Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging
•We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and par...
Saved in:
Published in | Neuroscience Vol. 422; pp. 161 - 171 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and parietal association cortex.•These light-induced changes served to deactivate the so-called default mode network.
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients. |
---|---|
AbstractList | We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients. •We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and parietal association cortex.•These light-induced changes served to deactivate the so-called default mode network. We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients. We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients. |
Author | Mitrofanis, John Henderson, Luke A El Khoury, Hala |
Author_xml | – sequence: 1 givenname: Hala surname: El Khoury fullname: El Khoury, Hala – sequence: 2 givenname: John surname: Mitrofanis fullname: Mitrofanis, John email: john.mitrofanis@sydney.edu.au – sequence: 3 givenname: Luke A surname: Henderson fullname: Henderson, Luke A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31682952$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1v0zAYhS00xLrBX0AWV9yk-COJE67YRmGVCkiIXVvGftO5S-zOdioq8eNx1E5Cu6pvbOk877F9zgU6c94BQu8omVNC6w-buYMx-KgtOA1zRmibhTnh4gWa0UbwQlRleYZmhJO6KCvGztFFjBuSV1XyV-ic07phbcVm6O_iz7b3wbo1TveAF10HOkXsO_wdVMBL1wUVwOCVXd8n7B3-CTFNtHIGL3b-IWvXQVmHr3SyO5v2OJ9vx0G5iO_iRH5TawfJ6mnUO5WfjJeDWmfpNXrZqT7Cm-N-ie6-LH7d3BarH1-XN1erQpe8TUVJDCOtFkopQ0AJQkDXZdlQYuqu5QoEmKYRFXRc1IqZtoWWaE2ZYE3XVJxfovcH323wj2P-gBxs1ND3yoEfo2ScMiYoISKjb4_o-HsAI7fBDirs5VNiGfh0AHRuIAbopLZJJetdyjH0khI5lSQ38v-S5FTSpOWSssXHZxZPt5w0_PkwDDmwnYUgj5SxIVcnjben2Vw_s9G9dVar_gH2p5r8A8mSzL8 |
CitedBy_id | crossref_primary_10_3389_fnhum_2025_1514087 crossref_primary_10_1016_j_mri_2024_04_012 crossref_primary_10_3390_biomedicines11020237 crossref_primary_10_1016_j_physbeh_2020_113291 crossref_primary_10_1080_10400419_2023_2219953 crossref_primary_10_3389_fnins_2022_942536 crossref_primary_10_1186_s13195_024_01484_x crossref_primary_10_1002_jbio_202300215 crossref_primary_10_12677_ACM_2021_1112835 crossref_primary_10_1007_s12035_020_02247_z crossref_primary_10_1515_revneuro_2023_0003 crossref_primary_10_3390_ijms25020928 crossref_primary_10_1007_s10103_023_03966_0 crossref_primary_10_3390_neurolint14040071 crossref_primary_10_14336_AD_2020_0901 crossref_primary_10_1007_s00221_020_05981_x crossref_primary_10_1186_s12984_024_01351_8 crossref_primary_10_3389_fpsyt_2021_713686 crossref_primary_10_1186_s12883_021_02248_y crossref_primary_10_1016_j_bbr_2021_113164 crossref_primary_10_7759_cureus_18596 crossref_primary_10_1088_1741_2552_abb3b2 crossref_primary_10_1088_1741_2552_abf97c crossref_primary_10_3389_fmedt_2022_871196 crossref_primary_10_1089_photob_2021_0106 crossref_primary_10_3233_JAD_210052 crossref_primary_10_4103_1673_5374_284989 crossref_primary_10_4103_1673_5374_360288 crossref_primary_10_1016_j_jpsychires_2020_12_004 crossref_primary_10_1093_texcom_tgaa004 |
Cites_doi | 10.1016/j.mito.2004.07.033 10.1002/lsm.22190 10.1002/cne.22207 10.3171/2013.9.JNS13423 10.1016/j.brainres.2017.02.026 10.4103/1673-5374.205092 10.1089/pho.2015.3986 10.1371/journal.pone.0030655 10.1161/STROKEAHA.109.547547 10.1089/photob.2018.4555 10.1089/pho.2016.4227 10.1186/1744-9081-5-46 10.1111/jnp.12074 10.1038/srep38866 10.1002/lsm.20143 10.1089/pho.2010.2789 10.3389/fnsys.2014.00036 10.1016/j.neuroimage.2011.10.035 10.1186/alzrt232 10.1037/0735-7044.102.3.397 10.3389/fpsyg.2012.00145 10.1089/pho.2015.4048 10.4329/wjr.v2.i10.384 10.1016/j.mri.2007.07.003 10.1371/journal.pone.0053454 10.1089/neu.2013.3244 10.1038/srep12029 10.1016/j.cub.2017.06.007 10.2147/NDT.S78182 10.1016/j.neuroimage.2008.04.025 10.1371/journal.pone.0026212 10.3389/fnins.2015.00500 10.4103/1673-5374.238613 10.1088/2040-8986/19/1/013003 10.1089/pho.2010.2814 10.1146/annurev-neuro-071013-014030 10.1073/pnas.0504136102 10.1371/journal.pone.0067358 10.1007/s10103-017-2221-y 10.1089/wound.2014.0623 10.1016/j.neuroimage.2003.12.042 10.1093/cercor/6.1.71 10.1038/s41598-019-42693-x 10.1515/revneuro-2016-0087 10.1016/j.bbacli.2016.09.002 10.1371/journal.pone.0026377 10.1155/2015/352979 10.1016/j.brs.2017.04.111 10.1016/j.neuroscience.2012.11.016 10.1371/journal.pone.0064115 10.1016/j.euroneuro.2010.03.008 10.1016/j.nlm.2007.07.014 10.1016/j.neubiorev.2008.09.002 10.1002/ana.24542 10.1161/01.STR.0000131808.69640.b7 |
ContentType | Journal Article |
Copyright | 2019 Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 – notice: Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neuroscience.2019.10.037 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 171 |
ExternalDocumentID | 31682952 10_1016_j_neuroscience_2019_10_037 S0306452219307298 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG RIG .55 .GJ 29N 53G 5VS AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AHHHB AIGII APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SNS SSH WUQ X7M YYP ZGI ZXP NPM 7X8 |
ID | FETCH-LOGICAL-c439t-40d209c7aaad0ea700ec644810d6f93ae7ed8875ef376a2d99e90cc12728f8533 |
IEDL.DBID | .~1 |
ISSN | 0306-4522 1873-7544 |
IngestDate | Thu Jul 10 21:55:32 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Thu Apr 24 23:02:20 EDT 2025 Tue Jul 01 02:21:47 EDT 2025 Fri Feb 23 02:50:10 EST 2024 Tue Aug 26 17:32:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | photobiomodulation M1 transcranial finger-tapping CBF EEG 810 nm LED pCASL fMRI parietal association cortex ASL BOLD ATP S1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-40d209c7aaad0ea700ec644810d6f93ae7ed8875ef376a2d99e90cc12728f8533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31682952 |
PQID | 2312271007 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2312271007 pubmed_primary_31682952 crossref_citationtrail_10_1016_j_neuroscience_2019_10_037 crossref_primary_10_1016_j_neuroscience_2019_10_037 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2019_10_037 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2019_10_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chow, Armati (b0045) 2016; 34 Eells, Wong-Riley, VerHoeve, Henry, Buchman, Kane, Gould, Das, Jett, Hodgson, Margolis, Whelan (b0060) 2004; 4 Petcharunpaisan, Ramalho, Castillo (b0185) 2010; 2 Ando, Xuan, Xu, Dai, Sharma, Kharkwal, Huang, Wu, Whalen, Sato, Obara, Hamblin (b0005) 2011; 6 Hamilton, Hamilton, Nicklason, El Massri, Mitrofanis (b0085) 2018; 13 Sommer, Haddad, Fecht (b0230) 2015; 5 Lv, Wang, Tong, Williams, Zaharchuk, Zeineh, Goldstein-Piekarski, Ball, Liao, Wintermark (b0130) 2018; 39 Moro, El Massri, Torres, Ratel, De Jaeger, Chabrol, Perraut, Bourgerette, Berger, Purushothuman, Johnstone, Stone, Mitrofanis, Benabid (b0155) 2014; 120 Purushothuman, Johnstone, Nandasena, Mitrofanis, Stone (b0190) 2014; 6 Shaw, Spana, Ashkan, Benabid, Stone, Baker, Mitrofanis (b0225) 2010; 518 Karu (b0105) 2010; 28 Wang, Aguirre, Rao, Wang, Fernández-Seara, Childress, Detre (b0260) 2008; 26 Chao (b0040) 2019; 37 Khan, Arany (b0110) 2015; 4 Romeo (b0205) 2017; 1662 Zomorrodi R, Loheswaran G, Pushparaj A, Lim L (2019) Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 9 Available at Darlot, Moro, El Massri, Chabrol, Johnstone, Reinhart, Agay, Torres, Bekha, Auboiroux, Costecalde, Peoples, Anastascio, Shaw, Stone, Mitrofanis, Benabid (b0050) 2016; 79 . Whitlock (b0265) 2017; 27 Xuan, Vatansever, Huang, Wu, Xuan, Dai, Ando, Xu, Huang, Hamblin (b0275) 2013; 8 van den Heuvel, Hulshoff Pol (b0245) 2010; 20 Lv, Margulies, Villringer, Zang (b0135) 2013; 8 Naeser, Hamblin (b0170) 2015; 33 Byrnes, Waynant, Ilev, Wu, Barna, Smith, Heckert, Gerst, Anders (b0030) 2005; 36 Lapchak, Wei, Zivin (b0120) 2004; 35 Zivin (b0280) 2009; 40 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (b0065) 2005; 102 Hennessy, Hamblin (b0095) 2017; 19 Haeussinger, Heinzel, Hahn, Schecklmann, Ehlis, Fallgatter (b0075) 2011; 6 Konstantinović, Jelić, Jeremić, Stevanović, Milanović, Filipović (b0115) 2013; 45 Salehpour, Rasta (b0210) 2017; 28 Tulving, Markowitsch, Craik, Habib, Houle (b0240) 1996; 6 Spreng (b0235) 2012; 3 Schiffer, Johnston, Ravichandran, Polcari, Teicher, Webb, Hamblin (b0220) 2009; 5 Witt, Meyerand, Laird (b0270) 2008; 42 Johnstone, Moro, Stone, Benabid, Mitrofanis (b0100) 2016; 9 Macey, Macey, Kumar, Harper (b0140) 2004; 22 Broyd, Demanuele, Debener, Helps, James, Sonuga-Barke (b0020) 2009; 33 Cassano, Cusin, Mischoulon, Hamblin, De Taboada, Pisoni, Chang, Yeung, Ionescu, Petrie, Nierenberg, Fava, Iosifescu (b0035) 2015; 2015 DiMattia, Kesner (b0055) 1988; 102 Henderson, Morries (b0090) 2015; 11 Michalikova, Ennaceur, van Rensburg, Chazot (b0145) 2008; 89 Raichle (b0195) 2015; 38 Muili, Gopalakrishnan, Meyer, Eells, Lyons (b0165) 2012; 7 Naeser, Saltmarche, Krengel, Hamblin, Knight (b0175) 2011; 29 Blanco, Maddox, Gonzalez-Lima (b0015) 2017; 11 Rojas, Gonzalez-Lima (b0200) 2011; 3 Muili, Gopalakrishnan, Eells, Lyons (b0160) 2013; 8 Saltmarche, Naeser, Ho, Hamblin, Lim (b0215) 2017; 35 Buckner (b0025) 2012; 62 Gonzalez-Lima, Barrett (b0070) 2014; 8 Hamblin (b0080) 2016; 6 Vargas, Barrett, Saucedo, Huang, Abraham, Tanaka, Haley, Gonzalez-Lima (b0250) 2017; 32 Long, Xie, Ma, Urbin, Liu, Weng, Huang, Yu, Li, Huang (b0125) 2016; 6 Mitrofanis (b0150) 2017; 12 Naeser, Zafonte, Krengel, Martin, Frazier, Hamblin, Knight, Meehan, Baker (b0180) 2014; 31 Wang, Dmochowski, Husain, Gonzalez-Lima, Liu (b0255) 2017; 10 Barrett, Gonzalez-Lima (b0010) 2013; 230 Purushothuman (10.1016/j.neuroscience.2019.10.037_b0190) 2014; 6 Broyd (10.1016/j.neuroscience.2019.10.037_b0020) 2009; 33 Konstantinović (10.1016/j.neuroscience.2019.10.037_b0115) 2013; 45 Raichle (10.1016/j.neuroscience.2019.10.037_b0195) 2015; 38 Witt (10.1016/j.neuroscience.2019.10.037_b0270) 2008; 42 Wang (10.1016/j.neuroscience.2019.10.037_b0260) 2008; 26 Hennessy (10.1016/j.neuroscience.2019.10.037_b0095) 2017; 19 Schiffer (10.1016/j.neuroscience.2019.10.037_b0220) 2009; 5 Tulving (10.1016/j.neuroscience.2019.10.037_b0240) 1996; 6 Chao (10.1016/j.neuroscience.2019.10.037_b0040) 2019; 37 Vargas (10.1016/j.neuroscience.2019.10.037_b0250) 2017; 32 Whitlock (10.1016/j.neuroscience.2019.10.037_b0265) 2017; 27 Mitrofanis (10.1016/j.neuroscience.2019.10.037_b0150) 2017; 12 Salehpour (10.1016/j.neuroscience.2019.10.037_b0210) 2017; 28 Naeser (10.1016/j.neuroscience.2019.10.037_b0170) 2015; 33 Shaw (10.1016/j.neuroscience.2019.10.037_b0225) 2010; 518 Fox (10.1016/j.neuroscience.2019.10.037_b0065) 2005; 102 Cassano (10.1016/j.neuroscience.2019.10.037_b0035) 2015; 2015 Naeser (10.1016/j.neuroscience.2019.10.037_b0180) 2014; 31 Eells (10.1016/j.neuroscience.2019.10.037_b0060) 2004; 4 Barrett (10.1016/j.neuroscience.2019.10.037_b0010) 2013; 230 Sommer (10.1016/j.neuroscience.2019.10.037_b0230) 2015; 5 Naeser (10.1016/j.neuroscience.2019.10.037_b0175) 2011; 29 Zivin (10.1016/j.neuroscience.2019.10.037_b0280) 2009; 40 Muili (10.1016/j.neuroscience.2019.10.037_b0160) 2013; 8 Moro (10.1016/j.neuroscience.2019.10.037_b0155) 2014; 120 Macey (10.1016/j.neuroscience.2019.10.037_b0140) 2004; 22 Blanco (10.1016/j.neuroscience.2019.10.037_b0015) 2017; 11 Gonzalez-Lima (10.1016/j.neuroscience.2019.10.037_b0070) 2014; 8 Romeo (10.1016/j.neuroscience.2019.10.037_b0205) 2017; 1662 Michalikova (10.1016/j.neuroscience.2019.10.037_b0145) 2008; 89 Saltmarche (10.1016/j.neuroscience.2019.10.037_b0215) 2017; 35 Lv (10.1016/j.neuroscience.2019.10.037_b0130) 2018; 39 Muili (10.1016/j.neuroscience.2019.10.037_b0165) 2012; 7 Xuan (10.1016/j.neuroscience.2019.10.037_b0275) 2013; 8 Haeussinger (10.1016/j.neuroscience.2019.10.037_b0075) 2011; 6 Ando (10.1016/j.neuroscience.2019.10.037_b0005) 2011; 6 Khan (10.1016/j.neuroscience.2019.10.037_b0110) 2015; 4 Petcharunpaisan (10.1016/j.neuroscience.2019.10.037_b0185) 2010; 2 Hamblin (10.1016/j.neuroscience.2019.10.037_b0080) 2016; 6 Lapchak (10.1016/j.neuroscience.2019.10.037_b0120) 2004; 35 Spreng (10.1016/j.neuroscience.2019.10.037_b0235) 2012; 3 Henderson (10.1016/j.neuroscience.2019.10.037_b0090) 2015; 11 10.1016/j.neuroscience.2019.10.037_b0285 Buckner (10.1016/j.neuroscience.2019.10.037_b0025) 2012; 62 Long (10.1016/j.neuroscience.2019.10.037_b0125) 2016; 6 Hamilton (10.1016/j.neuroscience.2019.10.037_b0085) 2018; 13 Rojas (10.1016/j.neuroscience.2019.10.037_b0200) 2011; 3 Byrnes (10.1016/j.neuroscience.2019.10.037_b0030) 2005; 36 DiMattia (10.1016/j.neuroscience.2019.10.037_b0055) 1988; 102 Karu (10.1016/j.neuroscience.2019.10.037_b0105) 2010; 28 Lv (10.1016/j.neuroscience.2019.10.037_b0135) 2013; 8 Chow (10.1016/j.neuroscience.2019.10.037_b0045) 2016; 34 Darlot (10.1016/j.neuroscience.2019.10.037_b0050) 2016; 79 Johnstone (10.1016/j.neuroscience.2019.10.037_b0100) 2016; 9 Wang (10.1016/j.neuroscience.2019.10.037_b0255) 2017; 10 van den Heuvel (10.1016/j.neuroscience.2019.10.037_b0245) 2010; 20 |
References_xml | – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: b0065 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 574 year: 2017 end-page: 575 ident: b0150 article-title: Why and how does light therapy offer neuroprotection in Parkinson’s disease? publication-title: Neural Regener Res – volume: 5 start-page: 12029 year: 2015 ident: b0230 article-title: Light Effect on Water Viscosity: Implication for ATP Biosynthesis publication-title: Sci Rep – volume: 89 start-page: 480 year: 2008 end-page: 488 ident: b0145 article-title: Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light publication-title: Neurobiol Learn Memory – volume: 33 start-page: 443 year: 2015 end-page: 446 ident: b0170 article-title: Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation publication-title: Photomed Laser Surg – volume: 42 start-page: 343 year: 2008 end-page: 356 ident: b0270 article-title: Functional neuroimaging correlates of finger tapping task variations: An ALE meta-analysis publication-title: Neuroimage – volume: 6 start-page: 2 year: 2014 ident: b0190 article-title: Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex - evidence from two transgenic mouse models publication-title: Alzheimers Res Ther – volume: 22 start-page: 360 year: 2004 end-page: 366 ident: b0140 article-title: A method for removal of global effects from fMRI time series publication-title: Neuroimage – volume: 31 start-page: 1008 year: 2014 end-page: 1017 ident: b0180 article-title: Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study publication-title: J Neurotrauma – volume: 4 start-page: 724 year: 2015 end-page: 737 ident: b0110 article-title: Biophysical approaches for oral wound healing: emphasis on photobiomodulation publication-title: Adv Wound Care (New Rochelle) – volume: 2 start-page: 384 year: 2010 end-page: 398 ident: b0185 article-title: Arterial spin labeling in neuroimaging publication-title: World J Radiol – volume: 230 start-page: 13 year: 2013 end-page: 23 ident: b0010 article-title: Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans publication-title: Neuroscience – volume: 34 start-page: 599 year: 2016 end-page: 609 ident: b0045 article-title: Photobiomodulation: implications for anesthesia and pain relief publication-title: Photomed Laser Surg – volume: 19 year: 2017 ident: b0095 article-title: Photobiomodulation and the brain: a new paradigm publication-title: J Opt – volume: 8 start-page: 36 year: 2014 ident: b0070 article-title: Augmentation of cognitive brain functions with transcranial lasers publication-title: Front Syst Neurosci – volume: 3 start-page: 145 year: 2012 ident: b0235 article-title: The fallacy of a “task-negative” network publication-title: Front Psychol – volume: 6 start-page: 71 year: 1996 end-page: 79 ident: b0240 article-title: Novelty and familiarity activations in PET studies of memory encoding and retrieval publication-title: Cereb Cortex – volume: 33 start-page: 279 year: 2009 end-page: 296 ident: b0020 article-title: Default-mode brain dysfunction in mental disorders: a systematic review publication-title: Neurosci Biobehav Rev – volume: 6 year: 2011 ident: b0005 article-title: Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice publication-title: PLoS One – volume: 35 start-page: 432 year: 2017 end-page: 441 ident: b0215 article-title: Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report publication-title: Photomed Laser Surg – volume: 11 start-page: 2191 year: 2015 end-page: 2208 ident: b0090 article-title: Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? publication-title: Neuropsychiatr Dis Treat – volume: 6 year: 2011 ident: b0075 article-title: Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging publication-title: PLOS One – volume: 28 start-page: 441 year: 2017 end-page: 453 ident: b0210 article-title: The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder publication-title: Rev Neurosci – volume: 36 start-page: 171 year: 2005 end-page: 185 ident: b0030 article-title: Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury publication-title: Lasers Surg Med – volume: 2015 year: 2015 ident: b0035 article-title: Near-infrared transcranial radiation for major depressive disorder: proof of concept study publication-title: Psychiatry J – volume: 35 start-page: 1985 year: 2004 end-page: 1988 ident: b0120 article-title: Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits publication-title: Stroke – reference: Zomorrodi R, Loheswaran G, Pushparaj A, Lim L (2019) Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 9 Available at: – volume: 6 start-page: 38866 year: 2016 ident: b0125 article-title: Distinct interactions between fronto-parietal and default mode networks in impaired consciousness publication-title: Sci Rep – volume: 1662 start-page: 87 year: 2017 end-page: 101 ident: b0205 article-title: Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not publication-title: Brain Res – volume: 29 start-page: 351 year: 2011 end-page: 358 ident: b0175 article-title: Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports publication-title: Photomed Laser Surg – volume: 518 start-page: 25 year: 2010 end-page: 40 ident: b0225 article-title: Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment publication-title: J Comp Neurol – volume: 26 start-page: 261 year: 2008 end-page: 269 ident: b0260 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging – volume: 32 start-page: 1153 year: 2017 end-page: 1162 ident: b0250 article-title: Beneficial neurocognitive effects of transcranial laser in older adults publication-title: Lasers Med Sci – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: b0245 article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity publication-title: Eur Neuropsychopharmacol – volume: 28 start-page: 159 year: 2010 end-page: 160 ident: b0105 article-title: Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP publication-title: Photomed Laser Surg – volume: 8 year: 2013 ident: b0160 article-title: Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress publication-title: PLoS One – volume: 8 year: 2013 ident: b0135 article-title: Effects of finger tapping frequency on regional homogeneity of sensorimotor cortex publication-title: PLOS One – volume: 62 start-page: 1137 year: 2012 end-page: 1145 ident: b0025 article-title: The serendipitous discovery of the brain’s default network publication-title: Neuroimage – volume: 37 start-page: 133 year: 2019 end-page: 141 ident: b0040 article-title: Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial publication-title: Photobiomodul Photomed Laser Surgery – volume: 11 start-page: 14 year: 2017 end-page: 25 ident: b0015 article-title: Improving executive function using transcranial infrared laser stimulation publication-title: J Neuropsychol – volume: 9 start-page: 500 year: 2016 ident: b0100 article-title: Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease publication-title: Front Neurosci – volume: 3 start-page: 49 year: 2011 end-page: 67 ident: b0200 article-title: Low-level light therapy of the eye and brain publication-title: Eye Brain – volume: 5 start-page: 46 year: 2009 ident: b0220 article-title: Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety publication-title: Behav Brain Funct – volume: 13 start-page: 1738 year: 2018 end-page: 1740 ident: b0085 article-title: Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients publication-title: Neural Regen Res – volume: 7 year: 2012 ident: b0165 article-title: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light publication-title: PLoS One – volume: 79 start-page: 59 year: 2016 end-page: 75 ident: b0050 article-title: Near-infrared light is neuroprotective in a monkey model of Parkinson disease publication-title: Ann Neurol – volume: 4 start-page: 559 year: 2004 end-page: 567 ident: b0060 article-title: Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy publication-title: Mitochondrion – volume: 27 start-page: R691 year: 2017 end-page: R695 ident: b0265 article-title: Posterior parietal cortex publication-title: Curr Biol – volume: 38 start-page: 433 year: 2015 end-page: 447 ident: b0195 article-title: The brain’s default mode network publication-title: Annu Rev Neurosci – volume: 102 start-page: 397 year: 1988 end-page: 403 ident: b0055 article-title: Role of the posterior parietal association cortex in the processing of spatial event information publication-title: Behav Neurosci – volume: 8 year: 2013 ident: b0275 article-title: Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen publication-title: PLoS One – volume: 40 start-page: 1359 year: 2009 end-page: 1364 ident: b0280 article-title: Effectiveness and safety of transcranial laser therapy for acute ischemic stroke publication-title: Stroke – volume: 45 start-page: 648 year: 2013 end-page: 653 ident: b0115 article-title: Transcranial application of near-infrared low-level laser can modulate cortical excitability publication-title: Lasers Surg Med – volume: 39 start-page: 1390 year: 2018 end-page: 1399 ident: b0130 article-title: Resting-state functional MRI: everything that nonexperts have always wanted to know publication-title: AJNR Am J Neuroradiol – reference: . – volume: 10 start-page: e67 year: 2017 end-page: e69 ident: b0255 article-title: Proceedings #18. Transcranial infrared brain stimulation modulates EEG alpha power publication-title: Brain Stimul – volume: 6 start-page: 113 year: 2016 end-page: 124 ident: b0080 article-title: Shining light on the head: Photobiomodulation for brain disorders publication-title: BBA Clin – volume: 120 start-page: 670 year: 2014 end-page: 683 ident: b0155 article-title: Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice publication-title: J Neurosurg – volume: 4 start-page: 559 year: 2004 ident: 10.1016/j.neuroscience.2019.10.037_b0060 article-title: Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy publication-title: Mitochondrion doi: 10.1016/j.mito.2004.07.033 – volume: 45 start-page: 648 year: 2013 ident: 10.1016/j.neuroscience.2019.10.037_b0115 article-title: Transcranial application of near-infrared low-level laser can modulate cortical excitability publication-title: Lasers Surg Med doi: 10.1002/lsm.22190 – volume: 518 start-page: 25 year: 2010 ident: 10.1016/j.neuroscience.2019.10.037_b0225 article-title: Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment publication-title: J Comp Neurol doi: 10.1002/cne.22207 – volume: 120 start-page: 670 year: 2014 ident: 10.1016/j.neuroscience.2019.10.037_b0155 article-title: Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice publication-title: J Neurosurg doi: 10.3171/2013.9.JNS13423 – volume: 1662 start-page: 87 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0205 article-title: Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not publication-title: Brain Res doi: 10.1016/j.brainres.2017.02.026 – volume: 12 start-page: 574 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0150 article-title: Why and how does light therapy offer neuroprotection in Parkinson’s disease? publication-title: Neural Regener Res doi: 10.4103/1673-5374.205092 – volume: 33 start-page: 443 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0170 article-title: Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation publication-title: Photomed Laser Surg doi: 10.1089/pho.2015.3986 – volume: 7 year: 2012 ident: 10.1016/j.neuroscience.2019.10.037_b0165 article-title: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light publication-title: PLoS One doi: 10.1371/journal.pone.0030655 – volume: 40 start-page: 1359 year: 2009 ident: 10.1016/j.neuroscience.2019.10.037_b0280 article-title: Effectiveness and safety of transcranial laser therapy for acute ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.109.547547 – volume: 37 start-page: 133 year: 2019 ident: 10.1016/j.neuroscience.2019.10.037_b0040 article-title: Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial publication-title: Photobiomodul Photomed Laser Surgery doi: 10.1089/photob.2018.4555 – volume: 35 start-page: 432 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0215 article-title: Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report publication-title: Photomed Laser Surg doi: 10.1089/pho.2016.4227 – volume: 5 start-page: 46 year: 2009 ident: 10.1016/j.neuroscience.2019.10.037_b0220 article-title: Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety publication-title: Behav Brain Funct doi: 10.1186/1744-9081-5-46 – volume: 11 start-page: 14 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0015 article-title: Improving executive function using transcranial infrared laser stimulation publication-title: J Neuropsychol doi: 10.1111/jnp.12074 – volume: 6 start-page: 38866 year: 2016 ident: 10.1016/j.neuroscience.2019.10.037_b0125 article-title: Distinct interactions between fronto-parietal and default mode networks in impaired consciousness publication-title: Sci Rep doi: 10.1038/srep38866 – volume: 3 start-page: 49 year: 2011 ident: 10.1016/j.neuroscience.2019.10.037_b0200 article-title: Low-level light therapy of the eye and brain publication-title: Eye Brain – volume: 36 start-page: 171 year: 2005 ident: 10.1016/j.neuroscience.2019.10.037_b0030 article-title: Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury publication-title: Lasers Surg Med doi: 10.1002/lsm.20143 – volume: 28 start-page: 159 year: 2010 ident: 10.1016/j.neuroscience.2019.10.037_b0105 article-title: Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP publication-title: Photomed Laser Surg doi: 10.1089/pho.2010.2789 – volume: 8 start-page: 36 year: 2014 ident: 10.1016/j.neuroscience.2019.10.037_b0070 article-title: Augmentation of cognitive brain functions with transcranial lasers publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2014.00036 – volume: 62 start-page: 1137 year: 2012 ident: 10.1016/j.neuroscience.2019.10.037_b0025 article-title: The serendipitous discovery of the brain’s default network publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.035 – volume: 39 start-page: 1390 year: 2018 ident: 10.1016/j.neuroscience.2019.10.037_b0130 article-title: Resting-state functional MRI: everything that nonexperts have always wanted to know publication-title: AJNR Am J Neuroradiol – volume: 6 start-page: 2 year: 2014 ident: 10.1016/j.neuroscience.2019.10.037_b0190 article-title: Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex - evidence from two transgenic mouse models publication-title: Alzheimers Res Ther doi: 10.1186/alzrt232 – volume: 102 start-page: 397 year: 1988 ident: 10.1016/j.neuroscience.2019.10.037_b0055 article-title: Role of the posterior parietal association cortex in the processing of spatial event information publication-title: Behav Neurosci doi: 10.1037/0735-7044.102.3.397 – volume: 3 start-page: 145 year: 2012 ident: 10.1016/j.neuroscience.2019.10.037_b0235 article-title: The fallacy of a “task-negative” network publication-title: Front Psychol doi: 10.3389/fpsyg.2012.00145 – volume: 34 start-page: 599 year: 2016 ident: 10.1016/j.neuroscience.2019.10.037_b0045 article-title: Photobiomodulation: implications for anesthesia and pain relief publication-title: Photomed Laser Surg doi: 10.1089/pho.2015.4048 – volume: 2 start-page: 384 year: 2010 ident: 10.1016/j.neuroscience.2019.10.037_b0185 article-title: Arterial spin labeling in neuroimaging publication-title: World J Radiol doi: 10.4329/wjr.v2.i10.384 – volume: 26 start-page: 261 year: 2008 ident: 10.1016/j.neuroscience.2019.10.037_b0260 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2007.07.003 – volume: 8 year: 2013 ident: 10.1016/j.neuroscience.2019.10.037_b0275 article-title: Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen publication-title: PLoS One doi: 10.1371/journal.pone.0053454 – volume: 31 start-page: 1008 year: 2014 ident: 10.1016/j.neuroscience.2019.10.037_b0180 article-title: Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study publication-title: J Neurotrauma doi: 10.1089/neu.2013.3244 – volume: 5 start-page: 12029 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0230 article-title: Light Effect on Water Viscosity: Implication for ATP Biosynthesis publication-title: Sci Rep doi: 10.1038/srep12029 – volume: 27 start-page: R691 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0265 article-title: Posterior parietal cortex publication-title: Curr Biol doi: 10.1016/j.cub.2017.06.007 – volume: 11 start-page: 2191 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0090 article-title: Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? publication-title: Neuropsychiatr Dis Treat doi: 10.2147/NDT.S78182 – volume: 42 start-page: 343 year: 2008 ident: 10.1016/j.neuroscience.2019.10.037_b0270 article-title: Functional neuroimaging correlates of finger tapping task variations: An ALE meta-analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.025 – volume: 6 year: 2011 ident: 10.1016/j.neuroscience.2019.10.037_b0005 article-title: Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice publication-title: PLoS One doi: 10.1371/journal.pone.0026212 – volume: 9 start-page: 500 year: 2016 ident: 10.1016/j.neuroscience.2019.10.037_b0100 article-title: Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease publication-title: Front Neurosci doi: 10.3389/fnins.2015.00500 – volume: 13 start-page: 1738 year: 2018 ident: 10.1016/j.neuroscience.2019.10.037_b0085 article-title: Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients publication-title: Neural Regen Res doi: 10.4103/1673-5374.238613 – volume: 19 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0095 article-title: Photobiomodulation and the brain: a new paradigm publication-title: J Opt doi: 10.1088/2040-8986/19/1/013003 – volume: 29 start-page: 351 year: 2011 ident: 10.1016/j.neuroscience.2019.10.037_b0175 article-title: Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports publication-title: Photomed Laser Surg doi: 10.1089/pho.2010.2814 – volume: 38 start-page: 433 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0195 article-title: The brain’s default mode network publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-071013-014030 – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroscience.2019.10.037_b0065 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 8 year: 2013 ident: 10.1016/j.neuroscience.2019.10.037_b0160 article-title: Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress publication-title: PLoS One doi: 10.1371/journal.pone.0067358 – volume: 32 start-page: 1153 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0250 article-title: Beneficial neurocognitive effects of transcranial laser in older adults publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2221-y – volume: 4 start-page: 724 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0110 article-title: Biophysical approaches for oral wound healing: emphasis on photobiomodulation publication-title: Adv Wound Care (New Rochelle) doi: 10.1089/wound.2014.0623 – volume: 22 start-page: 360 year: 2004 ident: 10.1016/j.neuroscience.2019.10.037_b0140 article-title: A method for removal of global effects from fMRI time series publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.042 – volume: 6 start-page: 71 year: 1996 ident: 10.1016/j.neuroscience.2019.10.037_b0240 article-title: Novelty and familiarity activations in PET studies of memory encoding and retrieval publication-title: Cereb Cortex doi: 10.1093/cercor/6.1.71 – ident: 10.1016/j.neuroscience.2019.10.037_b0285 doi: 10.1038/s41598-019-42693-x – volume: 28 start-page: 441 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0210 article-title: The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder publication-title: Rev Neurosci doi: 10.1515/revneuro-2016-0087 – volume: 6 start-page: 113 year: 2016 ident: 10.1016/j.neuroscience.2019.10.037_b0080 article-title: Shining light on the head: Photobiomodulation for brain disorders publication-title: BBA Clin doi: 10.1016/j.bbacli.2016.09.002 – volume: 6 year: 2011 ident: 10.1016/j.neuroscience.2019.10.037_b0075 article-title: Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging publication-title: PLOS One doi: 10.1371/journal.pone.0026377 – volume: 2015 year: 2015 ident: 10.1016/j.neuroscience.2019.10.037_b0035 article-title: Near-infrared transcranial radiation for major depressive disorder: proof of concept study publication-title: Psychiatry J doi: 10.1155/2015/352979 – volume: 10 start-page: e67 year: 2017 ident: 10.1016/j.neuroscience.2019.10.037_b0255 article-title: Proceedings #18. Transcranial infrared brain stimulation modulates EEG alpha power publication-title: Brain Stimul doi: 10.1016/j.brs.2017.04.111 – volume: 230 start-page: 13 year: 2013 ident: 10.1016/j.neuroscience.2019.10.037_b0010 article-title: Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.11.016 – volume: 8 year: 2013 ident: 10.1016/j.neuroscience.2019.10.037_b0135 article-title: Effects of finger tapping frequency on regional homogeneity of sensorimotor cortex publication-title: PLOS One doi: 10.1371/journal.pone.0064115 – volume: 20 start-page: 519 year: 2010 ident: 10.1016/j.neuroscience.2019.10.037_b0245 article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2010.03.008 – volume: 89 start-page: 480 year: 2008 ident: 10.1016/j.neuroscience.2019.10.037_b0145 article-title: Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light publication-title: Neurobiol Learn Memory doi: 10.1016/j.nlm.2007.07.014 – volume: 33 start-page: 279 year: 2009 ident: 10.1016/j.neuroscience.2019.10.037_b0020 article-title: Default-mode brain dysfunction in mental disorders: a systematic review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2008.09.002 – volume: 79 start-page: 59 year: 2016 ident: 10.1016/j.neuroscience.2019.10.037_b0050 article-title: Near-infrared light is neuroprotective in a monkey model of Parkinson disease publication-title: Ann Neurol doi: 10.1002/ana.24542 – volume: 35 start-page: 1985 year: 2004 ident: 10.1016/j.neuroscience.2019.10.037_b0120 article-title: Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits publication-title: Stroke doi: 10.1161/01.STR.0000131808.69640.b7 |
SSID | ssj0000543 |
Score | 2.4500256 |
Snippet | •We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state... We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
SubjectTerms | 810 nm finger-tapping parietal association cortex photobiomodulation transcranial |
Title | Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452219307298 https://dx.doi.org/10.1016/j.neuroscience.2019.10.037 https://www.ncbi.nlm.nih.gov/pubmed/31682952 https://www.proquest.com/docview/2312271007 |
Volume | 422 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEF5EX_oirbbWtsoUim_xcpvEzSI-XEW5a-09-AN8C-P-ENu6Ee8sCOLf3plNcrVg4aBvl9sdkstMZr_JffuNEJ_6qfU2U46Qm8kSWgJsgjkWCarSeNSoaIzZFuOd4Vn-5bw4XxD73V4YplW2ub_J6TFbt9_02rvZu7m66p0w2mU9cIIgLH_NG37zXHGUbz_-oXkQJGlaJFPlzLM74dHI8XqiGcmSmX29zUwv7on-_CL1LxAaF6PDl2K5RZEwaC70lVhwYUWsDgJV0Nf3sAWR1xlfmK-KhxnNDgjsQSNXPIHaw5iiHEbB3zIJHY64TIc6wDELb9BsDBYOftU_aOwzN5KAgWlaTQB9ji__JxAZB_ANLwNvhmTTmhU8HIyuY_uj1-Ls8OB0f5i0PRcSQ9BkSuWklak2ChFt6lClqTNcwpFPd7zO0ClnKS8VzlNmQmm1djo1pi-VLD0t_dkbsRjq4N4K8J7crXSBvixzJ1Hnpe5f2LIovCtQ63Whu5tcmVaQnPti_Kw65tn36qmDKnYQj5GD1kU2s71pZDnmstrtfFl1G08pVVa0esxlvTez_itE57b_2IVPRc8w_zGDwdV3k4owtpQss0Rz1pq4mv0qbiwmdSHf_efZ34sXfNQwcT6IxentndsgPDW92IwPzKZYGoy-Dse_AfyiI2M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcGgvVQt90NIySIjbNhtvzK6FOAQESkrIgYLEzTJ-VLTFi0ioVKk_npl9BCq1UqTeVmuP9jHemc_ez98AbPVSF1yWe0JuNksoBbjE9I1MTF7YYJTJqY3ZFpOd4Xn_84W8WIKDdi8M0yqb2F_H9CpaN2e6zdvs3lxddb8w2mU9cIIgLH9dPIFlVqeSHVgejI6Hk4eALGvyHPVP2KDVHq1oXo9kI1k1s6c-MdmLy6L_PU_9C4dW-ejoBTxvgCQO6nt9CUs-rsDqINIk-voXbmNF7azWzFfh95xph4T3sFYsnmIZcEIDHUcx3DIPHcc8U8cy4ilrb1BvEx0e_iy_U9s-15LAga2rTSAdV-v_U6xIB3hivkbeD8mmJYt4eBxdVxWQXsH50eHZwTBpyi4kltDJjGaUTqTK5sYYl3qTp6m3PIsjt-4ElRmfe0ehSfpAwckIp5RXqbU9kYsiUPbPXkMnltG_BQyBPJ4raUJR9L0wql-o3qUrpAxeGqXWQLUvWdtGk5xLY_zQLfnsm37sIM0O4jZy0Bpkc9ubWpljIavd1pe63XtK0VJTAlnIem9u_ccoXdh-sx0-mj5j_jdjoi_vpppgthCstER93tTjav5UXFtMKCne_efVN-Dp8OxkrMejyfF7eMYtNTFnHTqz2zv_geDV7PJj8_ncA9skJhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Effects+of+Near+Infrared+Light+on+Resting+and+Evoked+Brain+Activity+in+Humans+Using+Magnetic+Resonance+Imaging&rft.jtitle=Neuroscience&rft.au=El+Khoury%2C+Hala&rft.au=Mitrofanis%2C+John&rft.au=Henderson%2C+Luke+A&rft.date=2019-12-01&rft.issn=0306-4522&rft.volume=422&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1016%2Fj.neuroscience.2019.10.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroscience_2019_10_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |