Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal environment of Hangzhou, China
•The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined. U...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 104; p. 102558 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined.
Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment. |
---|---|
AbstractList | Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment. •The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined. Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment. |
ArticleNumber | 102558 |
Author | Li, Fei Yang, Gang Lu, Huimin Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Huimin surname: Lu fullname: Lu, Huimin organization: College of Science & Technology, Ningbo University, Ningbo 315211, PR China – sequence: 2 givenname: Fei surname: Li fullname: Li, Fei email: dg20270016@smail.nju.edu.cn organization: International Institute for Earth System Sciences, Nanjing University, Nanjing 210023, PR China – sequence: 3 givenname: Gang surname: Yang fullname: Yang, Gang organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, PR China – sequence: 4 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, PR China |
BookMark | eNp9kUtv1TAQhSNUJPrgB7DLkgW59SOxHbFCt0ArFXVDpe6siTO511FiX2ynEvx6HAIbFpUsjW3N-TRzzkVx5rzDonhHyY4SKq7H3QiHHSOM5jdrGvWqOKdKskox8XSW741oK1Vz9qa4iHEkhEop1HkxflumZKtoYMLSzicwKZZ-KNnNNb8pl9CBK7vFTr11h_IEKWFwpV1PClCBcwtMZTpimHNF92yDdzO6tDJuwR1-Hf3yodwfrYOr4vUAU8S3f-tl8fjl8_f9bXX_8PVu_-m-MjVvU8UkU3XfcCIHBaKWWDNsOWu7lvdAJWuwBoGCAoie542gRwNKckDo-EAkvyzuNm7vYdSnYGcIP7UHq_98-HDQEJI1E-qOSCMaii2FTDJd29Rd17S17CTQQZnMer-xTsH_WDAmPdtocJrAoV-iZkJmrzlhdW6VW6sJPsaAgzY2QbJ-dcpOmhK9JqVHnZPSa1J6Syor6X_Kf0O_pPm4aTA7-Wwx6GgsOoO9DWhSXtW-oP4NxAutKg |
CitedBy_id | crossref_primary_10_1016_j_jag_2023_103411 crossref_primary_10_1016_j_scs_2024_105738 crossref_primary_10_1016_j_scs_2022_104247 crossref_primary_10_1016_j_scs_2023_104788 crossref_primary_10_1016_j_apgeog_2023_103052 crossref_primary_10_1016_j_scs_2022_103992 crossref_primary_10_1016_j_scs_2022_104165 crossref_primary_10_1016_j_scs_2024_106002 crossref_primary_10_1016_j_jag_2022_102846 crossref_primary_10_1080_13658816_2022_2103818 crossref_primary_10_1016_j_scs_2024_105268 crossref_primary_10_1016_j_scs_2024_105942 crossref_primary_10_1109_TGRS_2024_3369723 crossref_primary_10_1016_j_ecolind_2023_110852 crossref_primary_10_1016_j_scs_2023_104923 |
Cites_doi | 10.1016/j.resconrec.2011.06.004 10.1016/j.ecolind.2019.105798 10.1016/j.rse.2012.12.012 10.1016/j.rse.2015.12.026 10.1016/j.fishres.2011.07.008 10.1016/j.jclepro.2019.117722 10.1016/j.jclepro.2021.127467 10.1016/0004-6981(73)90140-6 10.1016/j.jclepro.2020.120706 10.1016/j.isprsjprs.2019.04.010 10.1016/j.atmosenv.2009.04.001 10.1016/j.habitatint.2019.102099 10.1016/j.rse.2017.02.020 10.1016/j.enbuild.2011.09.024 10.1002/qj.2289 10.1016/j.rse.2020.111866 10.1016/j.isprsjprs.2009.03.007 10.1016/j.cities.2016.09.003 10.14358/PERS.75.3.291 10.1016/j.scitotenv.2020.138229 10.1016/j.buildenv.2021.107650 10.1016/j.scitotenv.2016.02.023 10.1016/j.scitotenv.2019.133743 10.1016/j.cities.2017.03.009 10.1046/j.1365-2656.1999.00337.x 10.1016/j.isprsjprs.2013.08.010 10.1080/014311698214983 10.1016/j.landurbplan.2013.11.014 10.1016/j.rse.2017.03.043 10.1016/j.jenvman.2020.110424 10.1016/j.jclepro.2020.121537 10.1016/j.rse.2018.06.010 10.1016/j.jclepro.2017.12.187 10.1002/joc.3817 10.1016/j.ecolind.2021.107845 10.1016/j.apenergy.2005.06.001 10.1016/j.ufug.2014.03.003 10.1016/j.uclim.2017.12.001 10.1016/j.scs.2020.102425 10.1016/j.ecolind.2015.08.036 10.1177/030913338801200401 10.1016/j.scitotenv.2016.10.195 10.3390/rs13152858 10.1016/j.rse.2015.11.005 10.1016/j.ufug.2020.126719 10.1016/j.rse.2017.09.019 10.1016/j.solener.2015.08.031 10.1016/j.ufug.2016.08.005 10.1016/j.rse.2011.07.008 10.1016/j.rse.2004.02.003 10.1016/j.apgeog.2017.07.011 10.1007/s11269-019-02310-y 10.1038/ncomms7603 10.1016/j.atmosenv.2015.12.024 10.1016/j.rse.2015.11.027 10.1111/j.1365-2656.2008.01390.x 10.1016/j.landurbplan.2019.04.008 10.1080/01431160802524545 10.1016/j.renene.2020.07.109 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2021.102558 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_b07c651e91a843cb954bb5947b7a1f8c 10_1016_j_jag_2021_102558 S0303243421002658 |
GroupedDBID | 4.4 5GY 6I. AAFTH AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT BKOJK BLECG EBS FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P ROL SDF SDG SES SPC SSE SSJ T5K ~02 29J AAHBH AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFJIC EJD R2- RIG SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c439t-27284d5307f8a647e42e9329b93da1725e4a6e61aa6d3843adeca873aeab3f073 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:24:51 EDT 2025 Fri Jul 11 11:48:15 EDT 2025 Tue Jul 01 02:15:19 EDT 2025 Thu Apr 24 23:00:53 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-dimensional urban morphology Land surface temperature Hangzhou Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-27284d5307f8a647e42e9329b93da1725e4a6e61aa6d3843adeca873aeab3f073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/b07c651e91a843cb954bb5947b7a1f8c |
PQID | 2675583024 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b07c651e91a843cb954bb5947b7a1f8c proquest_miscellaneous_2675583024 crossref_citationtrail_10_1016_j_jag_2021_102558 crossref_primary_10_1016_j_jag_2021_102558 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Graham, Vanos, Kenny, Brown (b0110) 2016; 20 Zeng, Shen, Zhang (b0320) 2013; 131 Zhang, Du, Zhang, Yu, Hao (b0325) 2016; 553 Meng, Zhang, Sun, Meng, Wang, Sun (b0190) 2018; 204 Sayegh, Tate, Ropkins (b0240) 2016; 127 Yue, Qiu, Xu, Xu, Zhang (b0315) 2019; 189 Akkose, Akgul, Dino (b0010) 2021; 40 Theeuwes, Steeneveld, Ronda, Heusinkveld, Van Hove, Holtslag (b0270) 2014; 140 Carslaw, Taylor (b0040) 2009; 43 Landsberg (b0150) 1981 Oke, T.R., 1973. City size and the urban heat island. Atmos. Environ. (1967), 7(8): 769-779. Julia, A.B., John, R.S., Frank, D.P., & Simon, J.H., 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. In, Proc. SPIE. Gu, Li (b0115) 2018; 24 Bernabé, Musy, Andrieu, Calmet (b0025) 2015; 122 Huang, Wang (b0130) 2019; 152 Chen, Zhan, Jin, Han, Du, Xia, Ding (b0055) 2021; 194 Li, Song, Cao, Zhu, Meng, Wu (b0155) 2011; 115 Zhang, Xu, Zhang, Wang, He, Zhou (b0330) 2020; 264 Peng, Xie, Liu, Ma (b0220) 2016; 173 Santamouris, Yun (b0235) 2020 Zinzi, Agnoli (b0340) 2012; 55 Futcher, Mills, Emmanuel, Korolija (b0100) 2017; 66 Feyisa, Meilby, Darrel Jenerette, Pauliet (b0090) 2016; 175 Qiao, Tian, Xiao (b0230) 2013; 85 Wulder, Boots (b0295) 1998; 19 Hu, Dai, Guldmann (b0125) 2020; 266 Froeschke, Froeschke (b0095) 2011; 111 Tian, Li, Cao, Pu, Wang, Zhang, Gong (b0275) 2021; 103208 Sobrino, Jiménez-Muñoz, Paolini (b0250) 2004; 90 Peng, Qiao, Liu, Blaschke, Li, Wu, Xu, Liu (b0215) 2020; 246 Chen, Chu, Wang, Zhang, Chen, Du (b0050) 2019; 237 Fan, Yue, Zhang, Huang, Messina, Verburg, Ge (b0080) 2020; 95 Berger, Rosentreter, Voltersen, Baumgart, Schmullius, Hese (b0030) 2017; 193 Liu, Hu, Li (b0175) 2017; 87 Oke, Mills, Christen, Voogt (b0205) 2017 Eludoyin, Adelekan, Webster, Eludoyin (b0070) 2014; 34 Hou, Estoque (b0120) 2020; 53 Elith, Leathwick, Hastie (b0065) 2008; 77 Feng, Zhao, Zhou, Zhu, Tian (b0085) 2020; 110 Shen, Huang, Zhang, Wu, Zeng (b0245) 2016; 172 Chander, Groeneveld (b0045) 2009; 30 Clarke, Johnston (b0060) 1999; 68 Yang, Yang, Sun, Jin, Xiao (b0305) 2021; 103045 Li, Zhao, Motesharrei, Mu, Kalnay, Li (b0160) 2015; 6 Liu, Weng (b0170) 2009; 75 Liu, Meng, Allam, Zhang, Hu, Menenti (b0180) 2021; 13 Song, Du, Feng, Guo (b0255) 2014; 123 Yu, Chen, Yu, Wang, Wu, Wu, Zhao (b0310) 2020; 725 Li, Sun, Li, Gao (b0165) 2020; 63 Luo, Yang, Sun, He (b0185) 2021; 310 Kleerekoper, van Esch, Salcedo (b0145) 2012; 64 Perini, Magliocco (b0225) 2014; 13 Aflaki, Mirnezhad, Ghaffarianhoseini, Ghaffarianhoseini, Omrany, Wang, Akbari (b0005) 2017; 62 Estoque, Murayama, Myint (b0075) 2017; 577 Sun, Mejia, Che (b0265) 2019; 33 Zhou, Wang, Cadenasso (b0335) 2017; 195 Getis, Ord (b0105) 2010 Wang, Qingming, Guo, Jin (b0280) 2016; 45 Wang, Meng, Allam, Hu, Zhang, Menenti (b0285) 2021; 128 Yang, Zhang, Liu, Lu, Yang, Yang, Li (b0300) 2016; 60 Weng (b0290) 2009; 64 Antoniou, Montazeri, Neophytou, Blocken (b0020) 2019; 695 Alavipanah, Schreyer, Haase, Lakes, Qureshi (b0015) 2018; 177 Sun, Liu, Wang, Wang, Che (b0260) 2020; 258 Peng, Jia, Liu, Li, Wu (b0210) 2018; 215 C40 China Buildings Programme (C40 CBP), 2018. Constructing a New Low Carbon Future: How Chinese cities are scaling ambitious building energy efficiency solutions. Kikegawa, Genchi, Kondo, Hanaki (b0140) 2006; 83 Oke (b0200) 1988; 12 Perini (10.1016/j.jag.2021.102558_b0225) 2014; 13 Zhou (10.1016/j.jag.2021.102558_b0335) 2017; 195 Akkose (10.1016/j.jag.2021.102558_b0010) 2021; 40 Peng (10.1016/j.jag.2021.102558_b0210) 2018; 215 Carslaw (10.1016/j.jag.2021.102558_b0040) 2009; 43 Zeng (10.1016/j.jag.2021.102558_b0320) 2013; 131 Clarke (10.1016/j.jag.2021.102558_b0060) 1999; 68 Fan (10.1016/j.jag.2021.102558_b0080) 2020; 95 Hou (10.1016/j.jag.2021.102558_b0120) 2020; 53 Liu (10.1016/j.jag.2021.102558_b0180) 2021; 13 Yu (10.1016/j.jag.2021.102558_b0310) 2020; 725 Kleerekoper (10.1016/j.jag.2021.102558_b0145) 2012; 64 Sayegh (10.1016/j.jag.2021.102558_b0240) 2016; 127 Gu (10.1016/j.jag.2021.102558_b0115) 2018; 24 Elith (10.1016/j.jag.2021.102558_b0065) 2008; 77 Sun (10.1016/j.jag.2021.102558_b0260) 2020; 258 Wang (10.1016/j.jag.2021.102558_b0285) 2021; 128 Qiao (10.1016/j.jag.2021.102558_b0230) 2013; 85 Theeuwes (10.1016/j.jag.2021.102558_b0270) 2014; 140 Peng (10.1016/j.jag.2021.102558_b0220) 2016; 173 Kikegawa (10.1016/j.jag.2021.102558_b0140) 2006; 83 Chen (10.1016/j.jag.2021.102558_b0050) 2019; 237 Zhang (10.1016/j.jag.2021.102558_b0330) 2020; 264 Tian (10.1016/j.jag.2021.102558_b0275) 2021; 103208 Antoniou (10.1016/j.jag.2021.102558_b0020) 2019; 695 10.1016/j.jag.2021.102558_b0135 Luo (10.1016/j.jag.2021.102558_b0185) 2021; 310 Oke (10.1016/j.jag.2021.102558_b0200) 1988; 12 Oke (10.1016/j.jag.2021.102558_b0205) 2017 Wang (10.1016/j.jag.2021.102558_b0280) 2016; 45 Santamouris (10.1016/j.jag.2021.102558_b0235) 2020 Weng (10.1016/j.jag.2021.102558_b0290) 2009; 64 Eludoyin (10.1016/j.jag.2021.102558_b0070) 2014; 34 Liu (10.1016/j.jag.2021.102558_b0175) 2017; 87 Sobrino (10.1016/j.jag.2021.102558_b0250) 2004; 90 Li (10.1016/j.jag.2021.102558_b0160) 2015; 6 Sun (10.1016/j.jag.2021.102558_b0265) 2019; 33 Peng (10.1016/j.jag.2021.102558_b0215) 2020; 246 Feyisa (10.1016/j.jag.2021.102558_b0090) 2016; 175 Yue (10.1016/j.jag.2021.102558_b0315) 2019; 189 Shen (10.1016/j.jag.2021.102558_b0245) 2016; 172 Berger (10.1016/j.jag.2021.102558_b0030) 2017; 193 Meng (10.1016/j.jag.2021.102558_b0190) 2018; 204 Alavipanah (10.1016/j.jag.2021.102558_b0015) 2018; 177 Chander (10.1016/j.jag.2021.102558_b0045) 2009; 30 Liu (10.1016/j.jag.2021.102558_b0170) 2009; 75 Yang (10.1016/j.jag.2021.102558_b0305) 2021; 103045 Bernabé (10.1016/j.jag.2021.102558_b0025) 2015; 122 Li (10.1016/j.jag.2021.102558_b0155) 2011; 115 Wulder (10.1016/j.jag.2021.102558_b0295) 1998; 19 Estoque (10.1016/j.jag.2021.102558_b0075) 2017; 577 Landsberg (10.1016/j.jag.2021.102558_b0150) 1981 Zhang (10.1016/j.jag.2021.102558_b0325) 2016; 553 Song (10.1016/j.jag.2021.102558_b0255) 2014; 123 Aflaki (10.1016/j.jag.2021.102558_b0005) 2017; 62 Yang (10.1016/j.jag.2021.102558_b0300) 2016; 60 Feng (10.1016/j.jag.2021.102558_b0085) 2020; 110 Futcher (10.1016/j.jag.2021.102558_b0100) 2017; 66 Huang (10.1016/j.jag.2021.102558_b0130) 2019; 152 Chen (10.1016/j.jag.2021.102558_b0055) 2021; 194 Froeschke (10.1016/j.jag.2021.102558_b0095) 2011; 111 10.1016/j.jag.2021.102558_b0035 Graham (10.1016/j.jag.2021.102558_b0110) 2016; 20 Getis (10.1016/j.jag.2021.102558_b0105) 2010 Li (10.1016/j.jag.2021.102558_b0165) 2020; 63 Zinzi (10.1016/j.jag.2021.102558_b0340) 2012; 55 Hu (10.1016/j.jag.2021.102558_b0125) 2020; 266 10.1016/j.jag.2021.102558_b0195 |
References_xml | – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: b0065 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 66 start-page: 63 year: 2017 end-page: 71 ident: b0100 article-title: Creating sustainable cities one building at a time: Towards an integrated urban design framework publication-title: Cities – volume: 13 start-page: 495 year: 2014 end-page: 506 ident: b0225 article-title: Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort publication-title: Urban For. Urban Greening. – volume: 103045 year: 2021 ident: b0305 article-title: Influence of urban morphological characteristics on thermal environment publication-title: Sustainable Cities Soc. – volume: 85 start-page: 93 year: 2013 end-page: 101 ident: b0230 article-title: Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 193 start-page: 225 year: 2017 end-page: 243 ident: b0030 article-title: Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature publication-title: Remote Sens. Environ. – reference: C40 China Buildings Programme (C40 CBP), 2018. Constructing a New Low Carbon Future: How Chinese cities are scaling ambitious building energy efficiency solutions. – volume: 258 year: 2020 ident: b0260 article-title: The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects publication-title: J. Cleaner Prod. – volume: 237 year: 2019 ident: b0050 article-title: Alleviating urban heat island effect using high-conductivity permeable concrete pavement publication-title: J. Cleaner Prod. – volume: 13 start-page: 2858 year: 2021 ident: b0180 article-title: Driving factors of land surface temperature in urban agglomerations: A case study in the pearl river delta, china publication-title: Remote Sens. – start-page: 127 year: 2010 end-page: 145 ident: b0105 article-title: The Analysis of Spatial Association by Use of Distance Statistics publication-title: Perspectives on Spatial Data Analysis – volume: 553 start-page: 366 year: 2016 end-page: 371 ident: b0325 article-title: Boosted regression tree model-based assessment of the impacts of meteorological drivers of hand, foot and mouth disease in Guangdong, China publication-title: Sci. Total Environ. – volume: 30 start-page: 1621 year: 2009 end-page: 1628 ident: b0045 article-title: Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration publication-title: Int. J. Remote Sens. – volume: 194 year: 2021 ident: b0055 article-title: Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives publication-title: Build. Environ. – volume: 68 start-page: 893 year: 1999 end-page: 905 ident: b0060 article-title: Scaling of metabolic rate with body mass and temperature in teleost fish publication-title: J. Anim. Ecol. – volume: 577 start-page: 349 year: 2017 end-page: 359 ident: b0075 article-title: Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia publication-title: Sci. Total Environ. – year: 2020 ident: b0235 article-title: Recent development and research priorities on cool and super cool materials to mitigate urban heat island publication-title: Renewable Energy – year: 2017 ident: b0205 article-title: Urban climate – volume: 204 start-page: 826 year: 2018 end-page: 837 ident: b0190 article-title: Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China publication-title: Remote Sens. Environ. – reference: Oke, T.R., 1973. City size and the urban heat island. Atmos. Environ. (1967), 7(8): 769-779. – volume: 12 start-page: 471 year: 1988 end-page: 508 ident: b0200 article-title: The urban energy balance publication-title: Prog. Phys. Geogr.: Earth Environ. – volume: 62 start-page: 131 year: 2017 end-page: 145 ident: b0005 article-title: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong publication-title: Cities – volume: 20 start-page: 180 year: 2016 end-page: 186 ident: b0110 article-title: The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada publication-title: Urban For. Urban Greening. – volume: 189 start-page: 58 year: 2019 end-page: 70 ident: b0315 article-title: Polycentric urban development and urban thermal environment: A case of Hangzhou, China publication-title: Landscape Urban Plann. – volume: 111 start-page: 131 year: 2011 end-page: 138 ident: b0095 article-title: Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees publication-title: Fish. Res. – year: 1981 ident: b0150 article-title: The urban climate – volume: 34 start-page: 2000 year: 2014 end-page: 2018 ident: b0070 article-title: Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria publication-title: Int. J. Climatol. – volume: 264 year: 2020 ident: b0330 article-title: Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace publication-title: J. Cleaner Prod. – reference: Julia, A.B., John, R.S., Frank, D.P., & Simon, J.H., 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. In, Proc. SPIE. – volume: 64 start-page: 335 year: 2009 end-page: 344 ident: b0290 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 152 start-page: 119 year: 2019 end-page: 131 ident: b0130 article-title: Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 53 year: 2020 ident: b0120 article-title: Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou publication-title: Urban For. Urban Greening. – volume: 215 start-page: 255 year: 2018 end-page: 267 ident: b0210 article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas publication-title: Remote Sens. Environ. – volume: 123 start-page: 145 year: 2014 end-page: 157 ident: b0255 article-title: The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models publication-title: Landscape Urban Plann. – volume: 195 start-page: 1 year: 2017 end-page: 12 ident: b0335 article-title: Effects of the spatial configuration of trees on urban heat mitigation: A comparative study publication-title: Remote Sens. Environ. – volume: 173 start-page: 145 year: 2016 end-page: 155 ident: b0220 article-title: Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region publication-title: Remote Sens. Environ. – volume: 127 start-page: 163 year: 2016 end-page: 175 ident: b0240 article-title: Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees publication-title: Atmos. Environ. – volume: 6 start-page: 6603 year: 2015 ident: b0160 article-title: Local cooling and warming effects of forests based on satellite observations publication-title: Nat. Commun. – volume: 19 start-page: 2223 year: 1998 end-page: 2231 ident: b0295 article-title: Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic publication-title: Int. J. Remote Sens. – volume: 63 year: 2020 ident: b0165 article-title: Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities publication-title: Sustainable Cities Soc. – volume: 725 year: 2020 ident: b0310 article-title: Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China publication-title: Sci. Total Environ. – volume: 103208 year: 2021 ident: b0275 article-title: Assessing spatial characteristics of urban heat islands from the perspective of an urban expansion and ecological landscape publication-title: Sustainable Cities Soc. – volume: 43 start-page: 3563 year: 2009 end-page: 3570 ident: b0040 article-title: Analysis of air pollution data at a mixed source location using boosted regression trees publication-title: Atmos. Environ. – volume: 175 start-page: 14 year: 2016 end-page: 31 ident: b0090 article-title: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia publication-title: Remote Sens. Environ. – volume: 131 start-page: 182 year: 2013 end-page: 194 ident: b0320 article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. – volume: 83 start-page: 649 year: 2006 end-page: 668 ident: b0140 article-title: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning publication-title: Appl. Energy. – volume: 60 start-page: 870 year: 2016 end-page: 878 ident: b0300 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. – volume: 695 year: 2019 ident: b0020 article-title: CFD simulation of urban microclimate: Validation using high-resolution field measurements publication-title: Sci. Total Environ. – volume: 246 year: 2020 ident: b0215 article-title: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales publication-title: Remote Sens. Environ. – volume: 177 start-page: 115 year: 2018 end-page: 123 ident: b0015 article-title: The effect of multi-dimensional indicators on urban thermal conditions publication-title: J. Cleaner Prod. – volume: 55 start-page: 66 year: 2012 end-page: 76 ident: b0340 article-title: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region publication-title: Energy Build. – volume: 310 year: 2021 ident: b0185 article-title: Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing publication-title: J. Cleaner Prod. – volume: 45 start-page: 55 year: 2016 end-page: 65 ident: b0280 article-title: Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 90 start-page: 434 year: 2004 end-page: 440 ident: b0250 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sens. Environ. – volume: 115 start-page: 3249 year: 2011 end-page: 3263 ident: b0155 article-title: Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China publication-title: Remote Sens. Environ. – volume: 140 start-page: 2197 year: 2014 end-page: 2210 ident: b0270 article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio publication-title: Q. J. R. Meteorolog. Soc. – volume: 95 year: 2020 ident: b0080 article-title: The spatial restructuring and determinants of industrial landscape in a mega city under rapid urbanization publication-title: Habitat Int. – volume: 87 start-page: 66 year: 2017 end-page: 72 ident: b0175 article-title: Landscape metrics for three-dimensional urban building pattern recognition publication-title: Appl. Geogr. – volume: 40 year: 2021 ident: b0010 article-title: Educational building retrofit under climate change and urban heat island effect publication-title: J. Build. Eng. – volume: 75 start-page: 291 year: 2009 end-page: 304 ident: b0170 article-title: Scaling effect on the relationship between landscape pattern and land surface temperature publication-title: Photogramm. Eng. Remote Sens. – volume: 110 year: 2020 ident: b0085 article-title: The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat publication-title: Ecol. Indic. – volume: 64 start-page: 30 year: 2012 end-page: 38 ident: b0145 article-title: How to make a city climate-proof, addressing the urban heat island effect publication-title: Resour. Conserv. Recycl. – volume: 172 start-page: 109 year: 2016 end-page: 125 ident: b0245 article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China publication-title: Remote Sens. Environ. – volume: 128 year: 2021 ident: b0285 article-title: Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China publication-title: Ecol. Indic. – volume: 122 start-page: 156 year: 2015 end-page: 168 ident: b0025 article-title: Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model publication-title: Sol. Energy – volume: 24 start-page: 982 year: 2018 end-page: 993 ident: b0115 article-title: A modeling study of the sensitivity of urban heat islands to precipitation at climate scales publication-title: Urban Clim. – volume: 266 year: 2020 ident: b0125 article-title: Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach publication-title: J. Environ. Manage. – volume: 33 start-page: 3449 year: 2019 end-page: 3468 ident: b0265 article-title: Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach publication-title: Water Resour. Manage. – volume: 64 start-page: 30 year: 2012 ident: 10.1016/j.jag.2021.102558_b0145 article-title: How to make a city climate-proof, addressing the urban heat island effect publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2011.06.004 – volume: 110 year: 2020 ident: 10.1016/j.jag.2021.102558_b0085 article-title: The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.105798 – volume: 131 start-page: 182 year: 2013 ident: 10.1016/j.jag.2021.102558_b0320 article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.012 – volume: 175 start-page: 14 year: 2016 ident: 10.1016/j.jag.2021.102558_b0090 article-title: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.026 – volume: 103208 year: 2021 ident: 10.1016/j.jag.2021.102558_b0275 article-title: Assessing spatial characteristics of urban heat islands from the perspective of an urban expansion and ecological landscape publication-title: Sustainable Cities Soc. – volume: 111 start-page: 131 year: 2011 ident: 10.1016/j.jag.2021.102558_b0095 article-title: Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees publication-title: Fish. Res. doi: 10.1016/j.fishres.2011.07.008 – ident: 10.1016/j.jag.2021.102558_b0135 – volume: 237 year: 2019 ident: 10.1016/j.jag.2021.102558_b0050 article-title: Alleviating urban heat island effect using high-conductivity permeable concrete pavement publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.117722 – volume: 310 year: 2021 ident: 10.1016/j.jag.2021.102558_b0185 article-title: Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.127467 – ident: 10.1016/j.jag.2021.102558_b0195 doi: 10.1016/0004-6981(73)90140-6 – volume: 258 year: 2020 ident: 10.1016/j.jag.2021.102558_b0260 article-title: The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.120706 – volume: 152 start-page: 119 year: 2019 ident: 10.1016/j.jag.2021.102558_b0130 article-title: Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.010 – year: 1981 ident: 10.1016/j.jag.2021.102558_b0150 – volume: 43 start-page: 3563 year: 2009 ident: 10.1016/j.jag.2021.102558_b0040 article-title: Analysis of air pollution data at a mixed source location using boosted regression trees publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.04.001 – volume: 95 year: 2020 ident: 10.1016/j.jag.2021.102558_b0080 article-title: The spatial restructuring and determinants of industrial landscape in a mega city under rapid urbanization publication-title: Habitat Int. doi: 10.1016/j.habitatint.2019.102099 – volume: 193 start-page: 225 year: 2017 ident: 10.1016/j.jag.2021.102558_b0030 article-title: Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.02.020 – volume: 55 start-page: 66 year: 2012 ident: 10.1016/j.jag.2021.102558_b0340 article-title: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.09.024 – volume: 140 start-page: 2197 issue: 684 year: 2014 ident: 10.1016/j.jag.2021.102558_b0270 article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio publication-title: Q. J. R. Meteorolog. Soc. doi: 10.1002/qj.2289 – volume: 45 start-page: 55 year: 2016 ident: 10.1016/j.jag.2021.102558_b0280 article-title: Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 246 year: 2020 ident: 10.1016/j.jag.2021.102558_b0215 article-title: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111866 – volume: 64 start-page: 335 year: 2009 ident: 10.1016/j.jag.2021.102558_b0290 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.03.007 – volume: 62 start-page: 131 year: 2017 ident: 10.1016/j.jag.2021.102558_b0005 article-title: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong publication-title: Cities doi: 10.1016/j.cities.2016.09.003 – volume: 75 start-page: 291 year: 2009 ident: 10.1016/j.jag.2021.102558_b0170 article-title: Scaling effect on the relationship between landscape pattern and land surface temperature publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.75.3.291 – volume: 725 year: 2020 ident: 10.1016/j.jag.2021.102558_b0310 article-title: Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138229 – volume: 194 year: 2021 ident: 10.1016/j.jag.2021.102558_b0055 article-title: Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107650 – volume: 553 start-page: 366 year: 2016 ident: 10.1016/j.jag.2021.102558_b0325 article-title: Boosted regression tree model-based assessment of the impacts of meteorological drivers of hand, foot and mouth disease in Guangdong, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.02.023 – ident: 10.1016/j.jag.2021.102558_b0035 – volume: 103045 year: 2021 ident: 10.1016/j.jag.2021.102558_b0305 article-title: Influence of urban morphological characteristics on thermal environment publication-title: Sustainable Cities Soc. – volume: 695 year: 2019 ident: 10.1016/j.jag.2021.102558_b0020 article-title: CFD simulation of urban microclimate: Validation using high-resolution field measurements publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133743 – volume: 66 start-page: 63 year: 2017 ident: 10.1016/j.jag.2021.102558_b0100 article-title: Creating sustainable cities one building at a time: Towards an integrated urban design framework publication-title: Cities doi: 10.1016/j.cities.2017.03.009 – volume: 68 start-page: 893 issue: 5 year: 1999 ident: 10.1016/j.jag.2021.102558_b0060 article-title: Scaling of metabolic rate with body mass and temperature in teleost fish publication-title: J. Anim. Ecol. doi: 10.1046/j.1365-2656.1999.00337.x – volume: 85 start-page: 93 year: 2013 ident: 10.1016/j.jag.2021.102558_b0230 article-title: Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.08.010 – volume: 19 start-page: 2223 year: 1998 ident: 10.1016/j.jag.2021.102558_b0295 article-title: Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic publication-title: Int. J. Remote Sens. doi: 10.1080/014311698214983 – volume: 123 start-page: 145 year: 2014 ident: 10.1016/j.jag.2021.102558_b0255 article-title: The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models publication-title: Landscape Urban Plann. doi: 10.1016/j.landurbplan.2013.11.014 – volume: 195 start-page: 1 year: 2017 ident: 10.1016/j.jag.2021.102558_b0335 article-title: Effects of the spatial configuration of trees on urban heat mitigation: A comparative study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.043 – volume: 266 year: 2020 ident: 10.1016/j.jag.2021.102558_b0125 article-title: Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.110424 – volume: 264 year: 2020 ident: 10.1016/j.jag.2021.102558_b0330 article-title: Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121537 – volume: 215 start-page: 255 year: 2018 ident: 10.1016/j.jag.2021.102558_b0210 article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.010 – volume: 177 start-page: 115 year: 2018 ident: 10.1016/j.jag.2021.102558_b0015 article-title: The effect of multi-dimensional indicators on urban thermal conditions publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.12.187 – volume: 34 start-page: 2000 year: 2014 ident: 10.1016/j.jag.2021.102558_b0070 article-title: Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria publication-title: Int. J. Climatol. doi: 10.1002/joc.3817 – volume: 128 year: 2021 ident: 10.1016/j.jag.2021.102558_b0285 article-title: Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107845 – volume: 40 year: 2021 ident: 10.1016/j.jag.2021.102558_b0010 article-title: Educational building retrofit under climate change and urban heat island effect publication-title: J. Build. Eng. – volume: 83 start-page: 649 year: 2006 ident: 10.1016/j.jag.2021.102558_b0140 article-title: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2005.06.001 – volume: 13 start-page: 495 year: 2014 ident: 10.1016/j.jag.2021.102558_b0225 article-title: Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort publication-title: Urban For. Urban Greening. doi: 10.1016/j.ufug.2014.03.003 – volume: 24 start-page: 982 year: 2018 ident: 10.1016/j.jag.2021.102558_b0115 article-title: A modeling study of the sensitivity of urban heat islands to precipitation at climate scales publication-title: Urban Clim. doi: 10.1016/j.uclim.2017.12.001 – volume: 63 year: 2020 ident: 10.1016/j.jag.2021.102558_b0165 article-title: Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2020.102425 – volume: 60 start-page: 870 year: 2016 ident: 10.1016/j.jag.2021.102558_b0300 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.08.036 – volume: 12 start-page: 471 year: 1988 ident: 10.1016/j.jag.2021.102558_b0200 article-title: The urban energy balance publication-title: Prog. Phys. Geogr.: Earth Environ. doi: 10.1177/030913338801200401 – volume: 577 start-page: 349 year: 2017 ident: 10.1016/j.jag.2021.102558_b0075 article-title: Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.195 – volume: 13 start-page: 2858 issue: 15 year: 2021 ident: 10.1016/j.jag.2021.102558_b0180 article-title: Driving factors of land surface temperature in urban agglomerations: A case study in the pearl river delta, china publication-title: Remote Sens. doi: 10.3390/rs13152858 – volume: 172 start-page: 109 year: 2016 ident: 10.1016/j.jag.2021.102558_b0245 article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.005 – volume: 53 year: 2020 ident: 10.1016/j.jag.2021.102558_b0120 article-title: Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou publication-title: Urban For. Urban Greening. doi: 10.1016/j.ufug.2020.126719 – volume: 204 start-page: 826 year: 2018 ident: 10.1016/j.jag.2021.102558_b0190 article-title: Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.019 – volume: 122 start-page: 156 year: 2015 ident: 10.1016/j.jag.2021.102558_b0025 article-title: Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model publication-title: Sol. Energy doi: 10.1016/j.solener.2015.08.031 – volume: 20 start-page: 180 year: 2016 ident: 10.1016/j.jag.2021.102558_b0110 article-title: The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada publication-title: Urban For. Urban Greening. doi: 10.1016/j.ufug.2016.08.005 – start-page: 127 year: 2010 ident: 10.1016/j.jag.2021.102558_b0105 article-title: The Analysis of Spatial Association by Use of Distance Statistics – volume: 115 start-page: 3249 year: 2011 ident: 10.1016/j.jag.2021.102558_b0155 article-title: Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.008 – volume: 90 start-page: 434 year: 2004 ident: 10.1016/j.jag.2021.102558_b0250 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.02.003 – year: 2017 ident: 10.1016/j.jag.2021.102558_b0205 – volume: 87 start-page: 66 year: 2017 ident: 10.1016/j.jag.2021.102558_b0175 article-title: Landscape metrics for three-dimensional urban building pattern recognition publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2017.07.011 – volume: 33 start-page: 3449 year: 2019 ident: 10.1016/j.jag.2021.102558_b0265 article-title: Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach publication-title: Water Resour. Manage. doi: 10.1007/s11269-019-02310-y – volume: 6 start-page: 6603 year: 2015 ident: 10.1016/j.jag.2021.102558_b0160 article-title: Local cooling and warming effects of forests based on satellite observations publication-title: Nat. Commun. doi: 10.1038/ncomms7603 – volume: 127 start-page: 163 year: 2016 ident: 10.1016/j.jag.2021.102558_b0240 article-title: Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.12.024 – volume: 173 start-page: 145 year: 2016 ident: 10.1016/j.jag.2021.102558_b0220 article-title: Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.027 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.jag.2021.102558_b0065 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 189 start-page: 58 year: 2019 ident: 10.1016/j.jag.2021.102558_b0315 article-title: Polycentric urban development and urban thermal environment: A case of Hangzhou, China publication-title: Landscape Urban Plann. doi: 10.1016/j.landurbplan.2019.04.008 – volume: 30 start-page: 1621 year: 2009 ident: 10.1016/j.jag.2021.102558_b0045 article-title: Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802524545 – year: 2020 ident: 10.1016/j.jag.2021.102558_b0235 article-title: Recent development and research priorities on cool and super cool materials to mitigate urban heat island publication-title: Renewable Energy doi: 10.1016/j.renene.2020.07.109 |
SSID | ssj0017768 |
Score | 2.478873 |
Snippet | •The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are... Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102558 |
SubjectTerms | autumn Hangzhou heat island Land surface temperature Machine learning Multi-dimensional urban morphology regression analysis spatial data spring summer surface temperature temporal variation winter |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHBIWKpYCMxAlhbeL4ER9LH1pA9AKVerNsZ7LsqiSrfVz49R0nzrLl0ANSpCiRM0k845nPsucbQj6AURoqV7FagmbCy4L5KggGDpTOEVKYMiY4f79S02vx9UbeHJCzIRcmbqtMvr_36Z23TncmqTcny_l88gPNE9FAIXhkEcVA-ogccoyu2Ygcnn75Nr3aLSZo3WfESWVYKQo-LG5227wWboazRJ5HDgMZC7_vhaeOxf9elPrHX3dB6PIZeZrQIz3tP_A5OYDmiDzZ4xQ8IscXf1PXsGkau-sXZNHl2rI1KgVonxy5pm1N-fmkOKfblXcN9alINl12tJsNncdjs3Ks5y6lES7-xvNeflyUMXXN7M-vdvuJdvW4X5Lry4ufZ1OWKi2wgIBkw7jGKFVJHO916ZTQIDggsDPeFJVDiCNBOAUqd05VBXahqyC4UhcOnC9q9BLHZNS0DbwiNGQCROZFXmYVijQeIiV86YPPjQ8FH5Ns6GAbEg15rIZxa4f9ZguLOrFRJ7bXyZh83D2y7Dk4Hmr8OWpt1zDSZ3c32tXMJvuxPtNByRxM7vBvgjdSeC-N0F67vC7DmIhB5_aeNaKo-UPvfj_Yh8VRGpdeXAPtdm05zstkpFoTr_9P9Al5HK_iRppcviGjzWoLbxEObfy7ZO53d60HgA priority: 102 providerName: Elsevier |
Title | Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal environment of Hangzhou, China |
URI | https://dx.doi.org/10.1016/j.jag.2021.102558 https://www.proquest.com/docview/2675583024 https://doaj.org/article/b07c651e91a843cb954bb5947b7a1f8c |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SX_RBarV4tJYIPomhm91cNo-1F463ImKhbyHJzrY96J5yLi_-emc2u_XoQ30RFgJLbmQmmS9k5hvGXoMzFprQiFaDFSrqSsQmKQEBjJUIKVxNAc6fz8z0XH240Bcbqb7IJyzTA-eFO4iFTUZLcDLUqkrRaRWjdspGG2RbJzp90eaNl6nh_cDaHASnjRPYrBzfM3vPrlm4xIthKYm2QFOu9w2L1BP3_2GY_jqie7tzus0eDYCRH-aJPmb3oNthDzdoBHfY7snvaDWsOmzX5RM268NrxRLlADzHQy75vOXl8UF1zNeLGDoeh7zY_KZn2uz4NX2rRRCZrpQTQvyB5UZIHPUxDd3lz6v5-i3vU3A_ZeenJ9-OpmJIriASYpCVKC0apkbjFm_rYJQFVQJiORdd1QRENRpUMGBkCKapcAlDAynUtgoQYtXiwbDLtrp5B88YT4UCVUQl66LBLl0EYoGvY4rSxVSVE1aMC-zTwDxOCTC--9HFbOZRJp5k4rNMJuzNbZObTLtxV-V3JLXbisSY3f9APfKDHvl_6dGEqVHmfgAfGVRgV9d3jf1q1A-PG5NeW0IH8_XSl3gV08Supp7_j_m9YA9oWPKkkXqPba0Wa3iJeGgV99n9w6Ovn75Q-f7j9Gy_3wq_ALQ4Ccg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gA8IBhMdPwzErwgrCaOHccPPAy6qaVbX9ikvRnbcUorllRNKwRfiy_IOXFKx8MekCZFipTYF-XufHeW736H0BsnU-FynZOCO0GY4QkxuWXEaZeKGEIKmfkC57NJOrxgny_55Q763dXC-LTKYPtbm95Y6_CkH7jZX8xm_S-gnhANJIx6FFFwpCGzcux-_oB9W_1hNAAhv6X05Pj805CE1gLEggdeESrALOccFLzIdMqEY9RBJCONTHINPp07plOXxlqneZKxROfO6kwk2mmTFLAsgO4dtOfRsGBZ7R2NxsPJ5vBCiLYCj6eSwFzaHaY2aWVzPYVdKY09ZgL3jea33GHTNeCaV_zHPzRO7-QhehCiVXzUMuQR2nHlPrq_hWG4jw6O_5bKwdBgK-rHaN7U9pIalMDhthizxlWB6aCfDPB6aXSJTWjKjRcNzGeJZ_5aLTVpsVKxD0-v4L5Vj-dpDHU5_fWtWr_HTf_vJ-jiVth_gHbLqnRPEbYRcywyLM6iHEhK4zwEfWasiaWxCe2hqGOwsgH23Hff-K66_La5ApkoLxPVyqSH3m2mLFrMj5sGf_RS2wz0cN3Ng2o5VUFflYmETXnsZKzhb6yRnBnDJRNG6LjIbA-xTubqmvYDqdlN337d6YcCq-CPenTpqnWtKOwDuYd2Y4f_R_oVujs8PztVp6PJ-Bm659_4JJ6YP0e7q-XavYBQbGVeBtXH6Ottr7Y_B3pEUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+impacts+of+2D%2F3D+urban+building+pattern+in+intra-annual+thermal+environment+of+Hangzhou%2C+China&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Lu%2C+Huimin&rft.au=Li%2C+Fei&rft.au=Yang%2C+Gang&rft.au=Sun%2C+Weiwei&rft.date=2021-12-15&rft.issn=1569-8432&rft.volume=104+p.102558-&rft_id=info:doi/10.1016%2Fj.jag.2021.102558&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |