Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal environment of Hangzhou, China

•The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined. U...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 104; p. 102558
Main Authors Lu, Huimin, Li, Fei, Yang, Gang, Sun, Weiwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined. Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment.
AbstractList Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment.
•The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are revealed.•The threshold values of dominant building metrics are discovered.•The sensitivity of dominant metrics to analytical scales are examined. Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat island. Although prior researches have showed that 2D/3D architectural pattern can significantly affect LST, the comprehensive effect of 2D/3D architectural pattern on thermal environment is still controversial and obscure due to the impact of architectural pattern on LST would vary under different observational scales and seasons, making it necessary to examine the temporal variation and scale-dependent of the relationship between them. This study takes Hangzhou as a study area to probe the relationship between seasonal LST and 2D/3D building metrics across ten analytical scales. Major findings include: (1) From spring to winter, the spatial dependency of LST becomes weaker with the increasing observational scale. (2) The regression analysis results show that the mean architecture projection area (MAPA), building coverage ratio (BCR), floor area ratio (FAR) and mean architecture height (MAH) are the most dominant metrics, with the range of average relative contributions are 10.96–16.68%, 14.61–45.20%, 7.90–17.05% and 5.80–14.23% in four seasons. Moreover, the relative contributions of chosen metrics on seasonal LST exhibit consistency in spring, summer and autumn. (3) The marginal effect analysis results reveal that the threshold values of these four dominant metrics are sensitive to analytical scale and would reduce with the analytical unit increases in four seasons. These findings indicate that controlling the building density, building height and floor area ratio of built-up areas in a reasonable range according to the spatial scale of planning unit, advocating more dispersed arrangement of the buildings and smaller architectural base area in Hangzhou can be favorable in ameliorating thermal environment.
ArticleNumber 102558
Author Li, Fei
Yang, Gang
Lu, Huimin
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
  organization: College of Science & Technology, Ningbo University, Ningbo 315211, PR China
– sequence: 2
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  email: dg20270016@smail.nju.edu.cn
  organization: International Institute for Earth System Sciences, Nanjing University, Nanjing 210023, PR China
– sequence: 3
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, PR China
– sequence: 4
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, PR China
BookMark eNp9kUtv1TAQhSNUJPrgB7DLkgW59SOxHbFCt0ArFXVDpe6siTO511FiX2ynEvx6HAIbFpUsjW3N-TRzzkVx5rzDonhHyY4SKq7H3QiHHSOM5jdrGvWqOKdKskox8XSW741oK1Vz9qa4iHEkhEop1HkxflumZKtoYMLSzicwKZZ-KNnNNb8pl9CBK7vFTr11h_IEKWFwpV1PClCBcwtMZTpimHNF92yDdzO6tDJuwR1-Hf3yodwfrYOr4vUAU8S3f-tl8fjl8_f9bXX_8PVu_-m-MjVvU8UkU3XfcCIHBaKWWDNsOWu7lvdAJWuwBoGCAoie542gRwNKckDo-EAkvyzuNm7vYdSnYGcIP7UHq_98-HDQEJI1E-qOSCMaii2FTDJd29Rd17S17CTQQZnMer-xTsH_WDAmPdtocJrAoV-iZkJmrzlhdW6VW6sJPsaAgzY2QbJ-dcpOmhK9JqVHnZPSa1J6Syor6X_Kf0O_pPm4aTA7-Wwx6GgsOoO9DWhSXtW-oP4NxAutKg
CitedBy_id crossref_primary_10_1016_j_jag_2023_103411
crossref_primary_10_1016_j_scs_2024_105738
crossref_primary_10_1016_j_scs_2022_104247
crossref_primary_10_1016_j_scs_2023_104788
crossref_primary_10_1016_j_apgeog_2023_103052
crossref_primary_10_1016_j_scs_2022_103992
crossref_primary_10_1016_j_scs_2022_104165
crossref_primary_10_1016_j_scs_2024_106002
crossref_primary_10_1016_j_jag_2022_102846
crossref_primary_10_1080_13658816_2022_2103818
crossref_primary_10_1016_j_scs_2024_105268
crossref_primary_10_1016_j_scs_2024_105942
crossref_primary_10_1109_TGRS_2024_3369723
crossref_primary_10_1016_j_ecolind_2023_110852
crossref_primary_10_1016_j_scs_2023_104923
Cites_doi 10.1016/j.resconrec.2011.06.004
10.1016/j.ecolind.2019.105798
10.1016/j.rse.2012.12.012
10.1016/j.rse.2015.12.026
10.1016/j.fishres.2011.07.008
10.1016/j.jclepro.2019.117722
10.1016/j.jclepro.2021.127467
10.1016/0004-6981(73)90140-6
10.1016/j.jclepro.2020.120706
10.1016/j.isprsjprs.2019.04.010
10.1016/j.atmosenv.2009.04.001
10.1016/j.habitatint.2019.102099
10.1016/j.rse.2017.02.020
10.1016/j.enbuild.2011.09.024
10.1002/qj.2289
10.1016/j.rse.2020.111866
10.1016/j.isprsjprs.2009.03.007
10.1016/j.cities.2016.09.003
10.14358/PERS.75.3.291
10.1016/j.scitotenv.2020.138229
10.1016/j.buildenv.2021.107650
10.1016/j.scitotenv.2016.02.023
10.1016/j.scitotenv.2019.133743
10.1016/j.cities.2017.03.009
10.1046/j.1365-2656.1999.00337.x
10.1016/j.isprsjprs.2013.08.010
10.1080/014311698214983
10.1016/j.landurbplan.2013.11.014
10.1016/j.rse.2017.03.043
10.1016/j.jenvman.2020.110424
10.1016/j.jclepro.2020.121537
10.1016/j.rse.2018.06.010
10.1016/j.jclepro.2017.12.187
10.1002/joc.3817
10.1016/j.ecolind.2021.107845
10.1016/j.apenergy.2005.06.001
10.1016/j.ufug.2014.03.003
10.1016/j.uclim.2017.12.001
10.1016/j.scs.2020.102425
10.1016/j.ecolind.2015.08.036
10.1177/030913338801200401
10.1016/j.scitotenv.2016.10.195
10.3390/rs13152858
10.1016/j.rse.2015.11.005
10.1016/j.ufug.2020.126719
10.1016/j.rse.2017.09.019
10.1016/j.solener.2015.08.031
10.1016/j.ufug.2016.08.005
10.1016/j.rse.2011.07.008
10.1016/j.rse.2004.02.003
10.1016/j.apgeog.2017.07.011
10.1007/s11269-019-02310-y
10.1038/ncomms7603
10.1016/j.atmosenv.2015.12.024
10.1016/j.rse.2015.11.027
10.1111/j.1365-2656.2008.01390.x
10.1016/j.landurbplan.2019.04.008
10.1080/01431160802524545
10.1016/j.renene.2020.07.109
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2021.102558
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_b07c651e91a843cb954bb5947b7a1f8c
10_1016_j_jag_2021_102558
S0303243421002658
GroupedDBID 4.4
5GY
6I.
AAFTH
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
BKOJK
BLECG
EBS
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
29J
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFJIC
EJD
R2-
RIG
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c439t-27284d5307f8a647e42e9329b93da1725e4a6e61aa6d3843adeca873aeab3f073
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:24:51 EDT 2025
Fri Jul 11 11:48:15 EDT 2025
Tue Jul 01 02:15:19 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-dimensional urban morphology
Land surface temperature
Hangzhou
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-27284d5307f8a647e42e9329b93da1725e4a6e61aa6d3843adeca873aeab3f073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/b07c651e91a843cb954bb5947b7a1f8c
PQID 2675583024
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_b07c651e91a843cb954bb5947b7a1f8c
proquest_miscellaneous_2675583024
crossref_citationtrail_10_1016_j_jag_2021_102558
crossref_primary_10_1016_j_jag_2021_102558
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Graham, Vanos, Kenny, Brown (b0110) 2016; 20
Zeng, Shen, Zhang (b0320) 2013; 131
Zhang, Du, Zhang, Yu, Hao (b0325) 2016; 553
Meng, Zhang, Sun, Meng, Wang, Sun (b0190) 2018; 204
Sayegh, Tate, Ropkins (b0240) 2016; 127
Yue, Qiu, Xu, Xu, Zhang (b0315) 2019; 189
Akkose, Akgul, Dino (b0010) 2021; 40
Theeuwes, Steeneveld, Ronda, Heusinkveld, Van Hove, Holtslag (b0270) 2014; 140
Carslaw, Taylor (b0040) 2009; 43
Landsberg (b0150) 1981
Oke, T.R., 1973. City size and the urban heat island. Atmos. Environ. (1967), 7(8): 769-779.
Julia, A.B., John, R.S., Frank, D.P., & Simon, J.H., 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. In, Proc. SPIE.
Gu, Li (b0115) 2018; 24
Bernabé, Musy, Andrieu, Calmet (b0025) 2015; 122
Huang, Wang (b0130) 2019; 152
Chen, Zhan, Jin, Han, Du, Xia, Ding (b0055) 2021; 194
Li, Song, Cao, Zhu, Meng, Wu (b0155) 2011; 115
Zhang, Xu, Zhang, Wang, He, Zhou (b0330) 2020; 264
Peng, Xie, Liu, Ma (b0220) 2016; 173
Santamouris, Yun (b0235) 2020
Zinzi, Agnoli (b0340) 2012; 55
Futcher, Mills, Emmanuel, Korolija (b0100) 2017; 66
Feyisa, Meilby, Darrel Jenerette, Pauliet (b0090) 2016; 175
Qiao, Tian, Xiao (b0230) 2013; 85
Wulder, Boots (b0295) 1998; 19
Hu, Dai, Guldmann (b0125) 2020; 266
Froeschke, Froeschke (b0095) 2011; 111
Tian, Li, Cao, Pu, Wang, Zhang, Gong (b0275) 2021; 103208
Sobrino, Jiménez-Muñoz, Paolini (b0250) 2004; 90
Peng, Qiao, Liu, Blaschke, Li, Wu, Xu, Liu (b0215) 2020; 246
Chen, Chu, Wang, Zhang, Chen, Du (b0050) 2019; 237
Fan, Yue, Zhang, Huang, Messina, Verburg, Ge (b0080) 2020; 95
Berger, Rosentreter, Voltersen, Baumgart, Schmullius, Hese (b0030) 2017; 193
Liu, Hu, Li (b0175) 2017; 87
Oke, Mills, Christen, Voogt (b0205) 2017
Eludoyin, Adelekan, Webster, Eludoyin (b0070) 2014; 34
Hou, Estoque (b0120) 2020; 53
Elith, Leathwick, Hastie (b0065) 2008; 77
Feng, Zhao, Zhou, Zhu, Tian (b0085) 2020; 110
Shen, Huang, Zhang, Wu, Zeng (b0245) 2016; 172
Chander, Groeneveld (b0045) 2009; 30
Clarke, Johnston (b0060) 1999; 68
Yang, Yang, Sun, Jin, Xiao (b0305) 2021; 103045
Li, Zhao, Motesharrei, Mu, Kalnay, Li (b0160) 2015; 6
Liu, Weng (b0170) 2009; 75
Liu, Meng, Allam, Zhang, Hu, Menenti (b0180) 2021; 13
Song, Du, Feng, Guo (b0255) 2014; 123
Yu, Chen, Yu, Wang, Wu, Wu, Zhao (b0310) 2020; 725
Li, Sun, Li, Gao (b0165) 2020; 63
Luo, Yang, Sun, He (b0185) 2021; 310
Kleerekoper, van Esch, Salcedo (b0145) 2012; 64
Perini, Magliocco (b0225) 2014; 13
Aflaki, Mirnezhad, Ghaffarianhoseini, Ghaffarianhoseini, Omrany, Wang, Akbari (b0005) 2017; 62
Estoque, Murayama, Myint (b0075) 2017; 577
Sun, Mejia, Che (b0265) 2019; 33
Zhou, Wang, Cadenasso (b0335) 2017; 195
Getis, Ord (b0105) 2010
Wang, Qingming, Guo, Jin (b0280) 2016; 45
Wang, Meng, Allam, Hu, Zhang, Menenti (b0285) 2021; 128
Yang, Zhang, Liu, Lu, Yang, Yang, Li (b0300) 2016; 60
Weng (b0290) 2009; 64
Antoniou, Montazeri, Neophytou, Blocken (b0020) 2019; 695
Alavipanah, Schreyer, Haase, Lakes, Qureshi (b0015) 2018; 177
Sun, Liu, Wang, Wang, Che (b0260) 2020; 258
Peng, Jia, Liu, Li, Wu (b0210) 2018; 215
C40 China Buildings Programme (C40 CBP), 2018. Constructing a New Low Carbon Future: How Chinese cities are scaling ambitious building energy efficiency solutions.
Kikegawa, Genchi, Kondo, Hanaki (b0140) 2006; 83
Oke (b0200) 1988; 12
Perini (10.1016/j.jag.2021.102558_b0225) 2014; 13
Zhou (10.1016/j.jag.2021.102558_b0335) 2017; 195
Akkose (10.1016/j.jag.2021.102558_b0010) 2021; 40
Peng (10.1016/j.jag.2021.102558_b0210) 2018; 215
Carslaw (10.1016/j.jag.2021.102558_b0040) 2009; 43
Zeng (10.1016/j.jag.2021.102558_b0320) 2013; 131
Clarke (10.1016/j.jag.2021.102558_b0060) 1999; 68
Fan (10.1016/j.jag.2021.102558_b0080) 2020; 95
Hou (10.1016/j.jag.2021.102558_b0120) 2020; 53
Liu (10.1016/j.jag.2021.102558_b0180) 2021; 13
Yu (10.1016/j.jag.2021.102558_b0310) 2020; 725
Kleerekoper (10.1016/j.jag.2021.102558_b0145) 2012; 64
Sayegh (10.1016/j.jag.2021.102558_b0240) 2016; 127
Gu (10.1016/j.jag.2021.102558_b0115) 2018; 24
Elith (10.1016/j.jag.2021.102558_b0065) 2008; 77
Sun (10.1016/j.jag.2021.102558_b0260) 2020; 258
Wang (10.1016/j.jag.2021.102558_b0285) 2021; 128
Qiao (10.1016/j.jag.2021.102558_b0230) 2013; 85
Theeuwes (10.1016/j.jag.2021.102558_b0270) 2014; 140
Peng (10.1016/j.jag.2021.102558_b0220) 2016; 173
Kikegawa (10.1016/j.jag.2021.102558_b0140) 2006; 83
Chen (10.1016/j.jag.2021.102558_b0050) 2019; 237
Zhang (10.1016/j.jag.2021.102558_b0330) 2020; 264
Tian (10.1016/j.jag.2021.102558_b0275) 2021; 103208
Antoniou (10.1016/j.jag.2021.102558_b0020) 2019; 695
10.1016/j.jag.2021.102558_b0135
Luo (10.1016/j.jag.2021.102558_b0185) 2021; 310
Oke (10.1016/j.jag.2021.102558_b0200) 1988; 12
Oke (10.1016/j.jag.2021.102558_b0205) 2017
Wang (10.1016/j.jag.2021.102558_b0280) 2016; 45
Santamouris (10.1016/j.jag.2021.102558_b0235) 2020
Weng (10.1016/j.jag.2021.102558_b0290) 2009; 64
Eludoyin (10.1016/j.jag.2021.102558_b0070) 2014; 34
Liu (10.1016/j.jag.2021.102558_b0175) 2017; 87
Sobrino (10.1016/j.jag.2021.102558_b0250) 2004; 90
Li (10.1016/j.jag.2021.102558_b0160) 2015; 6
Sun (10.1016/j.jag.2021.102558_b0265) 2019; 33
Peng (10.1016/j.jag.2021.102558_b0215) 2020; 246
Feyisa (10.1016/j.jag.2021.102558_b0090) 2016; 175
Yue (10.1016/j.jag.2021.102558_b0315) 2019; 189
Shen (10.1016/j.jag.2021.102558_b0245) 2016; 172
Berger (10.1016/j.jag.2021.102558_b0030) 2017; 193
Meng (10.1016/j.jag.2021.102558_b0190) 2018; 204
Alavipanah (10.1016/j.jag.2021.102558_b0015) 2018; 177
Chander (10.1016/j.jag.2021.102558_b0045) 2009; 30
Liu (10.1016/j.jag.2021.102558_b0170) 2009; 75
Yang (10.1016/j.jag.2021.102558_b0305) 2021; 103045
Bernabé (10.1016/j.jag.2021.102558_b0025) 2015; 122
Li (10.1016/j.jag.2021.102558_b0155) 2011; 115
Wulder (10.1016/j.jag.2021.102558_b0295) 1998; 19
Estoque (10.1016/j.jag.2021.102558_b0075) 2017; 577
Landsberg (10.1016/j.jag.2021.102558_b0150) 1981
Zhang (10.1016/j.jag.2021.102558_b0325) 2016; 553
Song (10.1016/j.jag.2021.102558_b0255) 2014; 123
Aflaki (10.1016/j.jag.2021.102558_b0005) 2017; 62
Yang (10.1016/j.jag.2021.102558_b0300) 2016; 60
Feng (10.1016/j.jag.2021.102558_b0085) 2020; 110
Futcher (10.1016/j.jag.2021.102558_b0100) 2017; 66
Huang (10.1016/j.jag.2021.102558_b0130) 2019; 152
Chen (10.1016/j.jag.2021.102558_b0055) 2021; 194
Froeschke (10.1016/j.jag.2021.102558_b0095) 2011; 111
10.1016/j.jag.2021.102558_b0035
Graham (10.1016/j.jag.2021.102558_b0110) 2016; 20
Getis (10.1016/j.jag.2021.102558_b0105) 2010
Li (10.1016/j.jag.2021.102558_b0165) 2020; 63
Zinzi (10.1016/j.jag.2021.102558_b0340) 2012; 55
Hu (10.1016/j.jag.2021.102558_b0125) 2020; 266
10.1016/j.jag.2021.102558_b0195
References_xml – volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: b0065
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 66
  start-page: 63
  year: 2017
  end-page: 71
  ident: b0100
  article-title: Creating sustainable cities one building at a time: Towards an integrated urban design framework
  publication-title: Cities
– volume: 13
  start-page: 495
  year: 2014
  end-page: 506
  ident: b0225
  article-title: Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort
  publication-title: Urban For. Urban Greening.
– volume: 103045
  year: 2021
  ident: b0305
  article-title: Influence of urban morphological characteristics on thermal environment
  publication-title: Sustainable Cities Soc.
– volume: 85
  start-page: 93
  year: 2013
  end-page: 101
  ident: b0230
  article-title: Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 193
  start-page: 225
  year: 2017
  end-page: 243
  ident: b0030
  article-title: Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature
  publication-title: Remote Sens. Environ.
– reference: C40 China Buildings Programme (C40 CBP), 2018. Constructing a New Low Carbon Future: How Chinese cities are scaling ambitious building energy efficiency solutions.
– volume: 258
  year: 2020
  ident: b0260
  article-title: The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects
  publication-title: J. Cleaner Prod.
– volume: 237
  year: 2019
  ident: b0050
  article-title: Alleviating urban heat island effect using high-conductivity permeable concrete pavement
  publication-title: J. Cleaner Prod.
– volume: 13
  start-page: 2858
  year: 2021
  ident: b0180
  article-title: Driving factors of land surface temperature in urban agglomerations: A case study in the pearl river delta, china
  publication-title: Remote Sens.
– start-page: 127
  year: 2010
  end-page: 145
  ident: b0105
  article-title: The Analysis of Spatial Association by Use of Distance Statistics
  publication-title: Perspectives on Spatial Data Analysis
– volume: 553
  start-page: 366
  year: 2016
  end-page: 371
  ident: b0325
  article-title: Boosted regression tree model-based assessment of the impacts of meteorological drivers of hand, foot and mouth disease in Guangdong, China
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 1621
  year: 2009
  end-page: 1628
  ident: b0045
  article-title: Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration
  publication-title: Int. J. Remote Sens.
– volume: 194
  year: 2021
  ident: b0055
  article-title: Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives
  publication-title: Build. Environ.
– volume: 68
  start-page: 893
  year: 1999
  end-page: 905
  ident: b0060
  article-title: Scaling of metabolic rate with body mass and temperature in teleost fish
  publication-title: J. Anim. Ecol.
– volume: 577
  start-page: 349
  year: 2017
  end-page: 359
  ident: b0075
  article-title: Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia
  publication-title: Sci. Total Environ.
– year: 2020
  ident: b0235
  article-title: Recent development and research priorities on cool and super cool materials to mitigate urban heat island
  publication-title: Renewable Energy
– year: 2017
  ident: b0205
  article-title: Urban climate
– volume: 204
  start-page: 826
  year: 2018
  end-page: 837
  ident: b0190
  article-title: Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China
  publication-title: Remote Sens. Environ.
– reference: Oke, T.R., 1973. City size and the urban heat island. Atmos. Environ. (1967), 7(8): 769-779.
– volume: 12
  start-page: 471
  year: 1988
  end-page: 508
  ident: b0200
  article-title: The urban energy balance
  publication-title: Prog. Phys. Geogr.: Earth Environ.
– volume: 62
  start-page: 131
  year: 2017
  end-page: 145
  ident: b0005
  article-title: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
  publication-title: Cities
– volume: 20
  start-page: 180
  year: 2016
  end-page: 186
  ident: b0110
  article-title: The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada
  publication-title: Urban For. Urban Greening.
– volume: 189
  start-page: 58
  year: 2019
  end-page: 70
  ident: b0315
  article-title: Polycentric urban development and urban thermal environment: A case of Hangzhou, China
  publication-title: Landscape Urban Plann.
– volume: 111
  start-page: 131
  year: 2011
  end-page: 138
  ident: b0095
  article-title: Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees
  publication-title: Fish. Res.
– year: 1981
  ident: b0150
  article-title: The urban climate
– volume: 34
  start-page: 2000
  year: 2014
  end-page: 2018
  ident: b0070
  article-title: Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria
  publication-title: Int. J. Climatol.
– volume: 264
  year: 2020
  ident: b0330
  article-title: Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace
  publication-title: J. Cleaner Prod.
– reference: Julia, A.B., John, R.S., Frank, D.P., & Simon, J.H., 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. In, Proc. SPIE.
– volume: 64
  start-page: 335
  year: 2009
  end-page: 344
  ident: b0290
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 152
  start-page: 119
  year: 2019
  end-page: 131
  ident: b0130
  article-title: Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 53
  year: 2020
  ident: b0120
  article-title: Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou
  publication-title: Urban For. Urban Greening.
– volume: 215
  start-page: 255
  year: 2018
  end-page: 267
  ident: b0210
  article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas
  publication-title: Remote Sens. Environ.
– volume: 123
  start-page: 145
  year: 2014
  end-page: 157
  ident: b0255
  article-title: The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models
  publication-title: Landscape Urban Plann.
– volume: 195
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0335
  article-title: Effects of the spatial configuration of trees on urban heat mitigation: A comparative study
  publication-title: Remote Sens. Environ.
– volume: 173
  start-page: 145
  year: 2016
  end-page: 155
  ident: b0220
  article-title: Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region
  publication-title: Remote Sens. Environ.
– volume: 127
  start-page: 163
  year: 2016
  end-page: 175
  ident: b0240
  article-title: Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees
  publication-title: Atmos. Environ.
– volume: 6
  start-page: 6603
  year: 2015
  ident: b0160
  article-title: Local cooling and warming effects of forests based on satellite observations
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2223
  year: 1998
  end-page: 2231
  ident: b0295
  article-title: Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic
  publication-title: Int. J. Remote Sens.
– volume: 63
  year: 2020
  ident: b0165
  article-title: Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities
  publication-title: Sustainable Cities Soc.
– volume: 725
  year: 2020
  ident: b0310
  article-title: Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China
  publication-title: Sci. Total Environ.
– volume: 103208
  year: 2021
  ident: b0275
  article-title: Assessing spatial characteristics of urban heat islands from the perspective of an urban expansion and ecological landscape
  publication-title: Sustainable Cities Soc.
– volume: 43
  start-page: 3563
  year: 2009
  end-page: 3570
  ident: b0040
  article-title: Analysis of air pollution data at a mixed source location using boosted regression trees
  publication-title: Atmos. Environ.
– volume: 175
  start-page: 14
  year: 2016
  end-page: 31
  ident: b0090
  article-title: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia
  publication-title: Remote Sens. Environ.
– volume: 131
  start-page: 182
  year: 2013
  end-page: 194
  ident: b0320
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
– volume: 83
  start-page: 649
  year: 2006
  end-page: 668
  ident: b0140
  article-title: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning
  publication-title: Appl. Energy.
– volume: 60
  start-page: 870
  year: 2016
  end-page: 878
  ident: b0300
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
– volume: 695
  year: 2019
  ident: b0020
  article-title: CFD simulation of urban microclimate: Validation using high-resolution field measurements
  publication-title: Sci. Total Environ.
– volume: 246
  year: 2020
  ident: b0215
  article-title: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 115
  year: 2018
  end-page: 123
  ident: b0015
  article-title: The effect of multi-dimensional indicators on urban thermal conditions
  publication-title: J. Cleaner Prod.
– volume: 55
  start-page: 66
  year: 2012
  end-page: 76
  ident: b0340
  article-title: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region
  publication-title: Energy Build.
– volume: 310
  year: 2021
  ident: b0185
  article-title: Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing
  publication-title: J. Cleaner Prod.
– volume: 45
  start-page: 55
  year: 2016
  end-page: 65
  ident: b0280
  article-title: Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 90
  start-page: 434
  year: 2004
  end-page: 440
  ident: b0250
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 3249
  year: 2011
  end-page: 3263
  ident: b0155
  article-title: Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China
  publication-title: Remote Sens. Environ.
– volume: 140
  start-page: 2197
  year: 2014
  end-page: 2210
  ident: b0270
  article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio
  publication-title: Q. J. R. Meteorolog. Soc.
– volume: 95
  year: 2020
  ident: b0080
  article-title: The spatial restructuring and determinants of industrial landscape in a mega city under rapid urbanization
  publication-title: Habitat Int.
– volume: 87
  start-page: 66
  year: 2017
  end-page: 72
  ident: b0175
  article-title: Landscape metrics for three-dimensional urban building pattern recognition
  publication-title: Appl. Geogr.
– volume: 40
  year: 2021
  ident: b0010
  article-title: Educational building retrofit under climate change and urban heat island effect
  publication-title: J. Build. Eng.
– volume: 75
  start-page: 291
  year: 2009
  end-page: 304
  ident: b0170
  article-title: Scaling effect on the relationship between landscape pattern and land surface temperature
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 110
  year: 2020
  ident: b0085
  article-title: The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat
  publication-title: Ecol. Indic.
– volume: 64
  start-page: 30
  year: 2012
  end-page: 38
  ident: b0145
  article-title: How to make a city climate-proof, addressing the urban heat island effect
  publication-title: Resour. Conserv. Recycl.
– volume: 172
  start-page: 109
  year: 2016
  end-page: 125
  ident: b0245
  article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China
  publication-title: Remote Sens. Environ.
– volume: 128
  year: 2021
  ident: b0285
  article-title: Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China
  publication-title: Ecol. Indic.
– volume: 122
  start-page: 156
  year: 2015
  end-page: 168
  ident: b0025
  article-title: Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model
  publication-title: Sol. Energy
– volume: 24
  start-page: 982
  year: 2018
  end-page: 993
  ident: b0115
  article-title: A modeling study of the sensitivity of urban heat islands to precipitation at climate scales
  publication-title: Urban Clim.
– volume: 266
  year: 2020
  ident: b0125
  article-title: Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach
  publication-title: J. Environ. Manage.
– volume: 33
  start-page: 3449
  year: 2019
  end-page: 3468
  ident: b0265
  article-title: Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach
  publication-title: Water Resour. Manage.
– volume: 64
  start-page: 30
  year: 2012
  ident: 10.1016/j.jag.2021.102558_b0145
  article-title: How to make a city climate-proof, addressing the urban heat island effect
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.06.004
– volume: 110
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0085
  article-title: The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105798
– volume: 131
  start-page: 182
  year: 2013
  ident: 10.1016/j.jag.2021.102558_b0320
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.012
– volume: 175
  start-page: 14
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0090
  article-title: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.026
– volume: 103208
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0275
  article-title: Assessing spatial characteristics of urban heat islands from the perspective of an urban expansion and ecological landscape
  publication-title: Sustainable Cities Soc.
– volume: 111
  start-page: 131
  year: 2011
  ident: 10.1016/j.jag.2021.102558_b0095
  article-title: Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2011.07.008
– ident: 10.1016/j.jag.2021.102558_b0135
– volume: 237
  year: 2019
  ident: 10.1016/j.jag.2021.102558_b0050
  article-title: Alleviating urban heat island effect using high-conductivity permeable concrete pavement
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.117722
– volume: 310
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0185
  article-title: Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.127467
– ident: 10.1016/j.jag.2021.102558_b0195
  doi: 10.1016/0004-6981(73)90140-6
– volume: 258
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0260
  article-title: The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.120706
– volume: 152
  start-page: 119
  year: 2019
  ident: 10.1016/j.jag.2021.102558_b0130
  article-title: Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.010
– year: 1981
  ident: 10.1016/j.jag.2021.102558_b0150
– volume: 43
  start-page: 3563
  year: 2009
  ident: 10.1016/j.jag.2021.102558_b0040
  article-title: Analysis of air pollution data at a mixed source location using boosted regression trees
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.04.001
– volume: 95
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0080
  article-title: The spatial restructuring and determinants of industrial landscape in a mega city under rapid urbanization
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2019.102099
– volume: 193
  start-page: 225
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0030
  article-title: Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.020
– volume: 55
  start-page: 66
  year: 2012
  ident: 10.1016/j.jag.2021.102558_b0340
  article-title: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.09.024
– volume: 140
  start-page: 2197
  issue: 684
  year: 2014
  ident: 10.1016/j.jag.2021.102558_b0270
  article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio
  publication-title: Q. J. R. Meteorolog. Soc.
  doi: 10.1002/qj.2289
– volume: 45
  start-page: 55
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0280
  article-title: Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 246
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0215
  article-title: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111866
– volume: 64
  start-page: 335
  year: 2009
  ident: 10.1016/j.jag.2021.102558_b0290
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.03.007
– volume: 62
  start-page: 131
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0005
  article-title: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
  publication-title: Cities
  doi: 10.1016/j.cities.2016.09.003
– volume: 75
  start-page: 291
  year: 2009
  ident: 10.1016/j.jag.2021.102558_b0170
  article-title: Scaling effect on the relationship between landscape pattern and land surface temperature
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.75.3.291
– volume: 725
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0310
  article-title: Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138229
– volume: 194
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0055
  article-title: Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107650
– volume: 553
  start-page: 366
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0325
  article-title: Boosted regression tree model-based assessment of the impacts of meteorological drivers of hand, foot and mouth disease in Guangdong, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.023
– ident: 10.1016/j.jag.2021.102558_b0035
– volume: 103045
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0305
  article-title: Influence of urban morphological characteristics on thermal environment
  publication-title: Sustainable Cities Soc.
– volume: 695
  year: 2019
  ident: 10.1016/j.jag.2021.102558_b0020
  article-title: CFD simulation of urban microclimate: Validation using high-resolution field measurements
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133743
– volume: 66
  start-page: 63
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0100
  article-title: Creating sustainable cities one building at a time: Towards an integrated urban design framework
  publication-title: Cities
  doi: 10.1016/j.cities.2017.03.009
– volume: 68
  start-page: 893
  issue: 5
  year: 1999
  ident: 10.1016/j.jag.2021.102558_b0060
  article-title: Scaling of metabolic rate with body mass and temperature in teleost fish
  publication-title: J. Anim. Ecol.
  doi: 10.1046/j.1365-2656.1999.00337.x
– volume: 85
  start-page: 93
  year: 2013
  ident: 10.1016/j.jag.2021.102558_b0230
  article-title: Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.08.010
– volume: 19
  start-page: 2223
  year: 1998
  ident: 10.1016/j.jag.2021.102558_b0295
  article-title: Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698214983
– volume: 123
  start-page: 145
  year: 2014
  ident: 10.1016/j.jag.2021.102558_b0255
  article-title: The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models
  publication-title: Landscape Urban Plann.
  doi: 10.1016/j.landurbplan.2013.11.014
– volume: 195
  start-page: 1
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0335
  article-title: Effects of the spatial configuration of trees on urban heat mitigation: A comparative study
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.043
– volume: 266
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0125
  article-title: Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.110424
– volume: 264
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0330
  article-title: Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.121537
– volume: 215
  start-page: 255
  year: 2018
  ident: 10.1016/j.jag.2021.102558_b0210
  article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.010
– volume: 177
  start-page: 115
  year: 2018
  ident: 10.1016/j.jag.2021.102558_b0015
  article-title: The effect of multi-dimensional indicators on urban thermal conditions
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.12.187
– volume: 34
  start-page: 2000
  year: 2014
  ident: 10.1016/j.jag.2021.102558_b0070
  article-title: Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3817
– volume: 128
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0285
  article-title: Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107845
– volume: 40
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0010
  article-title: Educational building retrofit under climate change and urban heat island effect
  publication-title: J. Build. Eng.
– volume: 83
  start-page: 649
  year: 2006
  ident: 10.1016/j.jag.2021.102558_b0140
  article-title: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2005.06.001
– volume: 13
  start-page: 495
  year: 2014
  ident: 10.1016/j.jag.2021.102558_b0225
  article-title: Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort
  publication-title: Urban For. Urban Greening.
  doi: 10.1016/j.ufug.2014.03.003
– volume: 24
  start-page: 982
  year: 2018
  ident: 10.1016/j.jag.2021.102558_b0115
  article-title: A modeling study of the sensitivity of urban heat islands to precipitation at climate scales
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2017.12.001
– volume: 63
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0165
  article-title: Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2020.102425
– volume: 60
  start-page: 870
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0300
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.08.036
– volume: 12
  start-page: 471
  year: 1988
  ident: 10.1016/j.jag.2021.102558_b0200
  article-title: The urban energy balance
  publication-title: Prog. Phys. Geogr.: Earth Environ.
  doi: 10.1177/030913338801200401
– volume: 577
  start-page: 349
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0075
  article-title: Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.195
– volume: 13
  start-page: 2858
  issue: 15
  year: 2021
  ident: 10.1016/j.jag.2021.102558_b0180
  article-title: Driving factors of land surface temperature in urban agglomerations: A case study in the pearl river delta, china
  publication-title: Remote Sens.
  doi: 10.3390/rs13152858
– volume: 172
  start-page: 109
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0245
  article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.005
– volume: 53
  year: 2020
  ident: 10.1016/j.jag.2021.102558_b0120
  article-title: Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou
  publication-title: Urban For. Urban Greening.
  doi: 10.1016/j.ufug.2020.126719
– volume: 204
  start-page: 826
  year: 2018
  ident: 10.1016/j.jag.2021.102558_b0190
  article-title: Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.019
– volume: 122
  start-page: 156
  year: 2015
  ident: 10.1016/j.jag.2021.102558_b0025
  article-title: Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.08.031
– volume: 20
  start-page: 180
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0110
  article-title: The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada
  publication-title: Urban For. Urban Greening.
  doi: 10.1016/j.ufug.2016.08.005
– start-page: 127
  year: 2010
  ident: 10.1016/j.jag.2021.102558_b0105
  article-title: The Analysis of Spatial Association by Use of Distance Statistics
– volume: 115
  start-page: 3249
  year: 2011
  ident: 10.1016/j.jag.2021.102558_b0155
  article-title: Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.008
– volume: 90
  start-page: 434
  year: 2004
  ident: 10.1016/j.jag.2021.102558_b0250
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.02.003
– year: 2017
  ident: 10.1016/j.jag.2021.102558_b0205
– volume: 87
  start-page: 66
  year: 2017
  ident: 10.1016/j.jag.2021.102558_b0175
  article-title: Landscape metrics for three-dimensional urban building pattern recognition
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2017.07.011
– volume: 33
  start-page: 3449
  year: 2019
  ident: 10.1016/j.jag.2021.102558_b0265
  article-title: Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-019-02310-y
– volume: 6
  start-page: 6603
  year: 2015
  ident: 10.1016/j.jag.2021.102558_b0160
  article-title: Local cooling and warming effects of forests based on satellite observations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7603
– volume: 127
  start-page: 163
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0240
  article-title: Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.12.024
– volume: 173
  start-page: 145
  year: 2016
  ident: 10.1016/j.jag.2021.102558_b0220
  article-title: Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.027
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.jag.2021.102558_b0065
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 189
  start-page: 58
  year: 2019
  ident: 10.1016/j.jag.2021.102558_b0315
  article-title: Polycentric urban development and urban thermal environment: A case of Hangzhou, China
  publication-title: Landscape Urban Plann.
  doi: 10.1016/j.landurbplan.2019.04.008
– volume: 30
  start-page: 1621
  year: 2009
  ident: 10.1016/j.jag.2021.102558_b0045
  article-title: Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802524545
– year: 2020
  ident: 10.1016/j.jag.2021.102558_b0235
  article-title: Recent development and research priorities on cool and super cool materials to mitigate urban heat island
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.07.109
SSID ssj0017768
Score 2.478873
Snippet •The spatial dependency variations of seasonal thermal environment are investigated.•The relative contribution variations of 2D/3D building metrics are...
Understanding the relationship between multi-dimensional architectural pattern and land surface temperature (LST) is vital for alleviating the urban heat...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102558
SubjectTerms autumn
Hangzhou
heat island
Land surface temperature
Machine learning
Multi-dimensional urban morphology
regression analysis
spatial data
spring
summer
surface temperature
temporal variation
winter
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHBIWKpYCMxAlhbeL4ER9LH1pA9AKVerNsZ7LsqiSrfVz49R0nzrLl0ANSpCiRM0k845nPsucbQj6AURoqV7FagmbCy4L5KggGDpTOEVKYMiY4f79S02vx9UbeHJCzIRcmbqtMvr_36Z23TncmqTcny_l88gPNE9FAIXhkEcVA-ogccoyu2Ygcnn75Nr3aLSZo3WfESWVYKQo-LG5227wWboazRJ5HDgMZC7_vhaeOxf9elPrHX3dB6PIZeZrQIz3tP_A5OYDmiDzZ4xQ8IscXf1PXsGkau-sXZNHl2rI1KgVonxy5pm1N-fmkOKfblXcN9alINl12tJsNncdjs3Ks5y6lES7-xvNeflyUMXXN7M-vdvuJdvW4X5Lry4ufZ1OWKi2wgIBkw7jGKFVJHO916ZTQIDggsDPeFJVDiCNBOAUqd05VBXahqyC4UhcOnC9q9BLHZNS0DbwiNGQCROZFXmYVijQeIiV86YPPjQ8FH5Ns6GAbEg15rIZxa4f9ZguLOrFRJ7bXyZh83D2y7Dk4Hmr8OWpt1zDSZ3c32tXMJvuxPtNByRxM7vBvgjdSeC-N0F67vC7DmIhB5_aeNaKo-UPvfj_Yh8VRGpdeXAPtdm05zstkpFoTr_9P9Al5HK_iRppcviGjzWoLbxEObfy7ZO53d60HgA
  priority: 102
  providerName: Elsevier
Title Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal environment of Hangzhou, China
URI https://dx.doi.org/10.1016/j.jag.2021.102558
https://www.proquest.com/docview/2675583024
https://doaj.org/article/b07c651e91a843cb954bb5947b7a1f8c
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SX_RBarV4tJYIPomhm91cNo-1F463ImKhbyHJzrY96J5yLi_-emc2u_XoQ30RFgJLbmQmmS9k5hvGXoMzFprQiFaDFSrqSsQmKQEBjJUIKVxNAc6fz8z0XH240Bcbqb7IJyzTA-eFO4iFTUZLcDLUqkrRaRWjdspGG2RbJzp90eaNl6nh_cDaHASnjRPYrBzfM3vPrlm4xIthKYm2QFOu9w2L1BP3_2GY_jqie7tzus0eDYCRH-aJPmb3oNthDzdoBHfY7snvaDWsOmzX5RM268NrxRLlADzHQy75vOXl8UF1zNeLGDoeh7zY_KZn2uz4NX2rRRCZrpQTQvyB5UZIHPUxDd3lz6v5-i3vU3A_ZeenJ9-OpmJIriASYpCVKC0apkbjFm_rYJQFVQJiORdd1QRENRpUMGBkCKapcAlDAynUtgoQYtXiwbDLtrp5B88YT4UCVUQl66LBLl0EYoGvY4rSxVSVE1aMC-zTwDxOCTC--9HFbOZRJp5k4rNMJuzNbZObTLtxV-V3JLXbisSY3f9APfKDHvl_6dGEqVHmfgAfGVRgV9d3jf1q1A-PG5NeW0IH8_XSl3gV08Supp7_j_m9YA9oWPKkkXqPba0Wa3iJeGgV99n9w6Ovn75Q-f7j9Gy_3wq_ALQ4Ccg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gA8IBhMdPwzErwgrCaOHccPPAy6qaVbX9ikvRnbcUorllRNKwRfiy_IOXFKx8MekCZFipTYF-XufHeW736H0BsnU-FynZOCO0GY4QkxuWXEaZeKGEIKmfkC57NJOrxgny_55Q763dXC-LTKYPtbm95Y6_CkH7jZX8xm_S-gnhANJIx6FFFwpCGzcux-_oB9W_1hNAAhv6X05Pj805CE1gLEggdeESrALOccFLzIdMqEY9RBJCONTHINPp07plOXxlqneZKxROfO6kwk2mmTFLAsgO4dtOfRsGBZ7R2NxsPJ5vBCiLYCj6eSwFzaHaY2aWVzPYVdKY09ZgL3jea33GHTNeCaV_zHPzRO7-QhehCiVXzUMuQR2nHlPrq_hWG4jw6O_5bKwdBgK-rHaN7U9pIalMDhthizxlWB6aCfDPB6aXSJTWjKjRcNzGeJZ_5aLTVpsVKxD0-v4L5Vj-dpDHU5_fWtWr_HTf_vJ-jiVth_gHbLqnRPEbYRcywyLM6iHEhK4zwEfWasiaWxCe2hqGOwsgH23Hff-K66_La5ApkoLxPVyqSH3m2mLFrMj5sGf_RS2wz0cN3Ng2o5VUFflYmETXnsZKzhb6yRnBnDJRNG6LjIbA-xTubqmvYDqdlN337d6YcCq-CPenTpqnWtKOwDuYd2Y4f_R_oVujs8PztVp6PJ-Bm659_4JJ6YP0e7q-XavYBQbGVeBtXH6Ottr7Y_B3pEUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+impacts+of+2D%2F3D+urban+building+pattern+in+intra-annual+thermal+environment+of+Hangzhou%2C+China&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Lu%2C+Huimin&rft.au=Li%2C+Fei&rft.au=Yang%2C+Gang&rft.au=Sun%2C+Weiwei&rft.date=2021-12-15&rft.issn=1569-8432&rft.volume=104+p.102558-&rft_id=info:doi/10.1016%2Fj.jag.2021.102558&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon