Identification and Analysis of Zinc Efficiency-Associated Loci in Maize
Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly under...
Saved in:
Published in | Frontiers in plant science Vol. 12; p. 739282 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of
ZmZIP1
-
ZmZIP8
. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (
ZmZIP3
,
ZmHMA3
,
ZmHMA4
) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (
ZmIGPS
) and auxin-dependent gene regulation (
ZmIAA
). Notably, a high upregulation of
ZmZIP3
was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally,
ZmZIP4
,
ZmZIP5
, and
ZmZIP7
were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance. |
---|---|
AbstractList | Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance. Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6-63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6-63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance. Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1 - ZmZIP8 . Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes ( ZmZIP3 , ZmHMA3 , ZmHMA4 ) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis ( ZmIGPS ) and auxin-dependent gene regulation ( ZmIAA ). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4 , ZmZIP5 , and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance. |
Author | Wang, Xuejie Xu, Jianqin Zhu, Huaqing Yu, Futong |
AuthorAffiliation | Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University , Beijing , China |
AuthorAffiliation_xml | – name: Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University , Beijing , China |
Author_xml | – sequence: 1 givenname: Jianqin surname: Xu fullname: Xu, Jianqin – sequence: 2 givenname: Xuejie surname: Wang fullname: Wang, Xuejie – sequence: 3 givenname: Huaqing surname: Zhu fullname: Zhu, Huaqing – sequence: 4 givenname: Futong surname: Yu fullname: Yu, Futong |
BookMark | eNp1kU1LAzEQhoMoft897tHL1nxtNrkIRbQWKl4UxEvIJrMa2SZ1sxXqrze1Cio4lxky8z4Z5j1A2yEGQOiE4BFjUp21iy6NKKZkVDNFJd1C-0QIXnJBH7Z_1HvoOKUXnKPCWKl6F-0xLoUklO2jydRBGHzrrRl8DIUJrhgH062ST0Vsi0cfbHHZ5r6HYFflOKVovRnAFbNcFD4UN8a_wxHaaU2X4PgrH6L7q8u7i-tydjuZXoxnpeVMDSWziquas0o2BJyqKkE5CAqCY0kVcRJzoDXFlispDAbGKqWggoYbhUUj2CGabrgumhe96P3c9CsdjdefD7F_0qYfvO1AA6td_kII01S8AdUQS4kSgFsK4EybWecb1mLZzMHZfIjedL-gvzvBP-un-KalYLyu1sucfgH6-LqENOi5Txa6zgSIy6SpwDXDsuYqj4rNqO1jSj202vrh8-SZ7DtNsF6bqtem6rWpemNqFuI_wu_9_pV8ALhlpXw |
CitedBy_id | crossref_primary_10_3390_ijms23094852 crossref_primary_10_1016_j_jhazmat_2023_131039 crossref_primary_10_1007_s42976_023_00453_8 crossref_primary_10_1016_j_cj_2022_05_004 crossref_primary_10_1371_journal_pone_0295391 |
Cites_doi | 10.1073/pnas.94.22.11786 10.1111/risa.12064 10.1371/journal.pone.0078859 10.1073/pnas.1907181116 10.1016/B978-0-12-394276-0.00001-9 10.1093/jxb/erx237 10.1073/pnas.1005396107 10.1111/j.1365-313X.2004.02261.x 10.1073/pnas.1101419108 10.1002/2211-5463.12399 10.1111/j.1469-8137.2009.02766.x 10.1007/s00122-018-3089-3 10.1111/pce.12747 10.1104/pp.011825 10.1105/tpc.020487 10.1242/jeb.01730 10.1104/pp.125.1.456 10.1016/j.plaphy.2015.10.005 10.1016/j.jtemb.2009.05.002 10.117086/s128-018-1603-z 10.1007/s11032-010-9496-z 10.1007/BF00015299 10.1046/j.1365-313x.2000.00883.x 10.15835/nsb12310823 10.1105/tpc.109.071316 10.1146/annurev-arplant-043015-112122 10.1016/j.aninu.2016.06.003 10.1093/pcp/pct173 10.1080/17429145.2017.1392626 10.1002/jsfa.6098 10.1093/jxb/ert118 10.1007/BF00011796 10.1093/jxb/eri317 10.4161/psb.6.3.14676 10.1016/j.bbrc.2019.03.024 10.1007/s00425-003-1155-8 10.1126/science.1060331 10.1111/jipb.12794 10.1186/1471-2164-12-17 10.1016/j.plaphy.2009.01.006 10.1093/jxb/eru249 10.1007/s00122-015-2546-5 10.1007/s00018-003-3148-y 10.1186/1471-2229-12-111 10.1104/pp.113.216564 10.3945/an.112.002881 10.1016/j.jplph.2015.05.014 10.1111/j.1469-8137.2009.03177.x 10.1186/s12863-015-0176-1 10.1104/pp.104.046292 10.1111/j.1365-3040.2009.01935.x 10.1111/j.1469-8137.2008.02637.x 10.1007/s10725-010-9519-0 10.1007/s10681-017-1875-7 10.1105/tpc.109.068114 10.1093/jxb/erm142 10.1007/s11240-012-0219-5 10.1104/pp.103.026815 10.1111/tpj.13005 10.1111/j.1469-8137.2007.01996.x 10.3389/fpls.2011.00080 10.1186/1471-2229-13-114 10.1038/sj.emboj.7600295 10.1126/science.aae0382 10.1111/j.1365-313X.2011.04495.x 10.1038/s41467-018-06977-6 10.1016/j.tplants.2005.09.007 10.1016/j.tplants.2005.11.002 10.1007/s12374-018-0394-y 10.1073/pnas.1400074111 10.3389/fpls.2015.01156 10.1007/s11103-010-9637-0 10.1046/j.1469-8137.2003.00826.x 10.1074/jbc.M006185200 10.1111/nph.13413 10.1093/jxb/erv187 10.1007/s11104-008-9704-3 10.1007/s11033-011-0991-z 10.1093/jxb/47.2.217 10.1016/j.geoderma.2017.08.019 10.1134/S1021443708030175 10.1186/s12870-018-1383-5 10.32615/bp.2019.024 10.1038/nature22971 10.1111/j.1469-8137.2008.02638.x 10.1152/physrev.00035.2014 10.1111/j.1469-8137.2010.03459.x 10.1046/j.1469-8137.2000.00630.x 10.1093/jhered/esr122 10.1186/s12870-021-03127-x 10.1007/s10059-010-0069-0 10.1111/jipb.12384 10.1007/s11033-010-0058-6 10.3389/fpls.2015.01160 10.1111/j.1469-8137.2009.02784.x 10.1007/s12571-011-0140-5 10.1016/s1369-5266(99)80037-5 10.1111/plb.12837 10.1104/pp.106.085225 10.1371/journal.pone.0050568 10.3945/jn.115.220079 10.1016/j.febslet.2007.04.010 10.1093/jxb/ery107 10.1038/s41598-020-63567-7 10.1007/s00122-017-2932-2 10.1093/jxb/eru340 10.1093/jxb/erz091 10.3389/fpls.2013.00534 10.1093/jxb/40.3.405 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Xu, Wang, Zhu and Yu. Copyright © 2021 Xu, Wang, Zhu and Yu. 2021 Xu, Wang, Zhu and Yu |
Copyright_xml | – notice: Copyright © 2021 Xu, Wang, Zhu and Yu. – notice: Copyright © 2021 Xu, Wang, Zhu and Yu. 2021 Xu, Wang, Zhu and Yu |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2021.739282 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_e37dd9566ab54be9b1c2196e0f2eedaf PMC8634756 10_3389_fpls_2021_739282 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c439t-3c94974358b1ed955624e62e6408291d804e2720c4986a0e33599e5eb4a906b63 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:09:12 EDT 2025 Thu Aug 21 13:39:52 EDT 2025 Fri Jul 11 02:16:23 EDT 2025 Thu Apr 24 22:56:34 EDT 2025 Tue Jul 01 03:48:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-3c94974358b1ed955624e62e6408291d804e2720c4986a0e33599e5eb4a906b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Edited by: Durgesh Kumar Tripathi, Amity University, India Reviewed by: Shutang Tan, University of Science and Technology of China, China; Kailiang Bo, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), China |
OpenAccessLink | https://doaj.org/article/e37dd9566ab54be9b1c2196e0f2eedaf |
PMID | 34868123 |
PQID | 2607308749 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e37dd9566ab54be9b1c2196e0f2eedaf pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634756 proquest_miscellaneous_2607308749 crossref_citationtrail_10_3389_fpls_2021_739282 crossref_primary_10_3389_fpls_2021_739282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in plant science |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Sasaki (B75) 2014; 65 Wong (B99) 2009; 181 Hussain (B26) 2004; 16 Hindu (B25) 2018; 131 Genc (B15) 2007; 58 Luo (B57) 2015; 6 Song (B81) 2019; 63 Ueno (B88) 2010; 107 Pedas (B69) 2009; 47 Weijers (B93) 2016; 67 Rengel (B71) 1995; 176 Li (B49) 2016; 58 Shao (B78) 2018; 69 Iglesias (B27) 2011; 6 Li (B50) 2013; 13 Chen (B8) 2008; 55 Kim (B41) 1997; 94 Eren (B11) 2004; 136 Wu (B100) 2013; 33 Lee (B46) 2009; 32 Jiao (B32) 2017; 546 Alonso-Blanco (B2) 2009; 21 Cui (B10) 2014; 106 Miyadate (B62) 2011; 189 Kambe (B36) 2015; 95 King (B42) 2015; 146 Tanaka (B84) 2014; 55 Khoshgoftarmanesh (B40) 2018; 309 Impa (B28); 4 Lee (B47); 73 Graham (B17) 1992; 146 Wang (B91) 2010; 37 Khatun (B39) 2018; 20 White (B95) 2011; 2 Xing (B101) 2011; 12 Marschner (B59) 1995 Widodo (B96) 2010; 186 Yamaji (B103) 2013; 162 Wang (B90) 2021; 21 Xomphoutheb (B102) 2020; 10 Genc (B16) 2009; 314 Hacisalihoglu (B22) 2004; 218 Lim (B51) 2004; 23 Ramesh (B70) 2003; 133 Hacisalihoglu (B23) 2003; 131 Korasick (B43) 2014; 111 Rengel (B72) 1996; 47 Navarro (B64) 2006; 312 Shiferaw (B79) 2011; 3 Yang (B107) 2013; 112 Cakmak (B6) 1989; 40 Jackson (B31) 2001; 276 Normanly (B66) 1999; 2 Broadley (B3) 2007; 173 Šimić (B80) 2012; 103 Mager (B58) 2018; 18 Zhang (B109) 2019; 62 Cai (B4) 2019; 70 Liu (B54) 2011; 28 Saidi (B74) 2020; 12 Jin (B33) 2015; 16 Graham (B18) 2012; 115 Ju (B34) 2018; 18 Kabir (B35) 2017; 12 Ishimaru (B30) 2005; 56 Wang (B92) 2012; 39 Wissuwa (B97) 2006; 142 Sasaki (B76) 2015; 84 Wessells (B94) 2012; 7 Hacisalihoglu (B21) 2001; 125 Cakmak (B5) 2000; 146 Outten (B67) 2001; 292 Liu (B55) 2011; 63 Grubb (B19) 2004; 40 Zhang (B111) 2015; 66 von Behrens (B89) 2011; 66 Yancey (B106) 2005; 208 Chen (B9) 2011; 108 Mittler (B61) 2006; 11 Alloway (B1) 2008 Yan (B105) 2016; 39 Lin (B52) 2009; 182 Gainza-Cortés (B13) 2012; 12 Liu (B53) 2019; 62 Kavitha (B38) 2015; 97 Lee (B48); 29 Nielsen (B65) 2012; 3 Lee (B45) 2017; 130 Sasaki (B77) 2018; 8 Tiong (B85) 2015; 207 Tognetti (B86) 2010; 22 Cakmak (B7) 1996; 180 Swain (B82) 2016; 2 Ludwig (B56) 2013; 8 Zhang (B110) 2014; 65 Zhang (B108) 2017; 213 Hacisalihoglu (B24) 2003; 159 Ouyang (B68) 2000; 24 Mori (B63) 2016; 6 Kambe (B37) 2004; 61 Wong (B98) 2009; 181 Gu (B20) 2015; 128 Mattiello (B60) 2015; 183 Impa (B29); 64 Gachon (B12) 2005; 10 Ueno (B87) 2009; 182 Tan (B83) 2019; 512 Galli (B14) 2018; 9 Krämer (B44) 2007; 581 Roosjen (B73) 2018; 69 Yamauchi (B104) 2019; 116 |
References_xml | – volume: 94 start-page: 11786 year: 1997 ident: B41 article-title: Protein–protein interactions among the Aux/IAA proteins. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.22.11786 – volume: 33 start-page: 2168 year: 2013 ident: B100 article-title: Global maize trade and food security: implications from a social network model. publication-title: Risk Anal. doi: 10.1111/risa.12064 – volume: 8 year: 2013 ident: B56 article-title: The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. publication-title: PLoS One doi: 10.1371/journal.pone.0078859 – volume: 116 start-page: 20770 year: 2019 ident: B104 article-title: Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1907181116 – volume: 115 start-page: 1 year: 2012 ident: B18 article-title: How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? publication-title: Adv. Agron. doi: 10.1016/B978-0-12-394276-0.00001-9 – volume: 69 start-page: 179 year: 2018 ident: B73 article-title: Auxin Response Factors: output control in auxin biology. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx237 – volume: 107 start-page: 16500 year: 2010 ident: B88 article-title: Gene limiting cadmium accumulation in rice. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1005396107 – volume: 40 start-page: 893 year: 2004 ident: B19 article-title: Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02261.x – volume: 108 start-page: 6399 year: 2011 ident: B9 article-title: Integrated soil-crop system management for food security. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1101419108 – volume: 8 start-page: 655 year: 2018 ident: B77 article-title: Disruption of the mouse Slc39a14 gene encoding zinc transporter ZIP14 is associated with decreased bone mass, likely caused by enhanced bone resorption. publication-title: FEBS. Open. Bio. doi: 10.1002/2211-5463.12399 – volume: 182 start-page: 392 year: 2009 ident: B52 article-title: Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02766.x – volume: 131 start-page: 1443 year: 2018 ident: B25 article-title: Identification and validation of genomic regions influencing kernel zinc and iron in maize. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-018-3089-3 – volume: 39 start-page: 1941 year: 2016 ident: B105 article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. publication-title: Plant Cell Environ. doi: 10.1111/pce.12747 – volume: 131 start-page: 595 year: 2003 ident: B23 article-title: Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. publication-title: Plant Physiol. doi: 10.1104/pp.011825 – volume: 16 start-page: 1327 year: 2004 ident: B26 article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.020487 – volume: 208 start-page: 2819 year: 2005 ident: B106 article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. publication-title: J. Exp. Biol. doi: 10.1242/jeb.01730 – year: 2008 ident: B1 publication-title: Zinc in soil and crop nutrition. Belgium and Paris. – volume: 125 start-page: 456 year: 2001 ident: B21 article-title: High- and low-affinity zinc transport systems and their Possible role in zinc efficiency in bread wheat. publication-title: Plant Physiol. doi: 10.1104/pp.125.1.456 – volume: 97 start-page: 165 year: 2015 ident: B38 article-title: Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.10.005 – volume: 146 start-page: 241 year: 1992 ident: B17 article-title: Selecting zinc efficient cereal genotypes for soil of low zinc status. publication-title: Plant Soil doi: 10.1016/j.jtemb.2009.05.002 – volume: 18 year: 2018 ident: B58 article-title: The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. publication-title: BMC Plant Biol. doi: 10.117086/s128-018-1603-z – volume: 28 start-page: 463 year: 2011 ident: B54 article-title: Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. publication-title: Mol. Breed. doi: 10.1007/s11032-010-9496-z – volume: 180 start-page: 165 year: 1996 ident: B7 article-title: Zinc deficiency as a critical problem in wheat production in Central Anatolia. publication-title: Plant Soil doi: 10.1007/BF00015299 – volume: 24 start-page: 327 year: 2000 ident: B68 article-title: Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00883.x – volume: 12 start-page: 646 year: 2020 ident: B74 article-title: Computational study of environmental stress-related transcription factor binding sites in the promoter regions of maize auxin response factor (ARF) gene family. publication-title: Not. Sci. Biol. doi: 10.15835/nsb12310823 – volume: 22 start-page: 2660 year: 2010 ident: B86 article-title: Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. publication-title: Plant Cell doi: 10.1105/tpc.109.071316 – volume: 67 start-page: 539 year: 2016 ident: B93 article-title: Transcriptional responses to the auxin hormone. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-112122 – volume: 2 start-page: 134 year: 2016 ident: B82 article-title: Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. publication-title: Anim. Nutr. doi: 10.1016/j.aninu.2016.06.003 – volume: 55 start-page: 218 year: 2014 ident: B84 article-title: UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct173 – volume: 12 start-page: 447 year: 2017 ident: B35 article-title: Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.). publication-title: J. Plant Interact. doi: 10.1080/17429145.2017.1392626 – volume: 106 start-page: 191 year: 2014 ident: B10 article-title: Managing agricultural nutrients for food security in China: past, present, and future. publication-title: Agro. J. doi: 10.1002/jsfa.6098 – volume: 64 start-page: 2739 ident: B29 article-title: Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert118 – volume: 176 start-page: 307 year: 1995 ident: B71 article-title: Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. publication-title: Plant Soil doi: 10.1007/BF00011796 – volume: 56 start-page: 3207 year: 2005 ident: B30 article-title: OsZIP4, a novel zinc-regulated zinc transporter in rice. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri317 – volume: 6 start-page: 452 year: 2011 ident: B27 article-title: Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. publication-title: Plant Signal Behav. doi: 10.4161/psb.6.3.14676 – volume: 512 start-page: 112 year: 2019 ident: B83 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.03.024 – volume: 218 start-page: 704 year: 2004 ident: B22 article-title: The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. publication-title: Planta doi: 10.1007/s00425-003-1155-8 – volume: 292 start-page: 2488 year: 2001 ident: B67 article-title: Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. publication-title: Science doi: 10.1126/science.1060331 – volume: 62 start-page: 314 year: 2019 ident: B53 article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12794 – volume: 12 year: 2011 ident: B101 article-title: Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. publication-title: BMC Genomics doi: 10.1186/1471-2164-12-17 – volume: 47 start-page: 377 year: 2009 ident: B69 article-title: Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.01.006 – volume: 65 start-page: 4919 year: 2014 ident: B110 article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru249 – volume: 128 start-page: 1777 year: 2015 ident: B20 article-title: Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-015-2546-5 – volume: 61 start-page: 49 year: 2004 ident: B37 article-title: Overview of mammalian zinc transporters. publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-003-3148-y – volume: 12 year: 2012 ident: B13 article-title: Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-111 – volume: 162 start-page: 927 year: 2013 ident: B103 article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. publication-title: Plant Physiol. doi: 10.1104/pp.113.216564 – volume: 3 start-page: 783 year: 2012 ident: B65 article-title: History of zinc in agriculture. publication-title: Adv. Nutr. doi: 10.3945/an.112.002881 – volume: 183 start-page: 138 year: 2015 ident: B60 article-title: Zinc deficiency affects physiological and anatomical characteristics in maize leaves. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.05.014 – volume: 186 start-page: 400 year: 2010 ident: B96 article-title: Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03177.x – volume: 16 year: 2015 ident: B33 article-title: Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. publication-title: BMC. Genet. doi: 10.1186/s12863-015-0176-1 – volume: 136 start-page: 3712 year: 2004 ident: B11 article-title: Arabidopsis HMA2, a divalent heavy metal-transporting (PIB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. publication-title: Plant Physiol. doi: 10.1104/pp.104.046292 – volume: 32 start-page: 408 year: 2009 ident: B46 article-title: Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.01935.x – volume: 181 start-page: 79 year: 2009 ident: B99 article-title: Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02637.x – volume: 63 start-page: 225 year: 2011 ident: B55 article-title: Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). publication-title: Plant Growth Regul. doi: 10.1007/s10725-010-9519-0 – volume: 213 year: 2017 ident: B108 article-title: Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments. publication-title: Euphytica doi: 10.1007/s10681-017-1875-7 – volume: 21 start-page: 1877 year: 2009 ident: B2 article-title: What has natural variation taught us about plant development, physiology, and adaptation? publication-title: Plant Cell doi: 10.1105/tpc.109.068114 – volume: 58 start-page: 2775 year: 2007 ident: B15 article-title: A study of the role of root morphological traits in growth of barley in zinc-deficient soil. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm142 – volume: 112 start-page: 171 year: 2013 ident: B107 article-title: Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. publication-title: Plant Cell Tiss. Org. doi: 10.1007/s11240-012-0219-5 – volume: 133 start-page: 126 year: 2003 ident: B70 article-title: Differential metal selectivity and gene expression of two zinc transporters from rice. publication-title: Plant Physiol. doi: 10.1104/pp.103.026815 – volume: 84 start-page: 374 year: 2015 ident: B76 article-title: A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. publication-title: Plant J. doi: 10.1111/tpj.13005 – volume: 173 start-page: 677 year: 2007 ident: B3 article-title: Zinc in plants. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.01996.x – volume: 2 year: 2011 ident: B95 article-title: Physiological limits to zinc biofortification of edible crops. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2011.00080 – volume: 13 year: 2013 ident: B50 article-title: Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-114 – volume: 23 start-page: 2915 year: 2004 ident: B51 article-title: A class of plant glycosyltransferases involved in cellular homeostasis. publication-title: EMBO. J. doi: 10.1038/sj.emboj.7600295 – volume: 312 start-page: 436 year: 2006 ident: B64 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. publication-title: Science doi: 10.1126/science.aae0382 – volume: 66 start-page: 341 year: 2011 ident: B89 article-title: Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04495.x – volume: 9 year: 2018 ident: B14 article-title: The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. publication-title: Nat. Commun. doi: 10.1038/s41467-018-06977-6 – volume: 10 start-page: 542 year: 2005 ident: B12 article-title: Plant secondary metabolism glycosyltransferases: the emerging functional analysis. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.09.007 – volume: 11 start-page: 15 year: 2006 ident: B61 article-title: Abiotic stress, the field environment and stress combination. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.11.002 – volume: 62 start-page: 217 year: 2019 ident: B109 article-title: Insights into the BR2/PGP1-mediated patterns for shoot and root growth in maize early seedling development by comparative transcriptome sequencing. publication-title: J. Plant Biol. doi: 10.1007/s12374-018-0394-y – volume: 111 start-page: 5427 year: 2014 ident: B43 article-title: Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1400074111 – volume: 6 year: 2015 ident: B57 article-title: Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01156 – volume: 73 start-page: 507 ident: B47 article-title: OsZIP5 is a plasma membrane zinc transporter in rice. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-010-9637-0 – volume: 159 start-page: 341 year: 2003 ident: B24 article-title: How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00826.x – volume: 276 start-page: 4350 year: 2001 ident: B31 article-title: Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006185200 – volume: 207 start-page: 1097 year: 2015 ident: B85 article-title: Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot Translocation of Zn in barley (Hordeum vulgare). publication-title: New Phytol. doi: 10.1111/nph.13413 – volume: 66 start-page: 3855 year: 2015 ident: B111 article-title: LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv187 – volume: 314 start-page: 49 year: 2009 ident: B16 article-title: Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. publication-title: Plant Soil doi: 10.1007/s11104-008-9704-3 – volume: 39 start-page: 2401 year: 2012 ident: B92 article-title: Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-0991-z – volume: 47 start-page: 217 year: 1996 ident: B72 article-title: Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. publication-title: J. Exp. Bot. doi: 10.1093/jxb/47.2.217 – volume: 309 start-page: 1 year: 2018 ident: B40 article-title: Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. publication-title: Geoderma doi: 10.1016/j.geoderma.2017.08.019 – volume: 55 start-page: 400 year: 2008 ident: B8 article-title: Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443708030175 – volume: 18 year: 2018 ident: B34 article-title: Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1383-5 – volume: 63 start-page: 210 year: 2019 ident: B81 article-title: The gene OsIAA9 encoding auxin/indole-3-acetic acid proteins is a negative regulator of auxin-regulated root growth in rice. publication-title: Biol. Plantarum doi: 10.32615/bp.2019.024 – volume: 546 start-page: 524 year: 2017 ident: B32 article-title: Improved maize reference genome with single-molecule technologies. publication-title: Nature doi: 10.1038/nature22971 – volume: 181 start-page: 71 year: 2009 ident: B98 article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in publication-title: Arabidopsis thaliana doi: 10.1111/j.1469-8137.2008.02638.x – volume: 95 start-page: 749 year: 2015 ident: B36 article-title: The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. publication-title: Physiol. Rev. doi: 10.1152/physrev.00035.2014 – volume: 189 start-page: 190 year: 2011 ident: B62 article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03459.x – volume: 146 start-page: 185 year: 2000 ident: B5 article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00630.x – volume: 103 start-page: 47 year: 2012 ident: B80 article-title: Quantitative trait loci for biofortification traits in maize grain. publication-title: J. Hered. doi: 10.1093/jhered/esr122 – volume: 21 year: 2021 ident: B90 article-title: Exploiting natural variation in crown root traits via genome-wide association studies in maize. publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03127-x – volume: 29 start-page: 551 ident: B48 article-title: Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. publication-title: Mol. Cells doi: 10.1007/s10059-010-0069-0 – volume: 58 start-page: 242 year: 2016 ident: B49 article-title: Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12384 – volume: 37 start-page: 3991 year: 2010 ident: B91 article-title: Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-010-0058-6 – volume: 6 year: 2016 ident: B63 article-title: Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-Induced changes in the rhizosphere. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01160 – volume: 182 start-page: 644 year: 2009 ident: B87 article-title: A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02784.x – volume: 3 start-page: 307 year: 2011 ident: B79 article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. publication-title: Food Secur. doi: 10.1007/s12571-011-0140-5 – volume: 2 start-page: 207 year: 1999 ident: B66 article-title: Redundancy as a way of life - IAA metabolism. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/s1369-5266(99)80037-5 – volume: 20 start-page: 765 year: 2018 ident: B39 article-title: Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities. publication-title: Plant Biol. doi: 10.1111/plb.12837 – volume: 142 start-page: 731 year: 2006 ident: B97 article-title: Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. publication-title: Plant Physiol. doi: 10.1104/pp.106.085225 – volume: 7 year: 2012 ident: B94 article-title: Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. publication-title: PLoS ONE doi: 10.1371/journal.pone.0050568 – volume: 146 start-page: 858S year: 2015 ident: B42 article-title: Biomarkers of nutrition for development (BOND)-zinc review. publication-title: J. Nutr. doi: 10.3945/jn.115.220079 – volume: 581 start-page: 2263 year: 2007 ident: B44 article-title: Transition metal transport. publication-title: FEBS. Lett. doi: 10.1016/j.febslet.2007.04.010 – volume: 69 start-page: 2743 year: 2018 ident: B78 article-title: Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery107 – volume: 10 year: 2020 ident: B102 article-title: The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. publication-title: Sci. Rep. doi: 10.1038/s41598-020-63567-7 – year: 1995 ident: B59 publication-title: Mineral Nutrition of Higher Plants. – volume: 130 start-page: 1903 year: 2017 ident: B45 article-title: Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-017-2932-2 – volume: 65 start-page: 6013 year: 2014 ident: B75 article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru340 – volume: 70 start-page: 2717 year: 2019 ident: B4 article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz091 – volume: 4 ident: B28 article-title: Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.). publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00534 – volume: 40 start-page: 405 year: 1989 ident: B6 article-title: Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). publication-title: J. Exp. Bot. doi: 10.1093/jxb/40.3.405 |
SSID | ssj0000500997 |
Score | 2.323005 |
Snippet | Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 739282 |
SubjectTerms | candidate genes maize (Zea mays L.) Plant Science quantitative trait locus (QTL) zinc (Zn) deficiency tolerance ZRT/IRT-like protein (ZIP) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeIrykpFYGELzcBx7pKilQpSJShVLZDsXUalKK9QO8Ou5y6NqFljYosSRne_i83d-fMfYLQYVoXVWebkyoSe0IT_oaK-rRXYukYHnNA85fpWjiXiextOtVF-0J6ySB66A60GUZBmSeGlsLCxoGzjsZBL8PET3bnLyvjjmbQVTlao3UZ-kWpfEKEz38uWc1LnD4D5BSqDC1jhUyvW3OGZ7h-TWkDM8YPs1V-QPVRsP2Q4UR2y3v0A-93XMnqoztnk96cZNkfFGYoQvcv4-KxwflAoRdLzSawwBGX_BCz4r-NjMvuGETYaDt8eRV6dF8Byyh5UXOS0wCohiZQNAaJDBCJAhyDJ3dJApXwCtrjqhlTQ-RFGsNcRghdG-tDI6ZZ1iUcAZ4xjd-TaPfOECEEkmtQptYJVTPkiF0VmX9RqQUldrhlPqinmKsQPBmhKsKcGaVrB22d3mjWWll_FL2T7hvilHStflDbR_Wts__cv-XXbTWC3FnkHLHaaAxRprkuS-VCJ0lyUtc7ZqbD8pZh-lxraSkUhief4fTbxge_TVdIIxiC9ZZ_W5hiukMit7Xf61P6758io priority: 102 providerName: Directory of Open Access Journals |
Title | Identification and Analysis of Zinc Efficiency-Associated Loci in Maize |
URI | https://www.proquest.com/docview/2607308749 https://pubmed.ncbi.nlm.nih.gov/PMC8634756 https://doaj.org/article/e37dd9566ab54be9b1c2196e0f2eedaf |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqyoELolDEAkWu1AuHQB7OxD4gVCoeqrqcWGnVS2Q7E1hplWy3iwT8emaSLDQSQr1EUeLY8kzs-cb2fCPEN3IqYuedDkpt40AZy_Og57OujtA5EAIveR1yeA1XI_VznI5fw6M7Af5907XjfFKj-fTo4c_jKQ34E_Y4yd4el7MpE2_H0VFG1l7ThPyR7FLGw3TYgf2W6ZvhUJNtBUAFCuJxu2_5ZiU9O9XQ-fcwaP8E5T8m6WJDrHdYUn5vlf9JfMBqU6ye1YT3HrfEZRuDW3aLctJWhVxSkMi6lL8nlZfnDYMEh18GS0VhIX_RjZxUcmgnT_hZjC7Ob35cBV3ahMATulgEiTeKvIQk1S7CwqSEcBRCjNDklo4KHSrk3VevjAYbYpKkxmCKTlkTgoNkW6xUdYU7QpL3F7oyCZWPUGUFGB27yGmvQwRN3ttAHC-FlPuOU5xTW0xz8i1YrDmLNWex5q1YB-Lw5YtZy6fxTtkzlvtLOWbCbh7U89u8G1g5JllBnQSwLlUOjYs8TcKAYRmT-bflQHxdai2nkcPbIbbC-p5aAp7edKbMQGQ9dfZa7L-pJncNB7eGRGUp7P5H7XtijTvFAYxRui9WFvN7_EJIZuEOmhUAul6Oo4PmZ30GGibxew |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+Analysis+of+Zinc+Efficiency-Associated+Loci+in+Maize&rft.jtitle=Frontiers+in+plant+science&rft.au=Xu%2C+Jianqin&rft.au=Wang%2C+Xuejie&rft.au=Zhu%2C+Huaqing&rft.au=Yu%2C+Futong&rft.date=2021-11-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft.spage=739282&rft_id=info:doi/10.3389%2Ffpls.2021.739282&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |