High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
•A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the predicti...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 92; p. 102163 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the prediction of forest height.•Sentinel-1 & -1 satellites showed high capacity on the prediction of forest height.
Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools. |
---|---|
AbstractList | Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools. Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcₐₙₒₚy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcₐₙₒₚy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcₐₙₒₚy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcₐₙₒₚy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcₐₙₒₚy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcₐₙₒₚy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools. •A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR data.•Deep-learning and random forest models were used to upscale ICESat-2 canopy height.•Sentinel-2 and Landsat-8 data were compared in the prediction of forest height.•Sentinel-1 & -1 satellites showed high capacity on the prediction of forest height. Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools. |
ArticleNumber | 102163 |
Author | Shang, Rong Qin, Yuchu Wang, Li Li, Wang Chen, Hanyue Niu, Zheng |
Author_xml | – sequence: 1 givenname: Wang surname: Li fullname: Li, Wang email: lwwhdz@sina.com organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Zheng surname: Niu fullname: Niu, Zheng organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Rong surname: Shang fullname: Shang, Rong email: shangr@lreis.ac.cn organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 4 givenname: Yuchu surname: Qin fullname: Qin, Yuchu organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Li surname: Wang fullname: Wang, Li organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 6 givenname: Hanyue surname: Chen fullname: Chen, Hanyue organization: College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China |
BookMark | eNp9Uc2O0zAYjNAisbvwANx85ECKf-I4FqdVWdhKlZAoB27WV8duHaV2sN1FfQseGYcgkDjsxf48nhnLMzfVlQ_eVNVrglcEk_bdsBrgsKKYzmdKWvasuiadoHVH229XZeatrLuG0RfVTUoDxkSItruufj64w7GOJoXxnF3w6ATT5PwBBYtsKHhGGnyYLuhoCjOjc5pvT6CPzhs0Goh-BvYXpMN5Gud5s77fQa4p2roPd1_QD5ePaGd8LoKxJm__zRSB79G2LKnwO9RDhpfVcwtjMq_-7LfV7uP91_VDvf38abO-29a6YbKYi55rbpueadPvCdVWYm45CNHJPed7SVoOBdXYgqWyYUJS2VrWC46hYbfVZnHtAwxqiu4E8aICOPUbCPGgIGanR6OE5S3GVhvGusZILIGwhjVGUIbbjvLi9WbxmmL4fi6JqZNL2owjeBPOSdFWcN5R2olCJQtVx5BSNPbv0wSruUc1qNKjmntUS49FI_7TaJdh7ipHcOOTyveL0pQcH52JKmlnfAnMRaNz-ap7Qv0LrDS4fg |
CitedBy_id | crossref_primary_10_3390_rs14020364 crossref_primary_10_1109_TGRS_2025_3542685 crossref_primary_10_1080_01431161_2024_2343429 crossref_primary_10_5194_asr_18_65_2021 crossref_primary_10_1080_15481603_2024_2396807 crossref_primary_10_1002_ece3_10090 crossref_primary_10_1080_22797254_2021_2018667 crossref_primary_10_1080_15481603_2022_2115599 crossref_primary_10_1007_s41651_025_00218_3 crossref_primary_10_1109_TGRS_2022_3187154 crossref_primary_10_1016_j_jag_2022_102760 crossref_primary_10_1080_01431161_2024_2326537 crossref_primary_10_1016_j_jag_2021_102583 crossref_primary_10_1186_s40623_024_02071_y crossref_primary_10_1109_JSTARS_2024_3383777 crossref_primary_10_5194_essd_16_5267_2024 crossref_primary_10_1080_01431161_2024_2391093 crossref_primary_10_1109_JSTARS_2023_3340429 crossref_primary_10_1109_TGRS_2022_3233037 crossref_primary_10_1109_ACCESS_2024_3507916 crossref_primary_10_18182_tjf_1282768 crossref_primary_10_1029_2021GL093799 crossref_primary_10_1080_15481603_2024_2367807 crossref_primary_10_14358_PERS_21_00024R2 crossref_primary_10_1088_1748_9326_ad560a crossref_primary_10_1088_1755_1315_932_1_012006 crossref_primary_10_1080_10106049_2021_1924295 crossref_primary_10_1002_rse2_419 crossref_primary_10_1007_s40899_022_00607_2 crossref_primary_10_1109_TGRS_2024_3362788 crossref_primary_10_1186_s13021_022_00212_y crossref_primary_10_3389_fpls_2022_1043389 crossref_primary_10_1080_19376812_2023_2164865 crossref_primary_10_1007_s11771_022_4896_x crossref_primary_10_1109_TGRS_2022_3231926 crossref_primary_10_1080_01431161_2024_2307944 crossref_primary_10_1080_10106049_2022_2120551 crossref_primary_10_1080_15481603_2022_2148338 crossref_primary_10_1007_s10661_023_12066_z crossref_primary_10_1109_JSTARS_2024_3417302 crossref_primary_10_1088_1755_1315_1004_1_012023 crossref_primary_10_1080_27658511_2025_2469406 crossref_primary_10_1080_01431161_2023_2169596 crossref_primary_10_15287_afr_2024_3664 crossref_primary_10_1109_LGRS_2024_3474252 crossref_primary_10_1016_j_isprsjprs_2020_11_008 crossref_primary_10_1080_17538947_2023_2285807 crossref_primary_10_1109_TGRS_2023_3297367 crossref_primary_10_1080_22797254_2025_2479010 crossref_primary_10_5194_wes_6_1379_2021 crossref_primary_10_1007_s10661_024_12478_5 crossref_primary_10_1080_14942119_2024_2380230 crossref_primary_10_1088_2634_4505_abf820 crossref_primary_10_1016_j_enbuild_2024_114552 crossref_primary_10_11728_cjss2023_06_2023_0074 crossref_primary_10_1111_2041_210X_13901 crossref_primary_10_1080_01431161_2023_2189035 crossref_primary_10_1080_15481603_2024_2374150 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_1109_JSTARS_2024_3398009 crossref_primary_10_1088_1748_9326_ac77a2 crossref_primary_10_1088_2752_664X_ad7f5a crossref_primary_10_1109_TGRS_2024_3383600 crossref_primary_10_1109_JSTARS_2021_3080711 crossref_primary_10_1111_2041_210X_14112 |
Cites_doi | 10.1073/pnas.1004875107 10.3390/rs11141721 10.1890/09-1670.1 10.1111/2041-210X.13256 10.1109/JSTARS.2014.2329330 10.1038/s41893-019-0246-x 10.1890/07-0539.1 10.1016/j.rse.2018.09.002 10.1038/s41586-019-0912-1 10.1016/j.rse.2015.12.005 10.1109/LGRS.2016.2584109 10.3390/rs70403446 10.3390/rs11070889 10.1109/JPROC.2017.2675998 10.1117/1.JRS.11.042609 10.1016/j.isprsjprs.2019.03.016 10.1016/j.rse.2010.08.025 10.1016/j.rse.2015.12.002 10.1109/TGRS.2007.907602 10.1111/geb.12887 10.1016/j.rse.2016.04.008 10.1016/j.rse.2020.111716 10.3390/f6113899 10.1016/j.rse.2019.111347 10.1016/j.rse.2019.111283 10.1046/j.1466-822x.2002.00303.x 10.1016/j.isprsjprs.2014.11.007 10.1002/ecs2.2430 10.1016/j.rse.2016.01.015 10.1109/MGRS.2016.2540798 10.1016/j.rse.2018.10.004 10.1002/ecy.1470 10.1016/S0264-3707(02)00042-X 10.1016/j.rse.2008.06.006 10.3390/rs10060859 10.3390/rs8010062 10.1109/JSTARS.2018.2868119 10.1016/j.rse.2016.12.029 10.1016/j.rse.2019.111439 10.1093/biomet/37.1-2.17 10.1016/j.isprsjprs.2016.01.006 10.1080/01431161.2014.967888 10.1371/journal.pone.0137545 10.1016/j.rse.2017.04.007 10.1016/j.rse.2012.02.001 10.1111/1365-2745.12510 10.3390/rs11121459 10.1016/0034-4257(90)90085-Z 10.1109/TGRS.2013.2296533 10.1109/LGRS.2017.2681128 10.1002/rse2.44 10.1016/j.biocon.2017.10.020 10.1016/j.rse.2018.11.005 10.1016/0034-4257(94)90134-1 10.1016/S0034-4257(02)00056-1 10.21105/joss.00296 10.1038/s41467-019-12380-6 10.1016/j.gsf.2015.07.003 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2020.102163 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_7f5600fce3384e909a13434e72306825 10_1016_j_jag_2020_102163 S030324342030026X |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-27d5c5f4d3cedb12cf905f5a7789b55b9165a2cfc0faf294379296f3d750a43 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Wed Jul 30 11:20:06 EDT 2025 Tue Jul 01 02:15:16 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landsat-8 Forest canopy height Deep-learning ICESat-2 Sentinel-1 Sentinel-2 Random forest Machine-learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-27d5c5f4d3cedb12cf905f5a7789b55b9165a2cfc0faf294379296f3d750a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/7f5600fce3384e909a13434e72306825 |
PQID | 2675582287 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f5600fce3384e909a13434e72306825 proquest_miscellaneous_2675582287 crossref_primary_10_1016_j_jag_2020_102163 crossref_citationtrail_10_1016_j_jag_2020_102163 elsevier_sciencedirect_doi_10_1016_j_jag_2020_102163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhang, Shao, Liu, Cheng (bib0360) 2019; 11 St-Onge, Audet, Bégin (bib0270) 2015; 6 Asner, Powell, Mascaro, Knapp, Clark, Jacobson, Kennedy-Bowdoin, Balaji, Paez-Acosta, Victoria, Secada, Valqui, Hughes (bib0030) 2010; 107 Traganos, Poursanidis, Aggarwal, Chrysoulakis, Reinartz (bib0305) 2018; 10 Zhang, Du (bib0355) 2016; 4 Simard, Pinto, Fisher, Baccini (bib0265) 2011 Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bib0060) 2018; 219 Crippen (bib0065) 1990; 34 Jones, Allred, Naugle, Maestas, Donnelly, Metz, Karl, Smith, Bestelmeyer, Boyd, Kerby, McIver (bib0115) 2018; 9 Kussul, Lavreniuk, Skakun, Shelestov (bib0125) 2017; 14 Lefsky, Harding, Keller, Cohen, Carabajal, Del Bom Espirito-Santo, Hunter, de Oliveira (bib0150) 2005 Jiang, Huete, Didan, Miura (bib0110) 2008; 112 Tian, Li, Chen, Liu, Yan, Wang, Niu, Zhao, Li, Pang (bib0295) 2015; 10 Neuenschwander, Pitts (bib0200) 2019; 221 Yuan, Shen, Li, Li, Li, Jiang, Xu, Tan, Yang, Wang, Gao, Zhang (bib0335) 2020; 241 Neuenschwander (bib0205) 2018 Sankey, Donager, McVay, Sankey (bib0250) 2017; 195 Pourshamsi, Garcia, Lavalle, Balzter (bib0230) 2018; 11 Liu, Gong, Xing, Hu, Gong (bib0175) 2019; 151 Shang, Zhu (bib0260) 2019; 235 Li, Niu, Liang, Li, Huang, Gao, Wang, Muhammad (bib0160) 2015; 41 Liang, Kankare, Hyyppä, Wang, Kukko, Haggrén, Yu, Kaartinen, Jaakkola, Guan (bib0165) 2016; 115 Liaw, Wiener (bib0170) 2002; 2 Moran (bib0195) 1950; 37 Patel, Angiuli, Gamba, Gaughan, Lisini, Stevens, Tatem, Trianni (bib0225) 2015; 35 Team (bib0290) 2014 Li, Guo, Wang, Li, Chen, Zuo (bib0155) 2016; 13 Wulder, White, Nelson, Næsset, Ørka, Coops, Hilker, Bater, Gobakken (bib0325) 2012; 121 Hudak, Lefsky, Cohen, Berterretche (bib0105) 2002; 82 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (bib0245) 2019; 566 Pang, Lefsky, Sun, Ranson (bib0220) 2011; 115 Ball, Anderson, Chan (bib0035) 2017; 11 Chen, Lin, Zhao, Wang, Gu (bib0045) 2014; 7 Almeida, Broadbent, Zambrano, Wilkinson, Ferreira, Chazdon, Meli, Gorgens, Silva, Stark (bib0015) 2019; 79 Wang, Huang, Gong, Biging, Xin, Chen, Yang, Liu (bib0315) 2016; 8 Buchhorn, Smets, Bertels, Lesiv, Nandin-Erdene, Herold, Fritz (bib0040) 2019 Kugler, Schulze, Hajnsek, Pretzsch, Papathanassiou (bib0120) 2014; 52 Lary, Alavi, Gandomi, Walker (bib0135) 2016; 7 Healey, Hernandez, Edwards, Lefsky, FREEMAN, Patterson, Lindquist, Lister (bib0095) 2016 Lefsky (bib0140) 2010 Asner, Brodrick, Philipson, Vaughn, Martin, Knapp, Heckler, Evans, Jucker, Goossens, Stark, Reynolds, Ong, Renneboog, Kugan, Coomes (bib0025) 2018; 217 El-Amir, Hamdy (bib0075) 2020 Lefsky, Cohen, Harding, Parker, Acker, Gower (bib0145) 2002; 11 Christin, Hervet, Lecomte (bib0055) 2019; 10 Qi, Chehbouni, Huete, Kerr, Sorooshian (bib0235) 1994; 48 Markus, Neumann, Martino, Abdalati, Brunt, Csatho, Farrell, Fricker, Gardner, Harding, Jasinski, Kwok, Magruder, Lubin, Luthcke, Morison, Nelson, Neuenschwander, Palm, Popescu, Shum, Schutz, Smith, Yang, Zwally (bib0190) 2017; 190 Stovall, Shugart, Yang (bib0275) 2019; 10 Zhang, Nielsen, Mao, Chen, Svenning (bib0350) 2016; 104 Garestier, Dubois-Fernandez, Papathanassiou (bib0080) 2007; 46 Zald, Wulder, White, Hilker, Hermosilla, Hobart, Coops (bib0340) 2016; 176 Louis, Debaecker, Pflug, Main-Knorn, Bieniarz, Mueller-Wilm, Cadau, Gascon (bib0180) 2016 Tian, Li, Su, Chen, van der Tol, Li, Guo, Li, Ling (bib0300) 2014; 35 Zarnetske, Read, Record, Gaddis, Pau, Hobi, Malone, Costanza, Dahlin, Latimer, Wilson, Grady, Ollinger, Finley, Gillespie (bib0345) 2019; 28 Hill, Hinsley (bib0100) 2015; 7 Qi, Saarela, Armston, Ståhl, Dubayah (bib0240) 2019; 232 Wang, Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bib0320) 2016; 174 Arnold (bib0020) 2017; 2 Handan-Nader, Ho (bib0090) 2019; 2 Sankey, McVay, Swetnam, McClaran, Heilman, Nichols (bib0255) 2018; 4 Xu, Hantson, Holmgren, van Nes, Staal, Scheffer (bib0330) 2016; 97 Cutler, Edwards, Beard, Cutler, Hess, Gibson, Lawler (bib0070) 2007; 88 Neuenschwander, Magruder (bib0210) 2019; 11 Luo, Wang, Xi, Nie, Fan, Chen, Ma, Liu, Zou, Lin, Zhou (bib0185) 2019 Ni, Dong, Sun, Zhang, Pang, Tian, Li, Chen (bib0215) 2019; 11 Suess, van der Linden, Okujeni, Griffiths, Leitão, Schwieder, Hostert (bib0285) 2018; 219 Zwally, Schutz, Abdalati, Abshire, Bentley, Brenner, Bufton, Dezio, Hancock, Harding (bib0365) 2002; 34 Vermote, Justice, Claverie, Franch (bib0310) 2016; 185 Alexander, Korstjens, Hill (bib0010) 2018; 65 Su, Guo, Xue, Hu, Alvarez, Tao, Fang (bib0280) 2016; 173 Goetz, Steinberg, Betts, Holmes, Doran, Dubayah, Hofton (bib0085) 2010; 91 Lang, Schindler, Wegner (bib0130) 2019; 233 Ahmed, Franklin, Wulder, White (bib0005) 2015; 101 Cheng, Han, Lu (bib0050) 2017; 105 Wulder (10.1016/j.jag.2020.102163_bib0325) 2012; 121 Alexander (10.1016/j.jag.2020.102163_bib0010) 2018; 65 Crippen (10.1016/j.jag.2020.102163_bib0065) 1990; 34 Sankey (10.1016/j.jag.2020.102163_bib0255) 2018; 4 Hudak (10.1016/j.jag.2020.102163_bib0105) 2002; 82 Pang (10.1016/j.jag.2020.102163_bib0220) 2011; 115 Zhang (10.1016/j.jag.2020.102163_bib0355) 2016; 4 Lefsky (10.1016/j.jag.2020.102163_bib0150) 2005 Moran (10.1016/j.jag.2020.102163_bib0195) 1950; 37 Team (10.1016/j.jag.2020.102163_bib0290) 2014 Reichstein (10.1016/j.jag.2020.102163_bib0245) 2019; 566 Neuenschwander (10.1016/j.jag.2020.102163_bib0210) 2019; 11 Yuan (10.1016/j.jag.2020.102163_bib0335) 2020; 241 Suess (10.1016/j.jag.2020.102163_bib0285) 2018; 219 St-Onge (10.1016/j.jag.2020.102163_bib0270) 2015; 6 Hill (10.1016/j.jag.2020.102163_bib0100) 2015; 7 Goetz (10.1016/j.jag.2020.102163_bib0085) 2010; 91 Su (10.1016/j.jag.2020.102163_bib0280) 2016; 173 Zwally (10.1016/j.jag.2020.102163_bib0365) 2002; 34 Markus (10.1016/j.jag.2020.102163_bib0190) 2017; 190 Zald (10.1016/j.jag.2020.102163_bib0340) 2016; 176 Liang (10.1016/j.jag.2020.102163_bib0165) 2016; 115 Zhang (10.1016/j.jag.2020.102163_bib0350) 2016; 104 Zhang (10.1016/j.jag.2020.102163_bib0360) 2019; 11 Qi (10.1016/j.jag.2020.102163_bib0240) 2019; 232 Lefsky (10.1016/j.jag.2020.102163_bib0140) 2010 Asner (10.1016/j.jag.2020.102163_bib0025) 2018; 217 Jiang (10.1016/j.jag.2020.102163_bib0110) 2008; 112 Vermote (10.1016/j.jag.2020.102163_bib0310) 2016; 185 Handan-Nader (10.1016/j.jag.2020.102163_bib0090) 2019; 2 Garestier (10.1016/j.jag.2020.102163_bib0080) 2007; 46 Claverie (10.1016/j.jag.2020.102163_bib0060) 2018; 219 Arnold (10.1016/j.jag.2020.102163_bib0020) 2017; 2 Buchhorn (10.1016/j.jag.2020.102163_bib0040) 2019 Pourshamsi (10.1016/j.jag.2020.102163_bib0230) 2018; 11 Healey (10.1016/j.jag.2020.102163_bib0095) 2016 Christin (10.1016/j.jag.2020.102163_bib0055) 2019; 10 Shang (10.1016/j.jag.2020.102163_bib0260) 2019; 235 Kugler (10.1016/j.jag.2020.102163_bib0120) 2014; 52 Wang (10.1016/j.jag.2020.102163_bib0315) 2016; 8 Jones (10.1016/j.jag.2020.102163_bib0115) 2018; 9 Stovall (10.1016/j.jag.2020.102163_bib0275) 2019; 10 Liaw (10.1016/j.jag.2020.102163_bib0170) 2002; 2 Lefsky (10.1016/j.jag.2020.102163_bib0145) 2002; 11 Neuenschwander (10.1016/j.jag.2020.102163_bib0200) 2019; 221 El-Amir (10.1016/j.jag.2020.102163_bib0075) 2020 Zarnetske (10.1016/j.jag.2020.102163_bib0345) 2019; 28 Ni (10.1016/j.jag.2020.102163_bib0215) 2019; 11 Cheng (10.1016/j.jag.2020.102163_bib0050) 2017; 105 Almeida (10.1016/j.jag.2020.102163_bib0015) 2019; 79 Wang (10.1016/j.jag.2020.102163_bib0320) 2016; 174 Traganos (10.1016/j.jag.2020.102163_bib0305) 2018; 10 Li (10.1016/j.jag.2020.102163_bib0155) 2016; 13 Tian (10.1016/j.jag.2020.102163_bib0300) 2014; 35 Liu (10.1016/j.jag.2020.102163_bib0175) 2019; 151 Chen (10.1016/j.jag.2020.102163_bib0045) 2014; 7 Louis (10.1016/j.jag.2020.102163_bib0180) 2016 Patel (10.1016/j.jag.2020.102163_bib0225) 2015; 35 Li (10.1016/j.jag.2020.102163_bib0160) 2015; 41 Xu (10.1016/j.jag.2020.102163_bib0330) 2016; 97 Neuenschwander (10.1016/j.jag.2020.102163_bib0205) 2018 Lang (10.1016/j.jag.2020.102163_bib0130) 2019; 233 Asner (10.1016/j.jag.2020.102163_bib0030) 2010; 107 Kussul (10.1016/j.jag.2020.102163_bib0125) 2017; 14 Luo (10.1016/j.jag.2020.102163_bib0185) 2019 Cutler (10.1016/j.jag.2020.102163_bib0070) 2007; 88 Simard (10.1016/j.jag.2020.102163_bib0265) 2011 Ball (10.1016/j.jag.2020.102163_bib0035) 2017; 11 Sankey (10.1016/j.jag.2020.102163_bib0250) 2017; 195 Ahmed (10.1016/j.jag.2020.102163_bib0005) 2015; 101 Lary (10.1016/j.jag.2020.102163_bib0135) 2016; 7 Qi (10.1016/j.jag.2020.102163_bib0235) 1994; 48 Tian (10.1016/j.jag.2020.102163_bib0295) 2015; 10 |
References_xml | – volume: 11 year: 2017 ident: bib0035 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. – volume: 65 start-page: 105 year: 2018 end-page: 113 ident: bib0010 article-title: Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 14 start-page: 778 year: 2017 end-page: 782 ident: bib0125 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote. Sens. Lett. – volume: 233 year: 2019 ident: bib0130 article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2 publication-title: Remote Sens. Environ. – volume: 37 start-page: 17 year: 1950 end-page: 23 ident: bib0195 article-title: Notes on continuous stochastic phenomena publication-title: Biometrika – volume: 11 start-page: 1721 year: 2019 ident: bib0210 article-title: Canopy and terrain height retrievals with ICESat-2: a first look publication-title: Remote Sens. – volume: 2 start-page: 298 year: 2019 end-page: 306 ident: bib0090 article-title: Deep learning to map concentrated animal feeding operations publication-title: Nat. Sustain. – volume: 52 start-page: 6404 year: 2014 end-page: 6422 ident: bib0120 article-title: TanDEM-X Pol-InSAR performance for forest height estimation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 48 start-page: 119 year: 1994 end-page: 126 ident: bib0235 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. – volume: 115 start-page: 63 year: 2016 end-page: 77 ident: bib0165 article-title: Terrestrial laser scanning in forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 2 start-page: 296 year: 2017 ident: bib0020 article-title: kerasR: R Interface to the Keras Deep Learning Library publication-title: J. Open Source Software – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bib0060 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – year: 2016 ident: bib0095 article-title: CMS: GLAS LiDAR-Derived Global Estimates of Forest Canopy Height, 2004-2008 – volume: 105 start-page: 1865 year: 2017 end-page: 1883 ident: bib0050 article-title: Remote sensing image scene classification: benchmark and state of the art publication-title: Proc. IEEE – volume: 82 start-page: 397 year: 2002 end-page: 416 ident: bib0105 article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height publication-title: Remote Sens. Environ. – volume: 10 year: 2015 ident: bib0295 article-title: The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE) publication-title: PLoS One – volume: 79 start-page: 192 year: 2019 end-page: 198 ident: bib0015 article-title: Monitoring the structure of forest restoration plantations with a drone-lidar system publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2020 ident: bib0075 article-title: Deep Learning Pipeline : Building a Deep Learning Model With TensorFlow – volume: 217 start-page: 289 year: 2018 end-page: 310 ident: bib0025 article-title: Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo publication-title: Biol. Conserv. – volume: 35 start-page: 199 year: 2015 end-page: 208 ident: bib0225 article-title: Multitemporal settlement and population mapping from Landsat using Google Earth Engine publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2014 ident: bib0290 article-title: A Language and Environment for Statistical Computing – volume: 101 start-page: 89 year: 2015 end-page: 101 ident: bib0005 article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 91 start-page: 1569 year: 2010 end-page: 1576 ident: bib0085 article-title: Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird publication-title: Ecology – volume: 174 start-page: 24 year: 2016 end-page: 43 ident: bib0320 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. – volume: 11 start-page: 3453 year: 2018 end-page: 3463 ident: bib0230 article-title: A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bib0310 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 121 start-page: 196 year: 2012 end-page: 209 ident: bib0325 article-title: Lidar sampling for large-area forest characterization: a review publication-title: Remote Sens. Environ. – volume: 6 start-page: 3899 year: 2015 end-page: 3922 ident: bib0270 article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests – volume: 235 year: 2019 ident: bib0260 article-title: Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach publication-title: Remote Sens. Environ. – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: bib0045 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 241 year: 2020 ident: bib0335 article-title: Deep learning in environmental remote sensing: achievements and challenges publication-title: Remote Sens. Environ. – volume: 115 start-page: 2798 year: 2011 end-page: 2809 ident: bib0220 article-title: Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar publication-title: Remote Sens. Environ. – volume: 10 start-page: 1632 year: 2019 end-page: 1644 ident: bib0055 article-title: Applications for deep learning in ecology publication-title: Methods Ecol. Evol. – volume: 41 start-page: 88 year: 2015 end-page: 98 ident: bib0160 article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2019 ident: bib0040 article-title: Copernicus Global Land Service: Land Cover 100m: Epoch 2015 – volume: 28 start-page: 548 year: 2019 end-page: 556 ident: bib0345 article-title: Towards connecting biodiversity and geodiversity across scales with satellite remote sensing publication-title: Glob. Ecol. Biogeogr. – volume: 11 start-page: 393 year: 2002 end-page: 399 ident: bib0145 article-title: Lidar remote sensing of above‐ground biomass in three biomes publication-title: Glob. Ecol. Biogeogr. – volume: 34 start-page: 71 year: 1990 end-page: 73 ident: bib0065 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. – volume: 7 start-page: 3446 year: 2015 end-page: 3466 ident: bib0100 article-title: Airborne Lidar for woodland habitat quality monitoring: exploring the significance of Lidar data characteristics when modelling organism-habitat relationships publication-title: Remote Sens. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0170 article-title: Classification and regression by randomForest publication-title: R news – volume: 195 start-page: 30 year: 2017 end-page: 43 ident: bib0250 article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA publication-title: Remote Sens. Environ. – volume: 11 start-page: 1459 year: 2019 ident: bib0360 article-title: Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data publication-title: Remote Sens. – volume: 13 start-page: 1330 year: 2016 end-page: 1334 ident: bib0155 article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 4 start-page: 20 year: 2018 end-page: 33 ident: bib0255 article-title: UAV hyperspectral and lidar data and their fusion for arid and semi‐arid land vegetation monitoring publication-title: Remote Sens. Ecol. Conserv. – volume: 104 start-page: 469 year: 2016 end-page: 478 ident: bib0350 article-title: Regional and historical factors supplement current climate in shaping global forest canopy height publication-title: J. Ecol. – volume: 219 start-page: 353 year: 2018 end-page: 364 ident: bib0285 article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling publication-title: Remote Sens. Environ. – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: bib0355 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. – start-page: 37 year: 2010 ident: bib0140 article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system publication-title: Geophys. Res. Lett. – start-page: 1 year: 2016 end-page: 8 ident: bib0180 article-title: Sentinel-2 Sen2Cor: L2A processor for users publication-title: Proceedings Living Planet Symposium 2016 – start-page: 116 year: 2011 ident: bib0265 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. Biogeosci. – volume: 112 start-page: 3833 year: 2008 end-page: 3845 ident: bib0110 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. – volume: 8 start-page: 62 year: 2016 ident: bib0315 article-title: Quantifying multi-decadal change of planted forest cover using airborne LiDAR and Landsat imagery publication-title: Remote Sens. – volume: 97 start-page: 2518 year: 2016 end-page: 2521 ident: bib0330 article-title: Remotely sensed canopy height reveals three pantropical ecosystem states publication-title: Ecology – volume: 88 start-page: 2783 year: 2007 end-page: 2792 ident: bib0070 article-title: Random forests for classification in ecology publication-title: Ecology – volume: 10 start-page: 4385 year: 2019 ident: bib0275 article-title: Tree height explains mortality risk during an intense drought publication-title: Nat. Commun. – volume: 176 start-page: 188 year: 2016 end-page: 201 ident: bib0340 article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada publication-title: Remote Sens. Environ. – volume: 190 start-page: 260 year: 2017 end-page: 273 ident: bib0190 article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation publication-title: Remote Sens. Environ. – volume: 173 start-page: 187 year: 2016 end-page: 199 ident: bib0280 article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data publication-title: Remote Sens. Environ. – volume: 107 start-page: 16738 year: 2010 end-page: 16742 ident: bib0030 article-title: High-resolution forest carbon stocks and emissions in the Amazon publication-title: Proc. Natl. Acad. Sci. – volume: 35 start-page: 7339 year: 2014 end-page: 7362 ident: bib0300 article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data publication-title: Int. J. Remote Sens. – volume: 10 start-page: 859 year: 2018 ident: bib0305 article-title: Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2 publication-title: Remote Sens. – start-page: 83 year: 2019 ident: bib0185 article-title: Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 889 year: 2019 ident: bib0215 article-title: Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests publication-title: Remote Sens. – volume: 46 start-page: 59 year: 2007 end-page: 68 ident: bib0080 article-title: Pine forest height inversion using single-pass X-band PolInSAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bib0245 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 9 year: 2018 ident: bib0115 article-title: Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017 publication-title: Ecosphere – volume: 151 start-page: 277 year: 2019 end-page: 289 ident: bib0175 article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 232 year: 2019 ident: bib0240 article-title: Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data publication-title: Remote Sens. Environ. – volume: 7 start-page: 3 year: 2016 end-page: 10 ident: bib0135 article-title: Machine learning in geosciences and remote sensing publication-title: Geosci. Front. – volume: 221 start-page: 247 year: 2019 end-page: 259 ident: bib0200 article-title: The ATL08 land and vegetation product for the ICESat-2 Mission publication-title: Remote Sens. Environ. – year: 2018 ident: bib0205 article-title: Ice, Cloud, and Land Elevation Satellite-2 Algorithm Theoretical Basis Document for Land - Vegetation Along-track Products – volume: 34 start-page: 405 year: 2002 end-page: 445 ident: bib0365 article-title: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land publication-title: J. Geodyn. – start-page: 32 year: 2005 ident: bib0150 article-title: Estimates of forest canopy height and aboveground biomass using ICESat publication-title: Geophys. Res. Lett. – volume: 107 start-page: 16738 year: 2010 ident: 10.1016/j.jag.2020.102163_bib0030 article-title: High-resolution forest carbon stocks and emissions in the Amazon publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1004875107 – volume: 11 start-page: 1721 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0210 article-title: Canopy and terrain height retrievals with ICESat-2: a first look publication-title: Remote Sens. doi: 10.3390/rs11141721 – volume: 91 start-page: 1569 year: 2010 ident: 10.1016/j.jag.2020.102163_bib0085 article-title: Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird publication-title: Ecology doi: 10.1890/09-1670.1 – year: 2019 ident: 10.1016/j.jag.2020.102163_bib0040 – volume: 35 start-page: 199 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0225 article-title: Multitemporal settlement and population mapping from Landsat using Google Earth Engine publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 start-page: 1632 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0055 article-title: Applications for deep learning in ecology publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13256 – year: 2016 ident: 10.1016/j.jag.2020.102163_bib0095 – volume: 7 start-page: 2094 year: 2014 ident: 10.1016/j.jag.2020.102163_bib0045 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 2 start-page: 298 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0090 article-title: Deep learning to map concentrated animal feeding operations publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0246-x – volume: 88 start-page: 2783 year: 2007 ident: 10.1016/j.jag.2020.102163_bib0070 article-title: Random forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0060 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0245 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 174 start-page: 24 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0320 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.005 – volume: 13 start-page: 1330 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0155 article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2584109 – volume: 7 start-page: 3446 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0100 article-title: Airborne Lidar for woodland habitat quality monitoring: exploring the significance of Lidar data characteristics when modelling organism-habitat relationships publication-title: Remote Sens. doi: 10.3390/rs70403446 – volume: 11 start-page: 889 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0215 article-title: Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests publication-title: Remote Sens. doi: 10.3390/rs11070889 – volume: 105 start-page: 1865 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0050 article-title: Remote sensing image scene classification: benchmark and state of the art publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – start-page: 32 year: 2005 ident: 10.1016/j.jag.2020.102163_bib0150 article-title: Estimates of forest canopy height and aboveground biomass using ICESat publication-title: Geophys. Res. Lett. – start-page: 83 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0185 article-title: Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0035 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042609 – volume: 151 start-page: 277 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0175 article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.016 – volume: 115 start-page: 2798 year: 2011 ident: 10.1016/j.jag.2020.102163_bib0220 article-title: Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.025 – volume: 173 start-page: 187 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0280 article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.002 – volume: 46 start-page: 59 year: 2007 ident: 10.1016/j.jag.2020.102163_bib0080 article-title: Pine forest height inversion using single-pass X-band PolInSAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.907602 – volume: 41 start-page: 88 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0160 article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 28 start-page: 548 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0345 article-title: Towards connecting biodiversity and geodiversity across scales with satellite remote sensing publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12887 – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0310 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – volume: 241 year: 2020 ident: 10.1016/j.jag.2020.102163_bib0335 article-title: Deep learning in environmental remote sensing: achievements and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111716 – volume: 6 start-page: 3899 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0270 article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests doi: 10.3390/f6113899 – year: 2014 ident: 10.1016/j.jag.2020.102163_bib0290 – volume: 233 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0130 article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111347 – volume: 232 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0240 article-title: Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111283 – volume: 11 start-page: 393 year: 2002 ident: 10.1016/j.jag.2020.102163_bib0145 article-title: Lidar remote sensing of above‐ground biomass in three biomes publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822x.2002.00303.x – volume: 101 start-page: 89 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0005 article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.11.007 – volume: 9 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0115 article-title: Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017 publication-title: Ecosphere doi: 10.1002/ecs2.2430 – volume: 176 start-page: 188 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0340 article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.015 – start-page: 37 year: 2010 ident: 10.1016/j.jag.2020.102163_bib0140 article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system publication-title: Geophys. Res. Lett. – volume: 4 start-page: 22 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0355 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 219 start-page: 353 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0285 article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.004 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.jag.2020.102163_bib0170 article-title: Classification and regression by randomForest publication-title: R news – year: 2020 ident: 10.1016/j.jag.2020.102163_bib0075 – volume: 97 start-page: 2518 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0330 article-title: Remotely sensed canopy height reveals three pantropical ecosystem states publication-title: Ecology doi: 10.1002/ecy.1470 – volume: 34 start-page: 405 year: 2002 ident: 10.1016/j.jag.2020.102163_bib0365 article-title: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land publication-title: J. Geodyn. doi: 10.1016/S0264-3707(02)00042-X – volume: 112 start-page: 3833 year: 2008 ident: 10.1016/j.jag.2020.102163_bib0110 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.006 – volume: 10 start-page: 859 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0305 article-title: Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2 publication-title: Remote Sens. doi: 10.3390/rs10060859 – volume: 8 start-page: 62 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0315 article-title: Quantifying multi-decadal change of planted forest cover using airborne LiDAR and Landsat imagery publication-title: Remote Sens. doi: 10.3390/rs8010062 – volume: 11 start-page: 3453 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0230 article-title: A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2868119 – volume: 65 start-page: 105 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0010 article-title: Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 190 start-page: 260 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0190 article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.029 – volume: 235 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0260 article-title: Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111439 – volume: 37 start-page: 17 year: 1950 ident: 10.1016/j.jag.2020.102163_bib0195 article-title: Notes on continuous stochastic phenomena publication-title: Biometrika doi: 10.1093/biomet/37.1-2.17 – year: 2018 ident: 10.1016/j.jag.2020.102163_bib0205 – volume: 115 start-page: 63 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0165 article-title: Terrestrial laser scanning in forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.006 – volume: 35 start-page: 7339 year: 2014 ident: 10.1016/j.jag.2020.102163_bib0300 article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.967888 – volume: 10 year: 2015 ident: 10.1016/j.jag.2020.102163_bib0295 article-title: The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE) publication-title: PLoS One doi: 10.1371/journal.pone.0137545 – volume: 195 start-page: 30 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0250 article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.007 – volume: 121 start-page: 196 year: 2012 ident: 10.1016/j.jag.2020.102163_bib0325 article-title: Lidar sampling for large-area forest characterization: a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.001 – volume: 104 start-page: 469 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0350 article-title: Regional and historical factors supplement current climate in shaping global forest canopy height publication-title: J. Ecol. doi: 10.1111/1365-2745.12510 – volume: 79 start-page: 192 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0015 article-title: Monitoring the structure of forest restoration plantations with a drone-lidar system publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 116 year: 2011 ident: 10.1016/j.jag.2020.102163_bib0265 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. Biogeosci. – volume: 11 start-page: 1459 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0360 article-title: Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data publication-title: Remote Sens. doi: 10.3390/rs11121459 – volume: 34 start-page: 71 year: 1990 ident: 10.1016/j.jag.2020.102163_bib0065 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90085-Z – volume: 52 start-page: 6404 year: 2014 ident: 10.1016/j.jag.2020.102163_bib0120 article-title: TanDEM-X Pol-InSAR performance for forest height estimation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2296533 – start-page: 1 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0180 article-title: Sentinel-2 Sen2Cor: L2A processor for users publication-title: Proceedings Living Planet Symposium 2016 – volume: 14 start-page: 778 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0125 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2017.2681128 – volume: 4 start-page: 20 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0255 article-title: UAV hyperspectral and lidar data and their fusion for arid and semi‐arid land vegetation monitoring publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.44 – volume: 217 start-page: 289 year: 2018 ident: 10.1016/j.jag.2020.102163_bib0025 article-title: Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2017.10.020 – volume: 221 start-page: 247 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0200 article-title: The ATL08 land and vegetation product for the ICESat-2 Mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.005 – volume: 48 start-page: 119 year: 1994 ident: 10.1016/j.jag.2020.102163_bib0235 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90134-1 – volume: 82 start-page: 397 year: 2002 ident: 10.1016/j.jag.2020.102163_bib0105 article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00056-1 – volume: 2 start-page: 296 year: 2017 ident: 10.1016/j.jag.2020.102163_bib0020 article-title: kerasR: R Interface to the Keras Deep Learning Library publication-title: J. Open Source Software doi: 10.21105/joss.00296 – volume: 10 start-page: 4385 year: 2019 ident: 10.1016/j.jag.2020.102163_bib0275 article-title: Tree height explains mortality risk during an intense drought publication-title: Nat. Commun. doi: 10.1038/s41467-019-12380-6 – volume: 7 start-page: 3 year: 2016 ident: 10.1016/j.jag.2020.102163_bib0135 article-title: Machine learning in geosciences and remote sensing publication-title: Geosci. Front. doi: 10.1016/j.gsf.2015.07.003 |
SSID | ssj0017768 |
Score | 2.620434 |
Snippet | •A machine-learning based high-resolution mapping workflow was proposed.•Canopy height product from ICESat-2 satellite was validated by airborne LiDAR... Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102163 |
SubjectTerms | artificial intelligence biodiversity canopy height carbon sequestration Deep-learning forest canopy Forest canopy height forests ICESat-2 Landsat Landsat-8 lidar Machine-learning mountains prediction Random forest regression analysis remote sensing Sentinel-1 Sentinel-2 spatial data |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gUOCBZWlJeMxAlhNfUjTo6ldNWFZQ8UpN4sx7GzXS1Jtdse9l_wk5lJnC7lsAduqTV1osx45pv4mzEh7zFIZmlSMFHIhMm0DCxXLmEloGUevAezwQLnb-fp_Kf8slTLAzLta2GQVhl9f-fTW28dR0bxbY7Wq9VoAeYJaEBIDheQSSwfkEMO0TUZkMPJ6df5-W4zQeuuIk6lOcuk4P3mZkvzurQVZIm87WEwTsVeeGq7-O9FqX_8dRuETp6QxxE90kn3gE_Jga-PyKO_egoekePZXekaiMa1e_OM_EZKB4PsOhob_WWxN0NFm0ABucLdKLzmZn1LL9rPpRQp8RVIIdvS03i8REWLW-qaLRbyVvR0OlvYDeP0bPV58p3iR126QP5R7a_Y-OPdNae2LukZ1hWDfEaRmPqcLE5mP6ZzFs9jYA5gC0ymS-VUkKUA5RRj7kKeqKCs1lleKFUA0lQWRl0SbOA5djrkeRpECajESnFMBnVT-xeEeisEOBKANtpKFJOae6dKkRZcF1YPSdIrwbjYqhxPzLgyPSft0oDeDOrNdHobkg-7v6y7Ph33CX9Cze4EscV2O9BcVybamNEBwWBwHpJ46fMkt2MB1uY1Jm2QVw-J7O3C7FksTLW6797vehsysJJxe8bWvtneGA65mwK8lumX_zf1K_IQf3VUw9dksLne-jcAmTbF27gk_gDEcxFN priority: 102 providerName: Elsevier |
Title | High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data |
URI | https://dx.doi.org/10.1016/j.jag.2020.102163 https://www.proquest.com/docview/2675582287 https://doaj.org/article/7f5600fce3384e909a13434e72306825 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4EDooWK5VEZiRPCIutHnByX7VZbWCrUBak3y3bstFVJKrp76L_gJzOTOH0dyoVTomhiR56x55v4mzEh79FJFnnmmHAyYzKvIiuVz1gFaJnHEMBsMMH522E-_ym_HKvjW0d9ISesLw_cD9wnHdEnRx8glpKhzEo7FlLIoBE7Q3iDqy_4vCGYSvsHWvdJcCovWSEFH_YzO2bXma0hMORd2YJxLu54pK5w_x3HdG-J7vzO_jPyNAFGOuk_dIs8Cs02eXKrjOA22ZndZKuBaJqul8_JH2RxMAiok33RXxbLMdS0jRTAKvRGYWTbiyt60v0hpciCr0EKCZaBphMlauquqG_XmLtb04PpbGlXjNPF6d7kiOJ_XLpEylETztn44809p7ap6AJTiUG-oMhFfUGW-7Mf0zlLRzAwD0gFGtOV8irKSvhQuTH3scxUVFbronRKOQCXysJTn0UbeYnFDXmZR1EBELFS7JCNpm3CS0KDFQLWDkAz2koUk5oHryqRO66d1SOSDUowPlUnx0Myzs1AQzszoDeDejO93kbkw_UrF31pjoeEP6NmrwWxqnb3AGzNJFsz_7K1EZGDXZgEUHrgAU2dPtT3u8GGDExe3JGxTWjXl4ZDuKYAohX61f_4vtfkMXbbcw3fkI3V73V4C5hp5XbJ5mR6tPiO14Ov88Pdbrr8Bb3xEZ0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewAOCAoV4WkkuCBW2fixzh44hDZVQtIcSJFywvLu2kuqshs1iVD-BX-Ff8jMrjclHHpA6s3yztqSZzwP-5sxIW_RSHajMAl4IsJARJkLYpmGQQbeMnPWgthggvPZJBp8FZ9ncrZHfje5MAir9Lq_1umVtvY9bb-a7cV83p6CeII3wAWDBkQSM4-sHNnNT4jblh-HJ8Dkd4yd9s-PB4F_WiBIwQKvAqYymUonMg7zJB2WujiUThqlunEiZQJOkzTQm4bOOBZj0T4WR45nYGCN4DDqHXKAtbBgUx30hqPBZHt1oVSdfyejOOgKzpqr1ApUdmFyiElZVTGhE_EdY1i9GbBjE_-xDpXJO31IHnhflfbq5XhE9mxxSO7_VcHwkBz1rxPlgNRriuVj8gsBJAHE8l606Q-DlSByWjoKfjLMRoGp5WJDv1eHsxQB-DlQIbbTUv-YRU6TDU3LNaYN53R43J8aWFU6np_0vlA8QqZTRDsV9jLofLhuM2qKjI4xixnouxRhsE_I9BZYdET2i7KwTwm1hnNQW-BIKSOQTChmU5nxKGEqMapFwoYJOvWF0fF9jkvdIOAuNPBNI990zbcWeb_9ZVFXBbmJ-BNydkuIBb2rjvIq116itXLoerrUct4VNg5j0-Eg21ZhiAhRfIuIRi70zv6AoeY3zf2mkSENegMvg0xhy_VSM4gUJXiHXfXs_4Z-Te4Ozs_GejycjJ6Te_ilBjm-IPurq7V9Cc7aKnnltwcl3253P_4BqoVNag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+mapping+of+forest+canopy+height+using+machine+learning+by+coupling+ICESat-2+LiDAR+with+Sentinel-1%2C+Sentinel-2+and+Landsat-8+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Wang&rft.au=Niu%2C+Zheng&rft.au=Shang%2C+Rong&rft.au=Qin%2C+Yuchu&rft.date=2020-10-01&rft.issn=1569-8432&rft.volume=92+p.102163-&rft_id=info:doi/10.1016%2Fj.jag.2020.102163&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |