Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data
With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 120; p. 103345 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD.
•WSDL is a promising solution in RSBD mining.•Most of articles are around WSDL-based methods.•Future perspectives around WSDL-based RSBD mining are outlined. |
---|---|
AbstractList | With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD. With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote sensing data acquisition capability can fully meet the requirements of many application domains, there is still a need to further explore how to efficiently mine the useful information from remote sensing big data (RSBD). Many researchers in the remote sensing community have introduced deep learning in the process of RSBD, and deep learning-based methods have achieved better performance compared with traditional methods. However, there are still substantial obstacles to the application of deep learning in remote sensing. One of the major challenges is the generation of pixel-level labels with high quality for training samples, which is essential to deep learning models. Weakly supervised deep learning (WSDL) is a promising solution to address this problem as WSDL can utilize greedily labeled datasets that are easy to collect but not ideal to train the deep networks. In this review, we summarize the achievements of WSDL-driven cost-efficient information extraction from RSBD. We first analyze the opportunities and challenges of information extraction from RSBD. Based on the analysis of the theoretical foundations of WSDL in the computer vision (CV) domain, we conduct a survey on the WSDL-based information extraction methods under the data characteristic and task demand of RSBD in four different tasks: (i) scene classification, (ii) object detection, (iii) semantic segmentation and (iv) change detection. Finally, potential research directions are outlined to guide researchers to further exploit WSDL-based information extraction from RSBD. •WSDL is a promising solution in RSBD mining.•Most of articles are around WSDL-based methods.•Future perspectives around WSDL-based RSBD mining are outlined. |
ArticleNumber | 103345 |
Author | Bruzzone, Lorenzo Li, Yansheng Zhang, Yongjun Peng, Daifeng Li, Xinwei |
Author_xml | – sequence: 1 givenname: Yansheng orcidid: 0000-0001-8203-1246 surname: Li fullname: Li, Yansheng organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 2 givenname: Xinwei surname: Li fullname: Li, Xinwei organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 3 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun email: zhangyj@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 4 givenname: Daifeng surname: Peng fullname: Peng, Daifeng organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 5 givenname: Lorenzo surname: Bruzzone fullname: Bruzzone, Lorenzo organization: Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy |
BookMark | eNp9kc1u1DAUhS3USrSFB2DnJZsM_kliG1ZoRKFSJTagsrM8zvXgkNiD7Zm2r8BT45kgFl105WPrnHN1_V2isxADIPSGkhUltH83rkazXTHCeL1z3nYv0AWVgjWS9T_Oqu561ciWs5foMueRECpELy_Qn3XMpQHnvPUQCvbBxTSb4mPA8FCSsSfpUpzxbHL2B8AJ5lgAZwjZhy0eTDHv8d1PCPgezK_pEef9DtLBZxjwALDDE5gUjtYZoOSn-Y1fOl6hc2emDK__nVfo-_Wnb-svze3Xzzfrj7eNbbkqTSd6YR2XTArbtkC4UGCkZZxWTQUQUZejihCu3MAtVcwOHWzkRhBoXef4FbpZeodoRr1LfjbpUUfj9ekhpq02qXg7gWaWAgXF6MCG1tXxTDiqFO8YUCYdrV1vl65dir_3kIuefbYwTSZA3GfNJG-ZIJ3sqpUuVptizgnc_9GU6CNDPerKUB8Z6oVhzYgnGevLCU4l46dnkx-WJNSfPHhIOh8BWxh8Alvqqv6Z9F-72Lmc |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_1109_JSTARS_2024_3471804 crossref_primary_10_1080_01431161_2024_2413026 crossref_primary_10_1109_JSTARS_2024_3459792 crossref_primary_10_1109_TGRS_2024_3418850 crossref_primary_10_1111_phor_12495 |
Cites_doi | 10.1016/j.cageo.2017.02.018 10.1109/CVPR.2018.00780 10.1109/CVPR.2018.00141 10.1109/TGRS.2020.2991407 10.1109/TGRS.2019.2909781 10.1109/CVPRW.2019.00182 10.1007/s11432-022-3599-y 10.1109/ICCV.2019.00588 10.1016/j.inffus.2023.02.002 10.1109/CVPR.2016.311 10.1016/j.isprsjprs.2021.02.009 10.1016/j.patcog.2016.01.015 10.1109/CVPR.2017.355 10.1109/TGRS.2020.2991657 10.1109/JSTARS.2021.3073965 10.3389/frai.2020.534696 10.1109/TIP.2020.3011807 10.1109/LGRS.2018.2886534 10.1080/2150704X.2018.1492172 10.1109/JSTARS.2020.3009352 10.1109/LGRS.2015.2503142 10.1109/CVPR.2019.00734 10.1109/TPAMI.2016.2636150 10.1109/ACCESS.2020.3019956 10.1016/j.jvcir.2018.11.004 10.1016/j.rse.2019.111595 10.1016/j.rse.2019.111626 10.1109/TGRS.2019.2958123 10.3390/rs71115014 10.1109/JSTARS.2021.3049527 10.1016/j.landurbplan.2006.02.014 10.1109/LGRS.2020.2975541 10.1109/CVPR.2017.653 10.1109/TGRS.2017.2685945 10.1016/j.isprsjprs.2021.03.021 10.1109/TPAMI.2018.2876304 10.1109/TGRS.2014.2377785 10.1080/07038992.2019.1569507 10.1016/j.patcog.2017.12.012 10.1109/ACCESS.2020.3044192 10.1016/j.isprsjprs.2021.08.001 10.1109/TGRS.2020.3045708 10.1109/TGRS.2017.2756911 10.1007/s11263-020-01373-4 10.1109/ICCV.2019.00851 10.1109/TGRS.2020.2985989 10.1007/s11760-015-0804-2 10.1109/TGRS.2020.3020804 10.1109/CVPR.2017.326 10.1038/nature14967 10.3390/rs10030410 10.1016/j.jue.2006.12.006 10.1109/JAS.2022.106082 10.1109/ICCV.2015.203 10.14358/PERS.83.8.567 10.1109/JPROC.2012.2229082 10.1609/aaai.v32i1.11716 10.1109/TGRS.2019.2951779 10.1155/2017/1796728 10.1109/CVPRW53098.2021.00129 10.1016/j.neucom.2018.05.083 10.1016/j.isprsjprs.2018.04.014 10.1109/CVPR52688.2022.00421 10.3390/rs9020173 10.1109/TNNLS.2020.2979670 10.1109/CVPR.2017.553 10.1109/JPROC.2021.3079176 10.1109/CVPR.2018.00759 10.1109/JSTARS.2021.3063849 10.1016/j.isprsjprs.2019.11.023 10.1162/neco_a_00990 10.1016/j.scib.2019.03.002 10.1109/LGRS.2019.2906279 10.3390/rs13010108 10.1109/LGRS.2015.2475299 10.1109/JPROC.2015.2449668 10.1109/CVPR.2017.473 10.1109/JSTARS.2010.2081349 10.1117/1.JRS.12.016036 10.1038/nature14539 10.1109/LGRS.2020.2985340 10.1109/JSTARS.2021.3056661 10.1109/CVPR42600.2020.01273 10.1016/j.isprsjprs.2022.02.013 10.1109/TGRS.2003.814625 10.1109/JSTARS.2020.3025174 10.3390/rs13030394 10.1016/j.knosys.2022.108469 10.1007/s11069-017-2755-0 10.1109/ACCESS.2019.2956508 10.1109/JPROC.2016.2598228 10.1109/CVPR46437.2021.00264 10.1109/TGRS.2017.2783902 10.1038/s42254-021-00314-5 10.1007/s11045-015-0370-3 10.1080/19475683.2018.1450787 10.1080/2150704X.2020.1752410 10.1016/j.isprsjprs.2018.09.014 10.1016/j.isprsjprs.2021.04.006 10.1109/LGRS.2019.2930462 10.1109/CVPR.2018.00392 10.1109/JSTARS.2016.2634863 10.1109/LGRS.2017.2766840 10.1109/CVPR.2017.181 10.1109/LGRS.2017.2758900 10.1109/MGRS.2016.2540798 10.1109/LGRS.2018.2889307 10.1109/TCYB.2020.2989241 10.1109/ICCV.2015.191 10.1109/JSTARS.2011.2168317 10.1109/JPROC.2021.3087029 10.1109/ACCESS.2020.2968771 10.1109/ACCESS.2018.2873761 10.1109/TGRS.2017.2778300 10.1109/TGRS.2017.2686450 10.1109/ICCV.2019.00967 10.3390/rs12203276 10.1109/CVPR.2014.81 10.1016/j.inffus.2021.06.008 10.1109/JSTARS.2021.3063788 10.3390/rs11111309 10.1016/j.isprsjprs.2020.01.013 10.1016/j.isprsjprs.2017.11.004 10.1016/j.inffus.2020.10.008 10.1016/j.rse.2020.112045 10.1109/LGRS.2019.2914490 10.1109/TGRS.2018.2845668 10.1109/TGRS.2016.2601622 10.1038/nature16961 10.1109/JSTARS.2018.2887108 10.1109/CVPR.2016.344 10.1109/ICCV.2019.01002 10.1007/s00521-018-3468-3 10.1109/TGRS.2016.2569141 10.1109/CVPR.2019.00534 10.1109/JSTARS.2021.3078177 10.1109/TGRS.2017.2689071 10.1016/j.rse.2019.111322 10.1016/j.isprsjprs.2018.04.003 10.1080/01431161.2015.1093195 10.1109/TGRS.2017.2754648 10.1016/S0924-2716(98)00027-6 10.1016/j.isprsjprs.2014.10.002 10.3390/rs71114680 10.1038/s41586-019-0912-1 10.1016/j.ins.2016.07.042 10.1109/JAS.2022.105686 10.1016/j.isprsjprs.2021.05.016 10.3390/rs10060846 10.1093/nsr/nwx106 10.1109/CVPR.2016.319 10.1145/1869790.1869829 10.1109/TCYB.2018.2856821 10.1109/MGRS.2017.2762307 10.1109/TGRS.2018.2839705 10.1109/LGRS.2017.2780890 10.1109/JPROC.2019.2948454 10.1109/MGRS.2020.2994107 10.1109/LGRS.2020.2990284 10.1109/TGRS.2019.2921396 10.1109/LGRS.2019.2896411 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2023.103345 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_2c1e1e921d2d4f43927f199352e128f1 10_1016_j_jag_2023_103345 S156984322300167X |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c439t-5767cf38287c44e0379ea8c231e0317e07001190039fd3c192cd5eb8b70e4f5f3 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:13:33 EDT 2025 Fri Jul 11 09:53:28 EDT 2025 Tue Jul 01 02:15:23 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 23 02:38:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Future research directions Remote sensing big data mining Weakly supervised deep learning Cost-efficient information extraction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-5767cf38287c44e0379ea8c231e0317e07001190039fd3c192cd5eb8b70e4f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8203-1246 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S156984322300167X |
PQID | 2834270585 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c1e1e921d2d4f43927f199352e128f1 proquest_miscellaneous_2834270585 crossref_primary_10_1016_j_jag_2023_103345 crossref_citationtrail_10_1016_j_jag_2023_103345 elsevier_sciencedirect_doi_10_1016_j_jag_2023_103345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhu, Shi, Chen, Shi, Do, Qin (b234) 2016; 21 Mondal, Agarwal, Dolz, Desrosiers (b133) 2019 Wang, Y.X., Ramanan, D., Hebert, M., 2019a. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9925–9934. Otter, Medina, Kalita (b135) 2020; 32 Li, Deng, Fang (b95) 2021 Dai, J., He, K., Sun, J., 2015. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1635–1643. Li, Chen, Chen, Shi (b90) 2021 Liu, Chen, Xu, Li, Yan, Diao, Sun (b123) 2019 Crowther, Glick, Covey, Bettigole, Maynard, Thomas, Smith, Hintler, Duguid, Amatulli (b33) 2015; 525 Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M., 2018. Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7472–7481. Bruzzone (b12) 2019 Wang, T., Zhang, X., Yuan, L., Feng, J., 2019b. Few-shot adaptive faster r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7173–7182. Martinuzzi, Gould, González (b129) 2007; 79 Lu, Chen, Shi, Zhang, Ma (b125) 2020; 12 Tao, Yeh, Wang (b174) 2017 Zhou, Cheng, Liu, Bu, Hu (b231) 2016; 27 Li, Zhang, Zhu (b118) 2021; 51 Tao, Qi, Lu, Wang, Li (b173) 2020 Huang, Yu, Feng (b69) 2019; 58 Alajaji, Alhichri, Ammour, Alajlan (b1) 2020 Daudt, Saux, Boulch, Gousseau (b37) 2019; 187 Li, Kong, Zhang, Tan, Chen (b99) 2021; 179 Rafique, Jacobs (b144) 2019 Sumbul, Cinbis, Aksoy (b169) 2017; 56 Xue, Dai, Liu (b203) 2020; 8 Kodirov, E., Xiang, T., Gong, S., 2017. Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3174–3183. Tang, Wang, Bai, Shen, Bai, Liu, Yuille (b172) 2018; 42 Weinstein, Marconi, Bohlman, Zare, White (b196) 2019; 11 Yan, Zheng, Chang, Luo, Yeh, Hauptman (b209) 2020; 29 Das, Chandran (b36) 2021 Zhang, Xu, Tian, Jiang, Ma (b225) 2021; 76 Schmitt, Prexl, Ebel, Liebel, Zhu (b160) 2020 Chen, He, Zhang, Sun, Deng (b15) 2020; 12 Zhang, Chen, Peng, Benediktsson, Liu, Zou, Li, Plaza (b220) 2019; 107 Bilen, H., Vedaldi, A., 2016. Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2846–2854. Thoonen, Mahmood, Peeters, Scheunders (b175) 2011; 5 Zhou, Siddiquee, Tajbakhsh, Liang (b233) 2018 Li, Tao, Tan, Shang, Tian (b106) 2016; 13 Lake, Salakhutdinov, Tenenbaum (b86) 2013 Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y., 2017e. Zero-shot recognition using dual visual-semantic mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3279–3287. Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b235) 2017; 5 Li, Shi, Zhang, Chen, Wang, Li (b105) 2021; 175 Hu, Xia, Hu, Zhang (b65) 2015; 7 Li, Lu, Wang, Xiang, Wen (b102) 2017; 55 Robinson, Malkin, Jojic, Chen, Qin, Xiao, Schmitt, Ghamisi, Hänsch (b150) 2021; 14 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b81) 2021; 3 Zhang, Du, Zhang, Xu (b221) 2016; 54 Chen, Wan, Zhu, Xu, Deng (b19) 2019; 17 Zhao, Luo, Li, Chen, Piao (b229) 2020; 12 Saha, Solano-Correa, Bovolo, Bruzzone (b155) 2020; 18 Elhoseiny, M., Elfeki, M., 2019. Creativity inspired zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5784–5793. Gao, Gao, Dong, Wang (b48) 2019; 16 Girshick, R., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587. Yan, Fan, Liu, Huo, Xiang, Pan (b206) 2019; 58 Bhatta (b9) 2010 Kemker, Salvaggio, Kanan (b83) 2018; 145 Huang, Wang, Li (b68) 2018; 24 Jiao, Zhao (b74) 2019; 7 Xiao, Zhong, Quan, Yin, Xue (b202) 2020 LeCun, Bengio, Hinton (b87) 2015; 521 Li, Ouyang, Zhang (b104) 2022; 243 Gong, Yang, Zhan, Niu, Li (b56) 2019; 12 Yan, Fan, Xiang, Pan (b208) 2021 Li, Zhang, Huang, Ma (b113) 2018; 56 Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N., 2017. Aga: Attribute-guided augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7455–7463. Tang, P., Wang, X., Bai, X., Liu, W., 2017. Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2843–2851. Zhang, Tang, Corpetti, Zhao (b224) 2021; 13 Wei, Liang, Chen, Jie, Xiao, Zhao, Yan (b191) 2016; 59 Xue, Tong (b204) 2019; 49 Gómez-Chova, Tuia, Moser, Camps-Valls (b54) 2015; 103 Li, Zhang, Xiao, Zheng (b116) 2021; 14 Li, Zhou, Zhang, Zhong, Wang, Chen (b119) 2022; 186 Jing, Tian (b76) 2020 Fu, Lu, Diao, Yan, Sun, Zhang, Sun (b47) 2018; 10 Yao, Feng, Han, Cheng, Guo (b214) 2020; 59 Li, Dang, Li, Zhang (b94) 2023 Li, Zhang, Huang, Yuille (b114) 2018; 146 Kellenberger, B., Marcos, D., Tuia, D., 2019. When a few clicks make all the difference: improving weakly-supervised wildlife detection in uav images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0. Shimoda, Yanai (b161) 2016 Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X., 2022. Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4248–4257. Ibrahim, M.S., Vahdat, A., Ranjbar, M., Macready, W.G., 2020. Semi-supervised semantic image segmentation with self-correcting networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12715–12725. Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (b149) 2019; 566 He, Fang, Li, Plaza, Plaza (b61) 2018; 56 Hsieh, Lo, Chen, Liu (b64) 2019 Dong, Xu, Zhao, Jiao, An (b44) 2019; 57 Li, Dou, Tao, Hou, Chen, Peng, Deng, Zhao (b96) 2017 Li, Zhang (b112) 2018; 77 Stojnic, V., Risojevic, V., 2021. Self-supervised learning of remote sensing scene representations using contrastive multiview coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1182–1191. Hua, Mou, Lin, Heidler, Zhu (b67) 2021; 177 Yuan, Huang, Li, Luo (b215) 2020; 9 Wu, Sun, Zhang, Wei, Chanussot (b197) 2021 Tong, Chen, Han, Li, Wang (b176) 2020; 13 Yan, Fan, Xiang, Pan (b207) 2018 Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279. Zhang, Ma (b222) 2021 Rosser, Leibovici, Jackson (b151) 2017; 87 Pan, Tai, Zheng, Zhao (b136) 2017; 2017 Pelletier, Valero, Inglada, Champion, Sicre, Dedieu (b139) 2017; 9 Chen, Zhong, Zheng, Ma, Lu (b25) 2021; 178 Li, Chen, Huang, Gao, Li, He, Zhang (b91) 2023; 66 Saito, K., Watanabe, K., Ushiku, Y., Harada, T., 2018. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3723–3732. Wu, Weise, Wang, Wang (b198) 2020; 8 Yang, Newsam (b211) 2008 Guo, Xia, Luo (b59) 2020 Jin, Xia, Hu, Lu, Zhang (b75) 2018 Li, Liu, Lei, Wang (b101) 2021 Wang, Deng (b184) 2018; 312 Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B., 2017. Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 876–885. Li, Ma, Zhang (b103) 2021; 67 Tuia, Persello, Bruzzone (b180) 2021 Dirscherl, Dietz, Dech, Kuenzer (b42) 2020; 237 Song, Yu, Miao, Zhang, Lin, Wang (b167) 2019; 16 Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L., 2015. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1742–1750. Zhan, Hu, Wang, Yu (b217) 2017; 15 Singh, Bruzzone (b163) 2021 Schmitt, Hughes, Qiu, Zhu (b159) 2019 Matasci, Volpi, Kanevski, Bruzzone, Tuia (b130) 2015; 53 Rasti, Ghamisi, Gloaguen (b147) 2017; 55 Bratasanu, Nedelcu, Datcu (b11) 2010; 4 Xiao, Qi, Xue, Zhong (b201) 2021; 14 Saha, Bovolo, Bruzzone (b153) 2020 Zou, Ni, Zhang, Wang (b236) 2015; 12 Gong, Xie, Liu, Shi, Zheng (b55) 2018; 10 Zhou (b230) 2018; 5 Li, Cheng, Bu, You (b93) 2017; 56 Malkin, Robinson, Jojic (b128) 2021 Amiri, Farah (b2) 2018; 44 Kang, Fernandez-Beltran, Kang, Ni, Plaza (b78) 2021; 14 Saha, Mou, Zhu, Bovolo, Bruzzone (b154) 2020; 18 Li, Zhang, Yu, Tan, Tian, Ma (b117) 2016; 369 Lin, D., Dai, J., Jia, J., He, K., Sun, J., 2016. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3159–3167. Zeng, Y., Zhuge, Y., Lu, H., Zhang, L., 2019. Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7223–7233. Kang, Fernandez-Beltran, Duan, Kang, Plaza (b77) 2020 Zhang (b218) 1999; 54 Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S., 2018. Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7268–7277. Peng, Bruzzone, Zhang, Guan, Ding, Huang (b140) 2020 Xia, Wang, Xiong, Zhang (b200) 2015; 7 Chen, Bruzzone (b14) 2021 Tong, Xia, Lu, Shen, Li, You, Zhang (b177) 2020; 237 Rahman, Khan, Porikli (b145) 2019; vol. 11361 Zhang, Ma, Lv, Chen (b223) 2019; 17 Ma, Tang, Fan, Huang, Mei, Ma (b127) 2022; 9 Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J., 2017. From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1627–1636. Girshick (b52) 2015 Lee (b88) 2013 Jia, Kuo, Crawford (b73) 2013; 101 Wang, Chen, Xie, Azzari, Lobell (b183) Li (10.1016/j.jag.2023.103345_b116) 2021; 14 Qiao (10.1016/j.jag.2023.103345_b142) 2020; 11 Das (10.1016/j.jag.2023.103345_b36) 2021 Kemker (10.1016/j.jag.2023.103345_b83) 2018; 145 Li (10.1016/j.jag.2023.103345_b91) 2023; 66 10.1016/j.jag.2023.103345_b205 Connors (10.1016/j.jag.2023.103345_b32) 2017 10.1016/j.jag.2023.103345_b34 Liu (10.1016/j.jag.2023.103345_b123) 2019 Tong (10.1016/j.jag.2023.103345_b177) 2020; 237 Xiao (10.1016/j.jag.2023.103345_b201) 2021; 14 10.1016/j.jag.2023.103345_b212 Li (10.1016/j.jag.2023.103345_b95) 2021 Chi (10.1016/j.jag.2023.103345_b31) 2016; 104 Tong (10.1016/j.jag.2023.103345_b176) 2020; 13 Li (10.1016/j.jag.2023.103345_b117) 2016; 369 Xiao (10.1016/j.jag.2023.103345_b202) 2020 Li (10.1016/j.jag.2023.103345_b113) 2018; 56 Malkin (10.1016/j.jag.2023.103345_b128) 2021 Hua (10.1016/j.jag.2023.103345_b67) 2021; 177 Robinson (10.1016/j.jag.2023.103345_b150) 2021; 14 10.1016/j.jag.2023.103345_b216 Paris (10.1016/j.jag.2023.103345_b138) 2021 Daudt (10.1016/j.jag.2023.103345_b37) 2019; 187 10.1016/j.jag.2023.103345_b45 Gómez-Chova (10.1016/j.jag.2023.103345_b54) 2015; 103 Hong (10.1016/j.jag.2023.103345_b62) 2018 Li (10.1016/j.jag.2023.103345_b118) 2021; 51 Chen (10.1016/j.jag.2023.103345_b23) 2018; 10 10.1016/j.jag.2023.103345_b43 Wu (10.1016/j.jag.2023.103345_b197) 2021 Zhang (10.1016/j.jag.2023.103345_b222) 2021 Chen (10.1016/j.jag.2023.103345_b18) 2021 Matasci (10.1016/j.jag.2023.103345_b130) 2015; 53 Gao (10.1016/j.jag.2023.103345_b49) 2018; 10 Zhao (10.1016/j.jag.2023.103345_b228) 2017; 6 LeCun (10.1016/j.jag.2023.103345_b87) 2015; 521 Hu (10.1016/j.jag.2023.103345_b65) 2015; 7 Singh (10.1016/j.jag.2023.103345_b163) 2021 Zhou (10.1016/j.jag.2023.103345_b233) 2018 Bearman (10.1016/j.jag.2023.103345_b6) 2016 Andrés S. Arvor (10.1016/j.jag.2023.103345_b3) 2017; 102 Chen (10.1016/j.jag.2023.103345_b21) 2019; 64 Otter (10.1016/j.jag.2023.103345_b135) 2020; 32 10.1016/j.jag.2023.103345_b10 Song (10.1016/j.jag.2023.103345_b167) 2019; 16 Fu (10.1016/j.jag.2023.103345_b47) 2018; 10 Girshick (10.1016/j.jag.2023.103345_b52) 2015 Li (10.1016/j.jag.2023.103345_b90) 2021 Han (10.1016/j.jag.2023.103345_b60) 2018; 145 Bruzzone (10.1016/j.jag.2023.103345_b12) 2019 Li (10.1016/j.jag.2023.103345_b98) 2020; 49 Bansal (10.1016/j.jag.2023.103345_b5) 2018; vol. 11205 Rahman (10.1016/j.jag.2023.103345_b145) 2019; vol. 11361 10.1016/j.jag.2023.103345_b22 Lee (10.1016/j.jag.2023.103345_b88) 2013 Li (10.1016/j.jag.2023.103345_b99) 2021; 179 Gong (10.1016/j.jag.2023.103345_b56) 2019; 12 Hsieh (10.1016/j.jag.2023.103345_b64) 2019 10.1016/j.jag.2023.103345_b20 Cheng (10.1016/j.jag.2023.103345_b27) 2014; 98 Wu (10.1016/j.jag.2023.103345_b198) 2020; 8 Li (10.1016/j.jag.2023.103345_b109) 2023; 94 Lu (10.1016/j.jag.2023.103345_b125) 2020; 12 Zhang (10.1016/j.jag.2023.103345_b220) 2019; 107 Perantoni (10.1016/j.jag.2023.103345_b141) 2021 Yan (10.1016/j.jag.2023.103345_b208) 2021 Deng (10.1016/j.jag.2023.103345_b39) 2018; 145 Randin (10.1016/j.jag.2023.103345_b146) 2020; 239 Zhan (10.1016/j.jag.2023.103345_b217) 2017; 15 Li (10.1016/j.jag.2023.103345_b100) 2021 Ding (10.1016/j.jag.2023.103345_b41) 2021 Tuia (10.1016/j.jag.2023.103345_b180) 2021 Li (10.1016/j.jag.2023.103345_b93) 2017; 56 Li (10.1016/j.jag.2023.103345_b111) 2018; 6 Rasti (10.1016/j.jag.2023.103345_b147) 2017; 55 Dai (10.1016/j.jag.2023.103345_b35) 2019; 16 Benjdira (10.1016/j.jag.2023.103345_b8) 2019; 11 Reichstein (10.1016/j.jag.2023.103345_b149) 2019; 566 Gao (10.1016/j.jag.2023.103345_b48) 2019; 16 Li (10.1016/j.jag.2023.103345_b92) 2020; 250 Tang (10.1016/j.jag.2023.103345_b170) 2022; 9 Thoonen (10.1016/j.jag.2023.103345_b175) 2011; 5 Silver (10.1016/j.jag.2023.103345_b162) 2016; 529 Li (10.1016/j.jag.2023.103345_b96) 2017 Hua (10.1016/j.jag.2023.103345_b66) 2020 Tao (10.1016/j.jag.2023.103345_b173) 2020 Zhu (10.1016/j.jag.2023.103345_b234) 2016; 21 Dong (10.1016/j.jag.2023.103345_b44) 2019; 57 Vargas-Munoz (10.1016/j.jag.2023.103345_b181) 2020; 9 Schmieder (10.1016/j.jag.2023.103345_b158) 2020 Chan (10.1016/j.jag.2023.103345_b13) 2021; 129 Yan (10.1016/j.jag.2023.103345_b207) 2018 Li (10.1016/j.jag.2023.103345_b107) 2020; 159 Wang (10.1016/j.jag.2023.103345_b187) 2018; 9 Benediktsson (10.1016/j.jag.2023.103345_b7) 2003; 41 Hou (10.1016/j.jag.2023.103345_b63) 2017; 14 Wei (10.1016/j.jag.2023.103345_b193) 2021; 14 Yao (10.1016/j.jag.2023.103345_b214) 2020; 59 Wang (10.1016/j.jag.2023.103345_b183) 2020; 12 10.1016/j.jag.2023.103345_b194 Wei (10.1016/j.jag.2023.103345_b190) 2021 Zhao (10.1016/j.jag.2023.103345_b229) 2020; 12 Saha (10.1016/j.jag.2023.103345_b155) 2020; 18 Zou (10.1016/j.jag.2023.103345_b236) 2015; 12 Diakogiannis (10.1016/j.jag.2023.103345_b40) 2020; 162 Tao (10.1016/j.jag.2023.103345_b174) 2017 Li (10.1016/j.jag.2023.103345_b115) 2018; 56 Jiao (10.1016/j.jag.2023.103345_b74) 2019; 7 Peng (10.1016/j.jag.2023.103345_b140) 2020 Yan (10.1016/j.jag.2023.103345_b206) 2019; 58 Chen (10.1016/j.jag.2023.103345_b14) 2021 Li (10.1016/j.jag.2023.103345_b101) 2021 Amiri (10.1016/j.jag.2023.103345_b2) 2018; 44 Zhang (10.1016/j.jag.2023.103345_b224) 2021; 13 Jia (10.1016/j.jag.2023.103345_b73) 2013; 101 Song (10.1016/j.jag.2023.103345_b165) 2020 Lei (10.1016/j.jag.2023.103345_b89) 2019; 16 Wei (10.1016/j.jag.2023.103345_b192) 2016; 39 Li (10.1016/j.jag.2023.103345_b94) 2023 Ji (10.1016/j.jag.2023.103345_b72) 2020; 59 Schmitt (10.1016/j.jag.2023.103345_b160) 2020 Li (10.1016/j.jag.2023.103345_b105) 2021; 175 Li (10.1016/j.jag.2023.103345_b114) 2018; 146 Chen (10.1016/j.jag.2023.103345_b16) 2019 Pelletier (10.1016/j.jag.2023.103345_b139) 2017; 9 10.1016/j.jag.2023.103345_b178 Rosser (10.1016/j.jag.2023.103345_b151) 2017; 87 Huang (10.1016/j.jag.2023.103345_b69) 2019; 58 10.1016/j.jag.2023.103345_b171 Zhu (10.1016/j.jag.2023.103345_b235) 2017; 5 Xue (10.1016/j.jag.2023.103345_b204) 2019; 49 Pan (10.1016/j.jag.2023.103345_b136) 2017; 2017 Saha (10.1016/j.jag.2023.103345_b154) 2020; 18 Schmitt (10.1016/j.jag.2023.103345_b159) 2019 Chen (10.1016/j.jag.2023.103345_b19) 2019; 17 Chen (10.1016/j.jag.2023.103345_b24) 2016; 10 10.1016/j.jag.2023.103345_b188 10.1016/j.jag.2023.103345_b185 10.1016/j.jag.2023.103345_b186 10.1016/j.jag.2023.103345_b182 Sirmacek (10.1016/j.jag.2023.103345_b164) 2008 Gong (10.1016/j.jag.2023.103345_b55) 2018; 10 Rafique (10.1016/j.jag.2023.103345_b144) 2019 Yang (10.1016/j.jag.2023.103345_b213) 2019; 31 Bratasanu (10.1016/j.jag.2023.103345_b11) 2010; 4 Li (10.1016/j.jag.2023.103345_b119) 2022; 186 Bhatta (10.1016/j.jag.2023.103345_b9) 2010 Lake (10.1016/j.jag.2023.103345_b86) 2013 10.1016/j.jag.2023.103345_b156 Li (10.1016/j.jag.2023.103345_b102) 2017; 55 Wei (10.1016/j.jag.2023.103345_b191) 2016; 59 Lu (10.1016/j.jag.2023.103345_b126) 2020; 58 Martinuzzi (10.1016/j.jag.2023.103345_b129) 2007; 79 Mittal (10.1016/j.jag.2023.103345_b131) 2019 Dirscherl (10.1016/j.jag.2023.103345_b42) 2020; 237 Hung (10.1016/j.jag.2023.103345_b70) 2018 Li (10.1016/j.jag.2023.103345_b110) 2019 Zhou (10.1016/j.jag.2023.103345_b230) 2018; 5 Xia (10.1016/j.jag.2023.103345_b199) 2017; 55 Tang (10.1016/j.jag.2023.103345_b172) 2018; 42 Zhang (10.1016/j.jag.2023.103345_b225) 2021; 76 Zhang (10.1016/j.jag.2023.103345_b223) 2019; 17 Cheng (10.1016/j.jag.2023.103345_b29) 2018; 56 10.1016/j.jag.2023.103345_b168 Sumbul (10.1016/j.jag.2023.103345_b169) 2017; 56 Zhang (10.1016/j.jag.2023.103345_b227) 2016; 4 Yuan (10.1016/j.jag.2023.103345_b215) 2020; 9 Zhang (10.1016/j.jag.2023.103345_b226) 2020 Roy (10.1016/j.jag.2023.103345_b152) 2018 Wang (10.1016/j.jag.2023.103345_b184) 2018; 312 Weikmann (10.1016/j.jag.2023.103345_b195) 2021; 14 Mondal (10.1016/j.jag.2023.103345_b133) 2019 Xia (10.1016/j.jag.2023.103345_b200) 2015; 7 10.1016/j.jag.2023.103345_b71 Ghamisi (10.1016/j.jag.2023.103345_b50) 2016; 10 Zhang (10.1016/j.jag.2023.103345_b218) 1999; 54 Li (10.1016/j.jag.2023.103345_b120) 2021 Rawat (10.1016/j.jag.2023.103345_b148) 2017; 29 10.1016/j.jag.2023.103345_b79 Saha (10.1016/j.jag.2023.103345_b153) 2020 Quan (10.1016/j.jag.2023.103345_b143) 2018 Weinstein (10.1016/j.jag.2023.103345_b196) 2019; 11 Jin (10.1016/j.jag.2023.103345_b75) 2018 Cheng (10.1016/j.jag.2023.103345_b30) 2016; 54 Deng (10.1016/j.jag.2023.103345_b38) 2008; 63 Xue (10.1016/j.jag.2023.103345_b203) 2020; 8 Shimoda (10.1016/j.jag.2023.103345_b161) 2016 Wei (10.1016/j.jag.2023.103345_b189) 2021 Sarker (10.1016/j.jag.2023.103345_b157) 2017 10.1016/j.jag.2023.103345_b80 Song (10.1016/j.jag.2023.103345_b166) 2017; 14 10.1016/j.jag.2023.103345_b82 10.1016/j.jag.2023.103345_b137 Feng (10.1016/j.jag.2023.103345_b46) 2020; 58 10.1016/j.jag.2023.103345_b84 10.1016/j.jag.2023.103345_b85 Cheng (10.1016/j.jag.2023.103345_b26) 2021 Zhang (10.1016/j.jag.2023.103345_b219) 2021; 13 Li (10.1016/j.jag.2023.103345_b112) 2018; 77 Huang (10.1016/j.jag.2023.103345_b68) 2018; 24 Kang (10.1016/j.jag.2023.103345_b78) 2021; 14 Li (10.1016/j.jag.2023.103345_b104) 2022; 243 Crowther (10.1016/j.jag.2023.103345_b33) 2015; 525 Tu (10.1016/j.jag.2023.103345_b179) 2020; 13 He (10.1016/j.jag.2023.103345_b61) 2018; 56 Cheng (10.1016/j.jag.2023.103345_b28) 2021 Li (10.1016/j.jag.2023.103345_b97) 2017; 83 10.1016/j.jag.2023.103345_b108 Aygunes (10.1016/j.jag.2023.103345_b4) 2021; 176 Chen (10.1016/j.jag.2023.103345_b25) 2021; 178 Mora (10.1016/j.jag.2023.103345_b134) 2014 Zhang (10.1016/j.jag.2023.103345_b221) 2016; 54 10.1016/j.jag.2023.103345_b232 Grekousis (10.1016/j.jag.2023.103345_b57) 2015; 36 10.1016/j.jag.2023.103345_b53 Gibril (10.1016/j.jag.2023.103345_b51) 2018; 12 Guo (10.1016/j.jag.2023.103345_b59) 2020 Li (10.1016/j.jag.2023.103345_b103) 2021; 67 Guo (10.1016/j.jag.2023.103345_b58) 2017 Chen (10.1016/j.jag.2023.103345_b15) 2020; 12 Kang (10.1016/j.jag.2023.103345_b77) 2020 Zhou (10.1016/j.jag.2023.103345_b231) 2016; 27 Ma (10.1016/j.jag.2023.103345_b127) 2022; 9 Li (10.1016/j.jag.2023.103345_b106) 2016; 13 Alajaji (10.1016/j.jag.2023.103345_b1) 2020 Yang (10.1016/j.jag.2023.103345_b210) 2019; 57 Karniadakis (10.1016/j.jag.2023.103345_b81) 2021; 3 10.1016/j.jag.2023.103345_b122 10.1016/j.jag.2023.103345_b124 Lian (10.1016/j.jag.2023.103345_b121) 2021 Yan (10.1016/j.jag.2023.103345_b209) 2020; 29 Mohanty (10.1016/j.jag.2023.103345_b132) 2020; 3 J |
References_xml | – volume: 239 year: 2020 ident: b146 article-title: Monitoring biodiversity in the anthropocene using remote sensing in species distribution models publication-title: Remote Sens. Environ. – volume: 21 start-page: 1425 year: 2016 end-page: 1439 ident: b234 article-title: Research status and development trends of remote sensing big data publication-title: J. Image Graph. – year: 2010 ident: b9 article-title: Analysis of Urban Growth and Sprawl from Remote Sensing Data – start-page: 896 year: 2013 ident: b88 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks publication-title: Workshop on Challenges in Representation Learning – start-page: 115840Z year: 2020 ident: b202 article-title: Few-shot object detection with feature attention highlight module in remote sensing images publication-title: 2020 International Conference on Image, Video Processing and Artificial Intelligence – year: 2019 ident: b131 article-title: Semi-supervised semantic segmentation with high-and low-level consistency publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: b148 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. – volume: 44 start-page: 551 year: 2018 end-page: 574 ident: b2 article-title: Graph of concepts for semantic annotation of remotely sensed images based on direct neighbors in rag publication-title: Can. J. Remote Sens. – reference: Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M., 2018. Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7472–7481. – year: 2021 ident: b197 article-title: Recent developments in parallel and distributed computing for remotely sensed big data processing publication-title: Proc. IEEE – volume: 6 start-page: 57376 year: 2018 end-page: 57388 ident: b111 article-title: Greedy annotation of remote sensing image scenes based on automatic aggregation via hierarchical similarity diffusion publication-title: IEEE Access – year: 2020 ident: b59 article-title: Gan-based semisupervised scene classification of remote sensing image publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 243 year: 2022 ident: b104 article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation publication-title: Knowl.-Based Syst. – year: 2021 ident: b90 article-title: Geographical knowledge-driven representation learning for remote sensing images – volume: 10 start-page: 846 year: 2018 ident: b49 article-title: A deep convolutional generative adversarial networks (dcgans)-based semi-supervised method for object recognition in synthetic aperture radar (sar) images publication-title: Remote Sens. – volume: 9 start-page: 184 year: 2020 end-page: 199 ident: b181 article-title: Openstreetmap: Challenges and opportunities in machine learning and remote sensing publication-title: IEEE Geosci. Remote Sens. Mag. – year: 2019 ident: b159 article-title: Sen12ms–a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion – volume: 6 start-page: 514 year: 2017 end-page: 523 ident: b228 article-title: Convolutional neural network-based sar image classification with noisy labels publication-title: J. Radars – volume: 186 start-page: 170 year: 2022 end-page: 189 ident: b119 article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 146 start-page: 182 year: 2018 end-page: 196 ident: b114 article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 year: 2020 ident: b183 article-title: Weakly supervised deep learning for segmentation of remote sensing imagery publication-title: Remote Sens. – volume: 13 start-page: 108 year: 2021 ident: b219 article-title: Few-shot classification of aerial scene images via meta-learning publication-title: Remote Sens. – volume: 64 start-page: 370 year: 2019 end-page: 373 ident: b21 article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. – volume: 10 year: 2018 ident: b23 article-title: End-to-end airplane detection using transfer learning in remote sensing images publication-title: Remote Sens. – volume: 32 start-page: 604 year: 2020 end-page: 624 ident: b135 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2008 end-page: 5 ident: b164 article-title: Building detection from aerial images using invariant color features and shadow information publication-title: 2008 23rd International Symposium on Computer and Information Sciences – reference: Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L., 2015. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1742–1750. – volume: 12 year: 2020 ident: b15 article-title: Spmf-net: Weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion publication-title: Remote Sens. – volume: 77 start-page: 113 year: 2018 end-page: 125 ident: b112 article-title: Robust infrared small target detection using local steering kernel reconstruction publication-title: Pattern Recognit. – volume: 9 start-page: 923 year: 2018 end-page: 932 ident: b187 article-title: Change detection based on faster r-cnn for high-resolution remote sensing images publication-title: Remote Sens. Lett. – year: 2019 ident: b64 article-title: One-shot object detection with co-attention and co-excitation – year: 2017 ident: b96 article-title: Rsi-cb: A large scale remote sensing image classification benchmark via crowdsource data – volume: 49 start-page: 1564 year: 2020 ident: b98 article-title: Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space publication-title: Acta Geod. Cartogr. Sin. – volume: 12 year: 2020 ident: b125 article-title: Weakly supervised change detection based on edge mapping and sdae network in high-resolution remote sensing images publication-title: Remote Sens. – volume: 2017 year: 2017 ident: b136 article-title: Cascade convolutional neural network based on transfer-learning for aircraft detection on high-resolution remote sensing images publication-title: J. Sensors – volume: 59 start-page: 675 year: 2020 end-page: 685 ident: b214 article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 58 start-page: 233 year: 2019 end-page: 244 ident: b69 article-title: Hyperspectral remote sensing image change detection based on tensor and deep learning publication-title: J. Vis. Commun. Image Represent. – reference: Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279. – volume: 55 start-page: 3965 year: 2017 end-page: 3981 ident: b199 article-title: Aid: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 321 year: 2019 end-page: 333 ident: b56 article-title: A generative discriminatory classified network for change detection in multispectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 24 start-page: 113 year: 2018 end-page: 123 ident: b68 article-title: A near real-time flood-mapping approach by integrating social media and post-event satellite imagery publication-title: Ann. GIS – volume: 55 start-page: 3997 year: 2017 end-page: 4007 ident: b147 article-title: Hyperspectral and lidar fusion using extinction profiles and total variation component analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 4699 year: 2021 end-page: 4708 ident: b195 article-title: Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 101 start-page: 676 year: 2013 end-page: 697 ident: b73 article-title: Feature mining for hyperspectral image classification publication-title: Proc. IEEE – volume: 103 start-page: 1560 year: 2015 end-page: 1584 ident: b54 article-title: Multimodal classification of remote sensing images: A review and future directions publication-title: Proc. IEEE – start-page: 4721 year: 2018 end-page: 4724 ident: b75 article-title: Aid++: An updated version of aid on scene classification publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 14 start-page: 2551 year: 2021 end-page: 2562 ident: b78 article-title: Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 9 start-page: 19891 year: 2020 end-page: 19901 ident: b215 article-title: Few-shot scene classification with multi-attention deepemd network in remote sensing publication-title: IEEE Access – volume: 11 start-page: 1309 year: 2019 ident: b196 article-title: Individual tree-crown detection in rgb imagery using semi-supervised deep learning neural networks publication-title: Remote Sens. – year: 2020 ident: b77 article-title: Robust normalized softmax loss for deep metric learning-based characterization of remote sensing images with label noise publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 17 start-page: 117 year: 2019 end-page: 121 ident: b223 article-title: Hierarchical weakly supervised learning for residential area semantic segmentation in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2021 ident: b180 article-title: Recent advances in domain adaptation for the classification of remote sensing data – volume: 13 start-page: 4121 year: 2020 end-page: 4132 ident: b176 article-title: Channel-attention-based densenet network for remote sensing image scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – start-page: 684 year: 2018 end-page: 688 ident: b152 article-title: Semantic-fusion gans for semi-supervised satellite image classification publication-title: 2018 25th IEEE International Conference on Image Processing – start-page: 1583 year: 2018 end-page: 1587 ident: b207 article-title: Adversarial domain adaptation with a domain similarity discriminator for semantic segmentation of urban areas publication-title: 2018 25th IEEE International Conference on Image Processing – start-page: 3955 year: 2019 end-page: 3958 ident: b144 article-title: Weakly supervised building segmentation from aerial images publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium – start-page: 549 year: 2016 end-page: 565 ident: b6 article-title: What’s the point: Semantic segmentation with point supervision publication-title: European Conference on Computer Vision – volume: 18 start-page: 607 year: 2020 end-page: 611 ident: b154 article-title: Semisupervised change detection using graph convolutional network publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Tang, P., Wang, X., Bai, X., Liu, W., 2017. Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2843–2851. – volume: 9 start-page: 1200 year: 2022 end-page: 1217 ident: b127 article-title: Swinfusion: Cross-domain long-range learning for general image fusion via swin transformer publication-title: IEEE/CAA J. Autom. Sin. – reference: Chen, H., Wang, Y., Wang, G., Qiao, Y., 2018a. Lstd: A low-shot transfer detector for object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. – year: 2020 ident: b165 article-title: Learning from noisy labels with deep neural networks: A survey – volume: 13 start-page: 157 year: 2016 end-page: 161 ident: b106 article-title: Unsupervised multilayer feature learning for satellite image scene classification publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 687 year: 2019 end-page: 693 ident: b16 article-title: Generalized zero-shot vehicle detection in remote sensing imagery via coarse-to-fine framework publication-title: IJCAI – year: 2021 ident: b95 article-title: Few-shot object detection on remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 1756 year: 2021 end-page: 1768 ident: b118 article-title: Error-tolerant deep learning for remote sensing image scene classification publication-title: IEEE Trans. Cybern. – start-page: 11 year: 2014 end-page: 30 ident: b134 article-title: Global Land Cover Mapping: Current Status and Future Trends – volume: 36 start-page: 5309 year: 2015 end-page: 5335 ident: b57 article-title: An overview of 21 global and 43 regional land-cover mapping products publication-title: Int. J. Remote Sens. – volume: 98 start-page: 119 year: 2014 end-page: 132 ident: b27 article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 212 year: 2017 end-page: 216 ident: b217 article-title: Semisupervised hyperspectral image classification based on generative adversarial networks publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2021 ident: b222 article-title: Salient object detection based on progressively supervised learning for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J., 2017. From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1627–1636. – year: 2017 ident: b58 article-title: Synthesizing samples fro zero-shot learning publication-title: IJCAI – volume: 63 start-page: 96 year: 2008 end-page: 115 ident: b38 article-title: Growth, population and industrialization, and urban land expansion of china publication-title: J. Urban Econ. – volume: 42 start-page: 176 year: 2018 end-page: 191 ident: b172 article-title: Pcl: Proposal cluster learning for weakly supervised object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 3276 year: 2020 ident: b229 article-title: When self-supervised learning meets scene classification: Remote sensing scene classification based on a multitask learning framework publication-title: Remote Sens. – volume: 145 start-page: 23 year: 2018 end-page: 43 ident: b60 article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 129 start-page: 361 year: 2021 end-page: 384 ident: b13 article-title: A comprehensive analysis of weakly-supervised semantic segmentation in different image domains publication-title: Int. J. Comput. Vis. – volume: 29 start-page: 8163 year: 2020 end-page: 8176 ident: b209 article-title: Semantics-preserving graph propagation for zero-shot object detection publication-title: IEEE Trans. Image Process. – reference: Elhoseiny, M., Elfeki, M., 2019. Creativity inspired zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5784–5793. – volume: 31 start-page: 6469 year: 2019 end-page: 6478 ident: b213 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Comput. Appl. – reference: Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T., 2019. Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8420–8429. – year: 2019 ident: b133 article-title: Revisiting cyclegan for semi-supervised segmentation – volume: 59 start-page: 234 year: 2016 end-page: 244 ident: b191 article-title: Learning to segment with image-level annotations publication-title: Pattern Recognit. – volume: 14 start-page: 1832 year: 2021 end-page: 1847 ident: b193 article-title: Combining multiple classifiers for domain adaptation of remote sensing image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 11 year: 2019 ident: b8 article-title: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images publication-title: Remote Sens. – volume: 12 start-page: 2321 year: 2015 end-page: 2325 ident: b236 article-title: Deep learning based feature selection for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 237 year: 2020 ident: b177 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. – year: 2021 ident: b28 article-title: Prototype-cnn for few-shot object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b41 article-title: Object detection in aerial images: A large-scale benchmark and challenges – volume: 177 start-page: 89 year: 2021 end-page: 102 ident: b67 article-title: Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 14 start-page: 2418 year: 2017 end-page: 2422 ident: b63 article-title: Change detection based on deep features and low rank publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016b. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b81 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – reference: Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S., 2018. Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7268–7277. – reference: Dai, J., He, K., Sun, J., 2015. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1635–1643. – volume: 66 year: 2023 ident: b91 article-title: Mfvnet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation publication-title: Sci. China Inf. Sci. – volume: 56 start-page: 770 year: 2017 end-page: 779 ident: b169 article-title: Fine-grained object recognition and zero-shot learning in remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: b173 article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 525 start-page: 201 year: 2015 end-page: 205 ident: b33 article-title: Mapping tree density at a global scale publication-title: Nature – start-page: 4799 year: 2019 end-page: 4802 ident: b12 article-title: Multisource labeled data: An opportunity for training deep learning network publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium – year: 2021 ident: b190 article-title: Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 start-page: 950 year: 2018 end-page: 965 ident: b115 article-title: Large-scale remote sensing image retrieval by deep hashing neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 67 start-page: 94 year: 2021 end-page: 115 ident: b103 article-title: Image retrieval from remote sensing big data: A survey publication-title: Inf. Fusion – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b87 article-title: Deep learning publication-title: Nature – year: 2020 ident: b158 article-title: Remote sensing and on-site characterization of wetlands as potential habitats for malaria vectors - A pilot study in southern Germany publication-title: IEEE Global Humanitarian Technology Conference Proceedings – volume: 145 start-page: 3 year: 2018 end-page: 22 ident: b39 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 58 start-page: 3558 year: 2019 end-page: 3573 ident: b206 article-title: Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 start-page: 2337 year: 2017 end-page: 2348 ident: b93 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b208 article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 74 year: 2019 end-page: 77 ident: b123 article-title: Semi-supervised change detection based on graphs with generative adversarial networks publication-title: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium – volume: 14 start-page: 3185 year: 2021 end-page: 3199 ident: b150 article-title: Global land-cover mapping with weak supervision: Outcome of the 2020 ieee grss data fusion contest publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 5 start-page: 44 year: 2018 end-page: 53 ident: b230 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. – reference: Bilen, H., Vedaldi, A., 2016. Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2846–2854. – volume: 9 year: 2020 ident: b17 article-title: Fcc-net: A full-coverage collaborative network for weakly supervised remote sensing object detection publication-title: Electronics – volume: 39 start-page: 2314 year: 2016 end-page: 2320 ident: b192 article-title: Stc: A simple to complex framework for weakly-supervised semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 369 start-page: 548 year: 2016 end-page: 563 ident: b117 article-title: A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences publication-title: Inform. Sci. – volume: 3 year: 2020 ident: b132 article-title: Deep learning for understanding satellite imagery: An experimental survey publication-title: Front. Artif. Intell. – reference: Wang, Y.X., Ramanan, D., Hebert, M., 2019a. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9925–9934. – volume: 107 start-page: 2294 year: 2019 end-page: 2301 ident: b220 article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view] publication-title: Proc. IEEE – reference: Wang, T., Zhang, X., Yuan, L., Feng, J., 2019b. Few-shot adaptive faster r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7173–7182. – year: 2021 ident: b14 article-title: Self-supervised change detection in multi-view remote sensing images – volume: 4 start-page: 193 year: 2010 end-page: 204 ident: b11 article-title: Bridging the semantic gap for satellite image annotation and automatic mapping applications publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Zeng, Y., Zhuge, Y., Lu, H., Zhang, L., 2019. Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7223–7233. – reference: Kellenberger, B., Marcos, D., Tuia, D., 2019. When a few clicks make all the difference: improving weakly-supervised wildlife detection in uav images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0. – start-page: 1335 year: 2018 end-page: 1344 ident: b62 article-title: Conditional generative adversarial network for structured domain adaptation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 179 start-page: 145 year: 2021 end-page: 158 ident: b99 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Stojnic, V., Risojevic, V., 2021. Self-supervised learning of remote sensing scene representations using contrastive multiview coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1182–1191. – volume: 8 start-page: 158097 year: 2020 end-page: 158106 ident: b198 article-title: Convolutional neural network based weakly supervised learning for aircraft detection from remote sensing image publication-title: IEEE Access – volume: 178 start-page: 345 year: 2021 end-page: 365 ident: b25 article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N., 2017. Aga: Attribute-guided augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7455–7463. – volume: 49 start-page: 3991 year: 2019 end-page: 4003 ident: b204 article-title: Diod: Fast and efficient weakly semi-supervised deep complex isar object detection publication-title: IEEE Trans. Cybern. – reference: Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B., 2017. Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 876–885. – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: b227 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. – year: 2020 ident: b160 article-title: Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: b65 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. – year: 2021 ident: b141 article-title: A novel technique for robust training of deep networks with multisource weak labeled remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 796 year: 2021 end-page: 801 ident: b36 article-title: Transfer learning with res2net for remote sensing scene classification publication-title: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) – year: 2021 ident: b138 article-title: An interactive strategy for the training set definition based on active self-paced learning implemented on a cloud-computing platform publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 410 year: 2018 ident: b55 article-title: Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery publication-title: Remote Sens. – year: 2021 ident: b121 article-title: Weakly supervised road segmentation in high-resolution remote sensing images using point annotations publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 start-page: 6521 year: 2018 end-page: 6536 ident: b113 article-title: Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 525 year: 2020 end-page: 528 ident: b66 article-title: Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings publication-title: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium – reference: Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X., 2022. Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4248–4257. – start-page: 17 year: 2018 end-page: 21 ident: b143 article-title: Structural alignment based zero-shot classification for remote sensing scenes publication-title: 2018 IEEE International Conference on Electronics and Communication Engineering – year: 2018 ident: b70 article-title: Adversarial learning for semi-supervised semantic segmentation – volume: 56 start-page: 2811 year: 2018 end-page: 2821 ident: b29 article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 53 start-page: 3550 year: 2015 end-page: 3564 ident: b130 article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b189 article-title: Graph convolutional networks for the automated production of building vector maps from aerial images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: b110 article-title: Zero-shot object detection with textual descriptions publication-title: Thirty-Third Aaai Conference on Artificial Intelligence / Thirty-First Innovative Applications of Artificial Intelligence Conference / Ninth Aaai Symposium on Educational Advances in Artificial Intelligence – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b235 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – reference: Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L., 2019a. Meta r-cnn: Towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9577–9586. – volume: 10 start-page: 3011 year: 2016 end-page: 3024 ident: b50 article-title: Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Karlinsky, L., Shtok, J., Harary, S., Schwartz, E., Aides, A., Feris, R., Giryes, R., Bronstein, A.M., 2019. Repmet: Representative-based metric learning for classification and few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5197–5206. – start-page: 3 year: 2018 end-page: 11 ident: b233 article-title: Unet++: A Nested U-Net Architecture for Medical Image Segmentation – volume: 176 start-page: 262 year: 2021 end-page: 274 ident: b4 article-title: Weakly supervised instance attention for multisource fine-grained object recognition with an application to tree species classification publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1063 year: 2017 end-page: 1066 ident: b32 article-title: Semi-supervised deep generative models for change detection in very high resolution imagery publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium – volume: 12 year: 2018 ident: b51 article-title: Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data publication-title: J. Appl. Remote Sens. – year: 2017 ident: b157 article-title: Explaining trained neural networks with semantic web technologies: First steps – volume: 10 start-page: 745 year: 2016 end-page: 752 ident: b24 article-title: Land-use scene classification using multi-scale completed local binary patterns publication-title: Signal Image Video Process. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: b149 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature – volume: vol. 11205 start-page: 397 year: 2018 end-page: 414 ident: b5 publication-title: Zero-Shot Object Detection – reference: Lin, D., Dai, J., Jia, J., He, K., Sun, J., 2016. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3159–3167. – year: 2017 ident: b174 article-title: Semantics-preserving locality embedding for zero-shot learning publication-title: BMVC – volume: 54 start-page: 5553 year: 2016 end-page: 5563 ident: b221 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 16 start-page: 869 year: 2019 end-page: 873 ident: b35 article-title: Semisupervised scene classification for remote sensing images: A method based on convolutional neural networks and ensemble learning publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 18 start-page: 856 year: 2020 end-page: 860 ident: b155 article-title: Unsupervised deep transfer learning-based change detection for hr multispectral images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 79 start-page: 288 year: 2007 end-page: 297 ident: b129 article-title: Land development, land use, and urban sprawl in puerto rico integrating remote sensing and population census data publication-title: Landsc. Urban Plan. – reference: Girshick, R., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587. – volume: 9 start-page: 2121 year: 2022 end-page: 2137 ident: b170 article-title: Superfusion: A versatile image registration and fusion network with semantic awareness publication-title: IEEE/CAA J. Autom. Sin. – volume: 76 start-page: 323 year: 2021 end-page: 336 ident: b225 article-title: Image fusion meets deep learning: A survey and perspective publication-title: Inf. Fusion – reference: Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q., 2018. Min-entropy latent model for weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1297–1306. – volume: 16 start-page: 982 year: 2019 end-page: 986 ident: b89 article-title: Landslide inventory mapping from bitemporal images using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 16 start-page: 1655 year: 2019 end-page: 1659 ident: b48 article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 218 year: 2016 end-page: 234 ident: b161 article-title: Distinct class-specific saliency maps for weakly supervised semantic segmentation publication-title: European Conference on Computer Vision – volume: 58 start-page: 8002 year: 2020 end-page: 8012 ident: b46 article-title: Progressive contextual instance refinement for weakly supervised object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 55 start-page: 4157 year: 2017 end-page: 4167 ident: b102 article-title: Zero-shot scene classification for high spatial resolution remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 250 year: 2020 ident: b92 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. – volume: 104 start-page: 2207 year: 2016 end-page: 2219 ident: b31 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE – volume: 237 year: 2020 ident: b42 article-title: Remote sensing of ice motion in antarctica - a review publication-title: Remote Sens. Environ. – volume: vol. 11361 start-page: 547 year: 2019 end-page: 563 ident: b145 publication-title: Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts – volume: 57 start-page: 6960 year: 2019 end-page: 6973 ident: b210 article-title: Transferred deep learning-based change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 5623 year: 2020 end-page: 5639 ident: b179 article-title: Robust learning of mislabeled training samples for remote sensing image scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 175 start-page: 20 year: 2021 end-page: 33 ident: b105 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2021 end-page: 17 ident: b18 article-title: Object detection in remote sensing images based on deep transfer learning publication-title: Multimedia Tools Appl. – year: 2021 ident: b26 article-title: Spnet: Siamese-prototype network for few-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 59 start-page: 3816 year: 2020 end-page: 3828 ident: b72 article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 87 start-page: 103 year: 2017 end-page: 120 ident: b151 article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data publication-title: Nat. Hazards – volume: 5 start-page: 510 year: 2011 end-page: 521 ident: b175 article-title: Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 14 start-page: 2245 year: 2017 end-page: 2249 ident: b166 article-title: Zero-shot learning of sar target feature space with deep generative neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 16 start-page: 1324 year: 2019 end-page: 1328 ident: b167 article-title: Domain adaptation for convolutional neural networks-based remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 1881 year: 2020 end-page: 1885 ident: b226 article-title: Semi-supervised multi-spectral land cover classification with multi-attention and adaptive kernel publication-title: 2020 IEEE International Conference on Image Processing – volume: 7 start-page: 172231 year: 2019 end-page: 172263 ident: b74 article-title: A survey on the new generation of deep learning in image processing publication-title: IEEE Access – volume: 9 start-page: 173 year: 2017 ident: b139 article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series publication-title: Remote Sens. – volume: 7 start-page: 15014 year: 2015 end-page: 15045 ident: b200 article-title: Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge publication-title: Remote Sens. – reference: Kodirov, E., Xiang, T., Gong, S., 2017. Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3174–3183. – reference: Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y., 2017e. Zero-shot recognition using dual visual-semantic mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3279–3287. – year: 2021 ident: b101 article-title: Distributed fusion of heterogeneous remote sensing and social media data: A review and new developments publication-title: Proc. IEEE – volume: 94 start-page: 215 year: 2023 end-page: 228 ident: b109 article-title: Hs2p: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal publication-title: Inf. Fusion – volume: 54 start-page: 7405 year: 2016 end-page: 7415 ident: b30 article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: b40 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1852 year: 2008 end-page: 1855 ident: b211 article-title: Comparing sift descriptors and gabor texture features for classification of remote sensed imagery publication-title: 2008 15th IEEE International Conference on Image Processing – year: 2023 ident: b94 article-title: Glh-water: A large-scale dataset for global surface water detection in large-size very-high-resolution satellite imagery – year: 2021 ident: b128 article-title: High-resolution land cover change from low-resolution labels: Simple baselines for the 2021 ieee grss data fusion contest – volume: 57 start-page: 8534 year: 2019 end-page: 8545 ident: b44 article-title: Sig-nms-based faster r-cnn combining transfer learning for small target detection in vhr optical remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sensing – volume: 14 start-page: 4854 year: 2021 end-page: 4865 ident: b201 article-title: Few-shot object detection with self-adaptive attention network for remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2021 ident: b163 article-title: Sigan: Spectral index generative adversarial network for data augmentation in multispectral remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 27 start-page: 925 year: 2016 end-page: 944 ident: b231 article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping publication-title: Multidimens. Syst. Signal Process. – volume: 83 start-page: 567 year: 2017 end-page: 579 ident: b97 article-title: Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images publication-title: Photogramm. Eng. Remote Sens. – year: 2020 ident: b140 article-title: Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Ibrahim, M.S., Vahdat, A., Ranjbar, M., Macready, W.G., 2020. Semi-supervised semantic image segmentation with self-correcting networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12715–12725. – reference: Saito, K., Watanabe, K., Ushiku, Y., Harada, T., 2018. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3723–3732. – volume: 17 start-page: 681 year: 2019 end-page: 685 ident: b19 article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2021 ident: b120 article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 58 start-page: 2504 year: 2020 end-page: 2515 ident: b126 article-title: Multisource compensation network for remote sensing cross-domain scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 187 year: 2019 ident: b37 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. – year: 2015 ident: b52 article-title: Fast r-cnn publication-title: Comput. Sci. – year: 2020 ident: b76 article-title: Self-supervised visual feature learning with deep neural networks: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 650 year: 2020 end-page: 658 ident: b142 article-title: Simple weakly supervised deep learning pipeline for detecting individual red-attacked trees in vhr remote sensing images publication-title: Remote Sens. Lett. – volume: 56 start-page: 6899 year: 2018 end-page: 6910 ident: b61 article-title: Remote sensing scene classification using multilayer stacked covariance pooling publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: b153 article-title: Change detection in image time-series using unsupervised lstm publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 41 start-page: 1940 year: 2003 end-page: 1949 ident: b7 article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 81 year: 2020 end-page: 84 ident: b1 article-title: Few-shot learning for remote sensing scene classification publication-title: 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium – volume: 102 start-page: 158 year: 2017 end-page: 166 ident: b3 article-title: Ontology-based classification of remote sensing images using spectral rules publication-title: Comput. Geosci. – volume: 8 start-page: 28746 year: 2020 end-page: 28755 ident: b203 article-title: Remote sensing scene classification based on multi-structure deep features fusion publication-title: IEEE Access – year: 2013 ident: b86 article-title: One-shot learning by inverting a compositional causal process publication-title: Adv. Neural Inf. Process. Syst. – reference: Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021b. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622. – volume: 13 start-page: 394 year: 2021 ident: b224 article-title: Wts: A weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models publication-title: Remote Sens. – volume: 14 start-page: 3266 year: 2021 end-page: 3281 ident: b116 article-title: On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 159 start-page: 296 year: 2020 end-page: 307 ident: b107 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2021 ident: b100 article-title: Remote sensing images semantic segmentation with general remote sensing vision model via a self-supervised contrastive learning method – volume: 145 start-page: 60 year: 2018 end-page: 77 ident: b83 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b162 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – volume: 10 year: 2018 ident: b47 article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image publication-title: Remote Sens. – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b184 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – volume: 54 start-page: 50 year: 1999 end-page: 60 ident: b218 article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 115840Z year: 2020 ident: 10.1016/j.jag.2023.103345_b202 article-title: Few-shot object detection with feature attention highlight module in remote sensing images – volume: 102 start-page: 158 year: 2017 ident: 10.1016/j.jag.2023.103345_b3 article-title: Ontology-based classification of remote sensing images using spectral rules publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.02.018 – year: 2018 ident: 10.1016/j.jag.2023.103345_b70 – year: 2021 ident: 10.1016/j.jag.2023.103345_b26 article-title: Spnet: Siamese-prototype network for few-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.jag.2023.103345_b178 doi: 10.1109/CVPR.2018.00780 – ident: 10.1016/j.jag.2023.103345_b182 doi: 10.1109/CVPR.2018.00141 – volume: 59 start-page: 675 year: 2020 ident: 10.1016/j.jag.2023.103345_b214 article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2991407 – year: 2010 ident: 10.1016/j.jag.2023.103345_b9 – volume: 57 start-page: 6960 year: 2019 ident: 10.1016/j.jag.2023.103345_b210 article-title: Transferred deep learning-based change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2909781 – ident: 10.1016/j.jag.2023.103345_b82 doi: 10.1109/CVPRW.2019.00182 – volume: 66 year: 2023 ident: 10.1016/j.jag.2023.103345_b91 article-title: Mfvnet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-022-3599-y – ident: 10.1016/j.jag.2023.103345_b45 doi: 10.1109/ICCV.2019.00588 – volume: 94 start-page: 215 year: 2023 ident: 10.1016/j.jag.2023.103345_b109 article-title: Hs2p: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.02.002 – ident: 10.1016/j.jag.2023.103345_b10 doi: 10.1109/CVPR.2016.311 – volume: 175 start-page: 20 year: 2021 ident: 10.1016/j.jag.2023.103345_b105 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.009 – volume: 59 start-page: 234 year: 2016 ident: 10.1016/j.jag.2023.103345_b191 article-title: Learning to segment with image-level annotations publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.015 – start-page: 4721 year: 2018 ident: 10.1016/j.jag.2023.103345_b75 article-title: Aid++: An updated version of aid on scene classification – volume: 10 issue: 139 year: 2018 ident: 10.1016/j.jag.2023.103345_b23 article-title: End-to-end airplane detection using transfer learning in remote sensing images publication-title: Remote Sens. – ident: 10.1016/j.jag.2023.103345_b43 doi: 10.1109/CVPR.2017.355 – year: 2020 ident: 10.1016/j.jag.2023.103345_b77 article-title: Robust normalized softmax loss for deep metric learning-based characterization of remote sensing images with label noise publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2991657 – volume: 14 start-page: 4699 year: 2021 ident: 10.1016/j.jag.2023.103345_b195 article-title: Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3073965 – volume: 3 year: 2020 ident: 10.1016/j.jag.2023.103345_b132 article-title: Deep learning for understanding satellite imagery: An experimental survey publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.534696 – volume: 29 start-page: 8163 year: 2020 ident: 10.1016/j.jag.2023.103345_b209 article-title: Semantics-preserving graph propagation for zero-shot object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3011807 – volume: 16 start-page: 869 year: 2019 ident: 10.1016/j.jag.2023.103345_b35 article-title: Semisupervised scene classification for remote sensing images: A method based on convolutional neural networks and ensemble learning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2886534 – volume: 9 start-page: 923 year: 2018 ident: 10.1016/j.jag.2023.103345_b187 article-title: Change detection based on faster r-cnn for high-resolution remote sensing images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1492172 – volume: 13 start-page: 4121 year: 2020 ident: 10.1016/j.jag.2023.103345_b176 article-title: Channel-attention-based densenet network for remote sensing image scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3009352 – volume: 13 start-page: 157 year: 2016 ident: 10.1016/j.jag.2023.103345_b106 article-title: Unsupervised multilayer feature learning for satellite image scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2503142 – ident: 10.1016/j.jag.2023.103345_b188 doi: 10.1109/CVPR.2019.00734 – volume: 39 start-page: 2314 year: 2016 ident: 10.1016/j.jag.2023.103345_b192 article-title: Stc: A simple to complex framework for weakly-supervised semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2636150 – volume: 8 start-page: 158097 year: 2020 ident: 10.1016/j.jag.2023.103345_b198 article-title: Convolutional neural network based weakly supervised learning for aircraft detection from remote sensing image publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019956 – volume: 58 start-page: 233 year: 2019 ident: 10.1016/j.jag.2023.103345_b69 article-title: Hyperspectral remote sensing image change detection based on tensor and deep learning publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2018.11.004 – volume: 237 year: 2020 ident: 10.1016/j.jag.2023.103345_b42 article-title: Remote sensing of ice motion in antarctica - a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111595 – volume: 239 year: 2020 ident: 10.1016/j.jag.2023.103345_b146 article-title: Monitoring biodiversity in the anthropocene using remote sensing in species distribution models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111626 – volume: 58 start-page: 3558 year: 2019 ident: 10.1016/j.jag.2023.103345_b206 article-title: Triplet adversarial domain adaptation for pixel-level classification of vhr remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2958123 – volume: 7 start-page: 15014 year: 2015 ident: 10.1016/j.jag.2023.103345_b200 article-title: Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge publication-title: Remote Sens. doi: 10.3390/rs71115014 – start-page: 3 year: 2018 ident: 10.1016/j.jag.2023.103345_b233 – volume: 14 start-page: 1832 year: 2021 ident: 10.1016/j.jag.2023.103345_b193 article-title: Combining multiple classifiers for domain adaptation of remote sensing image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3049527 – ident: 10.1016/j.jag.2023.103345_b216 – volume: 79 start-page: 288 year: 2007 ident: 10.1016/j.jag.2023.103345_b129 article-title: Land development, land use, and urban sprawl in puerto rico integrating remote sensing and population census data publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2006.02.014 – start-page: 81 year: 2020 ident: 10.1016/j.jag.2023.103345_b1 article-title: Few-shot learning for remote sensing scene classification – year: 2021 ident: 10.1016/j.jag.2023.103345_b28 article-title: Prototype-cnn for few-shot object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/LGRS.2020.2975541 – ident: 10.1016/j.jag.2023.103345_b124 doi: 10.1109/CVPR.2017.653 – volume: 55 start-page: 3965 year: 2017 ident: 10.1016/j.jag.2023.103345_b199 article-title: Aid: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – year: 2017 ident: 10.1016/j.jag.2023.103345_b96 – volume: 176 start-page: 262 year: 2021 ident: 10.1016/j.jag.2023.103345_b4 article-title: Weakly supervised instance attention for multisource fine-grained object recognition with an application to tree species classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.021 – year: 2021 ident: 10.1016/j.jag.2023.103345_b90 – volume: 42 start-page: 176 year: 2018 ident: 10.1016/j.jag.2023.103345_b172 article-title: Pcl: Proposal cluster learning for weakly supervised object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2876304 – volume: 53 start-page: 3550 year: 2015 ident: 10.1016/j.jag.2023.103345_b130 article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2377785 – volume: 44 start-page: 551 year: 2018 ident: 10.1016/j.jag.2023.103345_b2 article-title: Graph of concepts for semantic annotation of remotely sensed images based on direct neighbors in rag publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2019.1569507 – volume: 77 start-page: 113 year: 2018 ident: 10.1016/j.jag.2023.103345_b112 article-title: Robust infrared small target detection using local steering kernel reconstruction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.12.012 – volume: 9 start-page: 19891 year: 2020 ident: 10.1016/j.jag.2023.103345_b215 article-title: Few-shot scene classification with multi-attention deepemd network in remote sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044192 – volume: 179 start-page: 145 year: 2021 ident: 10.1016/j.jag.2023.103345_b99 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.001 – year: 2021 ident: 10.1016/j.jag.2023.103345_b222 article-title: Salient object detection based on progressively supervised learning for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3045708 – year: 2020 ident: 10.1016/j.jag.2023.103345_b59 article-title: Gan-based semisupervised scene classification of remote sensing image publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 56 start-page: 950 year: 2018 ident: 10.1016/j.jag.2023.103345_b115 article-title: Large-scale remote sensing image retrieval by deep hashing neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2756911 – year: 2017 ident: 10.1016/j.jag.2023.103345_b157 – start-page: 1063 year: 2017 ident: 10.1016/j.jag.2023.103345_b32 article-title: Semi-supervised deep generative models for change detection in very high resolution imagery – volume: 187 year: 2019 ident: 10.1016/j.jag.2023.103345_b37 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. – volume: 129 start-page: 361 year: 2021 ident: 10.1016/j.jag.2023.103345_b13 article-title: A comprehensive analysis of weakly-supervised semantic segmentation in different image domains publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01373-4 – year: 2021 ident: 10.1016/j.jag.2023.103345_b190 article-title: Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.jag.2023.103345_b79 doi: 10.1109/ICCV.2019.00851 – year: 2021 ident: 10.1016/j.jag.2023.103345_b95 article-title: Few-shot object detection on remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1 year: 2021 ident: 10.1016/j.jag.2023.103345_b18 article-title: Object detection in remote sensing images based on deep transfer learning publication-title: Multimedia Tools Appl. – volume: 58 start-page: 8002 year: 2020 ident: 10.1016/j.jag.2023.103345_b46 article-title: Progressive contextual instance refinement for weakly supervised object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2985989 – volume: 10 start-page: 745 year: 2016 ident: 10.1016/j.jag.2023.103345_b24 article-title: Land-use scene classification using multi-scale completed local binary patterns publication-title: Signal Image Video Process. doi: 10.1007/s11760-015-0804-2 – volume: 59 start-page: 3816 year: 2020 ident: 10.1016/j.jag.2023.103345_b72 article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3020804 – ident: 10.1016/j.jag.2023.103345_b171 doi: 10.1109/CVPR.2017.326 – volume: 525 start-page: 201 year: 2015 ident: 10.1016/j.jag.2023.103345_b33 article-title: Mapping tree density at a global scale publication-title: Nature doi: 10.1038/nature14967 – year: 2021 ident: 10.1016/j.jag.2023.103345_b138 article-title: An interactive strategy for the training set definition based on active self-paced learning implemented on a cloud-computing platform publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 896 year: 2013 ident: 10.1016/j.jag.2023.103345_b88 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – volume: 10 start-page: 410 year: 2018 ident: 10.1016/j.jag.2023.103345_b55 article-title: Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs10030410 – volume: 63 start-page: 96 year: 2008 ident: 10.1016/j.jag.2023.103345_b38 article-title: Growth, population and industrialization, and urban land expansion of china publication-title: J. Urban Econ. doi: 10.1016/j.jue.2006.12.006 – volume: 9 start-page: 2121 year: 2022 ident: 10.1016/j.jag.2023.103345_b170 article-title: Superfusion: A versatile image registration and fusion network with semantic awareness publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2022.106082 – ident: 10.1016/j.jag.2023.103345_b137 doi: 10.1109/ICCV.2015.203 – volume: 83 start-page: 567 year: 2017 ident: 10.1016/j.jag.2023.103345_b97 article-title: Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.83.8.567 – volume: 101 start-page: 676 year: 2013 ident: 10.1016/j.jag.2023.103345_b73 article-title: Feature mining for hyperspectral image classification publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2229082 – year: 2019 ident: 10.1016/j.jag.2023.103345_b133 – volume: 12 issue: 1049 year: 2020 ident: 10.1016/j.jag.2023.103345_b15 article-title: Spmf-net: Weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion publication-title: Remote Sens. – ident: 10.1016/j.jag.2023.103345_b20 doi: 10.1609/aaai.v32i1.11716 – year: 2013 ident: 10.1016/j.jag.2023.103345_b86 article-title: One-shot learning by inverting a compositional causal process publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: 10.1016/j.jag.2023.103345_b120 article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: 10.1016/j.jag.2023.103345_b165 – volume: 10 issue: 1970 year: 2018 ident: 10.1016/j.jag.2023.103345_b47 article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image publication-title: Remote Sens. – volume: 58 start-page: 2504 year: 2020 ident: 10.1016/j.jag.2023.103345_b126 article-title: Multisource compensation network for remote sensing cross-domain scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2951779 – volume: 2017 year: 2017 ident: 10.1016/j.jag.2023.103345_b136 article-title: Cascade convolutional neural network based on transfer-learning for aircraft detection on high-resolution remote sensing images publication-title: J. Sensors doi: 10.1155/2017/1796728 – ident: 10.1016/j.jag.2023.103345_b168 doi: 10.1109/CVPRW53098.2021.00129 – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.jag.2023.103345_b184 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: 145 start-page: 60 year: 2018 ident: 10.1016/j.jag.2023.103345_b83 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.014 – ident: 10.1016/j.jag.2023.103345_b186 doi: 10.1109/CVPR52688.2022.00421 – volume: 11 issue: 1369 year: 2019 ident: 10.1016/j.jag.2023.103345_b8 article-title: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images publication-title: Remote Sens. – volume: 9 start-page: 173 year: 2017 ident: 10.1016/j.jag.2023.103345_b139 article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series publication-title: Remote Sens. doi: 10.3390/rs9020173 – volume: 49 start-page: 1564 year: 2020 ident: 10.1016/j.jag.2023.103345_b98 article-title: Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space publication-title: Acta Geod. Cartogr. Sin. – volume: 32 start-page: 604 year: 2020 ident: 10.1016/j.jag.2023.103345_b135 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2979670 – volume: vol. 11205 start-page: 397 year: 2018 ident: 10.1016/j.jag.2023.103345_b5 – start-page: 74 year: 2019 ident: 10.1016/j.jag.2023.103345_b123 article-title: Semi-supervised change detection based on graphs with generative adversarial networks – start-page: 687 year: 2019 ident: 10.1016/j.jag.2023.103345_b16 article-title: Generalized zero-shot vehicle detection in remote sensing imagery via coarse-to-fine framework publication-title: IJCAI – ident: 10.1016/j.jag.2023.103345_b108 doi: 10.1109/CVPR.2017.553 – year: 2021 ident: 10.1016/j.jag.2023.103345_b128 – start-page: 17 year: 2018 ident: 10.1016/j.jag.2023.103345_b143 article-title: Structural alignment based zero-shot classification for remote sensing scenes – year: 2021 ident: 10.1016/j.jag.2023.103345_b101 article-title: Distributed fusion of heterogeneous remote sensing and social media data: A review and new developments publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3079176 – start-page: 4799 year: 2019 ident: 10.1016/j.jag.2023.103345_b12 article-title: Multisource labeled data: An opportunity for training deep learning network – start-page: 3955 year: 2019 ident: 10.1016/j.jag.2023.103345_b144 article-title: Weakly supervised building segmentation from aerial images – ident: 10.1016/j.jag.2023.103345_b194 doi: 10.1109/CVPR.2018.00759 – volume: 14 start-page: 3185 year: 2021 ident: 10.1016/j.jag.2023.103345_b150 article-title: Global land-cover mapping with weak supervision: Outcome of the 2020 ieee grss data fusion contest publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3063849 – year: 2021 ident: 10.1016/j.jag.2023.103345_b14 – volume: 159 start-page: 296 year: 2020 ident: 10.1016/j.jag.2023.103345_b107 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.023 – volume: 29 start-page: 2352 year: 2017 ident: 10.1016/j.jag.2023.103345_b148 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – year: 2017 ident: 10.1016/j.jag.2023.103345_b174 article-title: Semantics-preserving locality embedding for zero-shot learning – volume: 64 start-page: 370 year: 2019 ident: 10.1016/j.jag.2023.103345_b21 article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.03.002 – volume: 16 start-page: 1655 year: 2019 ident: 10.1016/j.jag.2023.103345_b48 article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2906279 – year: 2015 ident: 10.1016/j.jag.2023.103345_b52 article-title: Fast r-cnn publication-title: Comput. Sci. – year: 2020 ident: 10.1016/j.jag.2023.103345_b140 article-title: Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 108 year: 2021 ident: 10.1016/j.jag.2023.103345_b219 article-title: Few-shot classification of aerial scene images via meta-learning publication-title: Remote Sens. doi: 10.3390/rs13010108 – volume: 12 start-page: 2321 year: 2015 ident: 10.1016/j.jag.2023.103345_b236 article-title: Deep learning based feature selection for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2475299 – start-page: 1881 year: 2020 ident: 10.1016/j.jag.2023.103345_b226 article-title: Semi-supervised multi-spectral land cover classification with multi-attention and adaptive kernel – volume: 103 start-page: 1560 year: 2015 ident: 10.1016/j.jag.2023.103345_b54 article-title: Multimodal classification of remote sensing images: A review and future directions publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2449668 – volume: vol. 11361 start-page: 547 year: 2019 ident: 10.1016/j.jag.2023.103345_b145 – ident: 10.1016/j.jag.2023.103345_b85 doi: 10.1109/CVPR.2017.473 – volume: 4 start-page: 193 year: 2010 ident: 10.1016/j.jag.2023.103345_b11 article-title: Bridging the semantic gap for satellite image annotation and automatic mapping applications publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2081349 – volume: 12 year: 2018 ident: 10.1016/j.jag.2023.103345_b51 article-title: Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.016036 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jag.2023.103345_b87 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 issue: 3907 year: 2020 ident: 10.1016/j.jag.2023.103345_b125 article-title: Weakly supervised change detection based on edge mapping and sdae network in high-resolution remote sensing images publication-title: Remote Sens. – volume: 18 start-page: 607 year: 2020 ident: 10.1016/j.jag.2023.103345_b154 article-title: Semisupervised change detection using graph convolutional network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2985340 – volume: 14 start-page: 2551 year: 2021 ident: 10.1016/j.jag.2023.103345_b78 article-title: Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3056661 – ident: 10.1016/j.jag.2023.103345_b71 doi: 10.1109/CVPR42600.2020.01273 – volume: 186 start-page: 170 year: 2022 ident: 10.1016/j.jag.2023.103345_b119 article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.02.013 – volume: 41 start-page: 1940 year: 2003 ident: 10.1016/j.jag.2023.103345_b7 article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.814625 – start-page: 684 year: 2018 ident: 10.1016/j.jag.2023.103345_b152 article-title: Semantic-fusion gans for semi-supervised satellite image classification – volume: 13 start-page: 5623 year: 2020 ident: 10.1016/j.jag.2023.103345_b179 article-title: Robust learning of mislabeled training samples for remote sensing image scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3025174 – volume: 13 start-page: 394 year: 2021 ident: 10.1016/j.jag.2023.103345_b224 article-title: Wts: A weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models publication-title: Remote Sens. doi: 10.3390/rs13030394 – volume: 243 year: 2022 ident: 10.1016/j.jag.2023.103345_b104 article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108469 – year: 2019 ident: 10.1016/j.jag.2023.103345_b131 article-title: Semi-supervised semantic segmentation with high-and low-level consistency publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 87 start-page: 103 year: 2017 ident: 10.1016/j.jag.2023.103345_b151 article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data publication-title: Nat. Hazards doi: 10.1007/s11069-017-2755-0 – volume: 7 start-page: 172231 year: 2019 ident: 10.1016/j.jag.2023.103345_b74 article-title: A survey on the new generation of deep learning in image processing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956508 – volume: 104 start-page: 2207 year: 2016 ident: 10.1016/j.jag.2023.103345_b31 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2598228 – ident: 10.1016/j.jag.2023.103345_b22 doi: 10.1109/CVPR46437.2021.00264 – volume: 56 start-page: 2811 year: 2018 ident: 10.1016/j.jag.2023.103345_b29 article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2783902 – volume: 3 start-page: 422 year: 2021 ident: 10.1016/j.jag.2023.103345_b81 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 27 start-page: 925 year: 2016 ident: 10.1016/j.jag.2023.103345_b231 article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-015-0370-3 – volume: 24 start-page: 113 year: 2018 ident: 10.1016/j.jag.2023.103345_b68 article-title: A near real-time flood-mapping approach by integrating social media and post-event satellite imagery publication-title: Ann. GIS doi: 10.1080/19475683.2018.1450787 – volume: 11 start-page: 650 year: 2020 ident: 10.1016/j.jag.2023.103345_b142 article-title: Simple weakly supervised deep learning pipeline for detecting individual red-attacked trees in vhr remote sensing images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2020.1752410 – start-page: 1335 year: 2018 ident: 10.1016/j.jag.2023.103345_b62 article-title: Conditional generative adversarial network for structured domain adaptation – volume: 146 start-page: 182 year: 2018 ident: 10.1016/j.jag.2023.103345_b114 article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.014 – volume: 177 start-page: 89 year: 2021 ident: 10.1016/j.jag.2023.103345_b67 article-title: Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.04.006 – volume: 17 start-page: 681 year: 2019 ident: 10.1016/j.jag.2023.103345_b19 article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2930462 – ident: 10.1016/j.jag.2023.103345_b156 doi: 10.1109/CVPR.2018.00392 – year: 2020 ident: 10.1016/j.jag.2023.103345_b158 article-title: Remote sensing and on-site characterization of wetlands as potential habitats for malaria vectors - A pilot study in southern Germany – volume: 10 start-page: 3011 year: 2016 ident: 10.1016/j.jag.2023.103345_b50 article-title: Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2634863 – volume: 14 start-page: 2418 year: 2017 ident: 10.1016/j.jag.2023.103345_b63 article-title: Change detection based on deep features and low rank publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766840 – year: 2021 ident: 10.1016/j.jag.2023.103345_b180 – year: 2019 ident: 10.1016/j.jag.2023.103345_b159 – year: 2017 ident: 10.1016/j.jag.2023.103345_b58 article-title: Synthesizing samples fro zero-shot learning – ident: 10.1016/j.jag.2023.103345_b84 doi: 10.1109/CVPR.2017.181 – start-page: 525 year: 2020 ident: 10.1016/j.jag.2023.103345_b66 article-title: Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings – volume: 14 start-page: 2245 year: 2017 ident: 10.1016/j.jag.2023.103345_b166 article-title: Zero-shot learning of sar target feature space with deep generative neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2758900 – year: 2021 ident: 10.1016/j.jag.2023.103345_b121 article-title: Weakly supervised road segmentation in high-resolution remote sensing images using point annotations publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 22 year: 2016 ident: 10.1016/j.jag.2023.103345_b227 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 16 start-page: 982 year: 2019 ident: 10.1016/j.jag.2023.103345_b89 article-title: Landslide inventory mapping from bitemporal images using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2889307 – volume: 51 start-page: 1756 year: 2021 ident: 10.1016/j.jag.2023.103345_b118 article-title: Error-tolerant deep learning for remote sensing image scene classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989241 – ident: 10.1016/j.jag.2023.103345_b34 doi: 10.1109/ICCV.2015.191 – volume: 5 start-page: 510 year: 2011 ident: 10.1016/j.jag.2023.103345_b175 article-title: Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2168317 – year: 2021 ident: 10.1016/j.jag.2023.103345_b197 article-title: Recent developments in parallel and distributed computing for remotely sensed big data processing publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3087029 – volume: 8 start-page: 28746 year: 2020 ident: 10.1016/j.jag.2023.103345_b203 article-title: Remote sensing scene classification based on multi-structure deep features fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968771 – volume: 6 start-page: 57376 year: 2018 ident: 10.1016/j.jag.2023.103345_b111 article-title: Greedy annotation of remote sensing image scenes based on automatic aggregation via hierarchical similarity diffusion publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873761 – year: 2021 ident: 10.1016/j.jag.2023.103345_b208 article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 549 year: 2016 ident: 10.1016/j.jag.2023.103345_b6 article-title: What’s the point: Semantic segmentation with point supervision – volume: 56 start-page: 2337 year: 2017 ident: 10.1016/j.jag.2023.103345_b93 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2778300 – volume: 55 start-page: 3997 year: 2017 ident: 10.1016/j.jag.2023.103345_b147 article-title: Hyperspectral and lidar fusion using extinction profiles and total variation component analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2686450 – year: 2019 ident: 10.1016/j.jag.2023.103345_b64 – ident: 10.1016/j.jag.2023.103345_b205 doi: 10.1109/ICCV.2019.00967 – volume: 12 start-page: 3276 year: 2020 ident: 10.1016/j.jag.2023.103345_b229 article-title: When self-supervised learning meets scene classification: Remote sensing scene classification based on a multitask learning framework publication-title: Remote Sens. doi: 10.3390/rs12203276 – ident: 10.1016/j.jag.2023.103345_b53 doi: 10.1109/CVPR.2014.81 – volume: 76 start-page: 323 year: 2021 ident: 10.1016/j.jag.2023.103345_b225 article-title: Image fusion meets deep learning: A survey and perspective publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.06.008 – year: 2023 ident: 10.1016/j.jag.2023.103345_b94 – volume: 14 start-page: 3266 year: 2021 ident: 10.1016/j.jag.2023.103345_b116 article-title: On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3063788 – year: 2021 ident: 10.1016/j.jag.2023.103345_b141 article-title: A novel technique for robust training of deep networks with multisource weak labeled remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 1309 year: 2019 ident: 10.1016/j.jag.2023.103345_b196 article-title: Individual tree-crown detection in rgb imagery using semi-supervised deep learning neural networks publication-title: Remote Sens. doi: 10.3390/rs11111309 – volume: 162 start-page: 94 year: 2020 ident: 10.1016/j.jag.2023.103345_b40 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.013 – volume: 145 start-page: 23 year: 2018 ident: 10.1016/j.jag.2023.103345_b60 article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.004 – volume: 67 start-page: 94 year: 2021 ident: 10.1016/j.jag.2023.103345_b103 article-title: Image retrieval from remote sensing big data: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.008 – volume: 250 year: 2020 ident: 10.1016/j.jag.2023.103345_b92 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112045 – start-page: 11 year: 2014 ident: 10.1016/j.jag.2023.103345_b134 – volume: 17 start-page: 117 year: 2019 ident: 10.1016/j.jag.2023.103345_b223 article-title: Hierarchical weakly supervised learning for residential area semantic segmentation in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2914490 – volume: 56 start-page: 6899 year: 2018 ident: 10.1016/j.jag.2023.103345_b61 article-title: Remote sensing scene classification using multilayer stacked covariance pooling publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2845668 – volume: 54 start-page: 7405 year: 2016 ident: 10.1016/j.jag.2023.103345_b30 article-title: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2601622 – volume: 529 start-page: 484 year: 2016 ident: 10.1016/j.jag.2023.103345_b162 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 12 start-page: 321 year: 2019 ident: 10.1016/j.jag.2023.103345_b56 article-title: A generative discriminatory classified network for change detection in multispectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2887108 – ident: 10.1016/j.jag.2023.103345_b122 doi: 10.1109/CVPR.2016.344 – ident: 10.1016/j.jag.2023.103345_b185 doi: 10.1109/ICCV.2019.01002 – volume: 31 start-page: 6469 year: 2019 ident: 10.1016/j.jag.2023.103345_b213 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3468-3 – volume: 54 start-page: 5553 year: 2016 ident: 10.1016/j.jag.2023.103345_b221 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2569141 – ident: 10.1016/j.jag.2023.103345_b80 doi: 10.1109/CVPR.2019.00534 – volume: 14 start-page: 4854 year: 2021 ident: 10.1016/j.jag.2023.103345_b201 article-title: Few-shot object detection with self-adaptive attention network for remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3078177 – year: 2019 ident: 10.1016/j.jag.2023.103345_b110 article-title: Zero-shot object detection with textual descriptions – volume: 55 start-page: 4157 year: 2017 ident: 10.1016/j.jag.2023.103345_b102 article-title: Zero-shot scene classification for high spatial resolution remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2689071 – year: 2021 ident: 10.1016/j.jag.2023.103345_b100 – volume: 237 year: 2020 ident: 10.1016/j.jag.2023.103345_b177 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 – volume: 145 start-page: 3 year: 2018 ident: 10.1016/j.jag.2023.103345_b39 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.003 – year: 2021 ident: 10.1016/j.jag.2023.103345_b41 – volume: 36 start-page: 5309 year: 2015 ident: 10.1016/j.jag.2023.103345_b57 article-title: An overview of 21 global and 43 regional land-cover mapping products publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1093195 – volume: 56 start-page: 770 year: 2017 ident: 10.1016/j.jag.2023.103345_b169 article-title: Fine-grained object recognition and zero-shot learning in remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2754648 – year: 2021 ident: 10.1016/j.jag.2023.103345_b189 article-title: Graph convolutional networks for the automated production of building vector maps from aerial images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 21 start-page: 1425 year: 2016 ident: 10.1016/j.jag.2023.103345_b234 article-title: Research status and development trends of remote sensing big data publication-title: J. Image Graph. – volume: 54 start-page: 50 year: 1999 ident: 10.1016/j.jag.2023.103345_b218 article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(98)00027-6 – start-page: 218 year: 2016 ident: 10.1016/j.jag.2023.103345_b161 article-title: Distinct class-specific saliency maps for weakly supervised semantic segmentation – volume: 6 start-page: 514 year: 2017 ident: 10.1016/j.jag.2023.103345_b228 article-title: Convolutional neural network-based sar image classification with noisy labels publication-title: J. Radars – volume: 98 start-page: 119 year: 2014 ident: 10.1016/j.jag.2023.103345_b27 article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.10.002 – volume: 7 start-page: 14680 year: 2015 ident: 10.1016/j.jag.2023.103345_b65 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.jag.2023.103345_b149 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 369 start-page: 548 year: 2016 ident: 10.1016/j.jag.2023.103345_b117 article-title: A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.07.042 – volume: 9 start-page: 1200 year: 2022 ident: 10.1016/j.jag.2023.103345_b127 article-title: Swinfusion: Cross-domain long-range learning for general image fusion via swin transformer publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2022.105686 – volume: 178 start-page: 345 year: 2021 ident: 10.1016/j.jag.2023.103345_b25 article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.016 – start-page: 1583 year: 2018 ident: 10.1016/j.jag.2023.103345_b207 article-title: Adversarial domain adaptation with a domain similarity discriminator for semantic segmentation of urban areas – volume: 10 start-page: 846 year: 2018 ident: 10.1016/j.jag.2023.103345_b49 article-title: A deep convolutional generative adversarial networks (dcgans)-based semi-supervised method for object recognition in synthetic aperture radar (sar) images publication-title: Remote Sens. doi: 10.3390/rs10060846 – volume: 5 start-page: 44 year: 2018 ident: 10.1016/j.jag.2023.103345_b230 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx106 – ident: 10.1016/j.jag.2023.103345_b232 doi: 10.1109/CVPR.2016.319 – ident: 10.1016/j.jag.2023.103345_b212 doi: 10.1145/1869790.1869829 – volume: 12 issue: 207 year: 2020 ident: 10.1016/j.jag.2023.103345_b183 article-title: Weakly supervised deep learning for segmentation of remote sensing imagery publication-title: Remote Sens. – volume: 49 start-page: 3991 year: 2019 ident: 10.1016/j.jag.2023.103345_b204 article-title: Diod: Fast and efficient weakly semi-supervised deep complex isar object detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2856821 – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.jag.2023.103345_b235 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – year: 2020 ident: 10.1016/j.jag.2023.103345_b76 article-title: Self-supervised visual feature learning with deep neural networks: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 56 start-page: 6521 year: 2018 ident: 10.1016/j.jag.2023.103345_b113 article-title: Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2839705 – start-page: 1 year: 2008 ident: 10.1016/j.jag.2023.103345_b164 article-title: Building detection from aerial images using invariant color features and shadow information – year: 2020 ident: 10.1016/j.jag.2023.103345_b160 – volume: 15 start-page: 212 year: 2017 ident: 10.1016/j.jag.2023.103345_b217 article-title: Semisupervised hyperspectral image classification based on generative adversarial networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2780890 – year: 2020 ident: 10.1016/j.jag.2023.103345_b173 article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 107 start-page: 2294 year: 2019 ident: 10.1016/j.jag.2023.103345_b220 article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view] publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2948454 – start-page: 1852 year: 2008 ident: 10.1016/j.jag.2023.103345_b211 article-title: Comparing sift descriptors and gabor texture features for classification of remote sensed imagery – volume: 9 start-page: 184 year: 2020 ident: 10.1016/j.jag.2023.103345_b181 article-title: Openstreetmap: Challenges and opportunities in machine learning and remote sensing publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2020.2994107 – volume: 18 start-page: 856 year: 2020 ident: 10.1016/j.jag.2023.103345_b155 article-title: Unsupervised deep transfer learning-based change detection for hr multispectral images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2990284 – volume: 57 start-page: 8534 year: 2019 ident: 10.1016/j.jag.2023.103345_b44 article-title: Sig-nms-based faster r-cnn combining transfer learning for small target detection in vhr optical remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sensing doi: 10.1109/TGRS.2019.2921396 – volume: 16 start-page: 1324 year: 2019 ident: 10.1016/j.jag.2023.103345_b167 article-title: Domain adaptation for convolutional neural networks-based remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2896411 – volume: 9 issue: 1356 year: 2020 ident: 10.1016/j.jag.2023.103345_b17 article-title: Fcc-net: A full-coverage collaborative network for weakly supervised remote sensing object detection publication-title: Electronics – year: 2020 ident: 10.1016/j.jag.2023.103345_b153 article-title: Change detection in image time-series using unsupervised lstm publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 796 year: 2021 ident: 10.1016/j.jag.2023.103345_b36 article-title: Transfer learning with res2net for remote sensing scene classification – year: 2021 ident: 10.1016/j.jag.2023.103345_b163 article-title: Sigan: Spectral index generative adversarial network for data augmentation in multispectral remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. |
SSID | ssj0017768 |
Score | 2.4538245 |
SecondaryResourceType | review_article |
Snippet | With many platforms and sensors continuously observing the earth surface, the large amount of remote sensing data presents a big data challenge. While remote... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103345 |
SubjectTerms | computer vision cost effectiveness Cost-efficient information extraction data collection Future research directions image analysis Remote sensing big data mining spatial data surveys Weakly supervised deep learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT-WAaKFiaamMxAnJ4DjOOuEGVasKCU5U6s1y7PGqpc2uNlkhfoGvZiZ2ytJDuXCLEiexPOOZN_LMG8beuFYG52QQhTJzoavgRaNqKbyXIToTfdNSoPjl6_z8Qn--rC63Wn1RTliiB04L9175AgpoVBFU0BHdpzKRks4qBWha4xj4oM-bgql8fmBMKoKr5o2odamm88wxs-vaLd5R13AqOC-pjmnLI43E_X85pnsmevQ7Z0_ZkwwY-cc00T32CLp99niLRnCfHZz-qVbDoXm79s_Yr5NlPwgYWSLwGc8sqSQLjkZ5nYoaOJWY8FtE0Wj5-BpQeMB7SmzvFpwySD9wNNkd_wHu-81P3m9WZF96CDwArHjuO7HgtwBDf__99ip94zm7ODv9dnIucvMF4XGRB4FxiPGxJD58rzXI0jTgao9wEK8LA9KMdHFU2xtD6REo-lBBW7dGgo5VLA_YTrfs4AXjvkVM5k0Mvom69tDI0pm6DK0yVQSIMyYnAVifmcmpQcaNnVLQri3KzJLMbJLZjL29e2WVaDkeGvyJpHo3kBi1xxuoZzbrmf2Xns2YnnTCZnCSQAd-6uqhf7-e9MfixqXTGNfBctNbxHVaGYnh2sv_Mb9Dtku_TVlsR2xnWG_gFeKloT0et8ZvMEUS2Q priority: 102 providerName: Directory of Open Access Journals |
Title | Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data |
URI | https://dx.doi.org/10.1016/j.jag.2023.103345 https://www.proquest.com/docview/2834270585 https://doaj.org/article/2c1e1e921d2d4f43927f199352e128f1 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHBIWK5bEyEieksI7j1ElvZdVqeVUIqLQ3K7HHq-0ju9pkhfoX-NXMJM7S9tADt8SxncjzdDzzDWPvilK4ohAuiqU-iFTqbJTLTETWCucL7W1e0kbx2-nB9Ex9nqWzHTbpc2EorDLo_k6nt9o6tIzDao5Xi8X4J-488kwhQyZtLP3sAduVaF3FgO0effoyPd0eJmjdZcRh_4gG9IebbZjXeTH_QCXEKfs8oaSmG-apRfG_ZaXu6OvWCJ08YY-D98iPug98ynag2mOPbmAK7rH943-pa9g1yG79jP2ZLOsmghYyAp_xAJlKhOGoodddhgOnfBN-hS41qkG-BqQk8Jqi3Ks5p3DSQ476u-K_obi4vOb1ZkXKpgbHHcCKhyIUc34F0NR3x5eLbo7n7Ozk-NdkGoVKDJFFh6WJcFOirU8IHN8qBSLRORSZRd8Qr2MNQrfYcZTo611i0Wu0LoUyK7UA5VOf7LNBtazgBeO2RAfNau9s7lVmIRdJobPElVKnHsAPmegJYGyAKadqGZemj0c7N0gzQzQzHc2G7P12yKrD6Liv80ei6rYjwWu3Dcv13AT-MtLGEEMuYyed8rgEUnuKdEwloD338ZCpnifMLW7FqRb3vfttzz8GpZiOZooKlpvaoJOnpBa4d3v5f1O_Yg_prgtie80GzXoDb9BdasoRisPkx9fvoyAWo_a3w19MKBeX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOCApVl6eROCGFdRynTriVVastbfdCK-3NSuzxakubXW2yQvwFfjUzibO0PfTALXLGTuQZz0Oe-YaxT0UpXFEIF8VSH0QqdTbKZSYia4XzhfY2LylQPJ8cjC_V92k63WKjvhaG0iqD7u90equtw8gw7OZwOZ8Pf2DkkWcKBTJpc-mnj9gOoVOhmO8cnpyOJ5vLBK27ijikj2hCf7nZpnldFbMv1EKcqs8TKmq6ZZ5aFP87Vuqevm6N0PFz9ix4j_yw-8EXbAuqXfb0FqbgLts7-le6hqTh7NYv2Z_Rom4iaCEj8B0PkKnEGI4aetVVOHCqN-E36FKjGuQrQE4CrynLvZpxSif9ylF_V_wXFD-vf_N6vSRlU4PjDmDJQxOKGb8BaOr788t5t8Yrdnl8dDEaR6ETQ2TRYWkiDEq09QmB41ulQCQ6hyKz6Bvic6xB6BY7jgp9vUsseo3WpVBmpRagfOqTPbZdLSrYZ9yW6KBZ7Z3Nvcos5CIpdJa4UurUA_gBEz0DjA0w5dQt49r0-WhXBnlmiGem49mAfd5MWXYYHQ8RfyOubggJXrsdWKxmJsiXkTaGGHIZO-mUxy2Q2lOmYyoB7bmPB0z1MmHuSCsuNX_o2x97-TF4iulqpqhgsa4NOnlKaoGx2-v_W_oDezy-OD8zZyeT0zfsCb3pEtresu1mtYZ36Do15ftwNP4CQFoX_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-efficient+information+extraction+from+massive+remote+sensing+data%3A+When+weakly+supervised+deep+learning+meets+remote+sensing+big+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Yansheng&rft.au=Li%2C+Xinwei&rft.au=Zhang%2C+Yongjun&rft.au=Peng%2C+Daifeng&rft.date=2023-06-01&rft.issn=1569-8432&rft.volume=120&rft.spage=103345&rft_id=info:doi/10.1016%2Fj.jag.2023.103345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2023_103345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |