New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like...
Saved in:
Published in | Applied and environmental microbiology Vol. 84; no. 8; p. e02773-17 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of
Actinobacteria
,
Proteobacteria
, and
Bacteroidetes
. Within the
Proteobacteria
, the
Betaproteobacteria
,
Deltaproteobacteria
, and
Gammaproteobacteria
were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum
Bacteroidetes
appear to be the main hosts of PET hydrolase genes, rather than
Actinobacteria
or
Proteobacteria
, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.
IMPORTANCE
Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. |
---|---|
AbstractList | Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes . Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of<named-content content-type='genus-species'>Actinobacteria</named-content>,<named-content content-type='genus-species'>Proteobacteria</named-content>, and<named-content content-type='genus-species'>Bacteroidetes</named-content>. Within the<named-content content-type='genus-species'>Proteobacteria</named-content>, the<named-content content-type='genus-species'>Betaproteobacteria</named-content>,<named-content content-type='genus-species'>Deltaproteobacteria</named-content>, and<named-content content-type='genus-species'>Gammaproteobacteria</named-content>were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum<named-content content-type='genus-species'>Bacteroidetes</named-content>appear to be the main hosts of PET hydrolase genes, rather than<named-content content-type='genus-species'>Actinobacteria</named-content>or<named-content content-type='genus-species'>Proteobacteria</named-content>, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCEPolyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of , , and Within the , the , , and were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum appear to be the main hosts of PET hydrolase genes, rather than or , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. |
Author | Zimmermann, Wolfgang Hazen, Terry Wei, Ren Li, Xiangzhen Leggewie, Christian Schmeisser, Christel Streit, Wolfgang R. Danso, Dominik Chow, Jennifer |
Author_xml | – sequence: 1 givenname: Dominik surname: Danso fullname: Danso, Dominik organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany – sequence: 2 givenname: Christel surname: Schmeisser fullname: Schmeisser, Christel organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany – sequence: 3 givenname: Jennifer surname: Chow fullname: Chow, Jennifer organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany – sequence: 4 givenname: Wolfgang orcidid: 0000-0002-5730-6663 surname: Zimmermann fullname: Zimmermann, Wolfgang organization: Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Leipzig, Germany – sequence: 5 givenname: Ren surname: Wei fullname: Wei, Ren organization: Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Leipzig, Germany – sequence: 6 givenname: Christian surname: Leggewie fullname: Leggewie, Christian organization: evoxx technologies GmbH, Monheim am Rhein, Germany – sequence: 7 givenname: Xiangzhen surname: Li fullname: Li, Xiangzhen organization: Chengdu Institute of Biology, Chengdu, China – sequence: 8 givenname: Terry orcidid: 0000-0002-2536-9993 surname: Hazen fullname: Hazen, Terry organization: The University of Tennessee, Knoxville, Tennessee, USA – sequence: 9 givenname: Wolfgang R. surname: Streit fullname: Streit, Wolfgang R. organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29427431$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1468057$$D View this record in Osti.gov |
BookMark | eNptksFu1DAQhi1URLeFG2dkwaVIpNixkzgXpNJuS6Uu9LCcLceZbFxl7cV2QMvL8Ko4uy2CitNY9jf_P-OZI3RgnQWEXlJySmku3p_NF6ckryqW0eoJmlFSi6xgrDxAM0LqOstzTg7RUQh3hBBOSvEMHeY1zyvO6Az9-gw_8LUNZtXHgI2NDsce8OVodTTOYmVbfDW4Rg34woToTTPu7l2Hb92whdhvB7CAl-Bh08deDSoCPrmdL99mF7DyqjV2hT8qHcEbtZOb25_bNUxmeKG8ScnTbRLwMBkkpwVEtQLrEvUcPe3UEODFfTxGXy_ny_NP2c2Xq-vzs5tMc1bHjHGgmpYg2pY0rVJNzjnpVFEUTAmWawGaCy0EgzJF1oFOp0TWE9BWNTtGH_a6m7FZQ6vBRq8GufFmrfxWOmXkvy_W9HLlvstCCEp4mQRe7wVciEYGbSLoXjtrQUdJeSlIUSXo5N7Fu29jaleuTdAwDMqCG4PMCaGkpJTQhL55hN650dv0B4mq0rwJrybq1d9l_6n3YcAJyPeA9i4ED51MlalphKkLM0hK5LRFMm2R3G2RpFOZ7x4lPej-F_8Ni2fKCA |
CitedBy_id | crossref_primary_10_1016_j_csbj_2023_06_004 crossref_primary_10_3390_bioengineering9030098 crossref_primary_10_1017_plc_2024_26 crossref_primary_10_1128_mSystems_01112_20 crossref_primary_10_1186_s40168_021_01054_5 crossref_primary_10_1016_j_jics_2022_100821 crossref_primary_10_1007_s11356_023_25192_5 crossref_primary_10_1007_s12275_022_2313_7 crossref_primary_10_1016_j_matpr_2022_02_308 crossref_primary_10_1038_s41467_024_45523_5 crossref_primary_10_1016_j_jhazmat_2023_133173 crossref_primary_10_1002_mbo3_855 crossref_primary_10_18006_2022_10_1__171_189 crossref_primary_10_1016_j_tim_2023_04_002 crossref_primary_10_1371_journal_pone_0300503 crossref_primary_10_3390_polym13223885 crossref_primary_10_1215_22011919_9712379 crossref_primary_10_1080_07391102_2024_2440646 crossref_primary_10_1002_cctc_202400765 crossref_primary_10_1016_j_polymertesting_2019_04_029 crossref_primary_10_1016_j_chemosphere_2024_141271 crossref_primary_10_1021_acscatal_1c01204 crossref_primary_10_1111_1744_7917_13417 crossref_primary_10_1186_s12934_020_01355_8 crossref_primary_10_3389_fmicb_2022_888343 crossref_primary_10_1111_febs_16924 crossref_primary_10_1016_j_jhazmat_2024_134532 crossref_primary_10_1002_nadc_20204096378 crossref_primary_10_1002_adma_202210154 crossref_primary_10_1038_s41586_024_07891_2 crossref_primary_10_1007_s11356_020_08831_z crossref_primary_10_1016_j_jece_2023_110092 crossref_primary_10_3390_genes10050373 crossref_primary_10_1007_s11157_024_09688_1 crossref_primary_10_1134_S0026261720010154 crossref_primary_10_1128_AEM_01842_21 crossref_primary_10_1016_j_biotechadv_2021_107811 crossref_primary_10_3389_fbioe_2021_656465 crossref_primary_10_1111_febs_14612 crossref_primary_10_3389_fbioe_2021_696040 crossref_primary_10_1021_acscatal_8b05171 crossref_primary_10_1038_s41396_020_00814_9 crossref_primary_10_2174_1872208314666200311104541 crossref_primary_10_1007_s10924_024_03223_7 crossref_primary_10_1038_s41598_021_83659_2 crossref_primary_10_3390_catal11020206 crossref_primary_10_1007_s11274_024_03972_6 crossref_primary_10_2174_1389202921999200525155711 crossref_primary_10_3389_fmicb_2022_812143 crossref_primary_10_1002_ange_202216963 crossref_primary_10_1016_j_jece_2023_109434 crossref_primary_10_1016_j_micres_2023_127507 crossref_primary_10_1016_j_tibtech_2024_08_013 crossref_primary_10_1021_acsomega_4c05488 crossref_primary_10_1016_j_cscee_2024_100640 crossref_primary_10_1016_j_jhazmat_2022_130714 crossref_primary_10_1007_s12268_022_1828_0 crossref_primary_10_1111_1462_2920_15774 crossref_primary_10_1038_s41467_022_35237_x crossref_primary_10_1038_s42004_024_01154_x crossref_primary_10_1016_j_jhazmat_2025_137177 crossref_primary_10_1021_acssuschemeng_0c01638 crossref_primary_10_1002_anie_202203061 crossref_primary_10_1093_protein_gzad022 crossref_primary_10_1016_j_isci_2022_104326 crossref_primary_10_1271_kagakutoseibutsu_58_362 crossref_primary_10_1016_j_envres_2021_111762 crossref_primary_10_1021_acs_biochem_3c00554 crossref_primary_10_1038_s41579_019_0308_0 crossref_primary_10_3390_su142315898 crossref_primary_10_1016_j_trac_2024_117971 crossref_primary_10_1111_1462_2920_16516 crossref_primary_10_1002_mbo3_1259 crossref_primary_10_1080_10889868_2022_2054931 crossref_primary_10_3390_insects16020165 crossref_primary_10_1016_j_jenvman_2023_118710 crossref_primary_10_1016_j_ymben_2021_03_011 crossref_primary_10_1021_acssuschemeng_2c01093 crossref_primary_10_1111_1751_7915_13288 crossref_primary_10_1111_1751_7915_14135 crossref_primary_10_1016_j_jhazmat_2024_135380 crossref_primary_10_1007_s00253_024_13222_2 crossref_primary_10_1016_j_envint_2023_108349 crossref_primary_10_1007_s10529_023_03418_3 crossref_primary_10_1080_02705060_2021_2002735 crossref_primary_10_1146_annurev_marine_010419_010633 crossref_primary_10_1186_s40793_024_00621_1 crossref_primary_10_1002_cbic_202300373 crossref_primary_10_1128_AEM_01095_19 crossref_primary_10_1016_j_biortech_2024_131556 crossref_primary_10_1016_j_scitotenv_2021_146184 crossref_primary_10_1016_j_copbio_2023_102938 crossref_primary_10_1016_j_synbio_2022_11_001 crossref_primary_10_3389_fmicb_2023_1127308 crossref_primary_10_1111_febs_16958 crossref_primary_10_1016_j_tibtech_2021_02_008 crossref_primary_10_1002_cbic_202000767 crossref_primary_10_1093_database_baz119 crossref_primary_10_1016_j_mimet_2021_106222 crossref_primary_10_1016_j_jhazmat_2024_136389 crossref_primary_10_1021_acs_estlett_1c00843 crossref_primary_10_1016_j_envres_2022_113472 crossref_primary_10_1007_s10532_023_10031_8 crossref_primary_10_1126_science_adp5637 crossref_primary_10_1007_s10562_020_03476_6 crossref_primary_10_1371_journal_pone_0232745 crossref_primary_10_1111_1751_7915_14479 crossref_primary_10_35534_sbe_2024_10009 crossref_primary_10_1111_1462_2920_15409 crossref_primary_10_1007_s11157_022_09631_2 crossref_primary_10_1002_ange_202203061 crossref_primary_10_1016_j_scitotenv_2024_174978 crossref_primary_10_1038_s41428_020_00396_5 crossref_primary_10_1093_jimb_kuae050 crossref_primary_10_1016_j_envres_2023_117427 crossref_primary_10_1038_s41467_023_40233_w crossref_primary_10_1016_j_clce_2022_100017 crossref_primary_10_1049_enb2_12020 crossref_primary_10_3390_su151914184 crossref_primary_10_3390_ijms25158120 crossref_primary_10_3390_ijms232012644 crossref_primary_10_1002_cssc_202100740 crossref_primary_10_1002_anie_202216963 crossref_primary_10_1007_s00128_021_03201_y crossref_primary_10_1039_D2GC02588D crossref_primary_10_3390_catal14060379 crossref_primary_10_3390_molecules29061338 crossref_primary_10_3389_fmicb_2019_01744 crossref_primary_10_3389_fmicb_2020_580709 crossref_primary_10_1016_j_bej_2023_108837 crossref_primary_10_1016_j_scitotenv_2024_177032 crossref_primary_10_3390_fermentation9010027 crossref_primary_10_1016_j_apcatb_2023_123404 crossref_primary_10_1002_cbic_202300578 crossref_primary_10_1016_j_scitotenv_2023_167850 crossref_primary_10_1039_D3RA01708G crossref_primary_10_1002_advs_202001121 crossref_primary_10_1016_j_cej_2022_141230 crossref_primary_10_1016_j_jhazmat_2021_128086 crossref_primary_10_1002_jctb_6675 crossref_primary_10_3389_fmicb_2019_00865 crossref_primary_10_1016_j_mec_2024_e00250 crossref_primary_10_1016_j_syapm_2023_126485 crossref_primary_10_1002_elsc_202300207 crossref_primary_10_1016_j_jhazmat_2021_125928 crossref_primary_10_1016_j_biortech_2022_127931 crossref_primary_10_1016_j_scitotenv_2024_177360 crossref_primary_10_1093_femsre_fuae027 crossref_primary_10_13005_bbra_3063 crossref_primary_10_1016_j_ijbiomac_2021_03_058 crossref_primary_10_1016_j_mec_2024_e00248 crossref_primary_10_3390_ijms222011257 crossref_primary_10_3389_fmicb_2022_845562 crossref_primary_10_1016_j_chemosphere_2024_141451 crossref_primary_10_1016_j_ecoenv_2023_114982 crossref_primary_10_1021_acscatal_1c01062 crossref_primary_10_1080_07391102_2023_2292292 crossref_primary_10_1038_s41467_023_39929_w crossref_primary_10_1007_s13205_023_03882_8 crossref_primary_10_1128_aem_00721_22 crossref_primary_10_1002_pro_4500 crossref_primary_10_1371_journal_pbio_3001389 crossref_primary_10_1016_j_jhazmat_2025_137727 crossref_primary_10_1021_acs_est_4c01495 crossref_primary_10_1002_cssc_202101062 crossref_primary_10_1016_j_scitotenv_2023_162022 crossref_primary_10_1021_acs_est_0c02305 crossref_primary_10_1073_pnas_2006753117 crossref_primary_10_3389_fmicb_2021_803896 crossref_primary_10_3390_catal13091234 crossref_primary_10_1016_j_chemosphere_2021_131670 crossref_primary_10_1016_j_jhazmat_2025_137729 crossref_primary_10_3389_fmars_2022_945822 crossref_primary_10_1007_s12268_021_1591_7 crossref_primary_10_1007_s10924_022_02683_z crossref_primary_10_1016_j_rsma_2022_102647 crossref_primary_10_1016_j_scitotenv_2021_145111 crossref_primary_10_1016_j_jenvman_2024_122543 crossref_primary_10_4014_jmb_2404_04030 crossref_primary_10_1007_s13205_023_03555_6 crossref_primary_10_1016_j_bcab_2021_102263 crossref_primary_10_1016_j_scitotenv_2022_160108 crossref_primary_10_1007_s11756_022_01225_1 crossref_primary_10_1016_j_ijbiomac_2024_137732 crossref_primary_10_3389_fmicb_2022_1113705 crossref_primary_10_3390_ijms24043877 crossref_primary_10_1128_mSphere_01151_20 crossref_primary_10_1111_1462_2920_16460 crossref_primary_10_1021_acs_chemrev_2c00644 crossref_primary_10_1016_j_jhazmat_2022_128453 crossref_primary_10_1016_j_envpol_2021_116554 crossref_primary_10_1111_1462_2920_16466 crossref_primary_10_3389_fmicb_2023_1170880 crossref_primary_10_1016_j_crmicr_2022_100159 crossref_primary_10_1016_j_hazadv_2025_100629 crossref_primary_10_3389_fmicb_2020_00114 crossref_primary_10_3390_microorganisms12010138 crossref_primary_10_1038_s41929_021_00616_y crossref_primary_10_1016_j_enzmictec_2021_109868 crossref_primary_10_1016_j_greenca_2025_02_003 crossref_primary_10_1016_j_engmic_2022_100020 crossref_primary_10_1016_j_wasman_2025_01_040 crossref_primary_10_1007_s10311_024_01714_6 crossref_primary_10_1038_s41598_022_22383_x crossref_primary_10_31857_S0134347523040058 crossref_primary_10_1111_mec_16110 crossref_primary_10_1016_j_copbio_2021_09_015 crossref_primary_10_1021_acs_jafc_8b05038 crossref_primary_10_1016_j_joule_2021_06_015 crossref_primary_10_1039_D2GC02244C crossref_primary_10_3390_md22100441 crossref_primary_10_1186_s40793_022_00430_4 crossref_primary_10_1016_j_jenvman_2023_119433 crossref_primary_10_1016_j_psep_2023_06_013 crossref_primary_10_1111_1751_7915_14182 crossref_primary_10_3390_ijms242216434 crossref_primary_10_3389_fmicb_2022_868839 crossref_primary_10_33073_pjm_2023_045 crossref_primary_10_1016_j_jhazmat_2024_136540 crossref_primary_10_1128_spectrum_02296_21 crossref_primary_10_1021_acscatal_1c05856 crossref_primary_10_1016_j_ecz_2024_100008 crossref_primary_10_1016_j_scitotenv_2025_179075 crossref_primary_10_1021_acs_est_3c07717 crossref_primary_10_1016_j_jece_2021_106277 crossref_primary_10_3389_fmicb_2020_571265 crossref_primary_10_1016_j_polymdegradstab_2024_111161 crossref_primary_10_1111_1751_7915_13418 crossref_primary_10_1016_j_jhazmat_2023_131574 crossref_primary_10_1007_s12268_022_1848_9 crossref_primary_10_1016_j_jhazmat_2023_132789 crossref_primary_10_1089_cmb_2019_0345 crossref_primary_10_1021_acs_est_9b02212 crossref_primary_10_1128_aem_01603_22 crossref_primary_10_1016_j_envpol_2024_125572 crossref_primary_10_1016_j_coisb_2024_100515 crossref_primary_10_1016_j_biortech_2021_126058 crossref_primary_10_1007_s11270_023_06190_2 crossref_primary_10_1016_j_chemosphere_2022_133709 crossref_primary_10_1038_s42004_023_00998_z crossref_primary_10_1016_j_jhazmat_2024_137064 crossref_primary_10_1038_s41570_020_0163_6 crossref_primary_10_3389_fmicb_2019_02187 crossref_primary_10_1002_cssc_202402593 crossref_primary_10_1134_S0026261721060084 crossref_primary_10_1016_j_tibtech_2023_03_016 crossref_primary_10_3390_ijms24032780 crossref_primary_10_1007_s11356_024_35472_3 crossref_primary_10_3390_polym15061581 crossref_primary_10_1134_S1063074023040053 crossref_primary_10_1038_s41522_023_00440_1 crossref_primary_10_1016_j_ymben_2021_12_006 crossref_primary_10_1016_j_ese_2020_100065 crossref_primary_10_3389_fmicb_2021_777727 |
Cites_doi | 10.1002/bit.25941 10.1016/B978-0-12-800259-9.00007-X 10.1016/j.copbio.2009.05.004 10.1016/j.polymdegradstab.2012.02.003 10.1007/s00253-010-2555-x 10.1186/s13568-014-0044-9 10.1128/AEM.06725-11 10.1016/S0022-2836(83)80284-8 10.1093/molbev/mst197 10.1007/s00248-010-9766-7 10.1007/s00449-006-0069-9 10.1093/nar/28.1.235 10.1006/jmbi.2000.4042 10.1021/es504038a 10.1007/BF02602814 10.1111/j.1365-2958.2010.07473.x 10.1111/1751-7915.12710 10.1074/jbc.M800848200 10.1016/j.molcatb.2013.08.010 10.3390/polym4010617 10.1021/ma200949p 10.1289/ehp.0901253 10.1371/journal.pcbi.1004957 10.1016/j.pep.2005.01.016 10.3389/fmicb.2011.00093 10.1007/s00253-011-3781-6 10.1098/rstb.2008.0265 10.1093/nar/gkw1099 10.1128/AEM.64.5.1731-1735.1998 10.1007/s00253-014-5672-0 10.1021/acs.est.5b02661 10.3390/polym5010001 10.1093/protein/5.3.197 10.1126/science.aad6359 10.1038/nmeth.3176 10.1007/s00253-014-5860-y 10.1007/s10295-009-0562-7 10.1007/s00018-016-2242-x 10.1093/nar/gkw1071 10.1186/1471-2105-15-7 10.1093/nar/gkr1044 10.1093/nar/gkv1290 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Danso et al. Copyright American Society for Microbiology Apr 15, 2018 Copyright © 2018 Danso et al. 2018 Danso et al. |
Copyright_xml | – notice: Copyright © 2018 Danso et al. – notice: Copyright American Society for Microbiology Apr 15, 2018 – notice: Copyright © 2018 Danso et al. 2018 Danso et al. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1128/AEM.02773-17 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
DocumentTitleAlternate | PET Hydrolases from Metagenomes |
EISSN | 1098-5336 |
ExternalDocumentID | PMC5881046 1468057 29427431 10_1128_AEM_02773_17 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: ERA-IB-14-030; 01142848 – fundername: ; grantid: 634486 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM NPM OK1 RHF UCJ Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 AAPBV ABPTK ABRJW OIOZB OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c439t-34e1c16e8dd0bdaab2440fa5553a832c8ec48c883e648c3fec3e60bd9553ad793 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:33:30 EDT 2025 Thu May 18 22:39:09 EDT 2023 Thu Jul 10 17:40:08 EDT 2025 Mon Jun 30 08:28:37 EDT 2025 Wed Feb 19 02:32:50 EST 2025 Tue Jul 01 02:20:11 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | polyethylene terephthalate (PET) PET degradation metagenome TPA hydrolases HMM BHET metagenomes metagenomic screening |
Language | English |
License | Copyright © 2018 Danso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-34e1c16e8dd0bdaab2440fa5553a832c8ec48c883e648c3fec3e60bd9553ad793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC05-00OR22725; AC02-05CH11231 USDOE Office of Science (SC) Citation Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol 84:e02773-17. https://doi.org/10.1128/AEM.02773-17. |
ORCID | 0000-0002-5730-6663 0000-0002-2536-9993 0000000257306663 0000000225369993 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5881046 |
PMID | 29427431 |
PQID | 2072770471 |
PQPubID | 42251 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881046 osti_scitechconnect_1468057 proquest_miscellaneous_2001061101 proquest_journals_2072770471 pubmed_primary_29427431 crossref_citationtrail_10_1128_AEM_02773_17 crossref_primary_10_1128_AEM_02773_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-15 |
PublicationDateYYYYMMDD | 2018-04-15 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_22_2 doi: 10.1002/bit.25941 – ident: e_1_3_3_17_2 doi: 10.1016/B978-0-12-800259-9.00007-X – ident: e_1_3_3_29_2 doi: 10.1016/j.copbio.2009.05.004 – ident: e_1_3_3_23_2 doi: 10.1016/j.polymdegradstab.2012.02.003 – ident: e_1_3_3_11_2 doi: 10.1007/s00253-010-2555-x – ident: e_1_3_3_10_2 doi: 10.1186/s13568-014-0044-9 – ident: e_1_3_3_15_2 doi: 10.1128/AEM.06725-11 – ident: e_1_3_3_24_2 doi: 10.1016/S0022-2836(83)80284-8 – ident: e_1_3_3_39_2 doi: 10.1093/molbev/mst197 – ident: e_1_3_3_30_2 doi: 10.1007/s00248-010-9766-7 – ident: e_1_3_3_8_2 doi: 10.1007/s00449-006-0069-9 – ident: e_1_3_3_38_2 doi: 10.1093/nar/28.1.235 – ident: e_1_3_3_40_2 doi: 10.1006/jmbi.2000.4042 – ident: e_1_3_3_20_2 doi: 10.1021/es504038a – ident: e_1_3_3_27_2 doi: 10.1007/BF02602814 – ident: e_1_3_3_32_2 doi: 10.1111/j.1365-2958.2010.07473.x – ident: e_1_3_3_6_2 doi: 10.1111/1751-7915.12710 – ident: e_1_3_3_9_2 doi: 10.1074/jbc.M800848200 – ident: e_1_3_3_25_2 doi: 10.1016/j.molcatb.2013.08.010 – ident: e_1_3_3_12_2 doi: 10.3390/polym4010617 – ident: e_1_3_3_13_2 doi: 10.1021/ma200949p – ident: e_1_3_3_2_2 – ident: e_1_3_3_5_2 doi: 10.1289/ehp.0901253 – ident: e_1_3_3_43_2 doi: 10.1371/journal.pcbi.1004957 – ident: e_1_3_3_44_2 doi: 10.1016/j.pep.2005.01.016 – ident: e_1_3_3_33_2 doi: 10.3389/fmicb.2011.00093 – ident: e_1_3_3_31_2 doi: 10.1007/s00253-011-3781-6 – ident: e_1_3_3_3_2 doi: 10.1098/rstb.2008.0265 – ident: e_1_3_3_36_2 doi: 10.1093/nar/gkw1099 – ident: e_1_3_3_16_2 doi: 10.1128/AEM.64.5.1731-1735.1998 – ident: e_1_3_3_18_2 doi: 10.1007/s00253-014-5672-0 – ident: e_1_3_3_21_2 doi: 10.1021/acs.est.5b02661 – ident: e_1_3_3_4_2 doi: 10.3390/polym5010001 – ident: e_1_3_3_19_2 doi: 10.1093/protein/5.3.197 – ident: e_1_3_3_14_2 doi: 10.1126/science.aad6359 – ident: e_1_3_3_42_2 doi: 10.1038/nmeth.3176 – ident: e_1_3_3_7_2 doi: 10.1007/s00253-014-5860-y – ident: e_1_3_3_26_2 doi: 10.1007/s10295-009-0562-7 – ident: e_1_3_3_34_2 doi: 10.1007/s00018-016-2242-x – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkw1071 – ident: e_1_3_3_41_2 doi: 10.1186/1471-2105-15-7 – ident: e_1_3_3_28_2 doi: 10.1093/nar/gkr1044 – ident: e_1_3_3_37_2 doi: 10.1093/nar/gkv1290 |
SSID | ssj0004068 |
Score | 2.6582298 |
Snippet | Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no... ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e02773-17 |
SubjectTerms | Actinobacteria Algorithms Amino acids Bacteria Bacteroidetes BASIC BIOLOGICAL SCIENCES Biodegradation Clustering Crude oil Data processing Degradation Enzymes Gene expression Genes Genomes Hydrolase Marine environment Microorganisms Polyethylene Polyethylene terephthalate Polymers Proteobacteria Search algorithms |
Title | New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29427431 https://www.proquest.com/docview/2072770471 https://www.proquest.com/docview/2001061101 https://www.osti.gov/servlets/purl/1468057 https://pubmed.ncbi.nlm.nih.gov/PMC5881046 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEQIeEJRb2UBGYhKoykhzq_M4SqeBVDSJTuwtShyHVmqTqs0euj_Db-QfcI4vqTsVCfaSVo7rRDpffb5jn_OZkHd-BmHHwIucAvyfE0QQoLCcx06_CF1e-FHoS-3O8bfo7CL4ehletlq_raylqzo75td760puY1VoA7tilex_WLYZFBrgO9gXrmBhuP6TjTE58Uu5xvga06o0jTwFV1WbLGOl6Y8im83RVjrtbSPARuBzRG8iVmI5rafpHIgnUs7z0eTIi53PKCQhi14-KU1nWb_VG5XXm4XM48JKH2Sp2AqD4DEfK1XsW6co_mqqS4zKrWa82N0qsMP6ldlWD2q7dl6uK8XxUf-kqSj6zqcLIbMItuIIoskTGU7VZpXJ2mkWxme4Qr_QR0L_qObFz1Q7bb3m0We4faOqPq0yA5z_rMzW8c031TN-HDtIW5S_U5M8aqgCzY1sL6AOqtNoZ_udi4cFEyej8TFufKOyq90NoLFcSKB5ceAhMdu62Cbx8Xw8DBnDffU75C4M4nlmgcmU8roRM8Kp-NqmVsNjH-0Ho4a1fsoOoWpX4Bj2BUs3c34tEjV5TB7p6IeeKCg_IS1Rdsg9dR7qpkPumzL5dYc8tJQyn5JfAHVqoE4R6hSgTg3UKUCKKqhTG-q0KqgNdboDdfoegP5hC3NqYC6H0zCHh1EFc9lqwZxaMH9GLk5Hk-GZo88WcThQ8NrxA9Hn_UiwPHezPE0zoLlukYZh6Kfg5DgTPGCcMV9E8OkXgsM36Bljhxyc2nPSLqtSvCQ0CjNX5AEPhFsEbhpkfaCDqR-nbshhhLxLesZACdfC-3j-yzyRAbjHErBsIi2b9AddctT0XirBmb_0O0BbJ0CUUe2ZY1ocrzGSZxCCdcmhgUCiJ6x14rkQrAxcoKNd8ra5De4E9wjTUlRX2EcuEoGj7pIXCjHNaxjEdclgB0tNB5Sq371TzqZSsl6D_tWtf3lAHmwngkPSrldX4jWEA3X2Rv6B_gCEmBOi |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Insights+into+the+Function+and+Global+Distribution+of+Polyethylene+Terephthalate+%28PET%29-Degrading+Bacteria+and+Enzymes+in+Marine+and+Terrestrial+Metagenomes&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Danso%2C+Dominik&rft.au=Schmeisser%2C+Christel&rft.au=Chow%2C+Jennifer&rft.au=Zimmermann%2C+Wolfgang&rft.date=2018-04-15&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=84&rft.issue=8&rft_id=info:doi/10.1128%2FAEM.02773-17&rft_id=info%3Apmid%2F29427431&rft.externalDocID=PMC5881046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |