Handling covariates subject to limits of detection in regression

In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure eff...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental and ecological statistics Vol. 19; no. 3; pp. 369 - 391
Main Authors Arunajadai, Srikesh G, Rauh, Virginia A
Format Journal Article
LanguageEnglish
Published Boston Springer-Verlag 01.09.2012
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as [Formula: see text] and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates.
AbstractList In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as and LOD . Another method substitutes the expected value of the non-detects, i.e., E [ X | X ≤  LOD ] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates.
In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as [Formula: see text] and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates.
In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as $${LOD/2, LOD/\sqrt{2}}$$ and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates. [PUBLICATION ABSTRACT]
In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as LOD/2,LOD/˜š2 and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ‰¤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ‰¤ 50%), without compromising the coverage and relative bias of the estimates.
Author Rauh, Virginia A
Arunajadai, Srikesh G
Author_xml – sequence: 1
  fullname: Arunajadai, Srikesh G
– sequence: 2
  fullname: Rauh, Virginia A
BookMark eNp9kMFqGzEQhkVxILGTB8ipC73ksumMtNJKtxTTNoFAD0nOQt6VjMxaSiW50LePzPYQDM1hGEn832j4lmQRYrCEXCPcIkD_NSMIji0graWwFZ_IBfKetQxALeqZcdpKDvycLHPeAUCHlF-Qu3sTxsmHbTPEPyZ5U2xu8mGzs0NpSmwmv_clN9E1oy31zcfQ-NAku00253q7JGfOTNle_esr8vLj-_P6vn389fNh_e2xHTqmSsuQOWsNOjcaPpqOMsmU7IVCoN0GZD867FGMEqxR3bhBN_COUqWo5FbgyFbkZp77muLvg81F730e7DSZYOMhaxSCcYa8wxr9chLdxUMKdTuNwHoqqah9RXBODSnmnKzTr8nvTfpbQ_roVM9OdXWqj061qEx_wgy-mKOUkoyfPiTpTOb6S9ja9H6n_0OfZ8iZqM02-axfnihgB7WUlIq9ARDOlFg
CitedBy_id crossref_primary_10_1016_j_xjidi_2021_100055
crossref_primary_10_1007_s12561_013_9099_4
crossref_primary_10_1007_s12561_023_09408_3
crossref_primary_10_1007_s12011_024_04215_3
crossref_primary_10_1007_s00180_020_00976_2
crossref_primary_10_1093_aje_kwu017
crossref_primary_10_1097_EDE_0000000000001052
crossref_primary_10_1016_j_envpol_2023_121741
crossref_primary_10_3390_bios11010025
crossref_primary_10_1002_etc_4046
crossref_primary_10_1002_sim_7816
crossref_primary_10_1186_s12889_018_6251_6
crossref_primary_10_1093_biomet_asv055
crossref_primary_10_3390_stats5020029
crossref_primary_10_1002_bimj_201200158
crossref_primary_10_1002_pst_2125
crossref_primary_10_1016_j_envint_2020_106109
crossref_primary_10_1002_sim_6466
crossref_primary_10_1002_sim_9536
crossref_primary_10_1080_10618600_2022_2035233
crossref_primary_10_1146_annurev_statistics_040522_095944
crossref_primary_10_1016_j_csda_2013_07_027
Cites_doi 10.1093/biomet/61.3.539
10.1002/sim.2836
10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
10.1093/aje/kwp212
10.1080/00401706.1965.10490268
10.1016/j.matcom.2008.02.006
10.1016/j.chemosphere.2005.01.055
10.1093/aje/kwp248
10.1201/9781420010138
10.1093/aje/kwq028
10.1289/ehp.7199
10.1097/EDE.0b013e3181ce9f08
10.1093/aje/kwp426
10.1191/096228099671525676
10.1097/EDE.0b013e3181ce97d8
10.1016/j.chemosphere.2010.03.056
10.1093/aje/kwq049
10.1093/aje/kwf217
10.1093/aje/kwj039
10.18637/jss.v016.c02
10.1093/biostatistics/1.4.355
10.1021/es00082a001
10.1029/WR022i002p00135
10.1111/1467-9876.00207
10.1111/j.1467-9876.2005.00482.x
10.1080/00031305.1992.10475837
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2012
DBID FBQ
AAYXX
CITATION
3V.
7SN
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.G
LK8
M0C
M0N
M2P
M7P
P5Z
P62
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
RC3
SOI
7S9
L.6
DOI 10.1007/s10651-012-0191-6
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
ABI/INFORM Global
Computing Database
Science Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Genetics Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
Environmental Sciences
Medicine
Computer Science
Ecology
Physics
EISSN 1573-3009
EndPage 391
ExternalDocumentID 2748893251
10_1007_s10651_012_0191_6
US201400149889
Genre Feature
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L8X
LAK
LK8
LLZTM
M0C
M2P
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PATMY
PCBAR
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
ZMTXR
ZOVNA
ZY4
~02
~A9
~EX
~KM
-4W
-56
-5G
-BR
-EM
3V.
AAAVM
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
AAYXX
ABBRH
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
7SN
7ST
7UA
7XB
8AL
8FD
8FK
ABRTQ
C1K
F1W
FR3
H97
JQ2
L.-
L.G
P64
PKEHL
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c439t-313feea1ffda5da42383987691024b087df1716d80ea94db1fc542299285e61d3
IEDL.DBID BENPR
ISSN 1352-8505
IngestDate Fri Jul 11 04:00:39 EDT 2025
Fri Jul 25 19:28:08 EDT 2025
Tue Jul 01 04:38:01 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Fri Feb 21 02:42:01 EST 2025
Thu Apr 03 09:44:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Limit of detection
Regression
Multiple imputation
Generalized gamma distribution
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-313feea1ffda5da42383987691024b087df1716d80ea94db1fc542299285e61d3
Notes http://dx.doi.org/10.1007/s10651-012-0191-6
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1037282610
PQPubID 54358
PageCount 23
ParticipantIDs proquest_miscellaneous_1663531541
proquest_journals_1037282610
crossref_primary_10_1007_s10651_012_0191_6
crossref_citationtrail_10_1007_s10651_012_0191_6
springer_journals_10_1007_s10651_012_0191_6
fao_agris_US201400149889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationTitle Environmental and ecological statistics
PublicationTitleAbbrev Environ Ecol Stat
PublicationYear 2012
Publisher Springer-Verlag
Springer US
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer US
– name: Springer Nature B.V
References Cox, Chu, Schneider, Muñoz (CR3) 2007; 26
Nie, Chu, Liu, Cole, Vexler, Schisterman (CR21) 2010; 21
CR16
Waller, Turnbull (CR32) 1992; 46
Baccarelli, Pfeiffer, Consonni, Pesatori, Bonzini, Patterson, Bertazzi, Landi (CR1) 2005; 60
Gillespie, Chen, Reichert, Franzblau, Hedgeman, Lepkowski, Adriaens, Demond, Luksemburg, Garabrant (CR4) 2010; 21
Jassal, Kritz-Silverstein, Barrett-Connor (CR12) 2010; 171
CR11
CR33
CR10
Little (CR14) 1992; 87
Leith, Bowerman, Wierda, Best, Grubb, Sikarske (CR13) 2010; 80
Rubin (CR26) 2004
Schafer (CR27) 1999; 8
Helsel (CR8) 2005
Stacy, Mihram (CR29) 1965; 7
CR5
CR7
Schisterman, Vexler, Whitcomb, Liu (CR28) 2006; 163
Sutton-Tyrrell, Zhao, Santoro, Lasley, Sowers, Johnston, Mackey, Matthews (CR31) 2010; 171
CR9
Raghunathan, Lepkowski, Van Hoewyk, Solenberger (CR24) 2001; 27
CR25
Navas-Acien, Tellez-Plaza, Guallar, Muntner, Silbergeld, Jaar, Weaver (CR19) 2009; 170
Prentice (CR22) 1974; 61
CR23
Lubin, Colt, Camann, Davis, Cerhan, Severson, Bernstein, Hartge (CR15) 2004; 112
Carroll, Ruppert, Stefanski, Crainiceanu (CR2) 2006
Stein, Savitz, Dougan (CR30) 2009; 170
Neta, von Ehrenstein, Goldman, Lum, Sundaram, Andrews, Zhang (CR20) 2010; 171
Gomes, Combes, Dussauchoy (CR6) 2008; 79
Nadarajah, Kotz (CR18) 2006; 16
Lynn (CR17) 2001; 20
191_CR9
S Nadarajah (191_CR18) 2006; 16
B Gillespie (191_CR4) 2010; 21
A Navas-Acien (191_CR19) 2009; 170
O Gomes (191_CR6) 2008; 79
R Little (191_CR14) 1992; 87
191_CR5
K Leith (191_CR13) 2010; 80
J Lubin (191_CR15) 2004; 112
191_CR7
L Waller (191_CR32) 1992; 46
D Helsel (191_CR8) 2005
S Jassal (191_CR12) 2010; 171
A Baccarelli (191_CR1) 2005; 60
K Sutton-Tyrrell (191_CR31) 2010; 171
191_CR10
191_CR11
191_CR33
D Rubin (191_CR26) 2004
G Neta (191_CR20) 2010; 171
R Prentice (191_CR22) 1974; 61
191_CR16
R Carroll (191_CR2) 2006
E Stacy (191_CR29) 1965; 7
L Nie (191_CR21) 2010; 21
J Schafer (191_CR27) 1999; 8
C Cox (191_CR3) 2007; 26
191_CR23
C Stein (191_CR30) 2009; 170
H Lynn (191_CR17) 2001; 20
191_CR25
T Raghunathan (191_CR24) 2001; 27
191_CR28
References_xml – volume: 61
  start-page: 539
  issue: 3
  year: 1974
  ident: CR22
  article-title: A log gamma model and its maximum likelihood estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/61.3.539
– ident: CR16
– volume: 26
  start-page: 4352
  issue: 23
  year: 2007
  end-page: 4374
  ident: CR3
  article-title: Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution
  publication-title: Stat Med
  doi: 10.1002/sim.2836
– year: 2005
  ident: CR8
  publication-title: Nondetects and data analysis: statistics for censored environmental data
– ident: CR10
– volume: 20
  start-page: 33
  issue: 1
  year: 2001
  end-page: 45
  ident: CR17
  article-title: Maximum likelihood inference for left-censored HIV RNA data
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
– volume: 163
  start-page: 374
  year: 2006
  end-page: 383
  ident: CR28
  article-title: The limitations due to exposure detection limits for regression models
  publication-title: Am J Epidemiol.
– volume: 170
  start-page: 837
  issue: 7
  year: 2009
  ident: CR30
  article-title: Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp212
– ident: CR33
– volume: 16
  start-page: 273
  year: 2006
  end-page: 278
  ident: CR18
  article-title: R programs for computing truncated distributions
  publication-title: J Stat Softw
– volume: 7
  start-page: 349
  issue: 3
  year: 1965
  end-page: 358
  ident: CR29
  article-title: Parameter estimation for a generalized gamma distribution
  publication-title: Technometrics
  doi: 10.1080/00401706.1965.10490268
– volume: 79
  start-page: 955
  issue: 4
  year: 2008
  end-page: 963
  ident: CR6
  article-title: Parameter estimation of the generalized gamma distribution
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2008.02.006
– ident: CR25
– volume: 60
  start-page: 898
  issue: 7
  year: 2005
  end-page: 906
  ident: CR1
  article-title: Handling of dioxin measurement data in the presence of non-detectable values: overview of available methods and their application in the Seveso chloracne study
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.01.055
– volume: 170
  start-page: 1156
  year: 2009
  end-page: 1164
  ident: CR19
  article-title: Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp248
– ident: CR23
– year: 2006
  ident: CR2
  publication-title: Measurement error in nonlinear models: a modern perspective
  doi: 10.1201/9781420010138
– volume: 46
  start-page: 5
  year: 1992
  end-page: 12
  ident: CR32
  article-title: Probability plotting with censored data
  publication-title: Am Stat
– volume: 171
  start-page: 859
  issue: 8
  year: 2010
  ident: CR20
  article-title: Umbilical cord serum cytokine levels and risks of small-for-gestational-age and preterm birth
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq028
– volume: 112
  start-page: 1691
  issue: 17
  year: 2004
  ident: CR15
  article-title: Epidemiologic evaluation of measurement data in the presence of detection limits
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.7199
– year: 2004
  ident: CR26
  publication-title: Multiple imputation for nonresponse in surveys
– volume: 21
  start-page: S64
  issue: 4
  year: 2010
  ident: CR4
  article-title: Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce9f08
– volume: 87
  start-page: 1227
  issue: 420
  year: 1992
  end-page: 1237
  ident: CR14
  article-title: Regression with missing X’s: a review
  publication-title: J Am Stat Assoc
– ident: CR11
– ident: CR9
– volume: 27
  start-page: 85
  issue: 1
  year: 2001
  end-page: 96
  ident: CR24
  article-title: A multivariate technique for multiply imputing missing values using a sequence of regression models
  publication-title: Survey Methodol
– volume: 171
  start-page: 277
  year: 2010
  end-page: 286
  ident: CR12
  article-title: A prospective study of albuminuria and cognitive function in older adults: the Rancho Bernardo Study
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp426
– volume: 8
  start-page: 3
  issue: 1
  year: 1999
  ident: CR27
  article-title: Multiple imputation: a primer
  publication-title: Stat Methods Med Res
  doi: 10.1191/096228099671525676
– ident: CR5
– ident: CR7
– volume: 21
  start-page: S17
  year: 2010
  end-page: S24
  ident: CR21
  article-title: Linear regression with an independent variable subject to a detection limit
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce97d8
– volume: 80
  start-page: 7
  year: 2010
  end-page: 12
  ident: CR13
  article-title: A comparison of techniques for assessing central tendency in left-censored data using PCB and p, p’DDE contaminant concentrations from Michigan’s Bald Eagle Biosentinel Program
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.03.056
– volume: 171
  start-page: 1203
  year: 2010
  end-page: 1213
  ident: CR31
  article-title: Reproductive hormones and obesity: 9 years of observation from the study of women’s health across the nation
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq049
– volume: 26
  start-page: 4352
  issue: 23
  year: 2007
  ident: 191_CR3
  publication-title: Stat Med
  doi: 10.1002/sim.2836
– volume: 80
  start-page: 7
  year: 2010
  ident: 191_CR13
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.03.056
– volume: 20
  start-page: 33
  issue: 1
  year: 2001
  ident: 191_CR17
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
– volume: 60
  start-page: 898
  issue: 7
  year: 2005
  ident: 191_CR1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.01.055
– ident: 191_CR25
  doi: 10.1093/aje/kwf217
– volume: 61
  start-page: 539
  issue: 3
  year: 1974
  ident: 191_CR22
  publication-title: Biometrika
  doi: 10.1093/biomet/61.3.539
– ident: 191_CR28
  doi: 10.1093/aje/kwj039
– volume: 7
  start-page: 349
  issue: 3
  year: 1965
  ident: 191_CR29
  publication-title: Technometrics
  doi: 10.1080/00401706.1965.10490268
– volume: 171
  start-page: 1203
  year: 2010
  ident: 191_CR31
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq049
– volume: 21
  start-page: S17
  year: 2010
  ident: 191_CR21
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce97d8
– volume: 171
  start-page: 277
  year: 2010
  ident: 191_CR12
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp426
– volume: 112
  start-page: 1691
  issue: 17
  year: 2004
  ident: 191_CR15
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.7199
– volume: 16
  start-page: 273
  year: 2006
  ident: 191_CR18
  publication-title: J Stat Softw
  doi: 10.18637/jss.v016.c02
– ident: 191_CR11
  doi: 10.1093/biostatistics/1.4.355
– volume: 87
  start-page: 1227
  issue: 420
  year: 1992
  ident: 191_CR14
  publication-title: J Am Stat Assoc
– volume: 171
  start-page: 859
  issue: 8
  year: 2010
  ident: 191_CR20
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq028
– volume: 21
  start-page: S64
  issue: 4
  year: 2010
  ident: 191_CR4
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce9f08
– volume: 170
  start-page: 1156
  year: 2009
  ident: 191_CR19
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp248
– ident: 191_CR23
– volume-title: Nondetects and data analysis: statistics for censored environmental data
  year: 2005
  ident: 191_CR8
– ident: 191_CR10
– volume: 79
  start-page: 955
  issue: 4
  year: 2008
  ident: 191_CR6
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2008.02.006
– volume: 27
  start-page: 85
  issue: 1
  year: 2001
  ident: 191_CR24
  publication-title: Survey Methodol
– volume-title: Multiple imputation for nonresponse in surveys
  year: 2004
  ident: 191_CR26
– volume: 8
  start-page: 3
  issue: 1
  year: 1999
  ident: 191_CR27
  publication-title: Stat Methods Med Res
  doi: 10.1191/096228099671525676
– volume: 170
  start-page: 837
  issue: 7
  year: 2009
  ident: 191_CR30
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp212
– ident: 191_CR7
  doi: 10.1021/es00082a001
– ident: 191_CR9
– volume-title: Measurement error in nonlinear models: a modern perspective
  year: 2006
  ident: 191_CR2
  doi: 10.1201/9781420010138
– ident: 191_CR5
  doi: 10.1029/WR022i002p00135
– ident: 191_CR16
  doi: 10.1111/1467-9876.00207
– ident: 191_CR33
  doi: 10.1111/j.1467-9876.2005.00482.x
– volume: 46
  start-page: 5
  year: 1992
  ident: 191_CR32
  publication-title: Am Stat
  doi: 10.1080/00031305.1992.10475837
SSID ssj0004125
Score 2.0852835
Snippet In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms Biomedical and Life Sciences
Chemical contaminants
Chemistry and Earth Sciences
Computer Science
detection limit
Ecology
Environmental health
Environmental monitoring
Environmental science
Estimates
Expected values
Exposure
Health Sciences
Human exposure
Life Sciences
Math. Appl. in Environmental Science
Mathematical models
Maximum likelihood method
Medicine
Methods
Physics
Random variables
risk
Simulation
Specifications
Statistical analysis
Statistics for Engineering
Statistics for Life Sciences
Studies
Theoretical Ecology/Statistics
Toxicity
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8oMUXP86KUSsr9MkSyG4-LvfmUc4ehfZFD3xbNvshgiTlkiv43zuzt7nTYoW-ZmeXkJmd-U3mC-BLKTTnjuexStUwzpAmrhJFxTka0a6ySWp8tsWvYjrLftzld6GOu-2z3fuQpNfUL4rdipxcX0olGPG42ITtnFx3FOKZGK-LIbmftMoRWcQl2vc-lPnWEa-M0aZTzSuc-Vdo1Fuc633YDVCRjZe8PYANWw9grx_DwMKtHMCHie88_TSAo8m6bA13BooWSb7bQPLxZwim40Of_alxeYcg57Jj8yFcTanxAr4R080f9KQJjLJ2UdEPG9Y17JFKolrWOGZs5xO5avZQs7m9X6bU1p9gdj25_TaNw5yFWCMc6VANp85axZ0zKjcKARaiJtSSiCREViXl0DhqqmPKxKpRZirudJ4JtGOizG3BTXoEW3VT22Ng2VA4xCjpkNq06RHuzQqtbVYmJhFOiwiS_oNLHZqQ0yyMR7lun0w8ksgjSTySRQSXqy2_lx043iM-Ri5KdY8aUs5uBPmP5ASW5SiCs561MtzTVlKVJDqdiCEjuFgt4w2jsImqbbNAGgJlKUJNHsHXXiReHvGPdzn5L-pT2BFeMCl97Qy2uvnCfka801XnXr6fAT-58Hc
  priority: 102
  providerName: Springer Nature
Title Handling covariates subject to limits of detection in regression
URI https://link.springer.com/article/10.1007/s10651-012-0191-6
https://www.proquest.com/docview/1037282610
https://www.proquest.com/docview/1663531541
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-8HkJfRE9LY-uxgk9KMLv5uL0nPeU-UCiiHtSnZbMfRShJbXIF_3tnkk3PCvY12d2Emd2Z3-x8AbySwnDueR7rVM_iDMfEZaIpOccg2tUuSW0XbXFWbLbZp_P8PFy4NSGscpCJnaC2taE78reUz4bmAWr7d1e_YuoaRd7V0EJjBGMUwRKNr_GH5dmXr_vMSN61XeUIM2KJyn7wa_bJc0VOpjSFJsx5XNzRTCOv6zug8x8_aad-Vo_hUcCNbNEz-gk8cNUEjpb7NDV8Gc5pM4GH665h7-8JHBKa7IsxP4X3G6qpgOszU9-gkUw4kzW7ku5iWFuzS8p2aljtmXVtF6NVsZ8Vu3YXfbRs9Qy2q-X3j5s4tFCIDSKNFiVs6p3T3Hurc6sROyEgQgGIIEFkZSJn1lO9HCsTp-eZLbk3eSZQRQmZu4Lb9AgOqrpyx8CymfAIP9IZVWAzc5ybFca4TCY2Ed6ICJKBfMqE-uLU5uJS7SsjE8UVUlwRxVURwevbKVd9cY37Bh8jT5S-QOGntt8EmYZk30k5j-B0YJQKR7BR-w0Twcvb13h4yCOiK1fvcAzhrRRRJI_gzcDgv5f4z788v_-DJ3Aoun1FoWincNBe79wLxC5tOYWRXK2nMF6sf3xeTsN2xadbsfgD3bvpSQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4AxsgL0aOEIuqa6Iuksbvd9rQPRo1yOAjyAifhbd3uhZCQFmkPhj_lb3SmF46YyBvPe2kzOzvzzc4N4E0mDOeeJ6GO9TiUOCcsIk3JOQbRrnZRbNtoi8N0OpPfTpKTJfg95MJQWOUgE1tBbStDb-TvKZ8NzQPU9h8vfobUNYq8q0MLjY4t9t31LzTZ6g97X_F83wox2Tn-Mg37rgKhQeXboNCJvXOae291YjXCCcQIKBNQbwpZRNnYeiohY7PI6VzagnuTSIFSW2SJS7mNcd9leCDjOKcblU12F3mYvG3yyhHUhBlCi8GL2qXqpQkZ7hQIkfMwvaUHl72ubkHcf7yyrbKbPIa1HqWyzx1bPYElV45gfWeRFIeDvVSoR_Bwt20PfD2CVcKuXennp_BpShUccH9mqis0yQnVsnpe0MsPayp2TrlVNas8s65pI8JKdlayS3faxeaWz2B2L6Rdh5WyKt0GMDkWHsFOPKZ6bybHtTI1xsksspHwRgQQDeRTpq9mTk01ztWiDjNRXCHFFVFcpQG8u1ly0ZXyuGvyBp6J0qcoatXsSJAhStZkluUBbA0HpfoLX6sFewbw-mYYryr5X3TpqjnOIXQXI2blAWwPB_z3Fv_5l827P_gKHk2Pvx-og73D_eewKloeoyC4LVhpLufuBaKmpnjZsiqDH_d9N_4AaTcgkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7AEg0Xo6uEUcA20YtmwnTPcw8GUXZdxGyIugm3pqcfxITMIDOr4a_566yaBysmcuPcj5lUV1d91fUCeJkJzbnjsa9ClfoRzvHzQFFyjka0q2wQmibaYpZM59Gnk_hkBX73uTAUVtnLxEZQm1LTG_ku5bOheYDaftd1YRHHB5O9ix8-dZAiT2vfTqNlkSN79QvNt-rt4QGe9SshJuNvH6Z-12HA16iIaxRAobNWceeMio1CaIF4AeUD6lAR5UGWGkflZEwWWDWKTM6djiOBElxksU24CXHfVVhL0SoKBrD2fjw7_rLMyuRNy1eOEMfPEGj0PtU2cS-JyYynsIgR95MbWnHVqfIG4P3HR9uovslDeNBhVrbfMtkjWLHFEDbGyxQ5HOxkRDWEex-bZsFXQ1gnJNsWgn4M76ZUzwH3Z7r8iQY6YVxWLXJ6B2J1yc4p06pipWPG1k18WMG-F-zSnrWRusUTmN8JcTdgUJSF3QQWpcIh9AlTqv6mR7g2SrS2URaYQDgtPAh68knd1TanFhvnclmVmSgukeKSKC4TD15fL7loC3vcNnkTz0SqMxS8cv5VkFlKtmWWjTzY6g9Kdte_kktm9eDF9TBeXPLGqMKWC5xDWC9EBMs9eNMf8N9b_Odfnt7-wedwH--F_Hw4O3oG66JhMYqI24JBfbmw2wih6nyn41UGp3d9Pf4AH44mJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+covariates+subject+to+limits+of+detection+in+regression&rft.jtitle=Environmental+and+ecological+statistics&rft.au=Arunajadai%2C+Srikesh+G.&rft.au=Rauh%2C+Virginia+A.&rft.date=2012-09-01&rft.issn=1352-8505&rft.eissn=1573-3009&rft.volume=19&rft.issue=3&rft.spage=369&rft.epage=391&rft_id=info:doi/10.1007%2Fs10651-012-0191-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10651_012_0191_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8505&client=summon