New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes

Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 84; no. 8; p. e02773-17
Main Authors Danso, Dominik, Schmeisser, Christel, Chow, Jennifer, Zimmermann, Wolfgang, Wei, Ren, Leggewie, Christian, Li, Xiangzhen, Hazen, Terry, Streit, Wolfgang R.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes . Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.
AbstractList Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes . Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.
ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of<named-content content-type='genus-species'>Actinobacteria</named-content>,<named-content content-type='genus-species'>Proteobacteria</named-content>, and<named-content content-type='genus-species'>Bacteroidetes</named-content>. Within the<named-content content-type='genus-species'>Proteobacteria</named-content>, the<named-content content-type='genus-species'>Betaproteobacteria</named-content>,<named-content content-type='genus-species'>Deltaproteobacteria</named-content>, and<named-content content-type='genus-species'>Gammaproteobacteria</named-content>were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum<named-content content-type='genus-species'>Bacteroidetes</named-content>appear to be the main hosts of PET hydrolase genes, rather than<named-content content-type='genus-species'>Actinobacteria</named-content>or<named-content content-type='genus-species'>Proteobacteria</named-content>, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCEPolyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of , , and Within the , the , , and were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum appear to be the main hosts of PET hydrolase genes, rather than or , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases.
Author Zimmermann, Wolfgang
Hazen, Terry
Wei, Ren
Li, Xiangzhen
Leggewie, Christian
Schmeisser, Christel
Streit, Wolfgang R.
Danso, Dominik
Chow, Jennifer
Author_xml – sequence: 1
  givenname: Dominik
  surname: Danso
  fullname: Danso, Dominik
  organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
– sequence: 2
  givenname: Christel
  surname: Schmeisser
  fullname: Schmeisser, Christel
  organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
– sequence: 3
  givenname: Jennifer
  surname: Chow
  fullname: Chow, Jennifer
  organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
– sequence: 4
  givenname: Wolfgang
  orcidid: 0000-0002-5730-6663
  surname: Zimmermann
  fullname: Zimmermann, Wolfgang
  organization: Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Leipzig, Germany
– sequence: 5
  givenname: Ren
  surname: Wei
  fullname: Wei, Ren
  organization: Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Leipzig, Germany
– sequence: 6
  givenname: Christian
  surname: Leggewie
  fullname: Leggewie, Christian
  organization: evoxx technologies GmbH, Monheim am Rhein, Germany
– sequence: 7
  givenname: Xiangzhen
  surname: Li
  fullname: Li, Xiangzhen
  organization: Chengdu Institute of Biology, Chengdu, China
– sequence: 8
  givenname: Terry
  orcidid: 0000-0002-2536-9993
  surname: Hazen
  fullname: Hazen, Terry
  organization: The University of Tennessee, Knoxville, Tennessee, USA
– sequence: 9
  givenname: Wolfgang R.
  surname: Streit
  fullname: Streit, Wolfgang R.
  organization: Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29427431$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1468057$$D View this record in Osti.gov
BookMark eNptksFu1DAQhi1URLeFG2dkwaVIpNixkzgXpNJuS6Uu9LCcLceZbFxl7cV2QMvL8Ko4uy2CitNY9jf_P-OZI3RgnQWEXlJySmku3p_NF6ckryqW0eoJmlFSi6xgrDxAM0LqOstzTg7RUQh3hBBOSvEMHeY1zyvO6Az9-gw_8LUNZtXHgI2NDsce8OVodTTOYmVbfDW4Rg34woToTTPu7l2Hb92whdhvB7CAl-Bh08deDSoCPrmdL99mF7DyqjV2hT8qHcEbtZOb25_bNUxmeKG8ScnTbRLwMBkkpwVEtQLrEvUcPe3UEODFfTxGXy_ny_NP2c2Xq-vzs5tMc1bHjHGgmpYg2pY0rVJNzjnpVFEUTAmWawGaCy0EgzJF1oFOp0TWE9BWNTtGH_a6m7FZQ6vBRq8GufFmrfxWOmXkvy_W9HLlvstCCEp4mQRe7wVciEYGbSLoXjtrQUdJeSlIUSXo5N7Fu29jaleuTdAwDMqCG4PMCaGkpJTQhL55hN650dv0B4mq0rwJrybq1d9l_6n3YcAJyPeA9i4ED51MlalphKkLM0hK5LRFMm2R3G2RpFOZ7x4lPej-F_8Ni2fKCA
CitedBy_id crossref_primary_10_1016_j_csbj_2023_06_004
crossref_primary_10_3390_bioengineering9030098
crossref_primary_10_1017_plc_2024_26
crossref_primary_10_1128_mSystems_01112_20
crossref_primary_10_1186_s40168_021_01054_5
crossref_primary_10_1016_j_jics_2022_100821
crossref_primary_10_1007_s11356_023_25192_5
crossref_primary_10_1007_s12275_022_2313_7
crossref_primary_10_1016_j_matpr_2022_02_308
crossref_primary_10_1038_s41467_024_45523_5
crossref_primary_10_1016_j_jhazmat_2023_133173
crossref_primary_10_1002_mbo3_855
crossref_primary_10_18006_2022_10_1__171_189
crossref_primary_10_1016_j_tim_2023_04_002
crossref_primary_10_1371_journal_pone_0300503
crossref_primary_10_3390_polym13223885
crossref_primary_10_1215_22011919_9712379
crossref_primary_10_1080_07391102_2024_2440646
crossref_primary_10_1002_cctc_202400765
crossref_primary_10_1016_j_polymertesting_2019_04_029
crossref_primary_10_1016_j_chemosphere_2024_141271
crossref_primary_10_1021_acscatal_1c01204
crossref_primary_10_1111_1744_7917_13417
crossref_primary_10_1186_s12934_020_01355_8
crossref_primary_10_3389_fmicb_2022_888343
crossref_primary_10_1111_febs_16924
crossref_primary_10_1016_j_jhazmat_2024_134532
crossref_primary_10_1002_nadc_20204096378
crossref_primary_10_1002_adma_202210154
crossref_primary_10_1038_s41586_024_07891_2
crossref_primary_10_1007_s11356_020_08831_z
crossref_primary_10_1016_j_jece_2023_110092
crossref_primary_10_3390_genes10050373
crossref_primary_10_1007_s11157_024_09688_1
crossref_primary_10_1134_S0026261720010154
crossref_primary_10_1128_AEM_01842_21
crossref_primary_10_1016_j_biotechadv_2021_107811
crossref_primary_10_3389_fbioe_2021_656465
crossref_primary_10_1111_febs_14612
crossref_primary_10_3389_fbioe_2021_696040
crossref_primary_10_1021_acscatal_8b05171
crossref_primary_10_1038_s41396_020_00814_9
crossref_primary_10_2174_1872208314666200311104541
crossref_primary_10_1007_s10924_024_03223_7
crossref_primary_10_1038_s41598_021_83659_2
crossref_primary_10_3390_catal11020206
crossref_primary_10_1007_s11274_024_03972_6
crossref_primary_10_2174_1389202921999200525155711
crossref_primary_10_3389_fmicb_2022_812143
crossref_primary_10_1002_ange_202216963
crossref_primary_10_1016_j_jece_2023_109434
crossref_primary_10_1016_j_micres_2023_127507
crossref_primary_10_1016_j_tibtech_2024_08_013
crossref_primary_10_1021_acsomega_4c05488
crossref_primary_10_1016_j_cscee_2024_100640
crossref_primary_10_1016_j_jhazmat_2022_130714
crossref_primary_10_1007_s12268_022_1828_0
crossref_primary_10_1111_1462_2920_15774
crossref_primary_10_1038_s41467_022_35237_x
crossref_primary_10_1038_s42004_024_01154_x
crossref_primary_10_1016_j_jhazmat_2025_137177
crossref_primary_10_1021_acssuschemeng_0c01638
crossref_primary_10_1002_anie_202203061
crossref_primary_10_1093_protein_gzad022
crossref_primary_10_1016_j_isci_2022_104326
crossref_primary_10_1271_kagakutoseibutsu_58_362
crossref_primary_10_1016_j_envres_2021_111762
crossref_primary_10_1021_acs_biochem_3c00554
crossref_primary_10_1038_s41579_019_0308_0
crossref_primary_10_3390_su142315898
crossref_primary_10_1016_j_trac_2024_117971
crossref_primary_10_1111_1462_2920_16516
crossref_primary_10_1002_mbo3_1259
crossref_primary_10_1080_10889868_2022_2054931
crossref_primary_10_3390_insects16020165
crossref_primary_10_1016_j_jenvman_2023_118710
crossref_primary_10_1016_j_ymben_2021_03_011
crossref_primary_10_1021_acssuschemeng_2c01093
crossref_primary_10_1111_1751_7915_13288
crossref_primary_10_1111_1751_7915_14135
crossref_primary_10_1016_j_jhazmat_2024_135380
crossref_primary_10_1007_s00253_024_13222_2
crossref_primary_10_1016_j_envint_2023_108349
crossref_primary_10_1007_s10529_023_03418_3
crossref_primary_10_1080_02705060_2021_2002735
crossref_primary_10_1146_annurev_marine_010419_010633
crossref_primary_10_1186_s40793_024_00621_1
crossref_primary_10_1002_cbic_202300373
crossref_primary_10_1128_AEM_01095_19
crossref_primary_10_1016_j_biortech_2024_131556
crossref_primary_10_1016_j_scitotenv_2021_146184
crossref_primary_10_1016_j_copbio_2023_102938
crossref_primary_10_1016_j_synbio_2022_11_001
crossref_primary_10_3389_fmicb_2023_1127308
crossref_primary_10_1111_febs_16958
crossref_primary_10_1016_j_tibtech_2021_02_008
crossref_primary_10_1002_cbic_202000767
crossref_primary_10_1093_database_baz119
crossref_primary_10_1016_j_mimet_2021_106222
crossref_primary_10_1016_j_jhazmat_2024_136389
crossref_primary_10_1021_acs_estlett_1c00843
crossref_primary_10_1016_j_envres_2022_113472
crossref_primary_10_1007_s10532_023_10031_8
crossref_primary_10_1126_science_adp5637
crossref_primary_10_1007_s10562_020_03476_6
crossref_primary_10_1371_journal_pone_0232745
crossref_primary_10_1111_1751_7915_14479
crossref_primary_10_35534_sbe_2024_10009
crossref_primary_10_1111_1462_2920_15409
crossref_primary_10_1007_s11157_022_09631_2
crossref_primary_10_1002_ange_202203061
crossref_primary_10_1016_j_scitotenv_2024_174978
crossref_primary_10_1038_s41428_020_00396_5
crossref_primary_10_1093_jimb_kuae050
crossref_primary_10_1016_j_envres_2023_117427
crossref_primary_10_1038_s41467_023_40233_w
crossref_primary_10_1016_j_clce_2022_100017
crossref_primary_10_1049_enb2_12020
crossref_primary_10_3390_su151914184
crossref_primary_10_3390_ijms25158120
crossref_primary_10_3390_ijms232012644
crossref_primary_10_1002_cssc_202100740
crossref_primary_10_1002_anie_202216963
crossref_primary_10_1007_s00128_021_03201_y
crossref_primary_10_1039_D2GC02588D
crossref_primary_10_3390_catal14060379
crossref_primary_10_3390_molecules29061338
crossref_primary_10_3389_fmicb_2019_01744
crossref_primary_10_3389_fmicb_2020_580709
crossref_primary_10_1016_j_bej_2023_108837
crossref_primary_10_1016_j_scitotenv_2024_177032
crossref_primary_10_3390_fermentation9010027
crossref_primary_10_1016_j_apcatb_2023_123404
crossref_primary_10_1002_cbic_202300578
crossref_primary_10_1016_j_scitotenv_2023_167850
crossref_primary_10_1039_D3RA01708G
crossref_primary_10_1002_advs_202001121
crossref_primary_10_1016_j_cej_2022_141230
crossref_primary_10_1016_j_jhazmat_2021_128086
crossref_primary_10_1002_jctb_6675
crossref_primary_10_3389_fmicb_2019_00865
crossref_primary_10_1016_j_mec_2024_e00250
crossref_primary_10_1016_j_syapm_2023_126485
crossref_primary_10_1002_elsc_202300207
crossref_primary_10_1016_j_jhazmat_2021_125928
crossref_primary_10_1016_j_biortech_2022_127931
crossref_primary_10_1016_j_scitotenv_2024_177360
crossref_primary_10_1093_femsre_fuae027
crossref_primary_10_13005_bbra_3063
crossref_primary_10_1016_j_ijbiomac_2021_03_058
crossref_primary_10_1016_j_mec_2024_e00248
crossref_primary_10_3390_ijms222011257
crossref_primary_10_3389_fmicb_2022_845562
crossref_primary_10_1016_j_chemosphere_2024_141451
crossref_primary_10_1016_j_ecoenv_2023_114982
crossref_primary_10_1021_acscatal_1c01062
crossref_primary_10_1080_07391102_2023_2292292
crossref_primary_10_1038_s41467_023_39929_w
crossref_primary_10_1007_s13205_023_03882_8
crossref_primary_10_1128_aem_00721_22
crossref_primary_10_1002_pro_4500
crossref_primary_10_1371_journal_pbio_3001389
crossref_primary_10_1016_j_jhazmat_2025_137727
crossref_primary_10_1021_acs_est_4c01495
crossref_primary_10_1002_cssc_202101062
crossref_primary_10_1016_j_scitotenv_2023_162022
crossref_primary_10_1021_acs_est_0c02305
crossref_primary_10_1073_pnas_2006753117
crossref_primary_10_3389_fmicb_2021_803896
crossref_primary_10_3390_catal13091234
crossref_primary_10_1016_j_chemosphere_2021_131670
crossref_primary_10_1016_j_jhazmat_2025_137729
crossref_primary_10_3389_fmars_2022_945822
crossref_primary_10_1007_s12268_021_1591_7
crossref_primary_10_1007_s10924_022_02683_z
crossref_primary_10_1016_j_rsma_2022_102647
crossref_primary_10_1016_j_scitotenv_2021_145111
crossref_primary_10_1016_j_jenvman_2024_122543
crossref_primary_10_4014_jmb_2404_04030
crossref_primary_10_1007_s13205_023_03555_6
crossref_primary_10_1016_j_bcab_2021_102263
crossref_primary_10_1016_j_scitotenv_2022_160108
crossref_primary_10_1007_s11756_022_01225_1
crossref_primary_10_1016_j_ijbiomac_2024_137732
crossref_primary_10_3389_fmicb_2022_1113705
crossref_primary_10_3390_ijms24043877
crossref_primary_10_1128_mSphere_01151_20
crossref_primary_10_1111_1462_2920_16460
crossref_primary_10_1021_acs_chemrev_2c00644
crossref_primary_10_1016_j_jhazmat_2022_128453
crossref_primary_10_1016_j_envpol_2021_116554
crossref_primary_10_1111_1462_2920_16466
crossref_primary_10_3389_fmicb_2023_1170880
crossref_primary_10_1016_j_crmicr_2022_100159
crossref_primary_10_1016_j_hazadv_2025_100629
crossref_primary_10_3389_fmicb_2020_00114
crossref_primary_10_3390_microorganisms12010138
crossref_primary_10_1038_s41929_021_00616_y
crossref_primary_10_1016_j_enzmictec_2021_109868
crossref_primary_10_1016_j_greenca_2025_02_003
crossref_primary_10_1016_j_engmic_2022_100020
crossref_primary_10_1016_j_wasman_2025_01_040
crossref_primary_10_1007_s10311_024_01714_6
crossref_primary_10_1038_s41598_022_22383_x
crossref_primary_10_31857_S0134347523040058
crossref_primary_10_1111_mec_16110
crossref_primary_10_1016_j_copbio_2021_09_015
crossref_primary_10_1021_acs_jafc_8b05038
crossref_primary_10_1016_j_joule_2021_06_015
crossref_primary_10_1039_D2GC02244C
crossref_primary_10_3390_md22100441
crossref_primary_10_1186_s40793_022_00430_4
crossref_primary_10_1016_j_jenvman_2023_119433
crossref_primary_10_1016_j_psep_2023_06_013
crossref_primary_10_1111_1751_7915_14182
crossref_primary_10_3390_ijms242216434
crossref_primary_10_3389_fmicb_2022_868839
crossref_primary_10_33073_pjm_2023_045
crossref_primary_10_1016_j_jhazmat_2024_136540
crossref_primary_10_1128_spectrum_02296_21
crossref_primary_10_1021_acscatal_1c05856
crossref_primary_10_1016_j_ecz_2024_100008
crossref_primary_10_1016_j_scitotenv_2025_179075
crossref_primary_10_1021_acs_est_3c07717
crossref_primary_10_1016_j_jece_2021_106277
crossref_primary_10_3389_fmicb_2020_571265
crossref_primary_10_1016_j_polymdegradstab_2024_111161
crossref_primary_10_1111_1751_7915_13418
crossref_primary_10_1016_j_jhazmat_2023_131574
crossref_primary_10_1007_s12268_022_1848_9
crossref_primary_10_1016_j_jhazmat_2023_132789
crossref_primary_10_1089_cmb_2019_0345
crossref_primary_10_1021_acs_est_9b02212
crossref_primary_10_1128_aem_01603_22
crossref_primary_10_1016_j_envpol_2024_125572
crossref_primary_10_1016_j_coisb_2024_100515
crossref_primary_10_1016_j_biortech_2021_126058
crossref_primary_10_1007_s11270_023_06190_2
crossref_primary_10_1016_j_chemosphere_2022_133709
crossref_primary_10_1038_s42004_023_00998_z
crossref_primary_10_1016_j_jhazmat_2024_137064
crossref_primary_10_1038_s41570_020_0163_6
crossref_primary_10_3389_fmicb_2019_02187
crossref_primary_10_1002_cssc_202402593
crossref_primary_10_1134_S0026261721060084
crossref_primary_10_1016_j_tibtech_2023_03_016
crossref_primary_10_3390_ijms24032780
crossref_primary_10_1007_s11356_024_35472_3
crossref_primary_10_3390_polym15061581
crossref_primary_10_1134_S1063074023040053
crossref_primary_10_1038_s41522_023_00440_1
crossref_primary_10_1016_j_ymben_2021_12_006
crossref_primary_10_1016_j_ese_2020_100065
crossref_primary_10_3389_fmicb_2021_777727
Cites_doi 10.1002/bit.25941
10.1016/B978-0-12-800259-9.00007-X
10.1016/j.copbio.2009.05.004
10.1016/j.polymdegradstab.2012.02.003
10.1007/s00253-010-2555-x
10.1186/s13568-014-0044-9
10.1128/AEM.06725-11
10.1016/S0022-2836(83)80284-8
10.1093/molbev/mst197
10.1007/s00248-010-9766-7
10.1007/s00449-006-0069-9
10.1093/nar/28.1.235
10.1006/jmbi.2000.4042
10.1021/es504038a
10.1007/BF02602814
10.1111/j.1365-2958.2010.07473.x
10.1111/1751-7915.12710
10.1074/jbc.M800848200
10.1016/j.molcatb.2013.08.010
10.3390/polym4010617
10.1021/ma200949p
10.1289/ehp.0901253
10.1371/journal.pcbi.1004957
10.1016/j.pep.2005.01.016
10.3389/fmicb.2011.00093
10.1007/s00253-011-3781-6
10.1098/rstb.2008.0265
10.1093/nar/gkw1099
10.1128/AEM.64.5.1731-1735.1998
10.1007/s00253-014-5672-0
10.1021/acs.est.5b02661
10.3390/polym5010001
10.1093/protein/5.3.197
10.1126/science.aad6359
10.1038/nmeth.3176
10.1007/s00253-014-5860-y
10.1007/s10295-009-0562-7
10.1007/s00018-016-2242-x
10.1093/nar/gkw1071
10.1186/1471-2105-15-7
10.1093/nar/gkr1044
10.1093/nar/gkv1290
ContentType Journal Article
Copyright Copyright © 2018 Danso et al.
Copyright American Society for Microbiology Apr 15, 2018
Copyright © 2018 Danso et al. 2018 Danso et al.
Copyright_xml – notice: Copyright © 2018 Danso et al.
– notice: Copyright American Society for Microbiology Apr 15, 2018
– notice: Copyright © 2018 Danso et al. 2018 Danso et al.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
– name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOI 10.1128/AEM.02773-17
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate PET Hydrolases from Metagenomes
EISSN 1098-5336
ExternalDocumentID PMC5881046
1468057
29427431
10_1128_AEM_02773_17
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: ERA-IB-14-030; 01142848
– fundername: ;
  grantid: 634486
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
NPM
OK1
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
AAPBV
ABPTK
ABRJW
OIOZB
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c439t-34e1c16e8dd0bdaab2440fa5553a832c8ec48c883e648c3fec3e60bd9553ad793
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:33:30 EDT 2025
Thu May 18 22:39:09 EDT 2023
Thu Jul 10 17:40:08 EDT 2025
Mon Jun 30 08:28:37 EDT 2025
Wed Feb 19 02:32:50 EST 2025
Tue Jul 01 02:20:11 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords polyethylene terephthalate (PET)
PET degradation
metagenome
TPA
hydrolases
HMM
BHET
metagenomes
metagenomic screening
Language English
License Copyright © 2018 Danso et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-34e1c16e8dd0bdaab2440fa5553a832c8ec48c883e648c3fec3e60bd9553ad793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC05-00OR22725; AC02-05CH11231
USDOE Office of Science (SC)
Citation Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol 84:e02773-17. https://doi.org/10.1128/AEM.02773-17.
ORCID 0000-0002-5730-6663
0000-0002-2536-9993
0000000257306663
0000000225369993
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5881046
PMID 29427431
PQID 2072770471
PQPubID 42251
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881046
osti_scitechconnect_1468057
proquest_miscellaneous_2001061101
proquest_journals_2072770471
pubmed_primary_29427431
crossref_citationtrail_10_1128_AEM_02773_17
crossref_primary_10_1128_AEM_02773_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_22_2
  doi: 10.1002/bit.25941
– ident: e_1_3_3_17_2
  doi: 10.1016/B978-0-12-800259-9.00007-X
– ident: e_1_3_3_29_2
  doi: 10.1016/j.copbio.2009.05.004
– ident: e_1_3_3_23_2
  doi: 10.1016/j.polymdegradstab.2012.02.003
– ident: e_1_3_3_11_2
  doi: 10.1007/s00253-010-2555-x
– ident: e_1_3_3_10_2
  doi: 10.1186/s13568-014-0044-9
– ident: e_1_3_3_15_2
  doi: 10.1128/AEM.06725-11
– ident: e_1_3_3_24_2
  doi: 10.1016/S0022-2836(83)80284-8
– ident: e_1_3_3_39_2
  doi: 10.1093/molbev/mst197
– ident: e_1_3_3_30_2
  doi: 10.1007/s00248-010-9766-7
– ident: e_1_3_3_8_2
  doi: 10.1007/s00449-006-0069-9
– ident: e_1_3_3_38_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_3_3_40_2
  doi: 10.1006/jmbi.2000.4042
– ident: e_1_3_3_20_2
  doi: 10.1021/es504038a
– ident: e_1_3_3_27_2
  doi: 10.1007/BF02602814
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1365-2958.2010.07473.x
– ident: e_1_3_3_6_2
  doi: 10.1111/1751-7915.12710
– ident: e_1_3_3_9_2
  doi: 10.1074/jbc.M800848200
– ident: e_1_3_3_25_2
  doi: 10.1016/j.molcatb.2013.08.010
– ident: e_1_3_3_12_2
  doi: 10.3390/polym4010617
– ident: e_1_3_3_13_2
  doi: 10.1021/ma200949p
– ident: e_1_3_3_2_2
– ident: e_1_3_3_5_2
  doi: 10.1289/ehp.0901253
– ident: e_1_3_3_43_2
  doi: 10.1371/journal.pcbi.1004957
– ident: e_1_3_3_44_2
  doi: 10.1016/j.pep.2005.01.016
– ident: e_1_3_3_33_2
  doi: 10.3389/fmicb.2011.00093
– ident: e_1_3_3_31_2
  doi: 10.1007/s00253-011-3781-6
– ident: e_1_3_3_3_2
  doi: 10.1098/rstb.2008.0265
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gkw1099
– ident: e_1_3_3_16_2
  doi: 10.1128/AEM.64.5.1731-1735.1998
– ident: e_1_3_3_18_2
  doi: 10.1007/s00253-014-5672-0
– ident: e_1_3_3_21_2
  doi: 10.1021/acs.est.5b02661
– ident: e_1_3_3_4_2
  doi: 10.3390/polym5010001
– ident: e_1_3_3_19_2
  doi: 10.1093/protein/5.3.197
– ident: e_1_3_3_14_2
  doi: 10.1126/science.aad6359
– ident: e_1_3_3_42_2
  doi: 10.1038/nmeth.3176
– ident: e_1_3_3_7_2
  doi: 10.1007/s00253-014-5860-y
– ident: e_1_3_3_26_2
  doi: 10.1007/s10295-009-0562-7
– ident: e_1_3_3_34_2
  doi: 10.1007/s00018-016-2242-x
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkw1071
– ident: e_1_3_3_41_2
  doi: 10.1186/1471-2105-15-7
– ident: e_1_3_3_28_2
  doi: 10.1093/nar/gkr1044
– ident: e_1_3_3_37_2
  doi: 10.1093/nar/gkv1290
SSID ssj0004068
Score 2.6582298
Snippet Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no...
ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e02773-17
SubjectTerms Actinobacteria
Algorithms
Amino acids
Bacteria
Bacteroidetes
BASIC BIOLOGICAL SCIENCES
Biodegradation
Clustering
Crude oil
Data processing
Degradation
Enzymes
Gene expression
Genes
Genomes
Hydrolase
Marine environment
Microorganisms
Polyethylene
Polyethylene terephthalate
Polymers
Proteobacteria
Search algorithms
Title New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes
URI https://www.ncbi.nlm.nih.gov/pubmed/29427431
https://www.proquest.com/docview/2072770471
https://www.proquest.com/docview/2001061101
https://www.osti.gov/servlets/purl/1468057
https://pubmed.ncbi.nlm.nih.gov/PMC5881046
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEQIeEJRb2UBGYhKoykhzq_M4SqeBVDSJTuwtShyHVmqTqs0euj_Db-QfcI4vqTsVCfaSVo7rRDpffb5jn_OZkHd-BmHHwIucAvyfE0QQoLCcx06_CF1e-FHoS-3O8bfo7CL4ehletlq_raylqzo75td760puY1VoA7tilex_WLYZFBrgO9gXrmBhuP6TjTE58Uu5xvga06o0jTwFV1WbLGOl6Y8im83RVjrtbSPARuBzRG8iVmI5rafpHIgnUs7z0eTIi53PKCQhi14-KU1nWb_VG5XXm4XM48JKH2Sp2AqD4DEfK1XsW6co_mqqS4zKrWa82N0qsMP6ldlWD2q7dl6uK8XxUf-kqSj6zqcLIbMItuIIoskTGU7VZpXJ2mkWxme4Qr_QR0L_qObFz1Q7bb3m0We4faOqPq0yA5z_rMzW8c031TN-HDtIW5S_U5M8aqgCzY1sL6AOqtNoZ_udi4cFEyej8TFufKOyq90NoLFcSKB5ceAhMdu62Cbx8Xw8DBnDffU75C4M4nlmgcmU8roRM8Kp-NqmVsNjH-0Ho4a1fsoOoWpX4Bj2BUs3c34tEjV5TB7p6IeeKCg_IS1Rdsg9dR7qpkPumzL5dYc8tJQyn5JfAHVqoE4R6hSgTg3UKUCKKqhTG-q0KqgNdboDdfoegP5hC3NqYC6H0zCHh1EFc9lqwZxaMH9GLk5Hk-GZo88WcThQ8NrxA9Hn_UiwPHezPE0zoLlukYZh6Kfg5DgTPGCcMV9E8OkXgsM36Bljhxyc2nPSLqtSvCQ0CjNX5AEPhFsEbhpkfaCDqR-nbshhhLxLesZACdfC-3j-yzyRAbjHErBsIi2b9AddctT0XirBmb_0O0BbJ0CUUe2ZY1ocrzGSZxCCdcmhgUCiJ6x14rkQrAxcoKNd8ra5De4E9wjTUlRX2EcuEoGj7pIXCjHNaxjEdclgB0tNB5Sq371TzqZSsl6D_tWtf3lAHmwngkPSrldX4jWEA3X2Rv6B_gCEmBOi
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Insights+into+the+Function+and+Global+Distribution+of+Polyethylene+Terephthalate+%28PET%29-Degrading+Bacteria+and+Enzymes+in+Marine+and+Terrestrial+Metagenomes&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Danso%2C+Dominik&rft.au=Schmeisser%2C+Christel&rft.au=Chow%2C+Jennifer&rft.au=Zimmermann%2C+Wolfgang&rft.date=2018-04-15&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=84&rft.issue=8&rft_id=info:doi/10.1128%2FAEM.02773-17&rft_id=info%3Apmid%2F29427431&rft.externalDocID=PMC5881046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon