latent model for weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1297–1306.
– volume: 16
  start-page: 982
  year: 2019
  end-page: 986
  ident: b89
  article-title: Landslide inventory mapping from bitemporal images using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 16
  start-page: 1655
  year: 2019
  end-page: 1659
  ident: b48
  article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 218
  year: 2016
  end-page: 234
  ident: b161
  article-title: Distinct class-specific saliency maps for weakly supervised semantic segmentation
  publication-title: European Conference on Computer Vision
– volume: 58
  start-page: 8002
  year: 2020
  end-page: 8012
  ident: b46
  article-title: Progressive contextual instance refinement for weakly supervised object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 55
  start-page: 4157
  year: 2017
  end-page: 4167
  ident: b102
  article-title: Zero-shot scene classification for high spatial resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 250
  year: 2020
  ident: b92
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
– volume: 104
  start-page: 2207
  year: 2016
  end-page: 2219
  ident: b31
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
– volume: 237
  year: 2020
  ident: b42
  article-title: Remote sensing of ice motion in antarctica - a review
  publication-title: Remote Sens. Environ.
– volume: vol. 11361
  start-page: 547
  year: 2019
  end-page: 563
  ident: b145
  publication-title: Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts
– volume: 57
  start-page: 6960
  year: 2019
  end-page: 6973
  ident: b210
  article-title: Transferred deep learning-based change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 5623
  year: 2020
  end-page: 5639
  ident: b179
  article-title: Robust learning of mislabeled training samples for remote sensing image scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 175
  start-page: 20
  year: 2021
  end-page: 33
  ident: b105
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2021
  end-page: 17
  ident: b18
  article-title: Object detection in remote sensing images based on deep transfer learning
  publication-title: Multimedia Tools Appl.
– year: 2021
  ident: b26
  article-title: Spnet: Siamese-prototype network for few-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 3816
  year: 2020
  end-page: 3828
  ident: b72
  article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 87
  start-page: 103
  year: 2017
  end-page: 120
  ident: b151
  article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data
  publication-title: Nat. Hazards
– volume: 5
  start-page: 510
  year: 2011
  end-page: 521
  ident: b175
  article-title: Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 14
  start-page: 2245
  year: 2017
  end-page: 2249
  ident: b166
  article-title: Zero-shot learning of sar target feature space with deep generative neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 16
  start-page: 1324
  year: 2019
  end-page: 1328
  ident: b167
  article-title: Domain adaptation for convolutional neural networks-based remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 1881
  year: 2020
  end-page: 1885
  ident: b226
  article-title: Semi-supervised multi-spectral land cover classification with multi-attention and adaptive kernel
  publication-title: 2020 IEEE International Conference on Image Processing
– volume: 7
  start-page: 172231
  year: 2019
  end-page: 172263
  ident: b74
  article-title: A survey on the new generation of deep learning in image processing
  publication-title: IEEE Access
– volume: 9
  start-page: 173
  year: 2017
  ident: b139
  article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series
  publication-title: Remote Sens.
– volume: 7
  start-page: 15014
  year: 2015
  end-page: 15045
  ident: b200
  article-title: Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge
  publication-title: Remote Sens.
– reference: Kodirov, E., Xiang, T., Gong, S., 2017. Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3174–3183.
– reference: Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y., 2017e. Zero-shot recognition using dual visual-semantic mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3279–3287.
– year: 2021
  ident: b101
  article-title: Distributed fusion of heterogeneous remote sensing and social media data: A review and new developments
  publication-title: Proc. IEEE
– volume: 94
  start-page: 215
  year: 2023
  end-page: 228
  ident: b109
  article-title: Hs2p: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal
  publication-title: Inf. Fusion
– volume: 54
  start-page: 7405
  year: 2016
  end-page: 7415
  ident: b30
  article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: b40
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1852
  year: 2008
  end-page: 1855
  ident: b211
  article-title: Comparing sift descriptors and gabor texture features for classification of remote sensed imagery
  publication-title: 2008 15th IEEE International Conference on Image Processing
– year: 2023
  ident: b94
  article-title: Glh-water: A large-scale dataset for global surface water detection in large-size very-high-resolution satellite imagery
– year: 2021
  ident: b128
  article-title: High-resolution land cover change from low-resolution labels: Simple baselines for the 2021 ieee grss data fusion contest
– volume: 57
  start-page: 8534
  year: 2019
  end-page: 8545
  ident: b44
  article-title: Sig-nms-based faster r-cnn combining transfer learning for small target detection in vhr optical remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sensing
– volume: 14
  start-page: 4854
  year: 2021
  end-page: 4865
  ident: b201
  article-title: Few-shot object detection with self-adaptive attention network for remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2021
  ident: b163
  article-title: Sigan: Spectral index generative adversarial network for data augmentation in multispectral remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 27
  start-page: 925
  year: 2016
  end-page: 944
  ident: b231
  article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping
  publication-title: Multidimens. Syst. Signal Process.
– volume: 83
  start-page: 567
  year: 2017
  end-page: 579
  ident: b97
  article-title: Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images
  publication-title: Photogramm. Eng. Remote Sens.
– year: 2020
  ident: b140
  article-title: Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Ibrahim, M.S., Vahdat, A., Ranjbar, M., Macready, W.G., 2020. Semi-supervised semantic image segmentation with self-correcting networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12715–12725.
– reference: Saito, K., Watanabe, K., Ushiku, Y., Harada, T., 2018. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3723–3732.
– volume: 17
  start-page: 681
  year: 2019
  end-page: 685
  ident: b19
  article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2021
  ident: b120
  article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 2504
  year: 2020
  end-page: 2515
  ident: b126
  article-title: Multisource compensation network for remote sensing cross-domain scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 187
  year: 2019
  ident: b37
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
– year: 2015
  ident: b52
  article-title: Fast r-cnn
  publication-title: Comput. Sci.
– year: 2020
  ident: b76
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 650
  year: 2020
  end-page: 658
  ident: b142
  article-title: Simple weakly supervised deep learning pipeline for detecting individual red-attacked trees in vhr remote sensing images
  publication-title: Remote Sens. Lett.
– volume: 56
  start-page: 6899
  year: 2018
  end-page: 6910
  ident: b61
  article-title: Remote sensing scene classification using multilayer stacked covariance pooling
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: b153
  article-title: Change detection in image time-series using unsupervised lstm
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 41
  start-page: 1940
  year: 2003
  end-page: 1949
  ident: b7
  article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 81
  year: 2020
  end-page: 84
  ident: b1
  article-title: Few-shot learning for remote sensing scene classification
  publication-title: 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium
– volume: 102
  start-page: 158
  year: 2017
  end-page: 166
  ident: b3
  article-title: Ontology-based classification of remote sensing images using spectral rules
  publication-title: Comput. Geosci.
– volume: 8
  start-page: 28746
  year: 2020
  end-page: 28755
  ident: b203
  article-title: Remote sensing scene classification based on multi-structure deep features fusion
  publication-title: IEEE Access
– year: 2013
  ident: b86
  article-title: One-shot learning by inverting a compositional causal process
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021b. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622.
– volume: 13
  start-page: 394
  year: 2021
  ident: b224
  article-title: Wts: A weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models
  publication-title: Remote Sens.
– volume: 14
  start-page: 3266
  year: 2021
  end-page: 3281
  ident: b116
  article-title: On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 159
  start-page: 296
  year: 2020
  end-page: 307
  ident: b107
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2021
  ident: b100
  article-title: Remote sensing images semantic segmentation with general remote sensing vision model via a self-supervised contrastive learning method
– volume: 145
  start-page: 60
  year: 2018
  end-page: 77
  ident: b83
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b162
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– volume: 10
  year: 2018
  ident: b47
  article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image
  publication-title: Remote Sens.
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b184
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– volume: 54
  start-page: 50
  year: 1999
  end-page: 60
  ident: b218
  article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 115840Z
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b202
  article-title: Few-shot object detection with feature attention highlight module in remote sensing images
– volume: 102
  start-page: 158
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b3
  article-title: Ontology-based classification of remote sensing images using spectral rules
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.02.018
– year: 2018
  ident: 10.1016/j.jag.2023.103345_b70
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b26
  article-title: Spnet: Siamese-prototype network for few-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.jag.2023.103345_b178
  doi: 10.1109/CVPR.2018.00780
– ident: 10.1016/j.jag.2023.103345_b182
  doi: 10.1109/CVPR.2018.00141
– volume: 59
  start-page: 675
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b214
  article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2991407
– year: 2010
  ident: 10.1016/j.jag.2023.103345_b9
– volume: 57
  start-page: 6960
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b210
  article-title: Transferred deep learning-based change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2909781
– ident: 10.1016/j.jag.2023.103345_b82
  doi: 10.1109/CVPRW.2019.00182
– volume: 66
  year: 2023
  ident: 10.1016/j.jag.2023.103345_b91
  article-title: Mfvnet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-022-3599-y
– ident: 10.1016/j.jag.2023.103345_b45
  doi: 10.1109/ICCV.2019.00588
– volume: 94
  start-page: 215
  year: 2023
  ident: 10.1016/j.jag.2023.103345_b109
  article-title: Hs2p: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.02.002
– ident: 10.1016/j.jag.2023.103345_b10
  doi: 10.1109/CVPR.2016.311
– volume: 175
  start-page: 20
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b105
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.009
– volume: 59
  start-page: 234
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b191
  article-title: Learning to segment with image-level annotations
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.015
– start-page: 4721
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b75
  article-title: Aid++: An updated version of aid on scene classification
– volume: 10
  issue: 139
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b23
  article-title: End-to-end airplane detection using transfer learning in remote sensing images
  publication-title: Remote Sens.
– ident: 10.1016/j.jag.2023.103345_b43
  doi: 10.1109/CVPR.2017.355
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b77
  article-title: Robust normalized softmax loss for deep metric learning-based characterization of remote sensing images with label noise
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2991657
– volume: 14
  start-page: 4699
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b195
  article-title: Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3073965
– volume: 3
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b132
  article-title: Deep learning for understanding satellite imagery: An experimental survey
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2020.534696
– volume: 29
  start-page: 8163
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b209
  article-title: Semantics-preserving graph propagation for zero-shot object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3011807
– volume: 16
  start-page: 869
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b35
  article-title: Semisupervised scene classification for remote sensing images: A method based on convolutional neural networks and ensemble learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2886534
– volume: 9
  start-page: 923
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b187
  article-title: Change detection based on faster r-cnn for high-resolution remote sensing images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1492172
– volume: 13
  start-page: 4121
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b176
  article-title: Channel-attention-based densenet network for remote sensing image scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3009352
– volume: 13
  start-page: 157
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b106
  article-title: Unsupervised multilayer feature learning for satellite image scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2503142
– ident: 10.1016/j.jag.2023.103345_b188
  doi: 10.1109/CVPR.2019.00734
– volume: 39
  start-page: 2314
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b192
  article-title: Stc: A simple to complex framework for weakly-supervised semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2636150
– volume: 8
  start-page: 158097
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b198
  article-title: Convolutional neural network based weakly supervised learning for aircraft detection from remote sensing image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019956
– volume: 58
  start-page: 233
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b69
  article-title: Hyperspectral remote sensing image change detection based on tensor and deep learning
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.11.004
– volume: 237
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b42
  article-title: Remote sensing of ice motion in antarctica - a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111595
– volume: 239
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b146
  article-title: Monitoring biodiversity in the anthropocene using remote sensing in species distribution models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111626
– volume: 58
  start-page: 3558
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b206
  article-title: Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2958123
– volume: 7
  start-page: 15014
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b200
  article-title: Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge
  publication-title: Remote Sens.
  doi: 10.3390/rs71115014
– start-page: 3
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b233
– volume: 14
  start-page: 1832
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b193
  article-title: Combining multiple classifiers for domain adaptation of remote sensing image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3049527
– ident: 10.1016/j.jag.2023.103345_b216
– volume: 79
  start-page: 288
  year: 2007
  ident: 10.1016/j.jag.2023.103345_b129
  article-title: Land development, land use, and urban sprawl in puerto rico integrating remote sensing and population census data
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2006.02.014
– start-page: 81
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b1
  article-title: Few-shot learning for remote sensing scene classification
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b28
  article-title: Prototype-cnn for few-shot object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/LGRS.2020.2975541
– ident: 10.1016/j.jag.2023.103345_b124
  doi: 10.1109/CVPR.2017.653
– volume: 55
  start-page: 3965
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b199
  article-title: Aid: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– year: 2017
  ident: 10.1016/j.jag.2023.103345_b96
– volume: 176
  start-page: 262
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b4
  article-title: Weakly supervised instance attention for multisource fine-grained object recognition with an application to tree species classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.021
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b90
– volume: 42
  start-page: 176
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b172
  article-title: Pcl: Proposal cluster learning for weakly supervised object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2876304
– volume: 53
  start-page: 3550
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b130
  article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2377785
– volume: 44
  start-page: 551
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b2
  article-title: Graph of concepts for semantic annotation of remotely sensed images based on direct neighbors in rag
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2019.1569507
– volume: 77
  start-page: 113
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b112
  article-title: Robust infrared small target detection using local steering kernel reconstruction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.12.012
– volume: 9
  start-page: 19891
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b215
  article-title: Few-shot scene classification with multi-attention deepemd network in remote sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3044192
– volume: 179
  start-page: 145
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b99
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.001
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b222
  article-title: Salient object detection based on progressively supervised learning for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3045708
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b59
  article-title: Gan-based semisupervised scene classification of remote sensing image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 56
  start-page: 950
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b115
  article-title: Large-scale remote sensing image retrieval by deep hashing neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2756911
– year: 2017
  ident: 10.1016/j.jag.2023.103345_b157
– start-page: 1063
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b32
  article-title: Semi-supervised deep generative models for change detection in very high resolution imagery
– volume: 187
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b37
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
– volume: 129
  start-page: 361
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b13
  article-title: A comprehensive analysis of weakly-supervised semantic segmentation in different image domains
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01373-4
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b190
  article-title: Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.jag.2023.103345_b79
  doi: 10.1109/ICCV.2019.00851
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b95
  article-title: Few-shot object detection on remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b18
  article-title: Object detection in remote sensing images based on deep transfer learning
  publication-title: Multimedia Tools Appl.
– volume: 58
  start-page: 8002
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b46
  article-title: Progressive contextual instance refinement for weakly supervised object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2985989
– volume: 10
  start-page: 745
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b24
  article-title: Land-use scene classification using multi-scale completed local binary patterns
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-015-0804-2
– volume: 59
  start-page: 3816
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b72
  article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3020804
– ident: 10.1016/j.jag.2023.103345_b171
  doi: 10.1109/CVPR.2017.326
– volume: 525
  start-page: 201
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b33
  article-title: Mapping tree density at a global scale
  publication-title: Nature
  doi: 10.1038/nature14967
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b138
  article-title: An interactive strategy for the training set definition based on active self-paced learning implemented on a cloud-computing platform
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 896
  year: 2013
  ident: 10.1016/j.jag.2023.103345_b88
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– volume: 10
  start-page: 410
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b55
  article-title: Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10030410
– volume: 63
  start-page: 96
  year: 2008
  ident: 10.1016/j.jag.2023.103345_b38
  article-title: Growth, population and industrialization, and urban land expansion of china
  publication-title: J. Urban Econ.
  doi: 10.1016/j.jue.2006.12.006
– volume: 9
  start-page: 2121
  year: 2022
  ident: 10.1016/j.jag.2023.103345_b170
  article-title: Superfusion: A versatile image registration and fusion network with semantic awareness
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.106082
– ident: 10.1016/j.jag.2023.103345_b137
  doi: 10.1109/ICCV.2015.203
– volume: 83
  start-page: 567
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b97
  article-title: Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.83.8.567
– volume: 101
  start-page: 676
  year: 2013
  ident: 10.1016/j.jag.2023.103345_b73
  article-title: Feature mining for hyperspectral image classification
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2229082
– year: 2019
  ident: 10.1016/j.jag.2023.103345_b133
– volume: 12
  issue: 1049
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b15
  article-title: Spmf-net: Weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion
  publication-title: Remote Sens.
– ident: 10.1016/j.jag.2023.103345_b20
  doi: 10.1609/aaai.v32i1.11716
– year: 2013
  ident: 10.1016/j.jag.2023.103345_b86
  article-title: One-shot learning by inverting a compositional causal process
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b120
  article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b165
– volume: 10
  issue: 1970
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b47
  article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image
  publication-title: Remote Sens.
– volume: 58
  start-page: 2504
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b126
  article-title: Multisource compensation network for remote sensing cross-domain scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2951779
– volume: 2017
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b136
  article-title: Cascade convolutional neural network based on transfer-learning for aircraft detection on high-resolution remote sensing images
  publication-title: J. Sensors
  doi: 10.1155/2017/1796728
– ident: 10.1016/j.jag.2023.103345_b168
  doi: 10.1109/CVPRW53098.2021.00129
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b184
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 145
  start-page: 60
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b83
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.014
– ident: 10.1016/j.jag.2023.103345_b186
  doi: 10.1109/CVPR52688.2022.00421
– volume: 11
  issue: 1369
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b8
  article-title: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images
  publication-title: Remote Sens.
– volume: 9
  start-page: 173
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b139
  article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs9020173
– volume: 49
  start-page: 1564
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b98
  article-title: Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 32
  start-page: 604
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b135
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979670
– volume: vol. 11205
  start-page: 397
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b5
– start-page: 74
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b123
  article-title: Semi-supervised change detection based on graphs with generative adversarial networks
– start-page: 687
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b16
  article-title: Generalized zero-shot vehicle detection in remote sensing imagery via coarse-to-fine framework
  publication-title: IJCAI
– ident: 10.1016/j.jag.2023.103345_b108
  doi: 10.1109/CVPR.2017.553
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b128
– start-page: 17
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b143
  article-title: Structural alignment based zero-shot classification for remote sensing scenes
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b101
  article-title: Distributed fusion of heterogeneous remote sensing and social media data: A review and new developments
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3079176
– start-page: 4799
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b12
  article-title: Multisource labeled data: An opportunity for training deep learning network
– start-page: 3955
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b144
  article-title: Weakly supervised building segmentation from aerial images
– ident: 10.1016/j.jag.2023.103345_b194
  doi: 10.1109/CVPR.2018.00759
– volume: 14
  start-page: 3185
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b150
  article-title: Global land-cover mapping with weak supervision: Outcome of the 2020 ieee grss data fusion contest
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3063849
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b14
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b107
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.023
– volume: 29
  start-page: 2352
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b148
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– year: 2017
  ident: 10.1016/j.jag.2023.103345_b174
  article-title: Semantics-preserving locality embedding for zero-shot learning
– volume: 64
  start-page: 370
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b21
  article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.03.002
– volume: 16
  start-page: 1655
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b48
  article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2906279
– year: 2015
  ident: 10.1016/j.jag.2023.103345_b52
  article-title: Fast r-cnn
  publication-title: Comput. Sci.
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b140
  article-title: Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 108
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b219
  article-title: Few-shot classification of aerial scene images via meta-learning
  publication-title: Remote Sens.
  doi: 10.3390/rs13010108
– volume: 12
  start-page: 2321
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b236
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2475299
– start-page: 1881
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b226
  article-title: Semi-supervised multi-spectral land cover classification with multi-attention and adaptive kernel
– volume: 103
  start-page: 1560
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b54
  article-title: Multimodal classification of remote sensing images: A review and future directions
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2449668
– volume: vol. 11361
  start-page: 547
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b145
– ident: 10.1016/j.jag.2023.103345_b85
  doi: 10.1109/CVPR.2017.473
– volume: 4
  start-page: 193
  year: 2010
  ident: 10.1016/j.jag.2023.103345_b11
  article-title: Bridging the semantic gap for satellite image annotation and automatic mapping applications
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2081349
– volume: 12
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b51
  article-title: Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.016036
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b87
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  issue: 3907
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b125
  article-title: Weakly supervised change detection based on edge mapping and sdae network in high-resolution remote sensing images
  publication-title: Remote Sens.
– volume: 18
  start-page: 607
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b154
  article-title: Semisupervised change detection using graph convolutional network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2985340
– volume: 14
  start-page: 2551
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b78
  article-title: Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3056661
– ident: 10.1016/j.jag.2023.103345_b71
  doi: 10.1109/CVPR42600.2020.01273
– volume: 186
  start-page: 170
  year: 2022
  ident: 10.1016/j.jag.2023.103345_b119
  article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.02.013
– volume: 41
  start-page: 1940
  year: 2003
  ident: 10.1016/j.jag.2023.103345_b7
  article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.814625
– start-page: 684
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b152
  article-title: Semantic-fusion gans for semi-supervised satellite image classification
– volume: 13
  start-page: 5623
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b179
  article-title: Robust learning of mislabeled training samples for remote sensing image scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3025174
– volume: 13
  start-page: 394
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b224
  article-title: Wts: A weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models
  publication-title: Remote Sens.
  doi: 10.3390/rs13030394
– volume: 243
  year: 2022
  ident: 10.1016/j.jag.2023.103345_b104
  article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108469
– year: 2019
  ident: 10.1016/j.jag.2023.103345_b131
  article-title: Semi-supervised semantic segmentation with high-and low-level consistency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 87
  start-page: 103
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b151
  article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2755-0
– volume: 7
  start-page: 172231
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b74
  article-title: A survey on the new generation of deep learning in image processing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956508
– volume: 104
  start-page: 2207
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b31
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2598228
– ident: 10.1016/j.jag.2023.103345_b22
  doi: 10.1109/CVPR46437.2021.00264
– volume: 56
  start-page: 2811
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b29
  article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2783902
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b81
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 27
  start-page: 925
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b231
  article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-015-0370-3
– volume: 24
  start-page: 113
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b68
  article-title: A near real-time flood-mapping approach by integrating social media and post-event satellite imagery
  publication-title: Ann. GIS
  doi: 10.1080/19475683.2018.1450787
– volume: 11
  start-page: 650
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b142
  article-title: Simple weakly supervised deep learning pipeline for detecting individual red-attacked trees in vhr remote sensing images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2020.1752410
– start-page: 1335
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b62
  article-title: Conditional generative adversarial network for structured domain adaptation
– volume: 146
  start-page: 182
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b114
  article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.014
– volume: 177
  start-page: 89
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b67
  article-title: Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.04.006
– volume: 17
  start-page: 681
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b19
  article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2930462
– ident: 10.1016/j.jag.2023.103345_b156
  doi: 10.1109/CVPR.2018.00392
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b158
  article-title: Remote sensing and on-site characterization of wetlands as potential habitats for malaria vectors - A pilot study in southern Germany
– volume: 10
  start-page: 3011
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b50
  article-title: Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2634863
– volume: 14
  start-page: 2418
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b63
  article-title: Change detection based on deep features and low rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766840
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b180
– year: 2019
  ident: 10.1016/j.jag.2023.103345_b159
– year: 2017
  ident: 10.1016/j.jag.2023.103345_b58
  article-title: Synthesizing samples fro zero-shot learning
– ident: 10.1016/j.jag.2023.103345_b84
  doi: 10.1109/CVPR.2017.181
– start-page: 525
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b66
  article-title: Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings
– volume: 14
  start-page: 2245
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b166
  article-title: Zero-shot learning of sar target feature space with deep generative neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2758900
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b121
  article-title: Weakly supervised road segmentation in high-resolution remote sensing images using point annotations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 22
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b227
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 16
  start-page: 982
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b89
  article-title: Landslide inventory mapping from bitemporal images using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2889307
– volume: 51
  start-page: 1756
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b118
  article-title: Error-tolerant deep learning for remote sensing image scene classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989241
– ident: 10.1016/j.jag.2023.103345_b34
  doi: 10.1109/ICCV.2015.191
– volume: 5
  start-page: 510
  year: 2011
  ident: 10.1016/j.jag.2023.103345_b175
  article-title: Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2168317
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b197
  article-title: Recent developments in parallel and distributed computing for remotely sensed big data processing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3087029
– volume: 8
  start-page: 28746
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b203
  article-title: Remote sensing scene classification based on multi-structure deep features fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968771
– volume: 6
  start-page: 57376
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b111
  article-title: Greedy annotation of remote sensing image scenes based on automatic aggregation via hierarchical similarity diffusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873761
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b208
  article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 549
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b6
  article-title: What’s the point: Semantic segmentation with point supervision
– volume: 56
  start-page: 2337
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b93
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2778300
– volume: 55
  start-page: 3997
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b147
  article-title: Hyperspectral and lidar fusion using extinction profiles and total variation component analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2686450
– year: 2019
  ident: 10.1016/j.jag.2023.103345_b64
– ident: 10.1016/j.jag.2023.103345_b205
  doi: 10.1109/ICCV.2019.00967
– volume: 12
  start-page: 3276
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b229
  article-title: When self-supervised learning meets scene classification: Remote sensing scene classification based on a multitask learning framework
  publication-title: Remote Sens.
  doi: 10.3390/rs12203276
– ident: 10.1016/j.jag.2023.103345_b53
  doi: 10.1109/CVPR.2014.81
– volume: 76
  start-page: 323
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b225
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.008
– year: 2023
  ident: 10.1016/j.jag.2023.103345_b94
– volume: 14
  start-page: 3266
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b116
  article-title: On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3063788
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b141
  article-title: A novel technique for robust training of deep networks with multisource weak labeled remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 1309
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b196
  article-title: Individual tree-crown detection in rgb imagery using semi-supervised deep learning neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11111309
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b40
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
– volume: 145
  start-page: 23
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b60
  article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.004
– volume: 67
  start-page: 94
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b103
  article-title: Image retrieval from remote sensing big data: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.008
– volume: 250
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b92
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112045
– start-page: 11
  year: 2014
  ident: 10.1016/j.jag.2023.103345_b134
– volume: 17
  start-page: 117
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b223
  article-title: Hierarchical weakly supervised learning for residential area semantic segmentation in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2914490
– volume: 56
  start-page: 6899
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b61
  article-title: Remote sensing scene classification using multilayer stacked covariance pooling
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2845668
– volume: 54
  start-page: 7405
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b30
  article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2601622
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b162
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 12
  start-page: 321
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b56
  article-title: A generative discriminatory classified network for change detection in multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2887108
– ident: 10.1016/j.jag.2023.103345_b122
  doi: 10.1109/CVPR.2016.344
– ident: 10.1016/j.jag.2023.103345_b185
  doi: 10.1109/ICCV.2019.01002
– volume: 31
  start-page: 6469
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b213
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3468-3
– volume: 54
  start-page: 5553
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b221
  article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2569141
– ident: 10.1016/j.jag.2023.103345_b80
  doi: 10.1109/CVPR.2019.00534
– volume: 14
  start-page: 4854
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b201
  article-title: Few-shot object detection with self-adaptive attention network for remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3078177
– year: 2019
  ident: 10.1016/j.jag.2023.103345_b110
  article-title: Zero-shot object detection with textual descriptions
– volume: 55
  start-page: 4157
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b102
  article-title: Zero-shot scene classification for high spatial resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2689071
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b100
– volume: 237
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b177
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
– volume: 145
  start-page: 3
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b39
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.003
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b41
– volume: 36
  start-page: 5309
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b57
  article-title: An overview of 21 global and 43 regional land-cover mapping products
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1093195
– volume: 56
  start-page: 770
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b169
  article-title: Fine-grained object recognition and zero-shot learning in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2754648
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b189
  article-title: Graph convolutional networks for the automated production of building vector maps from aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 21
  start-page: 1425
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b234
  article-title: Research status and development trends of remote sensing big data
  publication-title: J. Image Graph.
– volume: 54
  start-page: 50
  year: 1999
  ident: 10.1016/j.jag.2023.103345_b218
  article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(98)00027-6
– start-page: 218
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b161
  article-title: Distinct class-specific saliency maps for weakly supervised semantic segmentation
– volume: 6
  start-page: 514
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b228
  article-title: Convolutional neural network-based sar image classification with noisy labels
  publication-title: J. Radars
– volume: 98
  start-page: 119
  year: 2014
  ident: 10.1016/j.jag.2023.103345_b27
  article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.10.002
– volume: 7
  start-page: 14680
  year: 2015
  ident: 10.1016/j.jag.2023.103345_b65
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b149
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 369
  start-page: 548
  year: 2016
  ident: 10.1016/j.jag.2023.103345_b117
  article-title: A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.07.042
– volume: 9
  start-page: 1200
  year: 2022
  ident: 10.1016/j.jag.2023.103345_b127
  article-title: Swinfusion: Cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.105686
– volume: 178
  start-page: 345
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b25
  article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.016
– start-page: 1583
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b207
  article-title: Adversarial domain adaptation with a domain similarity discriminator for semantic segmentation of urban areas
– volume: 10
  start-page: 846
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b49
  article-title: A deep convolutional generative adversarial networks (dcgans)-based semi-supervised method for object recognition in synthetic aperture radar (sar) images
  publication-title: Remote Sens.
  doi: 10.3390/rs10060846
– volume: 5
  start-page: 44
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b230
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx106
– ident: 10.1016/j.jag.2023.103345_b232
  doi: 10.1109/CVPR.2016.319
– ident: 10.1016/j.jag.2023.103345_b212
  doi: 10.1145/1869790.1869829
– volume: 12
  issue: 207
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b183
  article-title: Weakly supervised deep learning for segmentation of remote sensing imagery
  publication-title: Remote Sens.
– volume: 49
  start-page: 3991
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b204
  article-title: Diod: Fast and efficient weakly semi-supervised deep complex isar object detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2856821
– volume: 5
  start-page: 8
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b235
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b76
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 56
  start-page: 6521
  year: 2018
  ident: 10.1016/j.jag.2023.103345_b113
  article-title: Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2839705
– start-page: 1
  year: 2008
  ident: 10.1016/j.jag.2023.103345_b164
  article-title: Building detection from aerial images using invariant color features and shadow information
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b160
– volume: 15
  start-page: 212
  year: 2017
  ident: 10.1016/j.jag.2023.103345_b217
  article-title: Semisupervised hyperspectral image classification based on generative adversarial networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2780890
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b173
  article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 107
  start-page: 2294
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b220
  article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2948454
– start-page: 1852
  year: 2008
  ident: 10.1016/j.jag.2023.103345_b211
  article-title: Comparing sift descriptors and gabor texture features for classification of remote sensed imagery
– volume: 9
  start-page: 184
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b181
  article-title: Openstreetmap: Challenges and opportunities in machine learning and remote sensing
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2020.2994107
– volume: 18
  start-page: 856
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b155
  article-title: Unsupervised deep transfer learning-based change detection for hr multispectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2990284
– volume: 57
  start-page: 8534
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b44
  article-title: Sig-nms-based faster r-cnn combining transfer learning for small target detection in vhr optical remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/TGRS.2019.2921396
– volume: 16
  start-page: 1324
  year: 2019
  ident: 10.1016/j.jag.2023.103345_b167
  article-title: Domain adaptation for convolutional neural networks-based remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2896411
– volume: 9
  issue: 1356
  year: 2020
  ident: 10.1016/j.jag.2023.103345_b17
  article-title: Fcc-net: A full-coverage collaborative network for weakly supervised remote sensing object detection
  publication-title: Electronics
– year: 2020
  ident: 10.1016/j.jag.2023.103345_b153
  article-title: Change detection in image time-series using unsupervised lstm
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 796
  year: 2021
  ident: 10.1016/j.jag.2023.103345_b36
  article-title: Transfer learning with res2net for remote sensing scene classification
– year: 2021
  ident: 10.1016/j.jag.2023.103345_b163
  article-title: Sigan: Spectral index generative adversarial network for data augmentation in multispectral remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
SSID ssj0017768
Score 2.4538245
SecondaryResourceType review_article
Snippet With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103345
SubjectTerms computer vision
cost effectiveness
Cost-efficient information extraction
data collection
Future research directions
image analysis
Remote sensing big data mining
spatial data
surveys
Weakly supervised deep learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT-WAaKFiaamMxAnJ4DjOOuEGVasKCU5U6s1y7PGqpc2uNlkhfoGvZiZ2ytJDuXCLEiexPOOZN_LMG8beuFYG52QQhTJzoavgRaNqKbyXIToTfdNSoPjl6_z8Qn--rC63Wn1RTliiB04L9175AgpoVBFU0BHdpzKRks4qBWha4xj4oM-bgql8fmBMKoKr5o2odamm88wxs-vaLd5R13AqOC-pjmnLI43E_X85pnsmevQ7Z0_ZkwwY-cc00T32CLp99niLRnCfHZz-qVbDoXm79s_Yr5NlPwgYWSLwGc8sqSQLjkZ5nYoaOJWY8FtE0Wj5-BpQeMB7SmzvFpwySD9wNNkd_wHu-81P3m9WZF96CDwArHjuO7HgtwBDf__99ip94zm7ODv9dnIucvMF4XGRB4FxiPGxJD58rzXI0jTgao9wEK8LA9KMdHFU2xtD6REo-lBBW7dGgo5VLA_YTrfs4AXjvkVM5k0Mvom69tDI0pm6DK0yVQSIMyYnAVifmcmpQcaNnVLQri3KzJLMbJLZjL29e2WVaDkeGvyJpHo3kBi1xxuoZzbrmf2Xns2YnnTCZnCSQAd-6uqhf7-e9MfixqXTGNfBctNbxHVaGYnh2sv_Mb9Dtku_TVlsR2xnWG_gFeKloT0et8ZvMEUS2Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data
URI https://dx.doi.org/10.1016/j.jag.2023.103345
https://www.proquest.com/docview/2834270585
https://doaj.org/article/2c1e1e921d2d4f43927f199352e128f1
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHBIWK5bEyEieksI7j1ElvZdVqeVUIqLQ3K7HHq-0ju9pkhfoX-NXMJM7S9tADt8SxncjzdDzzDWPvilK4ohAuiqU-iFTqbJTLTETWCucL7W1e0kbx2-nB9Ex9nqWzHTbpc2EorDLo_k6nt9o6tIzDao5Xi8X4J-488kwhQyZtLP3sAduVaF3FgO0effoyPd0eJmjdZcRh_4gG9IebbZjXeTH_QCXEKfs8oaSmG-apRfG_ZaXu6OvWCJ08YY-D98iPug98ynag2mOPbmAK7rH943-pa9g1yG79jP2ZLOsmghYyAp_xAJlKhOGoodddhgOnfBN-hS41qkG-BqQk8Jqi3Ks5p3DSQ476u-K_obi4vOb1ZkXKpgbHHcCKhyIUc34F0NR3x5eLbo7n7Ozk-NdkGoVKDJFFh6WJcFOirU8IHN8qBSLRORSZRd8Qr2MNQrfYcZTo611i0Wu0LoUyK7UA5VOf7LNBtazgBeO2RAfNau9s7lVmIRdJobPElVKnHsAPmegJYGyAKadqGZemj0c7N0gzQzQzHc2G7P12yKrD6Liv80ei6rYjwWu3Dcv13AT-MtLGEEMuYyed8rgEUnuKdEwloD338ZCpnifMLW7FqRb3vfttzz8GpZiOZooKlpvaoJOnpBa4d3v5f1O_Yg_prgtie80GzXoDb9BdasoRisPkx9fvoyAWo_a3w19MKBeX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOCApVl6eROCGFdRynTriVVastbfdCK-3NSuzxakubXW2yQvwFfjUzibO0PfTALXLGTuQZz0Oe-YaxT0UpXFEIF8VSH0QqdTbKZSYia4XzhfY2LylQPJ8cjC_V92k63WKjvhaG0iqD7u90equtw8gw7OZwOZ8Pf2DkkWcKBTJpc-mnj9gOoVOhmO8cnpyOJ5vLBK27ijikj2hCf7nZpnldFbMv1EKcqs8TKmq6ZZ5aFP87Vuqevm6N0PFz9ix4j_yw-8EXbAuqXfb0FqbgLts7-le6hqTh7NYv2Z_Rom4iaCEj8B0PkKnEGI4aetVVOHCqN-E36FKjGuQrQE4CrynLvZpxSif9ylF_V_wXFD-vf_N6vSRlU4PjDmDJQxOKGb8BaOr788t5t8Yrdnl8dDEaR6ETQ2TRYWkiDEq09QmB41ulQCQ6hyKz6Bvic6xB6BY7jgp9vUsseo3WpVBmpRagfOqTPbZdLSrYZ9yW6KBZ7Z3Nvcos5CIpdJa4UurUA_gBEz0DjA0w5dQt49r0-WhXBnlmiGem49mAfd5MWXYYHQ8RfyOubggJXrsdWKxmJsiXkTaGGHIZO-mUxy2Q2lOmYyoB7bmPB0z1MmHuSCsuNX_o2x97-TF4iulqpqhgsa4NOnlKaoGx2-v_W_oDezy-OD8zZyeT0zfsCb3pEtresu1mtYZ36Do15ftwNP4CQFoX_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-efficient+information+extraction+from+massive+remote+sensing+data%3A+When+weakly+supervised+deep+learning+meets+remote+sensing+big+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Yansheng&rft.au=Li%2C+Xinwei&rft.au=Zhang%2C+Yongjun&rft.au=Peng%2C+Daifeng&rft.date=2023-06-01&rft.issn=1569-8432&rft.volume=120&rft.spage=103345&rft_id=info:doi/10.1016%2Fj.jag.2023.103345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2023_103345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon