Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging

•We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and par...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 422; pp. 161 - 171
Main Authors El Khoury, Hala, Mitrofanis, John, Henderson, Luke A
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and parietal association cortex.•These light-induced changes served to deactivate the so-called default mode network. We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
AbstractList We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
•We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state activity.•After finger-tapping, photobiomodulation resulted in reduction in brain activity.•Affected regions were putamen, primary somatosensory and parietal association cortex.•These light-induced changes served to deactivate the so-called default mode network. We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). The evoked brain regions included the putamen, primary somatosensory and parietal association cortex, and the overall effect of the light was to suppress or reduce their activity. We also found that while light had no effect on the resting functional connectivity of the putamen and primary somatosensory cortex and the rest of the brain, it did have an effect on the functional connectivity of parietal association cortex. In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
Author Mitrofanis, John
Henderson, Luke A
El Khoury, Hala
Author_xml – sequence: 1
  givenname: Hala
  surname: El Khoury
  fullname: El Khoury, Hala
– sequence: 2
  givenname: John
  surname: Mitrofanis
  fullname: Mitrofanis, John
  email: john.mitrofanis@sydney.edu.au
– sequence: 3
  givenname: Luke A
  surname: Henderson
  fullname: Henderson, Luke A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31682952$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1v0zAYhS00xLrBX0AWV9yk-COJE67YRmGVCkiIXVvGftO5S-zOdioq8eNx1E5Cu6pvbOk877F9zgU6c94BQu8omVNC6w-buYMx-KgtOA1zRmibhTnh4gWa0UbwQlRleYZmhJO6KCvGztFFjBuSV1XyV-ic07phbcVm6O_iz7b3wbo1TveAF10HOkXsO_wdVMBL1wUVwOCVXd8n7B3-CTFNtHIGL3b-IWvXQVmHr3SyO5v2OJ9vx0G5iO_iRH5TawfJ6mnUO5WfjJeDWmfpNXrZqT7Cm-N-ie6-LH7d3BarH1-XN1erQpe8TUVJDCOtFkopQ0AJQkDXZdlQYuqu5QoEmKYRFXRc1IqZtoWWaE2ZYE3XVJxfovcH323wj2P-gBxs1ND3yoEfo2ScMiYoISKjb4_o-HsAI7fBDirs5VNiGfh0AHRuIAbopLZJJetdyjH0khI5lSQ38v-S5FTSpOWSssXHZxZPt5w0_PkwDDmwnYUgj5SxIVcnjben2Vw_s9G9dVar_gH2p5r8A8mSzL8
CitedBy_id crossref_primary_10_3389_fnhum_2025_1514087
crossref_primary_10_1016_j_mri_2024_04_012
crossref_primary_10_3390_biomedicines11020237
crossref_primary_10_1016_j_physbeh_2020_113291
crossref_primary_10_1080_10400419_2023_2219953
crossref_primary_10_3389_fnins_2022_942536
crossref_primary_10_1186_s13195_024_01484_x
crossref_primary_10_1002_jbio_202300215
crossref_primary_10_12677_ACM_2021_1112835
crossref_primary_10_1007_s12035_020_02247_z
crossref_primary_10_1515_revneuro_2023_0003
crossref_primary_10_3390_ijms25020928
crossref_primary_10_1007_s10103_023_03966_0
crossref_primary_10_3390_neurolint14040071
crossref_primary_10_14336_AD_2020_0901
crossref_primary_10_1007_s00221_020_05981_x
crossref_primary_10_1186_s12984_024_01351_8
crossref_primary_10_3389_fpsyt_2021_713686
crossref_primary_10_1186_s12883_021_02248_y
crossref_primary_10_1016_j_bbr_2021_113164
crossref_primary_10_7759_cureus_18596
crossref_primary_10_1088_1741_2552_abb3b2
crossref_primary_10_1088_1741_2552_abf97c
crossref_primary_10_3389_fmedt_2022_871196
crossref_primary_10_1089_photob_2021_0106
crossref_primary_10_3233_JAD_210052
crossref_primary_10_4103_1673_5374_284989
crossref_primary_10_4103_1673_5374_360288
crossref_primary_10_1016_j_jpsychires_2020_12_004
crossref_primary_10_1093_texcom_tgaa004
Cites_doi 10.1016/j.mito.2004.07.033
10.1002/lsm.22190
10.1002/cne.22207
10.3171/2013.9.JNS13423
10.1016/j.brainres.2017.02.026
10.4103/1673-5374.205092
10.1089/pho.2015.3986
10.1371/journal.pone.0030655
10.1161/STROKEAHA.109.547547
10.1089/photob.2018.4555
10.1089/pho.2016.4227
10.1186/1744-9081-5-46
10.1111/jnp.12074
10.1038/srep38866
10.1002/lsm.20143
10.1089/pho.2010.2789
10.3389/fnsys.2014.00036
10.1016/j.neuroimage.2011.10.035
10.1186/alzrt232
10.1037/0735-7044.102.3.397
10.3389/fpsyg.2012.00145
10.1089/pho.2015.4048
10.4329/wjr.v2.i10.384
10.1016/j.mri.2007.07.003
10.1371/journal.pone.0053454
10.1089/neu.2013.3244
10.1038/srep12029
10.1016/j.cub.2017.06.007
10.2147/NDT.S78182
10.1016/j.neuroimage.2008.04.025
10.1371/journal.pone.0026212
10.3389/fnins.2015.00500
10.4103/1673-5374.238613
10.1088/2040-8986/19/1/013003
10.1089/pho.2010.2814
10.1146/annurev-neuro-071013-014030
10.1073/pnas.0504136102
10.1371/journal.pone.0067358
10.1007/s10103-017-2221-y
10.1089/wound.2014.0623
10.1016/j.neuroimage.2003.12.042
10.1093/cercor/6.1.71
10.1038/s41598-019-42693-x
10.1515/revneuro-2016-0087
10.1016/j.bbacli.2016.09.002
10.1371/journal.pone.0026377
10.1155/2015/352979
10.1016/j.brs.2017.04.111
10.1016/j.neuroscience.2012.11.016
10.1371/journal.pone.0064115
10.1016/j.euroneuro.2010.03.008
10.1016/j.nlm.2007.07.014
10.1016/j.neubiorev.2008.09.002
10.1002/ana.24542
10.1161/01.STR.0000131808.69640.b7
ContentType Journal Article
Copyright 2019
Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019
– notice: Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neuroscience.2019.10.037
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 171
ExternalDocumentID 31682952
10_1016_j_neuroscience_2019_10_037
S0306452219307298
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
RIG
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SNS
SSH
WUQ
X7M
YYP
ZGI
ZXP
NPM
7X8
ID FETCH-LOGICAL-c439t-40d209c7aaad0ea700ec644810d6f93ae7ed8875ef376a2d99e90cc12728f8533
IEDL.DBID .~1
ISSN 0306-4522
1873-7544
IngestDate Thu Jul 10 21:55:32 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Thu Apr 24 23:02:20 EDT 2025
Tue Jul 01 02:21:47 EDT 2025
Fri Feb 23 02:50:10 EST 2024
Tue Aug 26 17:32:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords photobiomodulation
M1
transcranial
finger-tapping
CBF
EEG
810 nm
LED
pCASL
fMRI
parietal association cortex
ASL
BOLD
ATP
S1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-40d209c7aaad0ea700ec644810d6f93ae7ed8875ef376a2d99e90cc12728f8533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31682952
PQID 2312271007
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2312271007
pubmed_primary_31682952
crossref_citationtrail_10_1016_j_neuroscience_2019_10_037
crossref_primary_10_1016_j_neuroscience_2019_10_037
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2019_10_037
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2019_10_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chow, Armati (b0045) 2016; 34
Eells, Wong-Riley, VerHoeve, Henry, Buchman, Kane, Gould, Das, Jett, Hodgson, Margolis, Whelan (b0060) 2004; 4
Petcharunpaisan, Ramalho, Castillo (b0185) 2010; 2
Ando, Xuan, Xu, Dai, Sharma, Kharkwal, Huang, Wu, Whalen, Sato, Obara, Hamblin (b0005) 2011; 6
Hamilton, Hamilton, Nicklason, El Massri, Mitrofanis (b0085) 2018; 13
Sommer, Haddad, Fecht (b0230) 2015; 5
Lv, Wang, Tong, Williams, Zaharchuk, Zeineh, Goldstein-Piekarski, Ball, Liao, Wintermark (b0130) 2018; 39
Moro, El Massri, Torres, Ratel, De Jaeger, Chabrol, Perraut, Bourgerette, Berger, Purushothuman, Johnstone, Stone, Mitrofanis, Benabid (b0155) 2014; 120
Purushothuman, Johnstone, Nandasena, Mitrofanis, Stone (b0190) 2014; 6
Shaw, Spana, Ashkan, Benabid, Stone, Baker, Mitrofanis (b0225) 2010; 518
Karu (b0105) 2010; 28
Wang, Aguirre, Rao, Wang, Fernández-Seara, Childress, Detre (b0260) 2008; 26
Chao (b0040) 2019; 37
Khan, Arany (b0110) 2015; 4
Romeo (b0205) 2017; 1662
Zomorrodi R, Loheswaran G, Pushparaj A, Lim L (2019) Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 9 Available at
Darlot, Moro, El Massri, Chabrol, Johnstone, Reinhart, Agay, Torres, Bekha, Auboiroux, Costecalde, Peoples, Anastascio, Shaw, Stone, Mitrofanis, Benabid (b0050) 2016; 79
.
Whitlock (b0265) 2017; 27
Xuan, Vatansever, Huang, Wu, Xuan, Dai, Ando, Xu, Huang, Hamblin (b0275) 2013; 8
van den Heuvel, Hulshoff Pol (b0245) 2010; 20
Lv, Margulies, Villringer, Zang (b0135) 2013; 8
Naeser, Hamblin (b0170) 2015; 33
Byrnes, Waynant, Ilev, Wu, Barna, Smith, Heckert, Gerst, Anders (b0030) 2005; 36
Lapchak, Wei, Zivin (b0120) 2004; 35
Zivin (b0280) 2009; 40
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (b0065) 2005; 102
Hennessy, Hamblin (b0095) 2017; 19
Haeussinger, Heinzel, Hahn, Schecklmann, Ehlis, Fallgatter (b0075) 2011; 6
Konstantinović, Jelić, Jeremić, Stevanović, Milanović, Filipović (b0115) 2013; 45
Salehpour, Rasta (b0210) 2017; 28
Tulving, Markowitsch, Craik, Habib, Houle (b0240) 1996; 6
Spreng (b0235) 2012; 3
Schiffer, Johnston, Ravichandran, Polcari, Teicher, Webb, Hamblin (b0220) 2009; 5
Witt, Meyerand, Laird (b0270) 2008; 42
Johnstone, Moro, Stone, Benabid, Mitrofanis (b0100) 2016; 9
Macey, Macey, Kumar, Harper (b0140) 2004; 22
Broyd, Demanuele, Debener, Helps, James, Sonuga-Barke (b0020) 2009; 33
Cassano, Cusin, Mischoulon, Hamblin, De Taboada, Pisoni, Chang, Yeung, Ionescu, Petrie, Nierenberg, Fava, Iosifescu (b0035) 2015; 2015
DiMattia, Kesner (b0055) 1988; 102
Henderson, Morries (b0090) 2015; 11
Michalikova, Ennaceur, van Rensburg, Chazot (b0145) 2008; 89
Raichle (b0195) 2015; 38
Muili, Gopalakrishnan, Meyer, Eells, Lyons (b0165) 2012; 7
Naeser, Saltmarche, Krengel, Hamblin, Knight (b0175) 2011; 29
Blanco, Maddox, Gonzalez-Lima (b0015) 2017; 11
Rojas, Gonzalez-Lima (b0200) 2011; 3
Muili, Gopalakrishnan, Eells, Lyons (b0160) 2013; 8
Saltmarche, Naeser, Ho, Hamblin, Lim (b0215) 2017; 35
Buckner (b0025) 2012; 62
Gonzalez-Lima, Barrett (b0070) 2014; 8
Hamblin (b0080) 2016; 6
Vargas, Barrett, Saucedo, Huang, Abraham, Tanaka, Haley, Gonzalez-Lima (b0250) 2017; 32
Long, Xie, Ma, Urbin, Liu, Weng, Huang, Yu, Li, Huang (b0125) 2016; 6
Mitrofanis (b0150) 2017; 12
Naeser, Zafonte, Krengel, Martin, Frazier, Hamblin, Knight, Meehan, Baker (b0180) 2014; 31
Wang, Dmochowski, Husain, Gonzalez-Lima, Liu (b0255) 2017; 10
Barrett, Gonzalez-Lima (b0010) 2013; 230
Purushothuman (10.1016/j.neuroscience.2019.10.037_b0190) 2014; 6
Broyd (10.1016/j.neuroscience.2019.10.037_b0020) 2009; 33
Konstantinović (10.1016/j.neuroscience.2019.10.037_b0115) 2013; 45
Raichle (10.1016/j.neuroscience.2019.10.037_b0195) 2015; 38
Witt (10.1016/j.neuroscience.2019.10.037_b0270) 2008; 42
Wang (10.1016/j.neuroscience.2019.10.037_b0260) 2008; 26
Hennessy (10.1016/j.neuroscience.2019.10.037_b0095) 2017; 19
Schiffer (10.1016/j.neuroscience.2019.10.037_b0220) 2009; 5
Tulving (10.1016/j.neuroscience.2019.10.037_b0240) 1996; 6
Chao (10.1016/j.neuroscience.2019.10.037_b0040) 2019; 37
Vargas (10.1016/j.neuroscience.2019.10.037_b0250) 2017; 32
Whitlock (10.1016/j.neuroscience.2019.10.037_b0265) 2017; 27
Mitrofanis (10.1016/j.neuroscience.2019.10.037_b0150) 2017; 12
Salehpour (10.1016/j.neuroscience.2019.10.037_b0210) 2017; 28
Naeser (10.1016/j.neuroscience.2019.10.037_b0170) 2015; 33
Shaw (10.1016/j.neuroscience.2019.10.037_b0225) 2010; 518
Fox (10.1016/j.neuroscience.2019.10.037_b0065) 2005; 102
Cassano (10.1016/j.neuroscience.2019.10.037_b0035) 2015; 2015
Naeser (10.1016/j.neuroscience.2019.10.037_b0180) 2014; 31
Eells (10.1016/j.neuroscience.2019.10.037_b0060) 2004; 4
Barrett (10.1016/j.neuroscience.2019.10.037_b0010) 2013; 230
Sommer (10.1016/j.neuroscience.2019.10.037_b0230) 2015; 5
Naeser (10.1016/j.neuroscience.2019.10.037_b0175) 2011; 29
Zivin (10.1016/j.neuroscience.2019.10.037_b0280) 2009; 40
Muili (10.1016/j.neuroscience.2019.10.037_b0160) 2013; 8
Moro (10.1016/j.neuroscience.2019.10.037_b0155) 2014; 120
Macey (10.1016/j.neuroscience.2019.10.037_b0140) 2004; 22
Blanco (10.1016/j.neuroscience.2019.10.037_b0015) 2017; 11
Gonzalez-Lima (10.1016/j.neuroscience.2019.10.037_b0070) 2014; 8
Romeo (10.1016/j.neuroscience.2019.10.037_b0205) 2017; 1662
Michalikova (10.1016/j.neuroscience.2019.10.037_b0145) 2008; 89
Saltmarche (10.1016/j.neuroscience.2019.10.037_b0215) 2017; 35
Lv (10.1016/j.neuroscience.2019.10.037_b0130) 2018; 39
Muili (10.1016/j.neuroscience.2019.10.037_b0165) 2012; 7
Xuan (10.1016/j.neuroscience.2019.10.037_b0275) 2013; 8
Haeussinger (10.1016/j.neuroscience.2019.10.037_b0075) 2011; 6
Ando (10.1016/j.neuroscience.2019.10.037_b0005) 2011; 6
Khan (10.1016/j.neuroscience.2019.10.037_b0110) 2015; 4
Petcharunpaisan (10.1016/j.neuroscience.2019.10.037_b0185) 2010; 2
Hamblin (10.1016/j.neuroscience.2019.10.037_b0080) 2016; 6
Lapchak (10.1016/j.neuroscience.2019.10.037_b0120) 2004; 35
Spreng (10.1016/j.neuroscience.2019.10.037_b0235) 2012; 3
Henderson (10.1016/j.neuroscience.2019.10.037_b0090) 2015; 11
10.1016/j.neuroscience.2019.10.037_b0285
Buckner (10.1016/j.neuroscience.2019.10.037_b0025) 2012; 62
Long (10.1016/j.neuroscience.2019.10.037_b0125) 2016; 6
Hamilton (10.1016/j.neuroscience.2019.10.037_b0085) 2018; 13
Rojas (10.1016/j.neuroscience.2019.10.037_b0200) 2011; 3
Byrnes (10.1016/j.neuroscience.2019.10.037_b0030) 2005; 36
DiMattia (10.1016/j.neuroscience.2019.10.037_b0055) 1988; 102
Karu (10.1016/j.neuroscience.2019.10.037_b0105) 2010; 28
Lv (10.1016/j.neuroscience.2019.10.037_b0135) 2013; 8
Chow (10.1016/j.neuroscience.2019.10.037_b0045) 2016; 34
Darlot (10.1016/j.neuroscience.2019.10.037_b0050) 2016; 79
Johnstone (10.1016/j.neuroscience.2019.10.037_b0100) 2016; 9
Wang (10.1016/j.neuroscience.2019.10.037_b0255) 2017; 10
van den Heuvel (10.1016/j.neuroscience.2019.10.037_b0245) 2010; 20
References_xml – volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: b0065
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 574
  year: 2017
  end-page: 575
  ident: b0150
  article-title: Why and how does light therapy offer neuroprotection in Parkinson’s disease?
  publication-title: Neural Regener Res
– volume: 5
  start-page: 12029
  year: 2015
  ident: b0230
  article-title: Light Effect on Water Viscosity: Implication for ATP Biosynthesis
  publication-title: Sci Rep
– volume: 89
  start-page: 480
  year: 2008
  end-page: 488
  ident: b0145
  article-title: Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light
  publication-title: Neurobiol Learn Memory
– volume: 33
  start-page: 443
  year: 2015
  end-page: 446
  ident: b0170
  article-title: Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation
  publication-title: Photomed Laser Surg
– volume: 42
  start-page: 343
  year: 2008
  end-page: 356
  ident: b0270
  article-title: Functional neuroimaging correlates of finger tapping task variations: An ALE meta-analysis
  publication-title: Neuroimage
– volume: 6
  start-page: 2
  year: 2014
  ident: b0190
  article-title: Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex - evidence from two transgenic mouse models
  publication-title: Alzheimers Res Ther
– volume: 22
  start-page: 360
  year: 2004
  end-page: 366
  ident: b0140
  article-title: A method for removal of global effects from fMRI time series
  publication-title: Neuroimage
– volume: 31
  start-page: 1008
  year: 2014
  end-page: 1017
  ident: b0180
  article-title: Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study
  publication-title: J Neurotrauma
– volume: 4
  start-page: 724
  year: 2015
  end-page: 737
  ident: b0110
  article-title: Biophysical approaches for oral wound healing: emphasis on photobiomodulation
  publication-title: Adv Wound Care (New Rochelle)
– volume: 2
  start-page: 384
  year: 2010
  end-page: 398
  ident: b0185
  article-title: Arterial spin labeling in neuroimaging
  publication-title: World J Radiol
– volume: 230
  start-page: 13
  year: 2013
  end-page: 23
  ident: b0010
  article-title: Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans
  publication-title: Neuroscience
– volume: 34
  start-page: 599
  year: 2016
  end-page: 609
  ident: b0045
  article-title: Photobiomodulation: implications for anesthesia and pain relief
  publication-title: Photomed Laser Surg
– volume: 19
  year: 2017
  ident: b0095
  article-title: Photobiomodulation and the brain: a new paradigm
  publication-title: J Opt
– volume: 8
  start-page: 36
  year: 2014
  ident: b0070
  article-title: Augmentation of cognitive brain functions with transcranial lasers
  publication-title: Front Syst Neurosci
– volume: 3
  start-page: 145
  year: 2012
  ident: b0235
  article-title: The fallacy of a “task-negative” network
  publication-title: Front Psychol
– volume: 6
  start-page: 71
  year: 1996
  end-page: 79
  ident: b0240
  article-title: Novelty and familiarity activations in PET studies of memory encoding and retrieval
  publication-title: Cereb Cortex
– volume: 33
  start-page: 279
  year: 2009
  end-page: 296
  ident: b0020
  article-title: Default-mode brain dysfunction in mental disorders: a systematic review
  publication-title: Neurosci Biobehav Rev
– volume: 6
  year: 2011
  ident: b0005
  article-title: Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice
  publication-title: PLoS One
– volume: 35
  start-page: 432
  year: 2017
  end-page: 441
  ident: b0215
  article-title: Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report
  publication-title: Photomed Laser Surg
– volume: 11
  start-page: 2191
  year: 2015
  end-page: 2208
  ident: b0090
  article-title: Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?
  publication-title: Neuropsychiatr Dis Treat
– volume: 6
  year: 2011
  ident: b0075
  article-title: Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging
  publication-title: PLOS One
– volume: 28
  start-page: 441
  year: 2017
  end-page: 453
  ident: b0210
  article-title: The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder
  publication-title: Rev Neurosci
– volume: 36
  start-page: 171
  year: 2005
  end-page: 185
  ident: b0030
  article-title: Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury
  publication-title: Lasers Surg Med
– volume: 2015
  year: 2015
  ident: b0035
  article-title: Near-infrared transcranial radiation for major depressive disorder: proof of concept study
  publication-title: Psychiatry J
– volume: 35
  start-page: 1985
  year: 2004
  end-page: 1988
  ident: b0120
  article-title: Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits
  publication-title: Stroke
– reference: Zomorrodi R, Loheswaran G, Pushparaj A, Lim L (2019) Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 9 Available at:
– volume: 6
  start-page: 38866
  year: 2016
  ident: b0125
  article-title: Distinct interactions between fronto-parietal and default mode networks in impaired consciousness
  publication-title: Sci Rep
– volume: 1662
  start-page: 87
  year: 2017
  end-page: 101
  ident: b0205
  article-title: Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not
  publication-title: Brain Res
– volume: 29
  start-page: 351
  year: 2011
  end-page: 358
  ident: b0175
  article-title: Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports
  publication-title: Photomed Laser Surg
– volume: 518
  start-page: 25
  year: 2010
  end-page: 40
  ident: b0225
  article-title: Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment
  publication-title: J Comp Neurol
– volume: 26
  start-page: 261
  year: 2008
  end-page: 269
  ident: b0260
  article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx
  publication-title: Magn Reson Imaging
– volume: 32
  start-page: 1153
  year: 2017
  end-page: 1162
  ident: b0250
  article-title: Beneficial neurocognitive effects of transcranial laser in older adults
  publication-title: Lasers Med Sci
– volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: b0245
  article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity
  publication-title: Eur Neuropsychopharmacol
– volume: 28
  start-page: 159
  year: 2010
  end-page: 160
  ident: b0105
  article-title: Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP
  publication-title: Photomed Laser Surg
– volume: 8
  year: 2013
  ident: b0160
  article-title: Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress
  publication-title: PLoS One
– volume: 8
  year: 2013
  ident: b0135
  article-title: Effects of finger tapping frequency on regional homogeneity of sensorimotor cortex
  publication-title: PLOS One
– volume: 62
  start-page: 1137
  year: 2012
  end-page: 1145
  ident: b0025
  article-title: The serendipitous discovery of the brain’s default network
  publication-title: Neuroimage
– volume: 37
  start-page: 133
  year: 2019
  end-page: 141
  ident: b0040
  article-title: Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial
  publication-title: Photobiomodul Photomed Laser Surgery
– volume: 11
  start-page: 14
  year: 2017
  end-page: 25
  ident: b0015
  article-title: Improving executive function using transcranial infrared laser stimulation
  publication-title: J Neuropsychol
– volume: 9
  start-page: 500
  year: 2016
  ident: b0100
  article-title: Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease
  publication-title: Front Neurosci
– volume: 3
  start-page: 49
  year: 2011
  end-page: 67
  ident: b0200
  article-title: Low-level light therapy of the eye and brain
  publication-title: Eye Brain
– volume: 5
  start-page: 46
  year: 2009
  ident: b0220
  article-title: Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety
  publication-title: Behav Brain Funct
– volume: 13
  start-page: 1738
  year: 2018
  end-page: 1740
  ident: b0085
  article-title: Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients
  publication-title: Neural Regen Res
– volume: 7
  year: 2012
  ident: b0165
  article-title: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light
  publication-title: PLoS One
– volume: 79
  start-page: 59
  year: 2016
  end-page: 75
  ident: b0050
  article-title: Near-infrared light is neuroprotective in a monkey model of Parkinson disease
  publication-title: Ann Neurol
– volume: 4
  start-page: 559
  year: 2004
  end-page: 567
  ident: b0060
  article-title: Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy
  publication-title: Mitochondrion
– volume: 27
  start-page: R691
  year: 2017
  end-page: R695
  ident: b0265
  article-title: Posterior parietal cortex
  publication-title: Curr Biol
– volume: 38
  start-page: 433
  year: 2015
  end-page: 447
  ident: b0195
  article-title: The brain’s default mode network
  publication-title: Annu Rev Neurosci
– volume: 102
  start-page: 397
  year: 1988
  end-page: 403
  ident: b0055
  article-title: Role of the posterior parietal association cortex in the processing of spatial event information
  publication-title: Behav Neurosci
– volume: 8
  year: 2013
  ident: b0275
  article-title: Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen
  publication-title: PLoS One
– volume: 40
  start-page: 1359
  year: 2009
  end-page: 1364
  ident: b0280
  article-title: Effectiveness and safety of transcranial laser therapy for acute ischemic stroke
  publication-title: Stroke
– volume: 45
  start-page: 648
  year: 2013
  end-page: 653
  ident: b0115
  article-title: Transcranial application of near-infrared low-level laser can modulate cortical excitability
  publication-title: Lasers Surg Med
– volume: 39
  start-page: 1390
  year: 2018
  end-page: 1399
  ident: b0130
  article-title: Resting-state functional MRI: everything that nonexperts have always wanted to know
  publication-title: AJNR Am J Neuroradiol
– reference: .
– volume: 10
  start-page: e67
  year: 2017
  end-page: e69
  ident: b0255
  article-title: Proceedings #18. Transcranial infrared brain stimulation modulates EEG alpha power
  publication-title: Brain Stimul
– volume: 6
  start-page: 113
  year: 2016
  end-page: 124
  ident: b0080
  article-title: Shining light on the head: Photobiomodulation for brain disorders
  publication-title: BBA Clin
– volume: 120
  start-page: 670
  year: 2014
  end-page: 683
  ident: b0155
  article-title: Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice
  publication-title: J Neurosurg
– volume: 4
  start-page: 559
  year: 2004
  ident: 10.1016/j.neuroscience.2019.10.037_b0060
  article-title: Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2004.07.033
– volume: 45
  start-page: 648
  year: 2013
  ident: 10.1016/j.neuroscience.2019.10.037_b0115
  article-title: Transcranial application of near-infrared low-level laser can modulate cortical excitability
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.22190
– volume: 518
  start-page: 25
  year: 2010
  ident: 10.1016/j.neuroscience.2019.10.037_b0225
  article-title: Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment
  publication-title: J Comp Neurol
  doi: 10.1002/cne.22207
– volume: 120
  start-page: 670
  year: 2014
  ident: 10.1016/j.neuroscience.2019.10.037_b0155
  article-title: Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice
  publication-title: J Neurosurg
  doi: 10.3171/2013.9.JNS13423
– volume: 1662
  start-page: 87
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0205
  article-title: Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2017.02.026
– volume: 12
  start-page: 574
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0150
  article-title: Why and how does light therapy offer neuroprotection in Parkinson’s disease?
  publication-title: Neural Regener Res
  doi: 10.4103/1673-5374.205092
– volume: 33
  start-page: 443
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0170
  article-title: Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2015.3986
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroscience.2019.10.037_b0165
  article-title: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030655
– volume: 40
  start-page: 1359
  year: 2009
  ident: 10.1016/j.neuroscience.2019.10.037_b0280
  article-title: Effectiveness and safety of transcranial laser therapy for acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.547547
– volume: 37
  start-page: 133
  year: 2019
  ident: 10.1016/j.neuroscience.2019.10.037_b0040
  article-title: Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial
  publication-title: Photobiomodul Photomed Laser Surgery
  doi: 10.1089/photob.2018.4555
– volume: 35
  start-page: 432
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0215
  article-title: Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2016.4227
– volume: 5
  start-page: 46
  year: 2009
  ident: 10.1016/j.neuroscience.2019.10.037_b0220
  article-title: Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety
  publication-title: Behav Brain Funct
  doi: 10.1186/1744-9081-5-46
– volume: 11
  start-page: 14
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0015
  article-title: Improving executive function using transcranial infrared laser stimulation
  publication-title: J Neuropsychol
  doi: 10.1111/jnp.12074
– volume: 6
  start-page: 38866
  year: 2016
  ident: 10.1016/j.neuroscience.2019.10.037_b0125
  article-title: Distinct interactions between fronto-parietal and default mode networks in impaired consciousness
  publication-title: Sci Rep
  doi: 10.1038/srep38866
– volume: 3
  start-page: 49
  year: 2011
  ident: 10.1016/j.neuroscience.2019.10.037_b0200
  article-title: Low-level light therapy of the eye and brain
  publication-title: Eye Brain
– volume: 36
  start-page: 171
  year: 2005
  ident: 10.1016/j.neuroscience.2019.10.037_b0030
  article-title: Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.20143
– volume: 28
  start-page: 159
  year: 2010
  ident: 10.1016/j.neuroscience.2019.10.037_b0105
  article-title: Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2010.2789
– volume: 8
  start-page: 36
  year: 2014
  ident: 10.1016/j.neuroscience.2019.10.037_b0070
  article-title: Augmentation of cognitive brain functions with transcranial lasers
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2014.00036
– volume: 62
  start-page: 1137
  year: 2012
  ident: 10.1016/j.neuroscience.2019.10.037_b0025
  article-title: The serendipitous discovery of the brain’s default network
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.035
– volume: 39
  start-page: 1390
  year: 2018
  ident: 10.1016/j.neuroscience.2019.10.037_b0130
  article-title: Resting-state functional MRI: everything that nonexperts have always wanted to know
  publication-title: AJNR Am J Neuroradiol
– volume: 6
  start-page: 2
  year: 2014
  ident: 10.1016/j.neuroscience.2019.10.037_b0190
  article-title: Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex - evidence from two transgenic mouse models
  publication-title: Alzheimers Res Ther
  doi: 10.1186/alzrt232
– volume: 102
  start-page: 397
  year: 1988
  ident: 10.1016/j.neuroscience.2019.10.037_b0055
  article-title: Role of the posterior parietal association cortex in the processing of spatial event information
  publication-title: Behav Neurosci
  doi: 10.1037/0735-7044.102.3.397
– volume: 3
  start-page: 145
  year: 2012
  ident: 10.1016/j.neuroscience.2019.10.037_b0235
  article-title: The fallacy of a “task-negative” network
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2012.00145
– volume: 34
  start-page: 599
  year: 2016
  ident: 10.1016/j.neuroscience.2019.10.037_b0045
  article-title: Photobiomodulation: implications for anesthesia and pain relief
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2015.4048
– volume: 2
  start-page: 384
  year: 2010
  ident: 10.1016/j.neuroscience.2019.10.037_b0185
  article-title: Arterial spin labeling in neuroimaging
  publication-title: World J Radiol
  doi: 10.4329/wjr.v2.i10.384
– volume: 26
  start-page: 261
  year: 2008
  ident: 10.1016/j.neuroscience.2019.10.037_b0260
  article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2007.07.003
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroscience.2019.10.037_b0275
  article-title: Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053454
– volume: 31
  start-page: 1008
  year: 2014
  ident: 10.1016/j.neuroscience.2019.10.037_b0180
  article-title: Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2013.3244
– volume: 5
  start-page: 12029
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0230
  article-title: Light Effect on Water Viscosity: Implication for ATP Biosynthesis
  publication-title: Sci Rep
  doi: 10.1038/srep12029
– volume: 27
  start-page: R691
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0265
  article-title: Posterior parietal cortex
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.06.007
– volume: 11
  start-page: 2191
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0090
  article-title: Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/NDT.S78182
– volume: 42
  start-page: 343
  year: 2008
  ident: 10.1016/j.neuroscience.2019.10.037_b0270
  article-title: Functional neuroimaging correlates of finger tapping task variations: An ALE meta-analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.025
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroscience.2019.10.037_b0005
  article-title: Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026212
– volume: 9
  start-page: 500
  year: 2016
  ident: 10.1016/j.neuroscience.2019.10.037_b0100
  article-title: Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00500
– volume: 13
  start-page: 1738
  year: 2018
  ident: 10.1016/j.neuroscience.2019.10.037_b0085
  article-title: Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.238613
– volume: 19
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0095
  article-title: Photobiomodulation and the brain: a new paradigm
  publication-title: J Opt
  doi: 10.1088/2040-8986/19/1/013003
– volume: 29
  start-page: 351
  year: 2011
  ident: 10.1016/j.neuroscience.2019.10.037_b0175
  article-title: Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2010.2814
– volume: 38
  start-page: 433
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0195
  article-title: The brain’s default mode network
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-071013-014030
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroscience.2019.10.037_b0065
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroscience.2019.10.037_b0160
  article-title: Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067358
– volume: 32
  start-page: 1153
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0250
  article-title: Beneficial neurocognitive effects of transcranial laser in older adults
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-017-2221-y
– volume: 4
  start-page: 724
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0110
  article-title: Biophysical approaches for oral wound healing: emphasis on photobiomodulation
  publication-title: Adv Wound Care (New Rochelle)
  doi: 10.1089/wound.2014.0623
– volume: 22
  start-page: 360
  year: 2004
  ident: 10.1016/j.neuroscience.2019.10.037_b0140
  article-title: A method for removal of global effects from fMRI time series
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.042
– volume: 6
  start-page: 71
  year: 1996
  ident: 10.1016/j.neuroscience.2019.10.037_b0240
  article-title: Novelty and familiarity activations in PET studies of memory encoding and retrieval
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/6.1.71
– ident: 10.1016/j.neuroscience.2019.10.037_b0285
  doi: 10.1038/s41598-019-42693-x
– volume: 28
  start-page: 441
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0210
  article-title: The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder
  publication-title: Rev Neurosci
  doi: 10.1515/revneuro-2016-0087
– volume: 6
  start-page: 113
  year: 2016
  ident: 10.1016/j.neuroscience.2019.10.037_b0080
  article-title: Shining light on the head: Photobiomodulation for brain disorders
  publication-title: BBA Clin
  doi: 10.1016/j.bbacli.2016.09.002
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroscience.2019.10.037_b0075
  article-title: Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0026377
– volume: 2015
  year: 2015
  ident: 10.1016/j.neuroscience.2019.10.037_b0035
  article-title: Near-infrared transcranial radiation for major depressive disorder: proof of concept study
  publication-title: Psychiatry J
  doi: 10.1155/2015/352979
– volume: 10
  start-page: e67
  year: 2017
  ident: 10.1016/j.neuroscience.2019.10.037_b0255
  article-title: Proceedings #18. Transcranial infrared brain stimulation modulates EEG alpha power
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.04.111
– volume: 230
  start-page: 13
  year: 2013
  ident: 10.1016/j.neuroscience.2019.10.037_b0010
  article-title: Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.11.016
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroscience.2019.10.037_b0135
  article-title: Effects of finger tapping frequency on regional homogeneity of sensorimotor cortex
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0064115
– volume: 20
  start-page: 519
  year: 2010
  ident: 10.1016/j.neuroscience.2019.10.037_b0245
  article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 89
  start-page: 480
  year: 2008
  ident: 10.1016/j.neuroscience.2019.10.037_b0145
  article-title: Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light
  publication-title: Neurobiol Learn Memory
  doi: 10.1016/j.nlm.2007.07.014
– volume: 33
  start-page: 279
  year: 2009
  ident: 10.1016/j.neuroscience.2019.10.037_b0020
  article-title: Default-mode brain dysfunction in mental disorders: a systematic review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2008.09.002
– volume: 79
  start-page: 59
  year: 2016
  ident: 10.1016/j.neuroscience.2019.10.037_b0050
  article-title: Near-infrared light is neuroprotective in a monkey model of Parkinson disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.24542
– volume: 35
  start-page: 1985
  year: 2004
  ident: 10.1016/j.neuroscience.2019.10.037_b0120
  article-title: Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits
  publication-title: Stroke
  doi: 10.1161/01.STR.0000131808.69640.b7
SSID ssj0000543
Score 2.4500256
Snippet •We examine the effect of photobiomodulation on brain activity using fMRI.•Photobiomodulation had no effect on cerebral blood flow or resting state...
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
SubjectTerms 810 nm
finger-tapping
parietal association cortex
photobiomodulation
transcranial
Title Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452219307298
https://dx.doi.org/10.1016/j.neuroscience.2019.10.037
https://www.ncbi.nlm.nih.gov/pubmed/31682952
https://www.proquest.com/docview/2312271007
Volume 422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEF5EX_oirbbWtsoUim_xcpvEzSI-XEW5a-09-AN8C-P-ENu6Ee8sCOLf3plNcrVg4aBvl9sdkstMZr_JffuNEJ_6qfU2U46Qm8kSWgJsgjkWCarSeNSoaIzZFuOd4Vn-5bw4XxD73V4YplW2ub_J6TFbt9_02rvZu7m66p0w2mU9cIIgLH_NG37zXHGUbz_-oXkQJGlaJFPlzLM74dHI8XqiGcmSmX29zUwv7on-_CL1LxAaF6PDl2K5RZEwaC70lVhwYUWsDgJV0Nf3sAWR1xlfmK-KhxnNDgjsQSNXPIHaw5iiHEbB3zIJHY64TIc6wDELb9BsDBYOftU_aOwzN5KAgWlaTQB9ji__JxAZB_ANLwNvhmTTmhU8HIyuY_uj1-Ls8OB0f5i0PRcSQ9BkSuWklak2ChFt6lClqTNcwpFPd7zO0ClnKS8VzlNmQmm1djo1pi-VLD0t_dkbsRjq4N4K8J7crXSBvixzJ1Hnpe5f2LIovCtQ63Whu5tcmVaQnPti_Kw65tn36qmDKnYQj5GD1kU2s71pZDnmstrtfFl1G08pVVa0esxlvTez_itE57b_2IVPRc8w_zGDwdV3k4owtpQss0Rz1pq4mv0qbiwmdSHf_efZ34sXfNQwcT6IxentndsgPDW92IwPzKZYGoy-Dse_AfyiI2M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcGgvVQt90NIySIjbNhtvzK6FOAQESkrIgYLEzTJ-VLTFi0ioVKk_npl9BCq1UqTeVmuP9jHemc_ez98AbPVSF1yWe0JuNksoBbjE9I1MTF7YYJTJqY3ZFpOd4Xn_84W8WIKDdi8M0yqb2F_H9CpaN2e6zdvs3lxddb8w2mU9cIIgLH9dPIFlVqeSHVgejI6Hk4eALGvyHPVP2KDVHq1oXo9kI1k1s6c-MdmLy6L_PU_9C4dW-ejoBTxvgCQO6nt9CUs-rsDqINIk-voXbmNF7azWzFfh95xph4T3sFYsnmIZcEIDHUcx3DIPHcc8U8cy4ilrb1BvEx0e_iy_U9s-15LAga2rTSAdV-v_U6xIB3hivkbeD8mmJYt4eBxdVxWQXsH50eHZwTBpyi4kltDJjGaUTqTK5sYYl3qTp6m3PIsjt-4ElRmfe0ehSfpAwckIp5RXqbU9kYsiUPbPXkMnltG_BQyBPJ4raUJR9L0wql-o3qUrpAxeGqXWQLUvWdtGk5xLY_zQLfnsm37sIM0O4jZy0Bpkc9ubWpljIavd1pe63XtK0VJTAlnIem9u_ccoXdh-sx0-mj5j_jdjoi_vpppgthCstER93tTjav5UXFtMKCne_efVN-Dp8OxkrMejyfF7eMYtNTFnHTqz2zv_geDV7PJj8_ncA9skJhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Effects+of+Near+Infrared+Light+on+Resting+and+Evoked+Brain+Activity+in+Humans+Using+Magnetic+Resonance+Imaging&rft.jtitle=Neuroscience&rft.au=El+Khoury%2C+Hala&rft.au=Mitrofanis%2C+John&rft.au=Henderson%2C+Luke+A&rft.date=2019-12-01&rft.issn=0306-4522&rft.volume=422&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1016%2Fj.neuroscience.2019.10.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroscience_2019_10_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon