Identification and Analysis of Zinc Efficiency-Associated Loci in Maize

Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly under...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 739282
Main Authors Xu, Jianqin, Wang, Xuejie, Zhu, Huaqing, Yu, Futong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1 - ZmZIP8 . Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes ( ZmZIP3 , ZmHMA3 , ZmHMA4 ) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis ( ZmIGPS ) and auxin-dependent gene regulation ( ZmIAA ). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4 , ZmZIP5 , and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.
AbstractList Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.
Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6-63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1-ZmZIP8. Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6-63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes (ZmZIP3, ZmHMA3, ZmHMA4) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis (ZmIGPS) and auxin-dependent gene regulation (ZmIAA). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4, ZmZIP5, and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.
Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite numerous studies on the physiological mechanisms underlying Zn deficiency tolerance, its genetic basis of molecular mechanism is still poorly understood. Thus, the Zn efficiency of 20 maize inbred lines was evaluated, and a quantitative trait locus (QTL) analysis was performed in the recombination inbred line population derived from the most Zn-efficient (Ye478) and Zn-inefficient inbred line (Wu312) to identify the candidate genes associated with Zn deficiency tolerance. On this basis, we analyzed the expression of ZmZIP1 - ZmZIP8 . Thirteen QTLs for the traits associated with Zn deficiency tolerance were detected, explaining 7.6–63.5% of the phenotypic variation. The genes responsible for Zn uptake and transport across membranes ( ZmZIP3 , ZmHMA3 , ZmHMA4 ) were identified, which probably form a sophisticated network to regulate the uptake, translocation, and redistribution of Zn. Additionally, we identified the genes involved in the indole-3-acetic acid (IAA) biosynthesis ( ZmIGPS ) and auxin-dependent gene regulation ( ZmIAA ). Notably, a high upregulation of ZmZIP3 was found in the Zn-deficient root of Ye478, but not in that of Wu312. Additionally, ZmZIP4 , ZmZIP5 , and ZmZIP7 were up-regulated in the Zn-deficient roots of Ye478 and Wu312. Our findings provide a new insight into the genetic basis of Zn deficiency tolerance.
Author Wang, Xuejie
Xu, Jianqin
Zhu, Huaqing
Yu, Futong
AuthorAffiliation Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University , Beijing , China
AuthorAffiliation_xml – name: Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University , Beijing , China
Author_xml – sequence: 1
  givenname: Jianqin
  surname: Xu
  fullname: Xu, Jianqin
– sequence: 2
  givenname: Xuejie
  surname: Wang
  fullname: Wang, Xuejie
– sequence: 3
  givenname: Huaqing
  surname: Zhu
  fullname: Zhu, Huaqing
– sequence: 4
  givenname: Futong
  surname: Yu
  fullname: Yu, Futong
BookMark eNp1kU1LAzEQhoMoft897tHL1nxtNrkIRbQWKl4UxEvIJrMa2SZ1sxXqrze1Cio4lxky8z4Z5j1A2yEGQOiE4BFjUp21iy6NKKZkVDNFJd1C-0QIXnJBH7Z_1HvoOKUXnKPCWKl6F-0xLoUklO2jydRBGHzrrRl8DIUJrhgH062ST0Vsi0cfbHHZ5r6HYFflOKVovRnAFbNcFD4UN8a_wxHaaU2X4PgrH6L7q8u7i-tydjuZXoxnpeVMDSWziquas0o2BJyqKkE5CAqCY0kVcRJzoDXFlispDAbGKqWggoYbhUUj2CGabrgumhe96P3c9CsdjdefD7F_0qYfvO1AA6td_kII01S8AdUQS4kSgFsK4EybWecb1mLZzMHZfIjedL-gvzvBP-un-KalYLyu1sucfgH6-LqENOi5Txa6zgSIy6SpwDXDsuYqj4rNqO1jSj202vrh8-SZ7DtNsF6bqtem6rWpemNqFuI_wu_9_pV8ALhlpXw
CitedBy_id crossref_primary_10_3390_ijms23094852
crossref_primary_10_1016_j_jhazmat_2023_131039
crossref_primary_10_1007_s42976_023_00453_8
crossref_primary_10_1016_j_cj_2022_05_004
crossref_primary_10_1371_journal_pone_0295391
Cites_doi 10.1073/pnas.94.22.11786
10.1111/risa.12064
10.1371/journal.pone.0078859
10.1073/pnas.1907181116
10.1016/B978-0-12-394276-0.00001-9
10.1093/jxb/erx237
10.1073/pnas.1005396107
10.1111/j.1365-313X.2004.02261.x
10.1073/pnas.1101419108
10.1002/2211-5463.12399
10.1111/j.1469-8137.2009.02766.x
10.1007/s00122-018-3089-3
10.1111/pce.12747
10.1104/pp.011825
10.1105/tpc.020487
10.1242/jeb.01730
10.1104/pp.125.1.456
10.1016/j.plaphy.2015.10.005
10.1016/j.jtemb.2009.05.002
10.117086/s128-018-1603-z
10.1007/s11032-010-9496-z
10.1007/BF00015299
10.1046/j.1365-313x.2000.00883.x
10.15835/nsb12310823
10.1105/tpc.109.071316
10.1146/annurev-arplant-043015-112122
10.1016/j.aninu.2016.06.003
10.1093/pcp/pct173
10.1080/17429145.2017.1392626
10.1002/jsfa.6098
10.1093/jxb/ert118
10.1007/BF00011796
10.1093/jxb/eri317
10.4161/psb.6.3.14676
10.1016/j.bbrc.2019.03.024
10.1007/s00425-003-1155-8
10.1126/science.1060331
10.1111/jipb.12794
10.1186/1471-2164-12-17
10.1016/j.plaphy.2009.01.006
10.1093/jxb/eru249
10.1007/s00122-015-2546-5
10.1007/s00018-003-3148-y
10.1186/1471-2229-12-111
10.1104/pp.113.216564
10.3945/an.112.002881
10.1016/j.jplph.2015.05.014
10.1111/j.1469-8137.2009.03177.x
10.1186/s12863-015-0176-1
10.1104/pp.104.046292
10.1111/j.1365-3040.2009.01935.x
10.1111/j.1469-8137.2008.02637.x
10.1007/s10725-010-9519-0
10.1007/s10681-017-1875-7
10.1105/tpc.109.068114
10.1093/jxb/erm142
10.1007/s11240-012-0219-5
10.1104/pp.103.026815
10.1111/tpj.13005
10.1111/j.1469-8137.2007.01996.x
10.3389/fpls.2011.00080
10.1186/1471-2229-13-114
10.1038/sj.emboj.7600295
10.1126/science.aae0382
10.1111/j.1365-313X.2011.04495.x
10.1038/s41467-018-06977-6
10.1016/j.tplants.2005.09.007
10.1016/j.tplants.2005.11.002
10.1007/s12374-018-0394-y
10.1073/pnas.1400074111
10.3389/fpls.2015.01156
10.1007/s11103-010-9637-0
10.1046/j.1469-8137.2003.00826.x
10.1074/jbc.M006185200
10.1111/nph.13413
10.1093/jxb/erv187
10.1007/s11104-008-9704-3
10.1007/s11033-011-0991-z
10.1093/jxb/47.2.217
10.1016/j.geoderma.2017.08.019
10.1134/S1021443708030175
10.1186/s12870-018-1383-5
10.32615/bp.2019.024
10.1038/nature22971
10.1111/j.1469-8137.2008.02638.x
10.1152/physrev.00035.2014
10.1111/j.1469-8137.2010.03459.x
10.1046/j.1469-8137.2000.00630.x
10.1093/jhered/esr122
10.1186/s12870-021-03127-x
10.1007/s10059-010-0069-0
10.1111/jipb.12384
10.1007/s11033-010-0058-6
10.3389/fpls.2015.01160
10.1111/j.1469-8137.2009.02784.x
10.1007/s12571-011-0140-5
10.1016/s1369-5266(99)80037-5
10.1111/plb.12837
10.1104/pp.106.085225
10.1371/journal.pone.0050568
10.3945/jn.115.220079
10.1016/j.febslet.2007.04.010
10.1093/jxb/ery107
10.1038/s41598-020-63567-7
10.1007/s00122-017-2932-2
10.1093/jxb/eru340
10.1093/jxb/erz091
10.3389/fpls.2013.00534
10.1093/jxb/40.3.405
ContentType Journal Article
Copyright Copyright © 2021 Xu, Wang, Zhu and Yu.
Copyright © 2021 Xu, Wang, Zhu and Yu. 2021 Xu, Wang, Zhu and Yu
Copyright_xml – notice: Copyright © 2021 Xu, Wang, Zhu and Yu.
– notice: Copyright © 2021 Xu, Wang, Zhu and Yu. 2021 Xu, Wang, Zhu and Yu
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2021.739282
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_e37dd9566ab54be9b1c2196e0f2eedaf
PMC8634756
10_3389_fpls_2021_739282
GrantInformation_xml – fundername: ;
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-3c94974358b1ed955624e62e6408291d804e2720c4986a0e33599e5eb4a906b63
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:09:12 EDT 2025
Thu Aug 21 13:39:52 EDT 2025
Fri Jul 11 02:16:23 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
Tue Jul 01 03:48:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-3c94974358b1ed955624e62e6408291d804e2720c4986a0e33599e5eb4a906b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Edited by: Durgesh Kumar Tripathi, Amity University, India
Reviewed by: Shutang Tan, University of Science and Technology of China, China; Kailiang Bo, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS), China
OpenAccessLink https://doaj.org/article/e37dd9566ab54be9b1c2196e0f2eedaf
PMID 34868123
PQID 2607308749
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e37dd9566ab54be9b1c2196e0f2eedaf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634756
proquest_miscellaneous_2607308749
crossref_citationtrail_10_3389_fpls_2021_739282
crossref_primary_10_3389_fpls_2021_739282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Sasaki (B75) 2014; 65
Wong (B99) 2009; 181
Hussain (B26) 2004; 16
Hindu (B25) 2018; 131
Genc (B15) 2007; 58
Luo (B57) 2015; 6
Song (B81) 2019; 63
Ueno (B88) 2010; 107
Pedas (B69) 2009; 47
Weijers (B93) 2016; 67
Rengel (B71) 1995; 176
Li (B49) 2016; 58
Shao (B78) 2018; 69
Iglesias (B27) 2011; 6
Li (B50) 2013; 13
Chen (B8) 2008; 55
Kim (B41) 1997; 94
Eren (B11) 2004; 136
Wu (B100) 2013; 33
Lee (B46) 2009; 32
Jiao (B32) 2017; 546
Alonso-Blanco (B2) 2009; 21
Cui (B10) 2014; 106
Miyadate (B62) 2011; 189
Kambe (B36) 2015; 95
King (B42) 2015; 146
Tanaka (B84) 2014; 55
Khoshgoftarmanesh (B40) 2018; 309
Impa (B28); 4
Lee (B47); 73
Graham (B17) 1992; 146
Wang (B91) 2010; 37
Khatun (B39) 2018; 20
White (B95) 2011; 2
Xing (B101) 2011; 12
Marschner (B59) 1995
Widodo (B96) 2010; 186
Yamaji (B103) 2013; 162
Wang (B90) 2021; 21
Xomphoutheb (B102) 2020; 10
Genc (B16) 2009; 314
Hacisalihoglu (B22) 2004; 218
Lim (B51) 2004; 23
Ramesh (B70) 2003; 133
Hacisalihoglu (B23) 2003; 131
Korasick (B43) 2014; 111
Rengel (B72) 1996; 47
Navarro (B64) 2006; 312
Shiferaw (B79) 2011; 3
Yang (B107) 2013; 112
Cakmak (B6) 1989; 40
Jackson (B31) 2001; 276
Normanly (B66) 1999; 2
Broadley (B3) 2007; 173
Šimić (B80) 2012; 103
Mager (B58) 2018; 18
Zhang (B109) 2019; 62
Cai (B4) 2019; 70
Liu (B54) 2011; 28
Saidi (B74) 2020; 12
Jin (B33) 2015; 16
Graham (B18) 2012; 115
Ju (B34) 2018; 18
Kabir (B35) 2017; 12
Ishimaru (B30) 2005; 56
Wang (B92) 2012; 39
Wissuwa (B97) 2006; 142
Sasaki (B76) 2015; 84
Wessells (B94) 2012; 7
Hacisalihoglu (B21) 2001; 125
Cakmak (B5) 2000; 146
Outten (B67) 2001; 292
Liu (B55) 2011; 63
Grubb (B19) 2004; 40
Zhang (B111) 2015; 66
von Behrens (B89) 2011; 66
Yancey (B106) 2005; 208
Chen (B9) 2011; 108
Mittler (B61) 2006; 11
Alloway (B1) 2008
Yan (B105) 2016; 39
Lin (B52) 2009; 182
Gainza-Cortés (B13) 2012; 12
Liu (B53) 2019; 62
Kavitha (B38) 2015; 97
Lee (B48); 29
Nielsen (B65) 2012; 3
Lee (B45) 2017; 130
Sasaki (B77) 2018; 8
Tiong (B85) 2015; 207
Tognetti (B86) 2010; 22
Cakmak (B7) 1996; 180
Swain (B82) 2016; 2
Ludwig (B56) 2013; 8
Zhang (B110) 2014; 65
Zhang (B108) 2017; 213
Hacisalihoglu (B24) 2003; 159
Ouyang (B68) 2000; 24
Mori (B63) 2016; 6
Kambe (B37) 2004; 61
Wong (B98) 2009; 181
Gu (B20) 2015; 128
Mattiello (B60) 2015; 183
Impa (B29); 64
Gachon (B12) 2005; 10
Ueno (B87) 2009; 182
Tan (B83) 2019; 512
Galli (B14) 2018; 9
Krämer (B44) 2007; 581
Roosjen (B73) 2018; 69
Yamauchi (B104) 2019; 116
References_xml – volume: 94
  start-page: 11786
  year: 1997
  ident: B41
  article-title: Protein–protein interactions among the Aux/IAA proteins.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.22.11786
– volume: 33
  start-page: 2168
  year: 2013
  ident: B100
  article-title: Global maize trade and food security: implications from a social network model.
  publication-title: Risk Anal.
  doi: 10.1111/risa.12064
– volume: 8
  year: 2013
  ident: B56
  article-title: The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078859
– volume: 116
  start-page: 20770
  year: 2019
  ident: B104
  article-title: Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1907181116
– volume: 115
  start-page: 1
  year: 2012
  ident: B18
  article-title: How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency?
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-394276-0.00001-9
– volume: 69
  start-page: 179
  year: 2018
  ident: B73
  article-title: Auxin Response Factors: output control in auxin biology.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx237
– volume: 107
  start-page: 16500
  year: 2010
  ident: B88
  article-title: Gene limiting cadmium accumulation in rice.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1005396107
– volume: 40
  start-page: 893
  year: 2004
  ident: B19
  article-title: Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02261.x
– volume: 108
  start-page: 6399
  year: 2011
  ident: B9
  article-title: Integrated soil-crop system management for food security.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1101419108
– volume: 8
  start-page: 655
  year: 2018
  ident: B77
  article-title: Disruption of the mouse Slc39a14 gene encoding zinc transporter ZIP14 is associated with decreased bone mass, likely caused by enhanced bone resorption.
  publication-title: FEBS. Open. Bio.
  doi: 10.1002/2211-5463.12399
– volume: 182
  start-page: 392
  year: 2009
  ident: B52
  article-title: Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02766.x
– volume: 131
  start-page: 1443
  year: 2018
  ident: B25
  article-title: Identification and validation of genomic regions influencing kernel zinc and iron in maize.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-018-3089-3
– volume: 39
  start-page: 1941
  year: 2016
  ident: B105
  article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12747
– volume: 131
  start-page: 595
  year: 2003
  ident: B23
  article-title: Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.011825
– volume: 16
  start-page: 1327
  year: 2004
  ident: B26
  article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.020487
– volume: 208
  start-page: 2819
  year: 2005
  ident: B106
  article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01730
– year: 2008
  ident: B1
  publication-title: Zinc in soil and crop nutrition. Belgium and Paris.
– volume: 125
  start-page: 456
  year: 2001
  ident: B21
  article-title: High- and low-affinity zinc transport systems and their Possible role in zinc efficiency in bread wheat.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.125.1.456
– volume: 97
  start-page: 165
  year: 2015
  ident: B38
  article-title: Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.).
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.10.005
– volume: 146
  start-page: 241
  year: 1992
  ident: B17
  article-title: Selecting zinc efficient cereal genotypes for soil of low zinc status.
  publication-title: Plant Soil
  doi: 10.1016/j.jtemb.2009.05.002
– volume: 18
  year: 2018
  ident: B58
  article-title: The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss.
  publication-title: BMC Plant Biol.
  doi: 10.117086/s128-018-1603-z
– volume: 28
  start-page: 463
  year: 2011
  ident: B54
  article-title: Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-010-9496-z
– volume: 180
  start-page: 165
  year: 1996
  ident: B7
  article-title: Zinc deficiency as a critical problem in wheat production in Central Anatolia.
  publication-title: Plant Soil
  doi: 10.1007/BF00015299
– volume: 24
  start-page: 327
  year: 2000
  ident: B68
  article-title: Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00883.x
– volume: 12
  start-page: 646
  year: 2020
  ident: B74
  article-title: Computational study of environmental stress-related transcription factor binding sites in the promoter regions of maize auxin response factor (ARF) gene family.
  publication-title: Not. Sci. Biol.
  doi: 10.15835/nsb12310823
– volume: 22
  start-page: 2660
  year: 2010
  ident: B86
  article-title: Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance.
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071316
– volume: 67
  start-page: 539
  year: 2016
  ident: B93
  article-title: Transcriptional responses to the auxin hormone.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-112122
– volume: 2
  start-page: 134
  year: 2016
  ident: B82
  article-title: Nano zinc, an alternative to conventional zinc as animal feed supplement: A review.
  publication-title: Anim. Nutr.
  doi: 10.1016/j.aninu.2016.06.003
– volume: 55
  start-page: 218
  year: 2014
  ident: B84
  article-title: UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct173
– volume: 12
  start-page: 447
  year: 2017
  ident: B35
  article-title: Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.).
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2017.1392626
– volume: 106
  start-page: 191
  year: 2014
  ident: B10
  article-title: Managing agricultural nutrients for food security in China: past, present, and future.
  publication-title: Agro. J.
  doi: 10.1002/jsfa.6098
– volume: 64
  start-page: 2739
  ident: B29
  article-title: Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert118
– volume: 176
  start-page: 307
  year: 1995
  ident: B71
  article-title: Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution.
  publication-title: Plant Soil
  doi: 10.1007/BF00011796
– volume: 56
  start-page: 3207
  year: 2005
  ident: B30
  article-title: OsZIP4, a novel zinc-regulated zinc transporter in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri317
– volume: 6
  start-page: 452
  year: 2011
  ident: B27
  article-title: Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress.
  publication-title: Plant Signal Behav.
  doi: 10.4161/psb.6.3.14676
– volume: 512
  start-page: 112
  year: 2019
  ident: B83
  article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.03.024
– volume: 218
  start-page: 704
  year: 2004
  ident: B22
  article-title: The role of shoot-localized processes in the mechanism of Zn efficiency in common bean.
  publication-title: Planta
  doi: 10.1007/s00425-003-1155-8
– volume: 292
  start-page: 2488
  year: 2001
  ident: B67
  article-title: Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis.
  publication-title: Science
  doi: 10.1126/science.1060331
– volume: 62
  start-page: 314
  year: 2019
  ident: B53
  article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12794
– volume: 12
  year: 2011
  ident: B101
  article-title: Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-17
– volume: 47
  start-page: 377
  year: 2009
  ident: B69
  article-title: Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2009.01.006
– volume: 65
  start-page: 4919
  year: 2014
  ident: B110
  article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru249
– volume: 128
  start-page: 1777
  year: 2015
  ident: B20
  article-title: Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-015-2546-5
– volume: 61
  start-page: 49
  year: 2004
  ident: B37
  article-title: Overview of mammalian zinc transporters.
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-003-3148-y
– volume: 12
  year: 2012
  ident: B13
  article-title: Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-111
– volume: 162
  start-page: 927
  year: 2013
  ident: B103
  article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.216564
– volume: 3
  start-page: 783
  year: 2012
  ident: B65
  article-title: History of zinc in agriculture.
  publication-title: Adv. Nutr.
  doi: 10.3945/an.112.002881
– volume: 183
  start-page: 138
  year: 2015
  ident: B60
  article-title: Zinc deficiency affects physiological and anatomical characteristics in maize leaves.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.05.014
– volume: 186
  start-page: 400
  year: 2010
  ident: B96
  article-title: Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03177.x
– volume: 16
  year: 2015
  ident: B33
  article-title: Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize.
  publication-title: BMC. Genet.
  doi: 10.1186/s12863-015-0176-1
– volume: 136
  start-page: 3712
  year: 2004
  ident: B11
  article-title: Arabidopsis HMA2, a divalent heavy metal-transporting (PIB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.046292
– volume: 32
  start-page: 408
  year: 2009
  ident: B46
  article-title: Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01935.x
– volume: 181
  start-page: 79
  year: 2009
  ident: B99
  article-title: Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02637.x
– volume: 63
  start-page: 225
  year: 2011
  ident: B55
  article-title: Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays).
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-010-9519-0
– volume: 213
  year: 2017
  ident: B108
  article-title: Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments.
  publication-title: Euphytica
  doi: 10.1007/s10681-017-1875-7
– volume: 21
  start-page: 1877
  year: 2009
  ident: B2
  article-title: What has natural variation taught us about plant development, physiology, and adaptation?
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068114
– volume: 58
  start-page: 2775
  year: 2007
  ident: B15
  article-title: A study of the role of root morphological traits in growth of barley in zinc-deficient soil.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm142
– volume: 112
  start-page: 171
  year: 2013
  ident: B107
  article-title: Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco.
  publication-title: Plant Cell Tiss. Org.
  doi: 10.1007/s11240-012-0219-5
– volume: 133
  start-page: 126
  year: 2003
  ident: B70
  article-title: Differential metal selectivity and gene expression of two zinc transporters from rice.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.026815
– volume: 84
  start-page: 374
  year: 2015
  ident: B76
  article-title: A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice.
  publication-title: Plant J.
  doi: 10.1111/tpj.13005
– volume: 173
  start-page: 677
  year: 2007
  ident: B3
  article-title: Zinc in plants.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.01996.x
– volume: 2
  year: 2011
  ident: B95
  article-title: Physiological limits to zinc biofortification of edible crops.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2011.00080
– volume: 13
  year: 2013
  ident: B50
  article-title: Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-114
– volume: 23
  start-page: 2915
  year: 2004
  ident: B51
  article-title: A class of plant glycosyltransferases involved in cellular homeostasis.
  publication-title: EMBO. J.
  doi: 10.1038/sj.emboj.7600295
– volume: 312
  start-page: 436
  year: 2006
  ident: B64
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.
  publication-title: Science
  doi: 10.1126/science.aae0382
– volume: 66
  start-page: 341
  year: 2011
  ident: B89
  article-title: Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04495.x
– volume: 9
  year: 2018
  ident: B14
  article-title: The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06977-6
– volume: 10
  start-page: 542
  year: 2005
  ident: B12
  article-title: Plant secondary metabolism glycosyltransferases: the emerging functional analysis.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.09.007
– volume: 11
  start-page: 15
  year: 2006
  ident: B61
  article-title: Abiotic stress, the field environment and stress combination.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.11.002
– volume: 62
  start-page: 217
  year: 2019
  ident: B109
  article-title: Insights into the BR2/PGP1-mediated patterns for shoot and root growth in maize early seedling development by comparative transcriptome sequencing.
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-018-0394-y
– volume: 111
  start-page: 5427
  year: 2014
  ident: B43
  article-title: Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1400074111
– volume: 6
  year: 2015
  ident: B57
  article-title: Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01156
– volume: 73
  start-page: 507
  ident: B47
  article-title: OsZIP5 is a plasma membrane zinc transporter in rice.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-010-9637-0
– volume: 159
  start-page: 341
  year: 2003
  ident: B24
  article-title: How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants.
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00826.x
– volume: 276
  start-page: 4350
  year: 2001
  ident: B31
  article-title: Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006185200
– volume: 207
  start-page: 1097
  year: 2015
  ident: B85
  article-title: Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot Translocation of Zn in barley (Hordeum vulgare).
  publication-title: New Phytol.
  doi: 10.1111/nph.13413
– volume: 66
  start-page: 3855
  year: 2015
  ident: B111
  article-title: LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv187
– volume: 314
  start-page: 49
  year: 2009
  ident: B16
  article-title: Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping.
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9704-3
– volume: 39
  start-page: 2401
  year: 2012
  ident: B92
  article-title: Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-0991-z
– volume: 47
  start-page: 217
  year: 1996
  ident: B72
  article-title: Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.2.217
– volume: 309
  start-page: 1
  year: 2018
  ident: B40
  article-title: Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance.
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.08.019
– volume: 55
  start-page: 400
  year: 2008
  ident: B8
  article-title: Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443708030175
– volume: 18
  year: 2018
  ident: B34
  article-title: Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1383-5
– volume: 63
  start-page: 210
  year: 2019
  ident: B81
  article-title: The gene OsIAA9 encoding auxin/indole-3-acetic acid proteins is a negative regulator of auxin-regulated root growth in rice.
  publication-title: Biol. Plantarum
  doi: 10.32615/bp.2019.024
– volume: 546
  start-page: 524
  year: 2017
  ident: B32
  article-title: Improved maize reference genome with single-molecule technologies.
  publication-title: Nature
  doi: 10.1038/nature22971
– volume: 181
  start-page: 71
  year: 2009
  ident: B98
  article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in
  publication-title: Arabidopsis thaliana
  doi: 10.1111/j.1469-8137.2008.02638.x
– volume: 95
  start-page: 749
  year: 2015
  ident: B36
  article-title: The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2014
– volume: 189
  start-page: 190
  year: 2011
  ident: B62
  article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03459.x
– volume: 146
  start-page: 185
  year: 2000
  ident: B5
  article-title: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00630.x
– volume: 103
  start-page: 47
  year: 2012
  ident: B80
  article-title: Quantitative trait loci for biofortification traits in maize grain.
  publication-title: J. Hered.
  doi: 10.1093/jhered/esr122
– volume: 21
  year: 2021
  ident: B90
  article-title: Exploiting natural variation in crown root traits via genome-wide association studies in maize.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-03127-x
– volume: 29
  start-page: 551
  ident: B48
  article-title: Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice.
  publication-title: Mol. Cells
  doi: 10.1007/s10059-010-0069-0
– volume: 58
  start-page: 242
  year: 2016
  ident: B49
  article-title: Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12384
– volume: 37
  start-page: 3991
  year: 2010
  ident: B91
  article-title: Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.).
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-010-0058-6
– volume: 6
  year: 2016
  ident: B63
  article-title: Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-Induced changes in the rhizosphere.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01160
– volume: 182
  start-page: 644
  year: 2009
  ident: B87
  article-title: A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa).
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02784.x
– volume: 3
  start-page: 307
  year: 2011
  ident: B79
  article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security.
  publication-title: Food Secur.
  doi: 10.1007/s12571-011-0140-5
– volume: 2
  start-page: 207
  year: 1999
  ident: B66
  article-title: Redundancy as a way of life - IAA metabolism.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/s1369-5266(99)80037-5
– volume: 20
  start-page: 765
  year: 2018
  ident: B39
  article-title: Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities.
  publication-title: Plant Biol.
  doi: 10.1111/plb.12837
– volume: 142
  start-page: 731
  year: 2006
  ident: B97
  article-title: Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.085225
– volume: 7
  year: 2012
  ident: B94
  article-title: Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050568
– volume: 146
  start-page: 858S
  year: 2015
  ident: B42
  article-title: Biomarkers of nutrition for development (BOND)-zinc review.
  publication-title: J. Nutr.
  doi: 10.3945/jn.115.220079
– volume: 581
  start-page: 2263
  year: 2007
  ident: B44
  article-title: Transition metal transport.
  publication-title: FEBS. Lett.
  doi: 10.1016/j.febslet.2007.04.010
– volume: 69
  start-page: 2743
  year: 2018
  ident: B78
  article-title: Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery107
– volume: 10
  year: 2020
  ident: B102
  article-title: The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63567-7
– year: 1995
  ident: B59
  publication-title: Mineral Nutrition of Higher Plants.
– volume: 130
  start-page: 1903
  year: 2017
  ident: B45
  article-title: Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-017-2932-2
– volume: 65
  start-page: 6013
  year: 2014
  ident: B75
  article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru340
– volume: 70
  start-page: 2717
  year: 2019
  ident: B4
  article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz091
– volume: 4
  ident: B28
  article-title: Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.).
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00534
– volume: 40
  start-page: 405
  year: 1989
  ident: B6
  article-title: Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.).
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/40.3.405
SSID ssj0000500997
Score 2.323005
Snippet Zinc (Zn) deficiency, a globally predominant micronutrient disorder in crops and humans, reduces crop yields and adversely impacts human health. Despite...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 739282
SubjectTerms candidate genes
maize (Zea mays L.)
Plant Science
quantitative trait locus (QTL)
zinc (Zn) deficiency tolerance
ZRT/IRT-like protein (ZIP)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeIrykpFYGELzcBx7pKilQpSJShVLZDsXUalKK9QO8Ou5y6NqFljYosSRne_i83d-fMfYLQYVoXVWebkyoSe0IT_oaK-rRXYukYHnNA85fpWjiXiextOtVF-0J6ySB66A60GUZBmSeGlsLCxoGzjsZBL8PET3bnLyvjjmbQVTlao3UZ-kWpfEKEz38uWc1LnD4D5BSqDC1jhUyvW3OGZ7h-TWkDM8YPs1V-QPVRsP2Q4UR2y3v0A-93XMnqoztnk96cZNkfFGYoQvcv4-KxwflAoRdLzSawwBGX_BCz4r-NjMvuGETYaDt8eRV6dF8Byyh5UXOS0wCohiZQNAaJDBCJAhyDJ3dJApXwCtrjqhlTQ-RFGsNcRghdG-tDI6ZZ1iUcAZ4xjd-TaPfOECEEkmtQptYJVTPkiF0VmX9RqQUldrhlPqinmKsQPBmhKsKcGaVrB22d3mjWWll_FL2T7hvilHStflDbR_Wts__cv-XXbTWC3FnkHLHaaAxRprkuS-VCJ0lyUtc7ZqbD8pZh-lxraSkUhief4fTbxge_TVdIIxiC9ZZ_W5hiukMit7Xf61P6758io
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification and Analysis of Zinc Efficiency-Associated Loci in Maize
URI https://www.proquest.com/docview/2607308749
https://pubmed.ncbi.nlm.nih.gov/PMC8634756
https://doaj.org/article/e37dd9566ab54be9b1c2196e0f2eedaf
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqyoELolDEAkWu1AuHQB7OxD4gVCoeqrqcWGnVS2Q7E1hplWy3iwT8emaSLDQSQr1EUeLY8kzs-cb2fCPEN3IqYuedDkpt40AZy_Og57OujtA5EAIveR1yeA1XI_VznI5fw6M7Af5907XjfFKj-fTo4c_jKQ34E_Y4yd4el7MpE2_H0VFG1l7ThPyR7FLGw3TYgf2W6ZvhUJNtBUAFCuJxu2_5ZiU9O9XQ-fcwaP8E5T8m6WJDrHdYUn5vlf9JfMBqU6ye1YT3HrfEZRuDW3aLctJWhVxSkMi6lL8nlZfnDYMEh18GS0VhIX_RjZxUcmgnT_hZjC7Ob35cBV3ahMATulgEiTeKvIQk1S7CwqSEcBRCjNDklo4KHSrk3VevjAYbYpKkxmCKTlkTgoNkW6xUdYU7QpL3F7oyCZWPUGUFGB27yGmvQwRN3ttAHC-FlPuOU5xTW0xz8i1YrDmLNWex5q1YB-Lw5YtZy6fxTtkzlvtLOWbCbh7U89u8G1g5JllBnQSwLlUOjYs8TcKAYRmT-bflQHxdai2nkcPbIbbC-p5aAp7edKbMQGQ9dfZa7L-pJncNB7eGRGUp7P5H7XtijTvFAYxRui9WFvN7_EJIZuEOmhUAul6Oo4PmZ30GGibxew
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+Analysis+of+Zinc+Efficiency-Associated+Loci+in+Maize&rft.jtitle=Frontiers+in+plant+science&rft.au=Xu%2C+Jianqin&rft.au=Wang%2C+Xuejie&rft.au=Zhu%2C+Huaqing&rft.au=Yu%2C+Futong&rft.date=2021-11-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft.spage=739282&rft_id=info:doi/10.3389%2Ffpls.2021.739282&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon