High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data

•A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the predicti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 92; p. 102163
Main Authors Li, Wang, Niu, Zheng, Shang, Rong, Qin, Yuchu, Wang, Li, Chen, Hanyue
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the prediction of forest height.•Sentinel-1 & -1 satellites showed high capacity on the prediction of forest height. Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools.
AbstractList Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools.
Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcₐₙₒₚy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcₐₙₒₚy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcₐₙₒₚy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcₐₙₒₚy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcₐₙₒₚy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcₐₙₒₚy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools.
•A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the prediction of forest height.•Sentinel-1 & -1 satellites showed high capacity on the prediction of forest height. Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools.
ArticleNumber 102163
Author Shang, Rong
Qin, Yuchu
Wang, Li
Li, Wang
Chen, Hanyue
Niu, Zheng
Author_xml – sequence: 1
  givenname: Wang
  surname: Li
  fullname: Li, Wang
  email: lwwhdz@sina.com
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Zheng
  surname: Niu
  fullname: Niu, Zheng
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Rong
  surname: Shang
  fullname: Shang, Rong
  email: shangr@lreis.ac.cn
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 4
  givenname: Yuchu
  surname: Qin
  fullname: Qin, Yuchu
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 6
  givenname: Hanyue
  surname: Chen
  fullname: Chen, Hanyue
  organization: College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
BookMark eNp9Uc2O0zAYjNAisbvwANx85ECKf-I4FqdVWdhKlZAoB27WV8duHaV2sN1FfQseGYcgkDjsxf48nhnLMzfVlQ_eVNVrglcEk_bdsBrgsKKYzmdKWvasuiadoHVH229XZeatrLuG0RfVTUoDxkSItruufj64w7GOJoXxnF3w6ATT5PwBBYtsKHhGGnyYLuhoCjOjc5pvT6CPzhs0Goh-BvYXpMN5Gud5s77fQa4p2roPd1_QD5ePaGd8LoKxJm__zRSB79G2LKnwO9RDhpfVcwtjMq_-7LfV7uP91_VDvf38abO-29a6YbKYi55rbpueadPvCdVWYm45CNHJPed7SVoOBdXYgqWyYUJS2VrWC46hYbfVZnHtAwxqiu4E8aICOPUbCPGgIGanR6OE5S3GVhvGusZILIGwhjVGUIbbjvLi9WbxmmL4fi6JqZNL2owjeBPOSdFWcN5R2olCJQtVx5BSNPbv0wSruUc1qNKjmntUS49FI_7TaJdh7ipHcOOTyveL0pQcH52JKmlnfAnMRaNz-ap7Qv0LrDS4fg
CitedBy_id crossref_primary_10_3390_rs14020364
crossref_primary_10_1109_TGRS_2025_3542685
crossref_primary_10_1080_01431161_2024_2343429
crossref_primary_10_5194_asr_18_65_2021
crossref_primary_10_1080_15481603_2024_2396807
crossref_primary_10_1002_ece3_10090
crossref_primary_10_1080_22797254_2021_2018667
crossref_primary_10_1080_15481603_2022_2115599
crossref_primary_10_1007_s41651_025_00218_3
crossref_primary_10_1109_TGRS_2022_3187154
crossref_primary_10_1016_j_jag_2022_102760
crossref_primary_10_1080_01431161_2024_2326537
crossref_primary_10_1016_j_jag_2021_102583
crossref_primary_10_1186_s40623_024_02071_y
crossref_primary_10_1109_JSTARS_2024_3383777
crossref_primary_10_5194_essd_16_5267_2024
crossref_primary_10_1080_01431161_2024_2391093
crossref_primary_10_1109_JSTARS_2023_3340429
crossref_primary_10_1109_TGRS_2022_3233037
crossref_primary_10_1109_ACCESS_2024_3507916
crossref_primary_10_18182_tjf_1282768
crossref_primary_10_1029_2021GL093799
crossref_primary_10_1080_15481603_2024_2367807
crossref_primary_10_14358_PERS_21_00024R2
crossref_primary_10_1088_1748_9326_ad560a
crossref_primary_10_1088_1755_1315_932_1_012006
crossref_primary_10_1080_10106049_2021_1924295
crossref_primary_10_1002_rse2_419
crossref_primary_10_1007_s40899_022_00607_2
crossref_primary_10_1109_TGRS_2024_3362788
crossref_primary_10_1186_s13021_022_00212_y
crossref_primary_10_3389_fpls_2022_1043389
crossref_primary_10_1080_19376812_2023_2164865
crossref_primary_10_1007_s11771_022_4896_x
crossref_primary_10_1109_TGRS_2022_3231926
crossref_primary_10_1080_01431161_2024_2307944
crossref_primary_10_1080_10106049_2022_2120551
crossref_primary_10_1080_15481603_2022_2148338
crossref_primary_10_1007_s10661_023_12066_z
crossref_primary_10_1109_JSTARS_2024_3417302
crossref_primary_10_1088_1755_1315_1004_1_012023
crossref_primary_10_1080_27658511_2025_2469406
crossref_primary_10_1080_01431161_2023_2169596
crossref_primary_10_15287_afr_2024_3664
crossref_primary_10_1109_LGRS_2024_3474252
crossref_primary_10_1016_j_isprsjprs_2020_11_008
crossref_primary_10_1080_17538947_2023_2285807
crossref_primary_10_1109_TGRS_2023_3297367
crossref_primary_10_1080_22797254_2025_2479010
crossref_primary_10_5194_wes_6_1379_2021
crossref_primary_10_1007_s10661_024_12478_5
crossref_primary_10_1080_14942119_2024_2380230
crossref_primary_10_1088_2634_4505_abf820
crossref_primary_10_1016_j_enbuild_2024_114552
crossref_primary_10_11728_cjss2023_06_2023_0074
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_1080_01431161_2023_2189035
crossref_primary_10_1080_15481603_2024_2374150
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_1109_JSTARS_2024_3398009
crossref_primary_10_1088_1748_9326_ac77a2
crossref_primary_10_1088_2752_664X_ad7f5a
crossref_primary_10_1109_TGRS_2024_3383600
crossref_primary_10_1109_JSTARS_2021_3080711
crossref_primary_10_1111_2041_210X_14112
Cites_doi 10.1073/pnas.1004875107
10.3390/rs11141721
10.1890/09-1670.1
10.1111/2041-210X.13256
10.1109/JSTARS.2014.2329330
10.1038/s41893-019-0246-x
10.1890/07-0539.1
10.1016/j.rse.2018.09.002
10.1038/s41586-019-0912-1
10.1016/j.rse.2015.12.005
10.1109/LGRS.2016.2584109
10.3390/rs70403446
10.3390/rs11070889
10.1109/JPROC.2017.2675998
10.1117/1.JRS.11.042609
10.1016/j.isprsjprs.2019.03.016
10.1016/j.rse.2010.08.025
10.1016/j.rse.2015.12.002
10.1109/TGRS.2007.907602
10.1111/geb.12887
10.1016/j.rse.2016.04.008
10.1016/j.rse.2020.111716
10.3390/f6113899
10.1016/j.rse.2019.111347
10.1016/j.rse.2019.111283
10.1046/j.1466-822x.2002.00303.x
10.1016/j.isprsjprs.2014.11.007
10.1002/ecs2.2430
10.1016/j.rse.2016.01.015
10.1109/MGRS.2016.2540798
10.1016/j.rse.2018.10.004
10.1002/ecy.1470
10.1016/S0264-3707(02)00042-X
10.1016/j.rse.2008.06.006
10.3390/rs10060859
10.3390/rs8010062
10.1109/JSTARS.2018.2868119
10.1016/j.rse.2016.12.029
10.1016/j.rse.2019.111439
10.1093/biomet/37.1-2.17
10.1016/j.isprsjprs.2016.01.006
10.1080/01431161.2014.967888
10.1371/journal.pone.0137545
10.1016/j.rse.2017.04.007
10.1016/j.rse.2012.02.001
10.1111/1365-2745.12510
10.3390/rs11121459
10.1016/0034-4257(90)90085-Z
10.1109/TGRS.2013.2296533
10.1109/LGRS.2017.2681128
10.1002/rse2.44
10.1016/j.biocon.2017.10.020
10.1016/j.rse.2018.11.005
10.1016/0034-4257(94)90134-1
10.1016/S0034-4257(02)00056-1
10.21105/joss.00296
10.1038/s41467-019-12380-6
10.1016/j.gsf.2015.07.003
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2020.102163
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_7f5600fce3384e909a13434e72306825
10_1016_j_jag_2020_102163
S030324342030026X
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-27d5c5f4d3cedb12cf905f5a7789b55b9165a2cfc0faf294379296f3d750a43
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:31:42 EDT 2025
Wed Jul 30 11:20:06 EDT 2025
Tue Jul 01 02:15:16 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Landsat-8
Forest canopy height
Deep-learning
ICESat-2
Sentinel-1
Sentinel-2
Random forest
Machine-learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-27d5c5f4d3cedb12cf905f5a7789b55b9165a2cfc0faf294379296f3d750a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/7f5600fce3384e909a13434e72306825
PQID 2675582287
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_7f5600fce3384e909a13434e72306825
proquest_miscellaneous_2675582287
crossref_primary_10_1016_j_jag_2020_102163
crossref_citationtrail_10_1016_j_jag_2020_102163
elsevier_sciencedirect_doi_10_1016_j_jag_2020_102163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Shao, Liu, Cheng (bib0360) 2019; 11
St-Onge, Audet, Bégin (bib0270) 2015; 6
Asner, Powell, Mascaro, Knapp, Clark, Jacobson, Kennedy-Bowdoin, Balaji, Paez-Acosta, Victoria, Secada, Valqui, Hughes (bib0030) 2010; 107
Traganos, Poursanidis, Aggarwal, Chrysoulakis, Reinartz (bib0305) 2018; 10
Zhang, Du (bib0355) 2016; 4
Simard, Pinto, Fisher, Baccini (bib0265) 2011
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bib0060) 2018; 219
Crippen (bib0065) 1990; 34
Jones, Allred, Naugle, Maestas, Donnelly, Metz, Karl, Smith, Bestelmeyer, Boyd, Kerby, McIver (bib0115) 2018; 9
Kussul, Lavreniuk, Skakun, Shelestov (bib0125) 2017; 14
Lefsky, Harding, Keller, Cohen, Carabajal, Del Bom Espirito-Santo, Hunter, de Oliveira (bib0150) 2005
Jiang, Huete, Didan, Miura (bib0110) 2008; 112
Tian, Li, Chen, Liu, Yan, Wang, Niu, Zhao, Li, Pang (bib0295) 2015; 10
Neuenschwander, Pitts (bib0200) 2019; 221
Yuan, Shen, Li, Li, Li, Jiang, Xu, Tan, Yang, Wang, Gao, Zhang (bib0335) 2020; 241
Neuenschwander (bib0205) 2018
Sankey, Donager, McVay, Sankey (bib0250) 2017; 195
Pourshamsi, Garcia, Lavalle, Balzter (bib0230) 2018; 11
Liu, Gong, Xing, Hu, Gong (bib0175) 2019; 151
Shang, Zhu (bib0260) 2019; 235
Li, Niu, Liang, Li, Huang, Gao, Wang, Muhammad (bib0160) 2015; 41
Liang, Kankare, Hyyppä, Wang, Kukko, Haggrén, Yu, Kaartinen, Jaakkola, Guan (bib0165) 2016; 115
Liaw, Wiener (bib0170) 2002; 2
Moran (bib0195) 1950; 37
Patel, Angiuli, Gamba, Gaughan, Lisini, Stevens, Tatem, Trianni (bib0225) 2015; 35
Team (bib0290) 2014
Li, Guo, Wang, Li, Chen, Zuo (bib0155) 2016; 13
Wulder, White, Nelson, Næsset, Ørka, Coops, Hilker, Bater, Gobakken (bib0325) 2012; 121
Hudak, Lefsky, Cohen, Berterretche (bib0105) 2002; 82
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (bib0245) 2019; 566
Pang, Lefsky, Sun, Ranson (bib0220) 2011; 115
Ball, Anderson, Chan (bib0035) 2017; 11
Chen, Lin, Zhao, Wang, Gu (bib0045) 2014; 7
Almeida, Broadbent, Zambrano, Wilkinson, Ferreira, Chazdon, Meli, Gorgens, Silva, Stark (bib0015) 2019; 79
Wang, Huang, Gong, Biging, Xin, Chen, Yang, Liu (bib0315) 2016; 8
Buchhorn, Smets, Bertels, Lesiv, Nandin-Erdene, Herold, Fritz (bib0040) 2019
Kugler, Schulze, Hajnsek, Pretzsch, Papathanassiou (bib0120) 2014; 52
Lary, Alavi, Gandomi, Walker (bib0135) 2016; 7
Healey, Hernandez, Edwards, Lefsky, FREEMAN, Patterson, Lindquist, Lister (bib0095) 2016
Lefsky (bib0140) 2010
Asner, Brodrick, Philipson, Vaughn, Martin, Knapp, Heckler, Evans, Jucker, Goossens, Stark, Reynolds, Ong, Renneboog, Kugan, Coomes (bib0025) 2018; 217
El-Amir, Hamdy (bib0075) 2020
Lefsky, Cohen, Harding, Parker, Acker, Gower (bib0145) 2002; 11
Christin, Hervet, Lecomte (bib0055) 2019; 10
Qi, Chehbouni, Huete, Kerr, Sorooshian (bib0235) 1994; 48
Markus, Neumann, Martino, Abdalati, Brunt, Csatho, Farrell, Fricker, Gardner, Harding, Jasinski, Kwok, Magruder, Lubin, Luthcke, Morison, Nelson, Neuenschwander, Palm, Popescu, Shum, Schutz, Smith, Yang, Zwally (bib0190) 2017; 190
Stovall, Shugart, Yang (bib0275) 2019; 10
Zhang, Nielsen, Mao, Chen, Svenning (bib0350) 2016; 104
Garestier, Dubois-Fernandez, Papathanassiou (bib0080) 2007; 46
Zald, Wulder, White, Hilker, Hermosilla, Hobart, Coops (bib0340) 2016; 176
Louis, Debaecker, Pflug, Main-Knorn, Bieniarz, Mueller-Wilm, Cadau, Gascon (bib0180) 2016
Tian, Li, Su, Chen, van der Tol, Li, Guo, Li, Ling (bib0300) 2014; 35
Zarnetske, Read, Record, Gaddis, Pau, Hobi, Malone, Costanza, Dahlin, Latimer, Wilson, Grady, Ollinger, Finley, Gillespie (bib0345) 2019; 28
Hill, Hinsley (bib0100) 2015; 7
Qi, Saarela, Armston, Ståhl, Dubayah (bib0240) 2019; 232
Wang, Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bib0320) 2016; 174
Arnold (bib0020) 2017; 2
Handan-Nader, Ho (bib0090) 2019; 2
Sankey, McVay, Swetnam, McClaran, Heilman, Nichols (bib0255) 2018; 4
Xu, Hantson, Holmgren, van Nes, Staal, Scheffer (bib0330) 2016; 97
Cutler, Edwards, Beard, Cutler, Hess, Gibson, Lawler (bib0070) 2007; 88
Neuenschwander, Magruder (bib0210) 2019; 11
Luo, Wang, Xi, Nie, Fan, Chen, Ma, Liu, Zou, Lin, Zhou (bib0185) 2019
Ni, Dong, Sun, Zhang, Pang, Tian, Li, Chen (bib0215) 2019; 11
Suess, van der Linden, Okujeni, Griffiths, Leitão, Schwieder, Hostert (bib0285) 2018; 219
Zwally, Schutz, Abdalati, Abshire, Bentley, Brenner, Bufton, Dezio, Hancock, Harding (bib0365) 2002; 34
Vermote, Justice, Claverie, Franch (bib0310) 2016; 185
Alexander, Korstjens, Hill (bib0010) 2018; 65
Su, Guo, Xue, Hu, Alvarez, Tao, Fang (bib0280) 2016; 173
Goetz, Steinberg, Betts, Holmes, Doran, Dubayah, Hofton (bib0085) 2010; 91
Lang, Schindler, Wegner (bib0130) 2019; 233
Ahmed, Franklin, Wulder, White (bib0005) 2015; 101
Cheng, Han, Lu (bib0050) 2017; 105
Wulder (10.1016/j.jag.2020.102163_bib0325) 2012; 121
Alexander (10.1016/j.jag.2020.102163_bib0010) 2018; 65
Crippen (10.1016/j.jag.2020.102163_bib0065) 1990; 34
Sankey (10.1016/j.jag.2020.102163_bib0255) 2018; 4
Hudak (10.1016/j.jag.2020.102163_bib0105) 2002; 82
Pang (10.1016/j.jag.2020.102163_bib0220) 2011; 115
Zhang (10.1016/j.jag.2020.102163_bib0355) 2016; 4
Lefsky (10.1016/j.jag.2020.102163_bib0150) 2005
Moran (10.1016/j.jag.2020.102163_bib0195) 1950; 37
Team (10.1016/j.jag.2020.102163_bib0290) 2014
Reichstein (10.1016/j.jag.2020.102163_bib0245) 2019; 566
Neuenschwander (10.1016/j.jag.2020.102163_bib0210) 2019; 11
Yuan (10.1016/j.jag.2020.102163_bib0335) 2020; 241
Suess (10.1016/j.jag.2020.102163_bib0285) 2018; 219
St-Onge (10.1016/j.jag.2020.102163_bib0270) 2015; 6
Hill (10.1016/j.jag.2020.102163_bib0100) 2015; 7
Goetz (10.1016/j.jag.2020.102163_bib0085) 2010; 91
Su (10.1016/j.jag.2020.102163_bib0280) 2016; 173
Zwally (10.1016/j.jag.2020.102163_bib0365) 2002; 34
Markus (10.1016/j.jag.2020.102163_bib0190) 2017; 190
Zald (10.1016/j.jag.2020.102163_bib0340) 2016; 176
Liang (10.1016/j.jag.2020.102163_bib0165) 2016; 115
Zhang (10.1016/j.jag.2020.102163_bib0350) 2016; 104
Zhang (10.1016/j.jag.2020.102163_bib0360) 2019; 11
Qi (10.1016/j.jag.2020.102163_bib0240) 2019; 232
Lefsky (10.1016/j.jag.2020.102163_bib0140) 2010
Asner (10.1016/j.jag.2020.102163_bib0025) 2018; 217
Jiang (10.1016/j.jag.2020.102163_bib0110) 2008; 112
Vermote (10.1016/j.jag.2020.102163_bib0310) 2016; 185
Handan-Nader (10.1016/j.jag.2020.102163_bib0090) 2019; 2
Garestier (10.1016/j.jag.2020.102163_bib0080) 2007; 46
Claverie (10.1016/j.jag.2020.102163_bib0060) 2018; 219
Arnold (10.1016/j.jag.2020.102163_bib0020) 2017; 2
Buchhorn (10.1016/j.jag.2020.102163_bib0040) 2019
Pourshamsi (10.1016/j.jag.2020.102163_bib0230) 2018; 11
Healey (10.1016/j.jag.2020.102163_bib0095) 2016
Christin (10.1016/j.jag.2020.102163_bib0055) 2019; 10
Shang (10.1016/j.jag.2020.102163_bib0260) 2019; 235
Kugler (10.1016/j.jag.2020.102163_bib0120) 2014; 52
Wang (10.1016/j.jag.2020.102163_bib0315) 2016; 8
Jones (10.1016/j.jag.2020.102163_bib0115) 2018; 9
Stovall (10.1016/j.jag.2020.102163_bib0275) 2019; 10
Liaw (10.1016/j.jag.2020.102163_bib0170) 2002; 2
Lefsky (10.1016/j.jag.2020.102163_bib0145) 2002; 11
Neuenschwander (10.1016/j.jag.2020.102163_bib0200) 2019; 221
El-Amir (10.1016/j.jag.2020.102163_bib0075) 2020
Zarnetske (10.1016/j.jag.2020.102163_bib0345) 2019; 28
Ni (10.1016/j.jag.2020.102163_bib0215) 2019; 11
Cheng (10.1016/j.jag.2020.102163_bib0050) 2017; 105
Almeida (10.1016/j.jag.2020.102163_bib0015) 2019; 79
Wang (10.1016/j.jag.2020.102163_bib0320) 2016; 174
Traganos (10.1016/j.jag.2020.102163_bib0305) 2018; 10
Li (10.1016/j.jag.2020.102163_bib0155) 2016; 13
Tian (10.1016/j.jag.2020.102163_bib0300) 2014; 35
Liu (10.1016/j.jag.2020.102163_bib0175) 2019; 151
Chen (10.1016/j.jag.2020.102163_bib0045) 2014; 7
Louis (10.1016/j.jag.2020.102163_bib0180) 2016
Patel (10.1016/j.jag.2020.102163_bib0225) 2015; 35
Li (10.1016/j.jag.2020.102163_bib0160) 2015; 41
Xu (10.1016/j.jag.2020.102163_bib0330) 2016; 97
Neuenschwander (10.1016/j.jag.2020.102163_bib0205) 2018
Lang (10.1016/j.jag.2020.102163_bib0130) 2019; 233
Asner (10.1016/j.jag.2020.102163_bib0030) 2010; 107
Kussul (10.1016/j.jag.2020.102163_bib0125) 2017; 14
Luo (10.1016/j.jag.2020.102163_bib0185) 2019
Cutler (10.1016/j.jag.2020.102163_bib0070) 2007; 88
Simard (10.1016/j.jag.2020.102163_bib0265) 2011
Ball (10.1016/j.jag.2020.102163_bib0035) 2017; 11
Sankey (10.1016/j.jag.2020.102163_bib0250) 2017; 195
Ahmed (10.1016/j.jag.2020.102163_bib0005) 2015; 101
Lary (10.1016/j.jag.2020.102163_bib0135) 2016; 7
Qi (10.1016/j.jag.2020.102163_bib0235) 1994; 48
Tian (10.1016/j.jag.2020.102163_bib0295) 2015; 10
References_xml – volume: 11
  year: 2017
  ident: bib0035
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
– volume: 65
  start-page: 105
  year: 2018
  end-page: 113
  ident: bib0010
  article-title: Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: bib0125
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote. Sens. Lett.
– volume: 233
  year: 2019
  ident: bib0130
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 17
  year: 1950
  end-page: 23
  ident: bib0195
  article-title: Notes on continuous stochastic phenomena
  publication-title: Biometrika
– volume: 11
  start-page: 1721
  year: 2019
  ident: bib0210
  article-title: Canopy and terrain height retrievals with ICESat-2: a first look
  publication-title: Remote Sens.
– volume: 2
  start-page: 298
  year: 2019
  end-page: 306
  ident: bib0090
  article-title: Deep learning to map concentrated animal feeding operations
  publication-title: Nat. Sustain.
– volume: 52
  start-page: 6404
  year: 2014
  end-page: 6422
  ident: bib0120
  article-title: TanDEM-X Pol-InSAR performance for forest height estimation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 48
  start-page: 119
  year: 1994
  end-page: 126
  ident: bib0235
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 63
  year: 2016
  end-page: 77
  ident: bib0165
  article-title: Terrestrial laser scanning in forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2
  start-page: 296
  year: 2017
  ident: bib0020
  article-title: kerasR: R Interface to the Keras Deep Learning Library
  publication-title: J. Open Source Software
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bib0060
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bib0095
  article-title: CMS: GLAS LiDAR-Derived Global Estimates of Forest Canopy Height, 2004-2008
– volume: 105
  start-page: 1865
  year: 2017
  end-page: 1883
  ident: bib0050
  article-title: Remote sensing image scene classification: benchmark and state of the art
  publication-title: Proc. IEEE
– volume: 82
  start-page: 397
  year: 2002
  end-page: 416
  ident: bib0105
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  ident: bib0295
  article-title: The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE)
  publication-title: PLoS One
– volume: 79
  start-page: 192
  year: 2019
  end-page: 198
  ident: bib0015
  article-title: Monitoring the structure of forest restoration plantations with a drone-lidar system
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2020
  ident: bib0075
  article-title: Deep Learning Pipeline : Building a Deep Learning Model With TensorFlow
– volume: 217
  start-page: 289
  year: 2018
  end-page: 310
  ident: bib0025
  article-title: Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo
  publication-title: Biol. Conserv.
– volume: 35
  start-page: 199
  year: 2015
  end-page: 208
  ident: bib0225
  article-title: Multitemporal settlement and population mapping from Landsat using Google Earth Engine
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2014
  ident: bib0290
  article-title: A Language and Environment for Statistical Computing
– volume: 101
  start-page: 89
  year: 2015
  end-page: 101
  ident: bib0005
  article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 91
  start-page: 1569
  year: 2010
  end-page: 1576
  ident: bib0085
  article-title: Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird
  publication-title: Ecology
– volume: 174
  start-page: 24
  year: 2016
  end-page: 43
  ident: bib0320
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 3453
  year: 2018
  end-page: 3463
  ident: bib0230
  article-title: A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bib0310
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 121
  start-page: 196
  year: 2012
  end-page: 209
  ident: bib0325
  article-title: Lidar sampling for large-area forest characterization: a review
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 3899
  year: 2015
  end-page: 3922
  ident: bib0270
  article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
– volume: 235
  year: 2019
  ident: bib0260
  article-title: Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bib0045
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 241
  year: 2020
  ident: bib0335
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 2798
  year: 2011
  end-page: 2809
  ident: bib0220
  article-title: Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1632
  year: 2019
  end-page: 1644
  ident: bib0055
  article-title: Applications for deep learning in ecology
  publication-title: Methods Ecol. Evol.
– volume: 41
  start-page: 88
  year: 2015
  end-page: 98
  ident: bib0160
  article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2019
  ident: bib0040
  article-title: Copernicus Global Land Service: Land Cover 100m: Epoch 2015
– volume: 28
  start-page: 548
  year: 2019
  end-page: 556
  ident: bib0345
  article-title: Towards connecting biodiversity and geodiversity across scales with satellite remote sensing
  publication-title: Glob. Ecol. Biogeogr.
– volume: 11
  start-page: 393
  year: 2002
  end-page: 399
  ident: bib0145
  article-title: Lidar remote sensing of above‐ground biomass in three biomes
  publication-title: Glob. Ecol. Biogeogr.
– volume: 34
  start-page: 71
  year: 1990
  end-page: 73
  ident: bib0065
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 3446
  year: 2015
  end-page: 3466
  ident: bib0100
  article-title: Airborne Lidar for woodland habitat quality monitoring: exploring the significance of Lidar data characteristics when modelling organism-habitat relationships
  publication-title: Remote Sens.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0170
  article-title: Classification and regression by randomForest
  publication-title: R news
– volume: 195
  start-page: 30
  year: 2017
  end-page: 43
  ident: bib0250
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1459
  year: 2019
  ident: bib0360
  article-title: Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data
  publication-title: Remote Sens.
– volume: 13
  start-page: 1330
  year: 2016
  end-page: 1334
  ident: bib0155
  article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 4
  start-page: 20
  year: 2018
  end-page: 33
  ident: bib0255
  article-title: UAV hyperspectral and lidar data and their fusion for arid and semi‐arid land vegetation monitoring
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 104
  start-page: 469
  year: 2016
  end-page: 478
  ident: bib0350
  article-title: Regional and historical factors supplement current climate in shaping global forest canopy height
  publication-title: J. Ecol.
– volume: 219
  start-page: 353
  year: 2018
  end-page: 364
  ident: bib0285
  article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: bib0355
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 37
  year: 2010
  ident: bib0140
  article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0180
  article-title: Sentinel-2 Sen2Cor: L2A processor for users
  publication-title: Proceedings Living Planet Symposium 2016
– start-page: 116
  year: 2011
  ident: bib0265
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 112
  start-page: 3833
  year: 2008
  end-page: 3845
  ident: bib0110
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 62
  year: 2016
  ident: bib0315
  article-title: Quantifying multi-decadal change of planted forest cover using airborne LiDAR and Landsat imagery
  publication-title: Remote Sens.
– volume: 97
  start-page: 2518
  year: 2016
  end-page: 2521
  ident: bib0330
  article-title: Remotely sensed canopy height reveals three pantropical ecosystem states
  publication-title: Ecology
– volume: 88
  start-page: 2783
  year: 2007
  end-page: 2792
  ident: bib0070
  article-title: Random forests for classification in ecology
  publication-title: Ecology
– volume: 10
  start-page: 4385
  year: 2019
  ident: bib0275
  article-title: Tree height explains mortality risk during an intense drought
  publication-title: Nat. Commun.
– volume: 176
  start-page: 188
  year: 2016
  end-page: 201
  ident: bib0340
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
– volume: 190
  start-page: 260
  year: 2017
  end-page: 273
  ident: bib0190
  article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
– volume: 173
  start-page: 187
  year: 2016
  end-page: 199
  ident: bib0280
  article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data
  publication-title: Remote Sens. Environ.
– volume: 107
  start-page: 16738
  year: 2010
  end-page: 16742
  ident: bib0030
  article-title: High-resolution forest carbon stocks and emissions in the Amazon
  publication-title: Proc. Natl. Acad. Sci.
– volume: 35
  start-page: 7339
  year: 2014
  end-page: 7362
  ident: bib0300
  article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 859
  year: 2018
  ident: bib0305
  article-title: Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2
  publication-title: Remote Sens.
– start-page: 83
  year: 2019
  ident: bib0185
  article-title: Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 889
  year: 2019
  ident: bib0215
  article-title: Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests
  publication-title: Remote Sens.
– volume: 46
  start-page: 59
  year: 2007
  end-page: 68
  ident: bib0080
  article-title: Pine forest height inversion using single-pass X-band PolInSAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib0245
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 9
  year: 2018
  ident: bib0115
  article-title: Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017
  publication-title: Ecosphere
– volume: 151
  start-page: 277
  year: 2019
  end-page: 289
  ident: bib0175
  article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 232
  year: 2019
  ident: bib0240
  article-title: Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 3
  year: 2016
  end-page: 10
  ident: bib0135
  article-title: Machine learning in geosciences and remote sensing
  publication-title: Geosci. Front.
– volume: 221
  start-page: 247
  year: 2019
  end-page: 259
  ident: bib0200
  article-title: The ATL08 land and vegetation product for the ICESat-2 Mission
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bib0205
  article-title: Ice, Cloud, and Land Elevation Satellite-2 Algorithm Theoretical Basis Document for Land - Vegetation Along-track Products
– volume: 34
  start-page: 405
  year: 2002
  end-page: 445
  ident: bib0365
  article-title: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land
  publication-title: J. Geodyn.
– start-page: 32
  year: 2005
  ident: bib0150
  article-title: Estimates of forest canopy height and aboveground biomass using ICESat
  publication-title: Geophys. Res. Lett.
– volume: 107
  start-page: 16738
  year: 2010
  ident: 10.1016/j.jag.2020.102163_bib0030
  article-title: High-resolution forest carbon stocks and emissions in the Amazon
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1004875107
– volume: 11
  start-page: 1721
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0210
  article-title: Canopy and terrain height retrievals with ICESat-2: a first look
  publication-title: Remote Sens.
  doi: 10.3390/rs11141721
– volume: 91
  start-page: 1569
  year: 2010
  ident: 10.1016/j.jag.2020.102163_bib0085
  article-title: Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird
  publication-title: Ecology
  doi: 10.1890/09-1670.1
– year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0040
– volume: 35
  start-page: 199
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0225
  article-title: Multitemporal settlement and population mapping from Landsat using Google Earth Engine
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 1632
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0055
  article-title: Applications for deep learning in ecology
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13256
– year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0095
– volume: 7
  start-page: 2094
  year: 2014
  ident: 10.1016/j.jag.2020.102163_bib0045
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 2
  start-page: 298
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0090
  article-title: Deep learning to map concentrated animal feeding operations
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0246-x
– volume: 88
  start-page: 2783
  year: 2007
  ident: 10.1016/j.jag.2020.102163_bib0070
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0060
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0245
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 174
  start-page: 24
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0320
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.005
– volume: 13
  start-page: 1330
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0155
  article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2584109
– volume: 7
  start-page: 3446
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0100
  article-title: Airborne Lidar for woodland habitat quality monitoring: exploring the significance of Lidar data characteristics when modelling organism-habitat relationships
  publication-title: Remote Sens.
  doi: 10.3390/rs70403446
– volume: 11
  start-page: 889
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0215
  article-title: Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests
  publication-title: Remote Sens.
  doi: 10.3390/rs11070889
– volume: 105
  start-page: 1865
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0050
  article-title: Remote sensing image scene classification: benchmark and state of the art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– start-page: 32
  year: 2005
  ident: 10.1016/j.jag.2020.102163_bib0150
  article-title: Estimates of forest canopy height and aboveground biomass using ICESat
  publication-title: Geophys. Res. Lett.
– start-page: 83
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0185
  article-title: Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0035
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.042609
– volume: 151
  start-page: 277
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0175
  article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.016
– volume: 115
  start-page: 2798
  year: 2011
  ident: 10.1016/j.jag.2020.102163_bib0220
  article-title: Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.025
– volume: 173
  start-page: 187
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0280
  article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.002
– volume: 46
  start-page: 59
  year: 2007
  ident: 10.1016/j.jag.2020.102163_bib0080
  article-title: Pine forest height inversion using single-pass X-band PolInSAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.907602
– volume: 41
  start-page: 88
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0160
  article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 28
  start-page: 548
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0345
  article-title: Towards connecting biodiversity and geodiversity across scales with satellite remote sensing
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12887
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0310
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 241
  year: 2020
  ident: 10.1016/j.jag.2020.102163_bib0335
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– volume: 6
  start-page: 3899
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0270
  article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
  doi: 10.3390/f6113899
– year: 2014
  ident: 10.1016/j.jag.2020.102163_bib0290
– volume: 233
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0130
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111347
– volume: 232
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0240
  article-title: Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111283
– volume: 11
  start-page: 393
  year: 2002
  ident: 10.1016/j.jag.2020.102163_bib0145
  article-title: Lidar remote sensing of above‐ground biomass in three biomes
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822x.2002.00303.x
– volume: 101
  start-page: 89
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0005
  article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.11.007
– volume: 9
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0115
  article-title: Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2430
– volume: 176
  start-page: 188
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0340
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.015
– start-page: 37
  year: 2010
  ident: 10.1016/j.jag.2020.102163_bib0140
  article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
– volume: 4
  start-page: 22
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0355
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 219
  start-page: 353
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0285
  article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.004
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.jag.2020.102163_bib0170
  article-title: Classification and regression by randomForest
  publication-title: R news
– year: 2020
  ident: 10.1016/j.jag.2020.102163_bib0075
– volume: 97
  start-page: 2518
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0330
  article-title: Remotely sensed canopy height reveals three pantropical ecosystem states
  publication-title: Ecology
  doi: 10.1002/ecy.1470
– volume: 34
  start-page: 405
  year: 2002
  ident: 10.1016/j.jag.2020.102163_bib0365
  article-title: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land
  publication-title: J. Geodyn.
  doi: 10.1016/S0264-3707(02)00042-X
– volume: 112
  start-page: 3833
  year: 2008
  ident: 10.1016/j.jag.2020.102163_bib0110
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.006
– volume: 10
  start-page: 859
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0305
  article-title: Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2
  publication-title: Remote Sens.
  doi: 10.3390/rs10060859
– volume: 8
  start-page: 62
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0315
  article-title: Quantifying multi-decadal change of planted forest cover using airborne LiDAR and Landsat imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs8010062
– volume: 11
  start-page: 3453
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0230
  article-title: A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2868119
– volume: 65
  start-page: 105
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0010
  article-title: Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 190
  start-page: 260
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0190
  article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.029
– volume: 235
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0260
  article-title: Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111439
– volume: 37
  start-page: 17
  year: 1950
  ident: 10.1016/j.jag.2020.102163_bib0195
  article-title: Notes on continuous stochastic phenomena
  publication-title: Biometrika
  doi: 10.1093/biomet/37.1-2.17
– year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0205
– volume: 115
  start-page: 63
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0165
  article-title: Terrestrial laser scanning in forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.006
– volume: 35
  start-page: 7339
  year: 2014
  ident: 10.1016/j.jag.2020.102163_bib0300
  article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.967888
– volume: 10
  year: 2015
  ident: 10.1016/j.jag.2020.102163_bib0295
  article-title: The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137545
– volume: 195
  start-page: 30
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0250
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.007
– volume: 121
  start-page: 196
  year: 2012
  ident: 10.1016/j.jag.2020.102163_bib0325
  article-title: Lidar sampling for large-area forest characterization: a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.001
– volume: 104
  start-page: 469
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0350
  article-title: Regional and historical factors supplement current climate in shaping global forest canopy height
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12510
– volume: 79
  start-page: 192
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0015
  article-title: Monitoring the structure of forest restoration plantations with a drone-lidar system
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 116
  year: 2011
  ident: 10.1016/j.jag.2020.102163_bib0265
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 11
  start-page: 1459
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0360
  article-title: Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data
  publication-title: Remote Sens.
  doi: 10.3390/rs11121459
– volume: 34
  start-page: 71
  year: 1990
  ident: 10.1016/j.jag.2020.102163_bib0065
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90085-Z
– volume: 52
  start-page: 6404
  year: 2014
  ident: 10.1016/j.jag.2020.102163_bib0120
  article-title: TanDEM-X Pol-InSAR performance for forest height estimation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2296533
– start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0180
  article-title: Sentinel-2 Sen2Cor: L2A processor for users
  publication-title: Proceedings Living Planet Symposium 2016
– volume: 14
  start-page: 778
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0125
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 4
  start-page: 20
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0255
  article-title: UAV hyperspectral and lidar data and their fusion for arid and semi‐arid land vegetation monitoring
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.44
– volume: 217
  start-page: 289
  year: 2018
  ident: 10.1016/j.jag.2020.102163_bib0025
  article-title: Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2017.10.020
– volume: 221
  start-page: 247
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0200
  article-title: The ATL08 land and vegetation product for the ICESat-2 Mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.005
– volume: 48
  start-page: 119
  year: 1994
  ident: 10.1016/j.jag.2020.102163_bib0235
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90134-1
– volume: 82
  start-page: 397
  year: 2002
  ident: 10.1016/j.jag.2020.102163_bib0105
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00056-1
– volume: 2
  start-page: 296
  year: 2017
  ident: 10.1016/j.jag.2020.102163_bib0020
  article-title: kerasR: R Interface to the Keras Deep Learning Library
  publication-title: J. Open Source Software
  doi: 10.21105/joss.00296
– volume: 10
  start-page: 4385
  year: 2019
  ident: 10.1016/j.jag.2020.102163_bib0275
  article-title: Tree height explains mortality risk during an intense drought
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12380-6
– volume: 7
  start-page: 3
  year: 2016
  ident: 10.1016/j.jag.2020.102163_bib0135
  article-title: Machine learning in geosciences and remote sensing
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2015.07.003
SSID ssj0017768
Score 2.620434
Snippet •A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR...
Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102163
SubjectTerms artificial intelligence
biodiversity
canopy height
carbon sequestration
Deep-learning
forest canopy
Forest canopy height
forests
ICESat-2
Landsat
Landsat-8
lidar
Machine-learning
mountains
prediction
Random forest
regression analysis
remote sensing
Sentinel-1
Sentinel-2
spatial data
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gUOCBZWlJeMxAlhNfUjTo6ldNWFZQ8UpN4sx7GzXS1Jtdse9l_wk5lJnC7lsAduqTV1osx45pv4mzEh7zFIZmlSMFHIhMm0DCxXLmEloGUevAezwQLnb-fp_Kf8slTLAzLta2GQVhl9f-fTW28dR0bxbY7Wq9VoAeYJaEBIDheQSSwfkEMO0TUZkMPJ6df5-W4zQeuuIk6lOcuk4P3mZkvzurQVZIm87WEwTsVeeGq7-O9FqX_8dRuETp6QxxE90kn3gE_Jga-PyKO_egoekePZXekaiMa1e_OM_EZKB4PsOhob_WWxN0NFm0ABucLdKLzmZn1LL9rPpRQp8RVIIdvS03i8REWLW-qaLRbyVvR0OlvYDeP0bPV58p3iR126QP5R7a_Y-OPdNae2LukZ1hWDfEaRmPqcLE5mP6ZzFs9jYA5gC0ymS-VUkKUA5RRj7kKeqKCs1lleKFUA0lQWRl0SbOA5djrkeRpECajESnFMBnVT-xeEeisEOBKANtpKFJOae6dKkRZcF1YPSdIrwbjYqhxPzLgyPSft0oDeDOrNdHobkg-7v6y7Ph33CX9Cze4EscV2O9BcVybamNEBwWBwHpJ46fMkt2MB1uY1Jm2QVw-J7O3C7FksTLW6797vehsysJJxe8bWvtneGA65mwK8lumX_zf1K_IQf3VUw9dksLne-jcAmTbF27gk_gDEcxFN
  priority: 102
  providerName: Elsevier
Title High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
URI https://dx.doi.org/10.1016/j.jag.2020.102163
https://www.proquest.com/docview/2675582287
https://doaj.org/article/7f5600fce3384e909a13434e72306825
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4EDooWK5VEZiRPCIutHnByX7VZbWCrUBak3y3bstFVJKrp76L_gJzOTOH0dyoVTomhiR56x55v4mzEh79FJFnnmmHAyYzKvIiuVz1gFaJnHEMBsMMH522E-_ym_HKvjW0d9ISesLw_cD9wnHdEnRx8glpKhzEo7FlLIoBE7Q3iDqy_4vCGYSvsHWvdJcCovWSEFH_YzO2bXma0hMORd2YJxLu54pK5w_x3HdG-J7vzO_jPyNAFGOuk_dIs8Cs02eXKrjOA22ZndZKuBaJqul8_JH2RxMAiok33RXxbLMdS0jRTAKvRGYWTbiyt60v0hpciCr0EKCZaBphMlauquqG_XmLtb04PpbGlXjNPF6d7kiOJ_XLpEylETztn44809p7ap6AJTiUG-oMhFfUGW-7Mf0zlLRzAwD0gFGtOV8irKSvhQuTH3scxUVFbronRKOQCXysJTn0UbeYnFDXmZR1EBELFS7JCNpm3CS0KDFQLWDkAz2koUk5oHryqRO66d1SOSDUowPlUnx0Myzs1AQzszoDeDejO93kbkw_UrF31pjoeEP6NmrwWxqnb3AGzNJFsz_7K1EZGDXZgEUHrgAU2dPtT3u8GGDExe3JGxTWjXl4ZDuKYAohX61f_4vtfkMXbbcw3fkI3V73V4C5hp5XbJ5mR6tPiO14Ov88Pdbrr8Bb3xEZ0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewAOCAoV4WkkuCBW2fixzh44hDZVQtIcSJFywvLu2kuqshs1iVD-BX-Ff8jMrjclHHpA6s3yztqSZzwP-5sxIW_RSHajMAl4IsJARJkLYpmGQQbeMnPWgthggvPZJBp8FZ9ncrZHfje5MAir9Lq_1umVtvY9bb-a7cV83p6CeII3wAWDBkQSM4-sHNnNT4jblh-HJ8Dkd4yd9s-PB4F_WiBIwQKvAqYymUonMg7zJB2WujiUThqlunEiZQJOkzTQm4bOOBZj0T4WR45nYGCN4DDqHXKAtbBgUx30hqPBZHt1oVSdfyejOOgKzpqr1ApUdmFyiElZVTGhE_EdY1i9GbBjE_-xDpXJO31IHnhflfbq5XhE9mxxSO7_VcHwkBz1rxPlgNRriuVj8gsBJAHE8l606Q-DlSByWjoKfjLMRoGp5WJDv1eHsxQB-DlQIbbTUv-YRU6TDU3LNaYN53R43J8aWFU6np_0vlA8QqZTRDsV9jLofLhuM2qKjI4xixnouxRhsE_I9BZYdET2i7KwTwm1hnNQW-BIKSOQTChmU5nxKGEqMapFwoYJOvWF0fF9jkvdIOAuNPBNI990zbcWeb_9ZVFXBbmJ-BNydkuIBb2rjvIq116itXLoerrUct4VNg5j0-Eg21ZhiAhRfIuIRi70zv6AoeY3zf2mkSENegMvg0xhy_VSM4gUJXiHXfXs_4Z-Te4Ozs_GejycjJ6Te_ilBjm-IPurq7V9Cc7aKnnltwcl3253P_4BqoVNag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+mapping+of+forest+canopy+height+using+machine+learning+by+coupling+ICESat-2+LiDAR+with+Sentinel-1%2C+Sentinel-2+and+Landsat-8+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Wang&rft.au=Niu%2C+Zheng&rft.au=Shang%2C+Rong&rft.au=Qin%2C+Yuchu&rft.date=2020-10-01&rft.issn=1569-8432&rft.volume=92+p.102163-&rft_id=info:doi/10.1016%2Fj.jag.2020.102163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon