Handling covariates subject to limits of detection in regression
In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure eff...
Saved in:
Published in | Environmental and ecological statistics Vol. 19; no. 3; pp. 369 - 391 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer-Verlag
01.09.2012
Springer US Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as [Formula: see text] and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates. |
---|---|
AbstractList | In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as
and
LOD
. Another method substitutes the expected value of the non-detects, i.e.,
E
[
X
|
X
≤
LOD
] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates. In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as [Formula: see text] and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates. In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as $${LOD/2, LOD/\sqrt{2}}$$ and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ≤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ≤ 50%), without compromising the coverage and relative bias of the estimates. [PUBLICATION ABSTRACT] In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with observations below this limit called non-detects. Although valid inference may be obtained by excluding non-detects in the estimation of exposure effects, this practice can lead to substantial reduction in power to detect a significant effect, depending on the proportion of censoring and the closeness of the effect size to the null value. Therefore, a variety of methods have been commonly used in the environmental science literature to substitute values for the non-detects for the purpose of estimating exposure effects, including ad hoc values such as LOD/2,LOD/˜2 and LOD. Another method substitutes the expected value of the non-detects, i.e., E[X|X ¤ LOD] but this requires that the inference be robust to mild miss-specifications in the distribution of the exposure variable. In this paper, we demonstrate that the estimate of the exposure effect is extremely sensitive to ad-hoc substitutions and moderate distribution miss-specifications under the conditions of large sample sizes and moderate effect size, potentially leading to biased estimates. We propose instead the use of the generalized gamma distribution to estimate imputed values for the non-detects, and show that this method avoids the risk of distribution miss-specification among the class of distributions represented by the generalized gamma distribution. A multiple imputation-based procedure is employed to estimate the regression parameters. Compared to the method of excluding non-detects, the proposed method can substantially increase the power to detect a significant effect when the effect size is close to the null value in small samples with moderate levels of censoring ( ¤ 50%), without compromising the coverage and relative bias of the estimates. |
Author | Rauh, Virginia A Arunajadai, Srikesh G |
Author_xml | – sequence: 1 fullname: Arunajadai, Srikesh G – sequence: 2 fullname: Rauh, Virginia A |
BookMark | eNp9kMFqGzEQhkVxILGTB8ipC73ksumMtNJKtxTTNoFAD0nOQt6VjMxaSiW50LePzPYQDM1hGEn832j4lmQRYrCEXCPcIkD_NSMIji0graWwFZ_IBfKetQxALeqZcdpKDvycLHPeAUCHlF-Qu3sTxsmHbTPEPyZ5U2xu8mGzs0NpSmwmv_clN9E1oy31zcfQ-NAku00253q7JGfOTNle_esr8vLj-_P6vn389fNh_e2xHTqmSsuQOWsNOjcaPpqOMsmU7IVCoN0GZD867FGMEqxR3bhBN_COUqWo5FbgyFbkZp77muLvg81F730e7DSZYOMhaxSCcYa8wxr9chLdxUMKdTuNwHoqqah9RXBODSnmnKzTr8nvTfpbQ_roVM9OdXWqj061qEx_wgy-mKOUkoyfPiTpTOb6S9ja9H6n_0OfZ8iZqM02-axfnihgB7WUlIq9ARDOlFg |
CitedBy_id | crossref_primary_10_1016_j_xjidi_2021_100055 crossref_primary_10_1007_s12561_013_9099_4 crossref_primary_10_1007_s12561_023_09408_3 crossref_primary_10_1007_s12011_024_04215_3 crossref_primary_10_1007_s00180_020_00976_2 crossref_primary_10_1093_aje_kwu017 crossref_primary_10_1097_EDE_0000000000001052 crossref_primary_10_1016_j_envpol_2023_121741 crossref_primary_10_3390_bios11010025 crossref_primary_10_1002_etc_4046 crossref_primary_10_1002_sim_7816 crossref_primary_10_1186_s12889_018_6251_6 crossref_primary_10_1093_biomet_asv055 crossref_primary_10_3390_stats5020029 crossref_primary_10_1002_bimj_201200158 crossref_primary_10_1002_pst_2125 crossref_primary_10_1016_j_envint_2020_106109 crossref_primary_10_1002_sim_6466 crossref_primary_10_1002_sim_9536 crossref_primary_10_1080_10618600_2022_2035233 crossref_primary_10_1146_annurev_statistics_040522_095944 crossref_primary_10_1016_j_csda_2013_07_027 |
Cites_doi | 10.1093/biomet/61.3.539 10.1002/sim.2836 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O 10.1093/aje/kwp212 10.1080/00401706.1965.10490268 10.1016/j.matcom.2008.02.006 10.1016/j.chemosphere.2005.01.055 10.1093/aje/kwp248 10.1201/9781420010138 10.1093/aje/kwq028 10.1289/ehp.7199 10.1097/EDE.0b013e3181ce9f08 10.1093/aje/kwp426 10.1191/096228099671525676 10.1097/EDE.0b013e3181ce97d8 10.1016/j.chemosphere.2010.03.056 10.1093/aje/kwq049 10.1093/aje/kwf217 10.1093/aje/kwj039 10.18637/jss.v016.c02 10.1093/biostatistics/1.4.355 10.1021/es00082a001 10.1029/WR022i002p00135 10.1111/1467-9876.00207 10.1111/j.1467-9876.2005.00482.x 10.1080/00031305.1992.10475837 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2012 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2012 |
DBID | FBQ AAYXX CITATION 3V. 7SN 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FH 8FK 8FL ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ JQ2 K60 K6~ K7- L.- L.G LK8 M0C M0N M2P M7P P5Z P62 P64 PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYCSY Q9U RC3 SOI 7S9 L.6 |
DOI | 10.1007/s10651-012-0191-6 |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences ABI/INFORM Global Computing Database Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced Genetics Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Statistics Environmental Sciences Medicine Computer Science Ecology Physics |
EISSN | 1573-3009 |
EndPage | 391 |
ExternalDocumentID | 2748893251 10_1007_s10651_012_0191_6 US201400149889 |
Genre | Feature |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L8X LAK LK8 LLZTM M0C M2P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PATMY PCBAR PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ZOVNA ZY4 ~02 ~A9 ~EX ~KM -4W -56 -5G -BR -EM 3V. AAAVM ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE M0N AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION PHGZM 7SN 7ST 7UA 7XB 8AL 8FD 8FK ABRTQ C1K F1W FR3 H97 JQ2 L.- L.G P64 PKEHL PQEST PQGLB PQUKI Q9U RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c439t-313feea1ffda5da42383987691024b087df1716d80ea94db1fc542299285e61d3 |
IEDL.DBID | BENPR |
ISSN | 1352-8505 |
IngestDate | Fri Jul 11 04:00:39 EDT 2025 Fri Jul 25 19:28:08 EDT 2025 Tue Jul 01 04:38:01 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Fri Feb 21 02:42:01 EST 2025 Thu Apr 03 09:44:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Limit of detection Regression Multiple imputation Generalized gamma distribution |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-313feea1ffda5da42383987691024b087df1716d80ea94db1fc542299285e61d3 |
Notes | http://dx.doi.org/10.1007/s10651-012-0191-6 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1037282610 |
PQPubID | 54358 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1663531541 proquest_journals_1037282610 crossref_primary_10_1007_s10651_012_0191_6 crossref_citationtrail_10_1007_s10651_012_0191_6 springer_journals_10_1007_s10651_012_0191_6 fao_agris_US201400149889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Dordrecht |
PublicationTitle | Environmental and ecological statistics |
PublicationTitleAbbrev | Environ Ecol Stat |
PublicationYear | 2012 |
Publisher | Springer-Verlag Springer US Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer US – name: Springer Nature B.V |
References | Cox, Chu, Schneider, Muñoz (CR3) 2007; 26 Nie, Chu, Liu, Cole, Vexler, Schisterman (CR21) 2010; 21 CR16 Waller, Turnbull (CR32) 1992; 46 Baccarelli, Pfeiffer, Consonni, Pesatori, Bonzini, Patterson, Bertazzi, Landi (CR1) 2005; 60 Gillespie, Chen, Reichert, Franzblau, Hedgeman, Lepkowski, Adriaens, Demond, Luksemburg, Garabrant (CR4) 2010; 21 Jassal, Kritz-Silverstein, Barrett-Connor (CR12) 2010; 171 CR11 CR33 CR10 Little (CR14) 1992; 87 Leith, Bowerman, Wierda, Best, Grubb, Sikarske (CR13) 2010; 80 Rubin (CR26) 2004 Schafer (CR27) 1999; 8 Helsel (CR8) 2005 Stacy, Mihram (CR29) 1965; 7 CR5 CR7 Schisterman, Vexler, Whitcomb, Liu (CR28) 2006; 163 Sutton-Tyrrell, Zhao, Santoro, Lasley, Sowers, Johnston, Mackey, Matthews (CR31) 2010; 171 CR9 Raghunathan, Lepkowski, Van Hoewyk, Solenberger (CR24) 2001; 27 CR25 Navas-Acien, Tellez-Plaza, Guallar, Muntner, Silbergeld, Jaar, Weaver (CR19) 2009; 170 Prentice (CR22) 1974; 61 CR23 Lubin, Colt, Camann, Davis, Cerhan, Severson, Bernstein, Hartge (CR15) 2004; 112 Carroll, Ruppert, Stefanski, Crainiceanu (CR2) 2006 Stein, Savitz, Dougan (CR30) 2009; 170 Neta, von Ehrenstein, Goldman, Lum, Sundaram, Andrews, Zhang (CR20) 2010; 171 Gomes, Combes, Dussauchoy (CR6) 2008; 79 Nadarajah, Kotz (CR18) 2006; 16 Lynn (CR17) 2001; 20 191_CR9 S Nadarajah (191_CR18) 2006; 16 B Gillespie (191_CR4) 2010; 21 A Navas-Acien (191_CR19) 2009; 170 O Gomes (191_CR6) 2008; 79 R Little (191_CR14) 1992; 87 191_CR5 K Leith (191_CR13) 2010; 80 J Lubin (191_CR15) 2004; 112 191_CR7 L Waller (191_CR32) 1992; 46 D Helsel (191_CR8) 2005 S Jassal (191_CR12) 2010; 171 A Baccarelli (191_CR1) 2005; 60 K Sutton-Tyrrell (191_CR31) 2010; 171 191_CR10 191_CR11 191_CR33 D Rubin (191_CR26) 2004 G Neta (191_CR20) 2010; 171 R Prentice (191_CR22) 1974; 61 191_CR16 R Carroll (191_CR2) 2006 E Stacy (191_CR29) 1965; 7 L Nie (191_CR21) 2010; 21 J Schafer (191_CR27) 1999; 8 C Cox (191_CR3) 2007; 26 191_CR23 C Stein (191_CR30) 2009; 170 H Lynn (191_CR17) 2001; 20 191_CR25 T Raghunathan (191_CR24) 2001; 27 191_CR28 |
References_xml | – volume: 61 start-page: 539 issue: 3 year: 1974 ident: CR22 article-title: A log gamma model and its maximum likelihood estimation publication-title: Biometrika doi: 10.1093/biomet/61.3.539 – ident: CR16 – volume: 26 start-page: 4352 issue: 23 year: 2007 end-page: 4374 ident: CR3 article-title: Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution publication-title: Stat Med doi: 10.1002/sim.2836 – year: 2005 ident: CR8 publication-title: Nondetects and data analysis: statistics for censored environmental data – ident: CR10 – volume: 20 start-page: 33 issue: 1 year: 2001 end-page: 45 ident: CR17 article-title: Maximum likelihood inference for left-censored HIV RNA data publication-title: Stat Med doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O – volume: 163 start-page: 374 year: 2006 end-page: 383 ident: CR28 article-title: The limitations due to exposure detection limits for regression models publication-title: Am J Epidemiol. – volume: 170 start-page: 837 issue: 7 year: 2009 ident: CR30 article-title: Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome publication-title: Am J Epidemiol doi: 10.1093/aje/kwp212 – ident: CR33 – volume: 16 start-page: 273 year: 2006 end-page: 278 ident: CR18 article-title: R programs for computing truncated distributions publication-title: J Stat Softw – volume: 7 start-page: 349 issue: 3 year: 1965 end-page: 358 ident: CR29 article-title: Parameter estimation for a generalized gamma distribution publication-title: Technometrics doi: 10.1080/00401706.1965.10490268 – volume: 79 start-page: 955 issue: 4 year: 2008 end-page: 963 ident: CR6 article-title: Parameter estimation of the generalized gamma distribution publication-title: Math Comput Simul doi: 10.1016/j.matcom.2008.02.006 – ident: CR25 – volume: 60 start-page: 898 issue: 7 year: 2005 end-page: 906 ident: CR1 article-title: Handling of dioxin measurement data in the presence of non-detectable values: overview of available methods and their application in the Seveso chloracne study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.01.055 – volume: 170 start-page: 1156 year: 2009 end-page: 1164 ident: CR19 article-title: Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis publication-title: Am J Epidemiol doi: 10.1093/aje/kwp248 – ident: CR23 – year: 2006 ident: CR2 publication-title: Measurement error in nonlinear models: a modern perspective doi: 10.1201/9781420010138 – volume: 46 start-page: 5 year: 1992 end-page: 12 ident: CR32 article-title: Probability plotting with censored data publication-title: Am Stat – volume: 171 start-page: 859 issue: 8 year: 2010 ident: CR20 article-title: Umbilical cord serum cytokine levels and risks of small-for-gestational-age and preterm birth publication-title: Am J Epidemiol doi: 10.1093/aje/kwq028 – volume: 112 start-page: 1691 issue: 17 year: 2004 ident: CR15 article-title: Epidemiologic evaluation of measurement data in the presence of detection limits publication-title: Environ Health Perspect doi: 10.1289/ehp.7199 – year: 2004 ident: CR26 publication-title: Multiple imputation for nonresponse in surveys – volume: 21 start-page: S64 issue: 4 year: 2010 ident: CR4 article-title: Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ce9f08 – volume: 87 start-page: 1227 issue: 420 year: 1992 end-page: 1237 ident: CR14 article-title: Regression with missing X’s: a review publication-title: J Am Stat Assoc – ident: CR11 – ident: CR9 – volume: 27 start-page: 85 issue: 1 year: 2001 end-page: 96 ident: CR24 article-title: A multivariate technique for multiply imputing missing values using a sequence of regression models publication-title: Survey Methodol – volume: 171 start-page: 277 year: 2010 end-page: 286 ident: CR12 article-title: A prospective study of albuminuria and cognitive function in older adults: the Rancho Bernardo Study publication-title: Am J Epidemiol doi: 10.1093/aje/kwp426 – volume: 8 start-page: 3 issue: 1 year: 1999 ident: CR27 article-title: Multiple imputation: a primer publication-title: Stat Methods Med Res doi: 10.1191/096228099671525676 – ident: CR5 – ident: CR7 – volume: 21 start-page: S17 year: 2010 end-page: S24 ident: CR21 article-title: Linear regression with an independent variable subject to a detection limit publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ce97d8 – volume: 80 start-page: 7 year: 2010 end-page: 12 ident: CR13 article-title: A comparison of techniques for assessing central tendency in left-censored data using PCB and p, p’DDE contaminant concentrations from Michigan’s Bald Eagle Biosentinel Program publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.03.056 – volume: 171 start-page: 1203 year: 2010 end-page: 1213 ident: CR31 article-title: Reproductive hormones and obesity: 9 years of observation from the study of women’s health across the nation publication-title: Am J Epidemiol doi: 10.1093/aje/kwq049 – volume: 26 start-page: 4352 issue: 23 year: 2007 ident: 191_CR3 publication-title: Stat Med doi: 10.1002/sim.2836 – volume: 80 start-page: 7 year: 2010 ident: 191_CR13 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.03.056 – volume: 20 start-page: 33 issue: 1 year: 2001 ident: 191_CR17 publication-title: Stat Med doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O – volume: 60 start-page: 898 issue: 7 year: 2005 ident: 191_CR1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.01.055 – ident: 191_CR25 doi: 10.1093/aje/kwf217 – volume: 61 start-page: 539 issue: 3 year: 1974 ident: 191_CR22 publication-title: Biometrika doi: 10.1093/biomet/61.3.539 – ident: 191_CR28 doi: 10.1093/aje/kwj039 – volume: 7 start-page: 349 issue: 3 year: 1965 ident: 191_CR29 publication-title: Technometrics doi: 10.1080/00401706.1965.10490268 – volume: 171 start-page: 1203 year: 2010 ident: 191_CR31 publication-title: Am J Epidemiol doi: 10.1093/aje/kwq049 – volume: 21 start-page: S17 year: 2010 ident: 191_CR21 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ce97d8 – volume: 171 start-page: 277 year: 2010 ident: 191_CR12 publication-title: Am J Epidemiol doi: 10.1093/aje/kwp426 – volume: 112 start-page: 1691 issue: 17 year: 2004 ident: 191_CR15 publication-title: Environ Health Perspect doi: 10.1289/ehp.7199 – volume: 16 start-page: 273 year: 2006 ident: 191_CR18 publication-title: J Stat Softw doi: 10.18637/jss.v016.c02 – ident: 191_CR11 doi: 10.1093/biostatistics/1.4.355 – volume: 87 start-page: 1227 issue: 420 year: 1992 ident: 191_CR14 publication-title: J Am Stat Assoc – volume: 171 start-page: 859 issue: 8 year: 2010 ident: 191_CR20 publication-title: Am J Epidemiol doi: 10.1093/aje/kwq028 – volume: 21 start-page: S64 issue: 4 year: 2010 ident: 191_CR4 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ce9f08 – volume: 170 start-page: 1156 year: 2009 ident: 191_CR19 publication-title: Am J Epidemiol doi: 10.1093/aje/kwp248 – ident: 191_CR23 – volume-title: Nondetects and data analysis: statistics for censored environmental data year: 2005 ident: 191_CR8 – ident: 191_CR10 – volume: 79 start-page: 955 issue: 4 year: 2008 ident: 191_CR6 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2008.02.006 – volume: 27 start-page: 85 issue: 1 year: 2001 ident: 191_CR24 publication-title: Survey Methodol – volume-title: Multiple imputation for nonresponse in surveys year: 2004 ident: 191_CR26 – volume: 8 start-page: 3 issue: 1 year: 1999 ident: 191_CR27 publication-title: Stat Methods Med Res doi: 10.1191/096228099671525676 – volume: 170 start-page: 837 issue: 7 year: 2009 ident: 191_CR30 publication-title: Am J Epidemiol doi: 10.1093/aje/kwp212 – ident: 191_CR7 doi: 10.1021/es00082a001 – ident: 191_CR9 – volume-title: Measurement error in nonlinear models: a modern perspective year: 2006 ident: 191_CR2 doi: 10.1201/9781420010138 – ident: 191_CR5 doi: 10.1029/WR022i002p00135 – ident: 191_CR16 doi: 10.1111/1467-9876.00207 – ident: 191_CR33 doi: 10.1111/j.1467-9876.2005.00482.x – volume: 46 start-page: 5 year: 1992 ident: 191_CR32 publication-title: Am Stat doi: 10.1080/00031305.1992.10475837 |
SSID | ssj0004125 |
Score | 2.0852835 |
Snippet | In the environmental health sciences, measurements of toxic exposures are often constrained by a lower limit called the limit of detection (LOD), with... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 369 |
SubjectTerms | Biomedical and Life Sciences Chemical contaminants Chemistry and Earth Sciences Computer Science detection limit Ecology Environmental health Environmental monitoring Environmental science Estimates Expected values Exposure Health Sciences Human exposure Life Sciences Math. Appl. in Environmental Science Mathematical models Maximum likelihood method Medicine Methods Physics Random variables risk Simulation Specifications Statistical analysis Statistics for Engineering Statistics for Life Sciences Studies Theoretical Ecology/Statistics Toxicity |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8oMUXP86KUSsr9MkSyG4-LvfmUc4ehfZFD3xbNvshgiTlkiv43zuzt7nTYoW-ZmeXkJmd-U3mC-BLKTTnjuexStUwzpAmrhJFxTka0a6ySWp8tsWvYjrLftzld6GOu-2z3fuQpNfUL4rdipxcX0olGPG42ITtnFx3FOKZGK-LIbmftMoRWcQl2vc-lPnWEa-M0aZTzSuc-Vdo1Fuc633YDVCRjZe8PYANWw9grx_DwMKtHMCHie88_TSAo8m6bA13BooWSb7bQPLxZwim40Of_alxeYcg57Jj8yFcTanxAr4R080f9KQJjLJ2UdEPG9Y17JFKolrWOGZs5xO5avZQs7m9X6bU1p9gdj25_TaNw5yFWCMc6VANp85axZ0zKjcKARaiJtSSiCREViXl0DhqqmPKxKpRZirudJ4JtGOizG3BTXoEW3VT22Ng2VA4xCjpkNq06RHuzQqtbVYmJhFOiwiS_oNLHZqQ0yyMR7lun0w8ksgjSTySRQSXqy2_lx043iM-Ri5KdY8aUs5uBPmP5ASW5SiCs561MtzTVlKVJDqdiCEjuFgt4w2jsImqbbNAGgJlKUJNHsHXXiReHvGPdzn5L-pT2BFeMCl97Qy2uvnCfka801XnXr6fAT-58Hc priority: 102 providerName: Springer Nature |
Title | Handling covariates subject to limits of detection in regression |
URI | https://link.springer.com/article/10.1007/s10651-012-0191-6 https://www.proquest.com/docview/1037282610 https://www.proquest.com/docview/1663531541 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-8HkJfRE9LY-uxgk9KMLv5uL0nPeU-UCiiHtSnZbMfRShJbXIF_3tnkk3PCvY12d2Emd2Z3-x8AbySwnDueR7rVM_iDMfEZaIpOccg2tUuSW0XbXFWbLbZp_P8PFy4NSGscpCJnaC2taE78reUz4bmAWr7d1e_YuoaRd7V0EJjBGMUwRKNr_GH5dmXr_vMSN61XeUIM2KJyn7wa_bJc0VOpjSFJsx5XNzRTCOv6zug8x8_aad-Vo_hUcCNbNEz-gk8cNUEjpb7NDV8Gc5pM4GH665h7-8JHBKa7IsxP4X3G6qpgOszU9-gkUw4kzW7ku5iWFuzS8p2aljtmXVtF6NVsZ8Vu3YXfbRs9Qy2q-X3j5s4tFCIDSKNFiVs6p3T3Hurc6sROyEgQgGIIEFkZSJn1lO9HCsTp-eZLbk3eSZQRQmZu4Lb9AgOqrpyx8CymfAIP9IZVWAzc5ybFca4TCY2Ed6ICJKBfMqE-uLU5uJS7SsjE8UVUlwRxVURwevbKVd9cY37Bh8jT5S-QOGntt8EmYZk30k5j-B0YJQKR7BR-w0Twcvb13h4yCOiK1fvcAzhrRRRJI_gzcDgv5f4z788v_-DJ3Aoun1FoWincNBe79wLxC5tOYWRXK2nMF6sf3xeTsN2xadbsfgD3bvpSQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4AxsgL0aOEIuqa6Iuksbvd9rQPRo1yOAjyAifhbd3uhZCQFmkPhj_lb3SmF46YyBvPe2kzOzvzzc4N4E0mDOeeJ6GO9TiUOCcsIk3JOQbRrnZRbNtoi8N0OpPfTpKTJfg95MJQWOUgE1tBbStDb-TvKZ8NzQPU9h8vfobUNYq8q0MLjY4t9t31LzTZ6g97X_F83wox2Tn-Mg37rgKhQeXboNCJvXOae291YjXCCcQIKBNQbwpZRNnYeiohY7PI6VzagnuTSIFSW2SJS7mNcd9leCDjOKcblU12F3mYvG3yyhHUhBlCi8GL2qXqpQkZ7hQIkfMwvaUHl72ubkHcf7yyrbKbPIa1HqWyzx1bPYElV45gfWeRFIeDvVSoR_Bwt20PfD2CVcKuXennp_BpShUccH9mqis0yQnVsnpe0MsPayp2TrlVNas8s65pI8JKdlayS3faxeaWz2B2L6Rdh5WyKt0GMDkWHsFOPKZ6bybHtTI1xsksspHwRgQQDeRTpq9mTk01ztWiDjNRXCHFFVFcpQG8u1ly0ZXyuGvyBp6J0qcoatXsSJAhStZkluUBbA0HpfoLX6sFewbw-mYYryr5X3TpqjnOIXQXI2blAWwPB_z3Fv_5l827P_gKHk2Pvx-og73D_eewKloeoyC4LVhpLufuBaKmpnjZsiqDH_d9N_4AaTcgkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7AEg0Xo6uEUcA20YtmwnTPcw8GUXZdxGyIugm3pqcfxITMIDOr4a_566yaBysmcuPcj5lUV1d91fUCeJkJzbnjsa9ClfoRzvHzQFFyjka0q2wQmibaYpZM59Gnk_hkBX73uTAUVtnLxEZQm1LTG_ku5bOheYDaftd1YRHHB5O9ix8-dZAiT2vfTqNlkSN79QvNt-rt4QGe9SshJuNvH6Z-12HA16iIaxRAobNWceeMio1CaIF4AeUD6lAR5UGWGkflZEwWWDWKTM6djiOBElxksU24CXHfVVhL0SoKBrD2fjw7_rLMyuRNy1eOEMfPEGj0PtU2cS-JyYynsIgR95MbWnHVqfIG4P3HR9uovslDeNBhVrbfMtkjWLHFEDbGyxQ5HOxkRDWEex-bZsFXQ1gnJNsWgn4M76ZUzwH3Z7r8iQY6YVxWLXJ6B2J1yc4p06pipWPG1k18WMG-F-zSnrWRusUTmN8JcTdgUJSF3QQWpcIh9AlTqv6mR7g2SrS2URaYQDgtPAh68knd1TanFhvnclmVmSgukeKSKC4TD15fL7loC3vcNnkTz0SqMxS8cv5VkFlKtmWWjTzY6g9Kdte_kktm9eDF9TBeXPLGqMKWC5xDWC9EBMs9eNMf8N9b_Odfnt7-wedwH--F_Hw4O3oG66JhMYqI24JBfbmw2wih6nyn41UGp3d9Pf4AH44mJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+covariates+subject+to+limits+of+detection+in+regression&rft.jtitle=Environmental+and+ecological+statistics&rft.au=Arunajadai%2C+Srikesh+G.&rft.au=Rauh%2C+Virginia+A.&rft.date=2012-09-01&rft.issn=1352-8505&rft.eissn=1573-3009&rft.volume=19&rft.issue=3&rft.spage=369&rft.epage=391&rft_id=info:doi/10.1007%2Fs10651-012-0191-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10651_012_0191_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8505&client=summon |