Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review
The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently,...
Saved in:
Published in | Science China. Technological sciences Vol. 60; no. 9; pp. 1301 - 1317 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1674-7321 1869-1900 |
DOI | 10.1007/s11431-016-9094-y |
Cover
Loading…
Abstract | The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation. |
---|---|
AbstractList | The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application of bio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation. The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation. |
Author | BACHMANN Jens HIDALGO Carme RICOUT Stephanie |
AuthorAffiliation | Deutsches Zentrum fiir Lufi- und Raumfahrt e. V. (German Aerospace Centre), Institute of Composite Structures and Adaptive Systems-Department of Multifunctional Materials, Lilienthalplatz 7, 38108 Braunsehweig, Germany Leitat Technological Center, C/Innovacio 2, 08225 Terrassa, Spain Airbus Group Innovations, Fuels and Environment, 12 rue Pasteur, 92152 Suresnes, France |
Author_xml | – sequence: 1 givenname: Jens surname: Bachmann fullname: Bachmann, Jens email: jens.bachmann@dlr.de organization: Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Centre), Institute of Composite Structures and Adaptive Systems-Department of Multifunctional Materials – sequence: 2 givenname: Carme surname: Hidalgo fullname: Hidalgo, Carme organization: Leitat Technological Center – sequence: 3 givenname: Stéphanie surname: Bricout fullname: Bricout, Stéphanie organization: Airbus Group Innovations, Fuels and Environment |
BookMark | eNp90LFOHDEQBmArIlKA8ADprKR28Ky9a1wiBEkkJJqktrx7s2C0Zx8e36It8-b4cieEUuDGLubzzPwn7CimiIx9AfkdpDTnBKAVCAmdsNJqsXxgx3DRWQFWyqP67owWRjXwiZ0RPcp61IWVoI_Z3-s4h5ziGmPxE_fRTwsF4mnkIcY0-xJm5LSl4kP0_YR8SOtNolCQ-HMoD3yTSrWh4i1hRdzPoaoUOeFQUubikk9hrHAZKvdESLRrxzPOAZ8_s4-jnwjPDvcp-3Nz_fvqp7i9-_Hr6vJWDFrZIhrZjqhWtre99noEA6OBvpNt41utVr3pWzmM2phavvKtXUml_G5JROmlQnXKvu3_3eT0tEUq7jFtc92XHFjVNW0DoGoV7KuGnIgyjm6Tw9rnxYF0u7DdPmxXw3a7sN1SjfnPDKH8i6BkH6Z3ZbOXVLvEe8xvZnoHfT20e0jx_qm61xk7o6BpjbHqBVqQpDY |
CitedBy_id | crossref_primary_10_1177_00219983211011532 crossref_primary_10_2478_adms_2024_0004 crossref_primary_10_1002_app_54574 crossref_primary_10_1016_j_jcomc_2021_100138 crossref_primary_10_3390_aerospace6010003 crossref_primary_10_1016_j_compstruct_2025_118943 crossref_primary_10_1016_j_ndteint_2025_103392 crossref_primary_10_1016_j_heliyon_2024_e29762 crossref_primary_10_1007_s10483_022_2917_7 crossref_primary_10_1021_acssuschemeng_4c00795 crossref_primary_10_1021_acs_macromol_2c00775 crossref_primary_10_1016_j_ijrefrig_2021_06_026 crossref_primary_10_1016_j_envc_2025_101085 crossref_primary_10_1016_j_ymssp_2024_111412 crossref_primary_10_1016_j_rcradv_2023_200173 crossref_primary_10_1016_j_procir_2024_01_124 crossref_primary_10_1021_acs_chemrev_2c00686 crossref_primary_10_1021_acs_macromol_1c00566 crossref_primary_10_1016_j_tafmec_2023_104108 crossref_primary_10_1061_JCCOF2_CCENG_4083 crossref_primary_10_1016_j_rinma_2023_100474 crossref_primary_10_1039_D4PY01106F crossref_primary_10_1007_s11431_017_9215_7 crossref_primary_10_4028_p_L5EcYl crossref_primary_10_1016_j_jclepro_2020_125177 crossref_primary_10_3390_aerospace9020052 crossref_primary_10_1016_j_compositesa_2024_108136 crossref_primary_10_1016_j_matdes_2020_108553 crossref_primary_10_1080_00218464_2024_2439956 crossref_primary_10_1016_j_compositesb_2024_112021 crossref_primary_10_1016_j_ijhydene_2019_03_088 crossref_primary_10_1016_j_optlastec_2024_111160 crossref_primary_10_1016_j_ultras_2024_107313 crossref_primary_10_3390_coatings11020190 crossref_primary_10_1016_j_matdes_2022_111160 crossref_primary_10_1016_j_compositesb_2023_111034 crossref_primary_10_1016_j_compscitech_2022_109303 crossref_primary_10_2139_ssrn_3795545 crossref_primary_10_3762_bjnano_11_50 crossref_primary_10_3390_su13031160 crossref_primary_10_1177_0021998320954230 crossref_primary_10_1016_j_scitotenv_2024_177645 crossref_primary_10_1007_s11356_020_10352_8 crossref_primary_10_1088_1402_4896_ad48cb crossref_primary_10_2139_ssrn_4149408 crossref_primary_10_3390_su151310041 crossref_primary_10_3390_polym15010150 crossref_primary_10_1002_er_6120 crossref_primary_10_1016_j_atmosenv_2023_119983 crossref_primary_10_52995_jass_1261471 crossref_primary_10_1016_j_ndteint_2024_103094 crossref_primary_10_1007_s10924_021_02080_y crossref_primary_10_3390_jcs6050144 crossref_primary_10_1016_j_jclepro_2020_124986 crossref_primary_10_1016_j_compositesb_2019_107665 crossref_primary_10_3390_en16083371 crossref_primary_10_1007_s11431_023_2553_5 crossref_primary_10_3390_su15065531 crossref_primary_10_1007_s12221_021_0024_z crossref_primary_10_1088_2053_1591_ab6e36 crossref_primary_10_1007_s42452_020_2195_4 crossref_primary_10_1016_j_indcrop_2024_119501 crossref_primary_10_1016_j_cej_2023_146435 crossref_primary_10_1007_s42452_022_05063_3 crossref_primary_10_3390_jcs5090243 crossref_primary_10_1177_00219983221144709 crossref_primary_10_3390_s21248236 crossref_primary_10_1007_s10570_024_05921_w crossref_primary_10_1016_j_jclepro_2022_131246 crossref_primary_10_3390_ma15092986 crossref_primary_10_3390_su14020700 crossref_primary_10_3390_polym15122653 crossref_primary_10_3390_su13052560 crossref_primary_10_1002_pc_26367 crossref_primary_10_1088_1757_899X_1096_1_012038 crossref_primary_10_1016_j_apenergy_2021_118353 crossref_primary_10_1016_j_spc_2022_03_007 crossref_primary_10_1016_j_ast_2023_108479 crossref_primary_10_1016_j_carbon_2023_118222 crossref_primary_10_1016_j_jairtraman_2023_102418 crossref_primary_10_1515_ntrev_2019_0031 crossref_primary_10_1016_j_jclepro_2019_01_198 crossref_primary_10_1016_j_jclepro_2020_121572 crossref_primary_10_1007_s11431_018_9489_1 crossref_primary_10_3390_buildings12071050 crossref_primary_10_3390_jcs5080217 crossref_primary_10_3390_fuels5040046 crossref_primary_10_1016_j_compscitech_2021_108678 crossref_primary_10_1016_j_jcomc_2024_100513 crossref_primary_10_15251_DJNB_2024_191_417 crossref_primary_10_3390_aerospace8050131 crossref_primary_10_3390_atmos13101605 crossref_primary_10_3390_jcs8040155 crossref_primary_10_1016_j_compscitech_2021_109243 crossref_primary_10_3390_jcs7110478 crossref_primary_10_1002_adma_202309662 crossref_primary_10_3390_ndt3010003 crossref_primary_10_1631_jzus_A2200105 crossref_primary_10_1515_rams_2024_0077 crossref_primary_10_1002_sd_1986 crossref_primary_10_1016_j_trd_2023_103717 crossref_primary_10_1051_mattech_2024020 crossref_primary_10_3390_polym16050580 crossref_primary_10_1002_pol_20240800 crossref_primary_10_3390_su14031922 crossref_primary_10_1016_j_apples_2024_100184 crossref_primary_10_3390_en14185748 crossref_primary_10_1016_j_paerosci_2022_100878 crossref_primary_10_3390_c9010019 crossref_primary_10_3390_polym12092129 crossref_primary_10_3390_jmmp8030120 crossref_primary_10_3390_recycling10010001 crossref_primary_10_1016_j_compositesb_2021_108654 crossref_primary_10_3390_aerospace11100844 crossref_primary_10_1021_acssuschemeng_8b04947 crossref_primary_10_1016_j_cirp_2018_05_008 crossref_primary_10_3390_polym13142326 crossref_primary_10_3390_aerospace10040341 crossref_primary_10_3390_aerospace7110157 crossref_primary_10_3390_recycling6040072 crossref_primary_10_1016_j_compositesb_2019_107582 crossref_primary_10_1016_j_conbuildmat_2024_139105 crossref_primary_10_3390_jcs5010028 |
Cites_doi | 10.1016/j.jmatprotec.2007.06.087 10.1016/j.resconrec.2010.01.011 10.1016/j.resconrec.2015.04.004 10.1557/mrs.2012.33 10.1021/sc500174m 10.1007/s11367-014-0824-0 10.1162/108819803323059424 10.1016/j.procir.2016.03.144 10.1016/j.supflu.2008.10.011 10.1016/j.cirp.2014.03.061 10.1016/S0266-3538(99)00154-2 10.1177/0021998313476325 10.1016/j.jclepro.2011.05.018 10.1007/s11367-009-0127-z 10.1016/j.compositesa.2013.02.009 10.1016/j.jclepro.2014.07.027 10.1016/j.compositesa.2011.11.019 10.1016/j.compositesa.2015.08.038 10.1016/j.indcrop.2016.09.006 10.1177/0731684413502108 10.1007/s11837-006-0234-2 10.1016/0959-6526(95)00081-X 10.1016/j.compositesa.2009.05.020 10.1016/j.jclepro.2015.08.104 10.1016/j.compositesb.2016.08.015 10.1016/j.jclepro.2015.11.047 10.1177/0731684415623652 10.1016/j.cep.2011.09.007 10.1016/j.pmatsci.2015.01.004 10.1016/j.compositesa.2013.10.014 10.1016/j.jclepro.2016.03.139 10.1016/j.matdes.2013.11.077 10.1016/j.jclepro.2014.06.023 10.1016/j.trd.2010.02.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | 2RA 92L CQIGP W92 ~WA C6C AAYXX CITATION |
DOI | 10.1007/s11431-016-9094-y |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review |
EISSN | 1869-1900 |
EndPage | 1317 |
ExternalDocumentID | 10_1007_s11431_016_9094_y 673125779 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ CAG CCEZO CEKLB CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9J P9P PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA -SC -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS C6C CAJEC CJPJV H13 Q-- U1G U5M AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c439t-205fe3d9b9b4a4f171f71b6052a543db7b50cf477c43da59d033a8901ee0a03e3 |
IEDL.DBID | U2A |
ISSN | 1674-7321 |
IngestDate | Fri Jul 25 11:15:25 EDT 2025 Tue Jul 01 03:26:13 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Fri Feb 21 02:33:05 EST 2025 Wed Feb 14 09:57:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | secondary structure life cycle assessment (LCA) bio-resin cabin interior composite recycled carbon fibre aviation natural fibre |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-205fe3d9b9b4a4f171f71b6052a543db7b50cf477c43da59d033a8901ee0a03e3 |
Notes | The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation. aviation, composite, natural fibre, recycled carbon fibre, bio-resin, cabin interior, secondary structure,fife cycle assessment (LCA) 11-5845/TH ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11431-016-9094-y |
PQID | 1936252113 |
PQPubID | 2043625 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1936252113 crossref_primary_10_1007_s11431_016_9094_y crossref_citationtrail_10_1007_s11431_016_9094_y springer_journals_10_1007_s11431_016_9094_y chongqing_primary_673125779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Technological sciences |
PublicationTitleAbbrev | Sci. China Technol. Sci |
PublicationTitleAlternate | SCIENCE CHINA Technological Sciences |
PublicationYear | 2017 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | ZhangXYamauchiMTakahashiJLife cycle assessment of CFRP in application of automobileThe 18th International Conference on Composite Materials. South Korea2011 AssamoiBLawryshynYThe environmental comparison of landfilling vsincineration of MSW accounting for waste diversion. Waste Manage20123210191030 DaiQKellyJSullivanJLife-Cycle Analysis Update of Glass and Glass Fiber for the GREET ModelEnergy Systems Division, Argonne National Laboratory2015 LiXBaiRMcKechnieJEnvironmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routesJ Clean Prod201612745146010.1016/j.jclepro.2016.03.139 Densley TingleyDHathwayADavisonBThe environmental impact of phenolic foam insulation boardsProceedings of the Institution of Civil Engineers. London2015 BarthMCarusMCarbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry2015HürthNova-Institut GmbH GuitérrezEBonoFReview of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers2013 Open LCA nexus: Source for LCA data sets. Available at https://nexus.openlca.org/search, accessed on 2016-10-20 La RosaA DBanataoD RPastineS JRecycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessmentCompos Part B-Eng2016104172510.1016/j.compositesb.2016.08.015 Recycled Carbon Fibre Ltd. Converting composite waste into high quality re-usable carbon fibre. Available at http://www.recycledcarbonfibre. com, accessed at 2011-06-15 Fischer H, Schmid H G. Quality control for recycled carbon fibres. Translated from Kunststoffe 11/2013, 88–91. http://www.mcik.com/data/file/mcik/ISTAG/I_PDF_IST_recycled_carbon_fibers_2013.pdf Oldest-known fibers to be used by humans discovered. Available at http://news.harvard.edu/gazette/story/2009/09/oldest-known-fibres- discovered, accessed on 2016-10-05 Stockholm resilience centre: The nine planetary boundaries. Available at http://www.stockholmresilience.org/research/planetaryboundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html, accessed on 2016-10-26 VerpoestIInnovative material concepts for high volume composite applications (the Hivocomp Project)Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich2014 LewisTA life cycle assessment of the passenger air transport system using three flight scenarios2013TrondheimNorwegian University of Science and Technology Scott A. Boeing looks at pricey titanium in bid to stem 787 losses. Reuters Aerospace & Defence. Available at http://www.reuters.com/article/us-boeing-787-titanium-insight- idUSKCN0PY1PL20150724, accessed on 2016-10-26 RybickaJTiwariALeekeG ATechnology readiness level assessment of composites recycling technologiesJ Clean Prod20161121001101210.1016/j.jclepro.2015.08.104 DuflouJ RDengYVan AckerKDo fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based studyMRS Bull20123737438210.1557/mrs.2012.33 BensadounFVanderfeestenBVerpoestIEnvironmental impact assessment of end of life options for flax-MAPP compositesInd Crop Prod20169432734110.1016/j.indcrop.2016.09.006 Recycling today. 2016. ELG Carbon Fibre Ltd. to highlight role of recycled carbon fibre. Available at http://www.recyclingtoday.com/article/elg-carbon-fibre-jec-world-2016-exhibit, accessed at 2016-10-23 SongY SYounJ RGutowskiT GLife cycle energy analysis of fiberreinforced compositesCompos Part A-Appl S2009401257126510.1016/j.compositesa.2009.05.020 DissanayakeN PLife Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites2011PlymouthUniversity of Plymouth MishraSTripathyS SMisraMNovel eco-friendly biocomposites: Biofiber reinforced biodegradable polyester amide composites— Fabrication and properties evaluationJ Reinf Plas Composit2002215570 BardonnetPRésines époxydes: Composants et propriétésTechniques de l’Ingénieur1992A3465 MolinerTPebregatJCsehMLife cycle assessment of a fibre- reinforced polymer made of glass fibre and phenolic resin with brominated flame retardantSimposio de la Red Española de ACV: ACV & bioenergia, Spain2013 DornburgVLewandowskiIPatelMComparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergyJ Ind Ecol200379311610.1162/108819803323059424 PickeringK LEfendyM G ALeT MA review of recent developments in natural fibre composites and their mechanical performanceCompos Part A-Appl S2016839811210.1016/j.compositesa.2015.08.038 HaufeJCarusMHemp fibres for green products—An assessment of life cycle studies on hemp fibre applications2011HürthEIHA Report DittenberD BGangaRaoH V SCritical review of recent publications on use of natural composites in infrastructureCompos Part A-Appl S2012431419142910.1016/j.compositesa.2011.11.019 DavidsonJPriceRRecycling carbon fibre2009 Mechanical properties of carbon fiber composite materials, fiber/epoxy resin (120°C cure). Available at https://www.acpsales.com/upload/Mechanical-Properties-of-Carbon-Fiber-Composite-Materials.pdf, accessed at 2017-06-27 GotoMChemical recycling of plastics using sub- and supercritical fluidsJ Supercrit Fluid20094750050710.1016/j.supflu.2008.10.011 FAST (Flight Airworthiness Support Technology)—Special Edition A350XWB. Airbus Technical Magazine, June 2013 MillerS ASrubar IiiW VBillingtonS LIntegrating durability-based service-life predictions with environmental impact assessments of natural fiber-reinforced composite materialsResources Conservation Recycling201599728310.1016/j.resconrec.2015.04.004 AsmatuluETwomeyJOvercashMRecycling of fiber-reinforced composites and direct structural composite recycling conceptJ Compos Mater20144859360810.1177/0021998313476325 González-GarcíaSHospidoAFeijooGLife cycle assessment of raw materials for non-wood pulp mills: Hemp and flaxResour Conserv Recycl20105492393010.1016/j.resconrec.2010.01.011 TumolvaTKubouchiMEvaluating the Carbon storage potential of Furan resin-based green omposites18th International Conference on Composite Materials. Jeju, Korea2016 JohanningAScholzDA first step towards the integration of life cycle assessment into conceptual aircraft design2013 CarberryWAirplane recycling efforts benefit Boeing operatorsBoeing AERO Magazine2008613 La RosaA DReccaGSummerscalesJBio-based versus traditional polymer compositesA life cycle assessment perspective. J Clean Prod201474135144 ChesterMLife-cycle environmental inventory of passenger transportation in the United States2008BerkeleyUniversity of California CarvalhoHRaposoARibeiroIApplication of life cycle engineering approach to assess the pertinence of using natural fibers in composites—The rocker case studyProcedia CIRP20164836436910.1016/j.procir.2016.03.144 European Commission Climate Action. 2016. Reducing emissions from aviation. Available at http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm, accessed on 2016-10-26 YangYBoomRIrionBRecycling of composite materialsChem Eng Process201251536810.1016/j.cep.2011.09.007 CrossleyRSchubelPStevensonAFuran matrix and flax fibre as a sustainable renewable composite: Mechanical and fire-resistant properties in comparison to phenol, epoxy and polyesterReinf Plast Comp201433586810.1177/0731684413502108 Airbus global market forecast: Mapping demand 2016/2035 (leaflet). Available at http://www.airbus.com.cn/fileadmin/media_gallery/files/brochures_publications/GMF/Global_Market_Forecast_2016-2035.pdf, accessed on 2016-10-20 TimmisA JHodzicAKohLEnvironmental impact assessment of aviation emission reduction through the implementation of composite materialsInt J Life Cycle Assess20152023324310.1007/s11367-014-0824-0 ShahU DSchubelP JOn recycled carbon fibre composites manufactured through a liquid composite moulding processJ Reinf Plast Comp20153553354010.1177/0731684415623652 Boeing traffic and market outlook. Available at http://www.boeing.com/commercial/market/long-term-market/traffic-and-market-outlook, accessed on 2016-10-20 GardinerGRecycled carbon fiber update: Closing the CFRP lifecycle loopComposites Technology2014 PinzelliRFibres aramides pour matériaux compositesTechniques de l’Ingénieur1995A3985 Technical data sheet: Lineo flaxpreg. Available at http://www.lineo. eu/products, accessed at 2017-01-05 LopesJLife-cycle assessment of the airbus A330-200 aircraft2010LisbonUniversidade Técnica de Lisboa XuXJayaramanKMorinCLife cycle assessment of woodfibre- reinforced polypropylene compositesJ Mater Process Tech200819816817710.1016/j.jmatprotec.2007.06.087 WittenEKrausTKühnelMComposites-Marktbericht 2015: Marktentwicklungen, Trends, Ausblicke und HerausforderungenCCeV and AVK2015 EickenbuschHKraussOKohlenstofffaserverstärkte kunststoffe im fahrzeugbau: Ressourceneffizienz und technologienVDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs20135 Roylance D. Introduction to composite materials. Cambridge, 2000. Available at http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F17F86ECB585A74EB2975828D95AC65A?doi=10.1.1.208.49&rep=rep1&type=pdf SuzukiTTakahashiJPrediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger carProceedings of the 9th Japan International SAMPE Symposium. Tokyo2005 PickeringSRecycling and disposal of thermoset compositesProceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway2013Devon, UKDartington Hall Hexcel Corporation. HexPly® Prepreg Technology. January 2013, Publication No. FGU 017c. Available at https://www.ethz.ch/content/dam/ethz/special-interest/mavt/design-materials-fabrication/composite-materials-dam/Education/Manufacturing_of_Polymer_Composites/FS2017/Prepreg_Technology.pdf CorreiaJ RAlmeidaN MFigueiraJ RRecycling of FRP composites: Reusing fine GFRP waste in concrete mixturesJ Clean Prod2011191745175310.1016/j.j S J Pickering (9094_CR68) 2000; 60 H Illing-Günther (9094_CR74) 2013 A J Timmis (9094_CR7) 2015; 20 M Barth (9094_CR44) 2015 K L Pickering (9094_CR25) 2016; 83 M Goto (9094_CR83) 2009; 47 I Verpoest (9094_CR31) 2014 V Michaud (9094_CR30) 2016 Y Yang (9094_CR65) 2012; 51 D B Dittenber (9094_CR15) 2012; 43 C K Lee (9094_CR77) 2010; 15 9094_CR81 T Suzuki (9094_CR29) 2005 J R Duflou (9094_CR47) 2012; 37 M Prinçaud (9094_CR78) 2014; 2 U D Shah (9094_CR22) 2015; 35 A Berthereau (9094_CR14) 2008; A5 M Chester (9094_CR37) 2008 Y S Song (9094_CR28) 2009; 40 J Howarth (9094_CR79) 2014; 81 A D Rosa La (9094_CR87) 2014; 74 9094_CR13 J Lopes (9094_CR40) 2010 G Finnveden (9094_CR63) 1995; 3 W Jemiolo (9094_CR39) 2015 V Dornburg (9094_CR55) 2003; 7 J R Correia (9094_CR69) 2011; 19 E Guitérrez (9094_CR57) 2013 G Oliveux (9094_CR73) 2015; 72 J Holbery (9094_CR54) 2016; 58 D Densley Tingley (9094_CR33) 2015 S A Miller (9094_CR51) 2015; 99 R Pinzelli (9094_CR11) 1995; A3 E Witten (9094_CR59) 2015 S Pickering (9094_CR66) 2013 9094_CR6 9094_CR5 9094_CR4 R Crossley (9094_CR85) 2014; 33 9094_CR9 9094_CR8 J B Donnet (9094_CR18) 1972 A Johanning (9094_CR38) 2013 9094_CR19 A D Rosa La (9094_CR76) 2016; 104 9094_CR3 9094_CR17 9094_CR2 F Bensadoun (9094_CR45) 2016; 94 9094_CR1 H Carvalho (9094_CR42) 2016; 48 9094_CR16 Y Gu (9094_CR26) 2014; 56 9094_CR24 X Zhang (9094_CR27) 2011 9094_CR23 9094_CR20 9094_CR21 H Eickenbusch (9094_CR70) 2013 E L Arnold (9094_CR84) 2017 X Li (9094_CR62) 2016; 127 J Duflou (9094_CR43) 2014; 63 A Duigou Le (9094_CR50) 2014; 83 T Tumolva (9094_CR86) 2016 N P Dissanayake (9094_CR46) 2011 Q Dai (9094_CR32) 2015 Y Deng (9094_CR36) 2014 J Davidson (9094_CR80) 2009 T Moliner (9094_CR34) 2013 J Haufe (9094_CR49) 2011 B Assamoi (9094_CR64) 2012; 32 M P M Dicker (9094_CR10) 2014; 56 S A Miller (9094_CR52) 2016; 132 G Gardiner (9094_CR58) 2014 C Koffler (9094_CR82) 2010; 15 T Lewis (9094_CR41) 2013 W Carberry (9094_CR60) 2008 P Bardonnet (9094_CR12) 1992; A3 9094_CR35 E Asmatulu (9094_CR71) 2014; 48 X Xu (9094_CR53) 2008; 198 J Rybicka (9094_CR61) 2016; 112 R A Witik (9094_CR67) 2013; 49 9094_CR75 S Mishra (9094_CR56) 2002; 21 9094_CR72 S González-García (9094_CR48) 2010; 54 |
References_xml | – reference: CorreiaJ RAlmeidaN MFigueiraJ RRecycling of FRP composites: Reusing fine GFRP waste in concrete mixturesJ Clean Prod2011191745175310.1016/j.jclepro.2011.05.018 – reference: DissanayakeN PLife Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites2011PlymouthUniversity of Plymouth – reference: A brief history of aircraft structures. Aerospace Engineering Blog. Available at http://aerospaceengineeringblog.com/aircraft-structures, accessed on 2016-10-21 – reference: BardonnetPRésines époxydes: Composants et propriétésTechniques de l’Ingénieur1992A3465 – reference: CrossleyRSchubelPStevensonAFuran matrix and flax fibre as a sustainable renewable composite: Mechanical and fire-resistant properties in comparison to phenol, epoxy and polyesterReinf Plast Comp201433586810.1177/0731684413502108 – reference: Technical data sheet: ELG Carbon Fibre Ltd. Carbiso M Nonwoven Mats. Available at http://www.elgcf.com/products/100-recycled-carbon- fibre-nonwoven-mat, accessed at 2017-06-27 – reference: BensadounFVanderfeestenBVerpoestIEnvironmental impact assessment of end of life options for flax-MAPP compositesInd Crop Prod20169432734110.1016/j.indcrop.2016.09.006 – reference: Technical data sheet: Lineo flaxpreg. Available at http://www.lineo. eu/products, accessed at 2017-01-05 – reference: Fischer H, Schmid H G. Quality control for recycled carbon fibres. Translated from Kunststoffe 11/2013, 88–91. http://www.mcik.com/data/file/mcik/ISTAG/I_PDF_IST_recycled_carbon_fibers_2013.pdf – reference: BarthMCarusMCarbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry2015HürthNova-Institut GmbH – reference: DornburgVLewandowskiIPatelMComparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergyJ Ind Ecol200379311610.1162/108819803323059424 – reference: HowarthJMareddyS S RMativengaP TEnergy intensity and environmental analysis of mechanical recycling of carbon fibre compositeJ Clean Prod201481465010.1016/j.jclepro.2014.06.023 – reference: GotoMChemical recycling of plastics using sub- and supercritical fluidsJ Supercrit Fluid20094750050710.1016/j.supflu.2008.10.011 – reference: ShahU DSchubelP JOn recycled carbon fibre composites manufactured through a liquid composite moulding processJ Reinf Plast Comp20153553354010.1177/0731684415623652 – reference: LewisTA life cycle assessment of the passenger air transport system using three flight scenarios2013TrondheimNorwegian University of Science and Technology – reference: HaufeJCarusMHemp fibres for green products—An assessment of life cycle studies on hemp fibre applications2011HürthEIHA Report – reference: European Commission Climate Action. 2016. Reducing emissions from aviation. Available at http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm, accessed on 2016-10-26 – reference: OliveuxGDandyL OLeekeG ACurrent status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting propertiesProg Mater Sci201572619910.1016/j.pmatsci.2015.01.004 – reference: Le DuigouABaleyCCoupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre composites developmentJ Clean Prod201483616910.1016/j.jclepro.2014.07.027 – reference: Boeing traffic and market outlook. Available at http://www.boeing.com/commercial/market/long-term-market/traffic-and-market-outlook, accessed on 2016-10-20 – reference: Open LCA nexus: Source for LCA data sets. Available at https://nexus.openlca.org/search, accessed on 2016-10-20 – reference: Airbus global market forecast: Mapping demand 2016/2035 (leaflet). Available at http://www.airbus.com.cn/fileadmin/media_gallery/files/brochures_publications/GMF/Global_Market_Forecast_2016-2035.pdf, accessed on 2016-10-20 – reference: Technical Data Sheet: Hexcel M21. Available at http://www.hexcel.com/user_area/content_media/raw/Hex-Ply_M21_global_DataSheet.pdf, accessed at 2017-06-27 – reference: ZhangXYamauchiMTakahashiJLife cycle assessment of CFRP in application of automobileThe 18th International Conference on Composite Materials. South Korea2011 – reference: DonnetJ BBansalR CCarbon Fibers1972New YorkMarcel Dekker, Inc. – reference: La RosaA DBanataoD RPastineS JRecycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessmentCompos Part B-Eng2016104172510.1016/j.compositesb.2016.08.015 – reference: European Commission. The EU emissions trading system (EU ETS). Available at https://ec.europa.eu/clima/sites/clima/files/factsheet_ ets_en.pdf, accessed on 2017-03-16 – reference: Stockholm resilience centre: The nine planetary boundaries. Available at http://www.stockholmresilience.org/research/planetaryboundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html, accessed on 2016-10-26 – reference: BerthereauADalliesEFibres de verre de renforcementTechniques de l’Ingénieur2008A5132 – reference: Hexcel Corporation. HexPly® Prepreg Technology. January 2013, Publication No. FGU 017c. Available at https://www.ethz.ch/content/dam/ethz/special-interest/mavt/design-materials-fabrication/composite-materials-dam/Education/Manufacturing_of_Polymer_Composites/FS2017/Prepreg_Technology.pdf – reference: RybickaJTiwariALeekeG ATechnology readiness level assessment of composites recycling technologiesJ Clean Prod20161121001101210.1016/j.jclepro.2015.08.104 – reference: KofflerCRohde-BrandenburgerKOn the calculation of fuel savings through lightweight design in automotive life cycle assessmentsInt J Life Cycle Assess20101512813510.1007/s11367-009-0127-z – reference: DickerM P MDuckworthP FBakerA BGreen composites: A review of material attributes and complementary applicationsCompos Part A-Appl S20145628028910.1016/j.compositesa.2013.10.014 – reference: MillerS ABillingtonS LLepechM DInfluence of carbon feedstock on potentially net beneficial environmental impacts of bio-based compositesJ Clean Prod201613226627810.1016/j.jclepro.2015.11.047 – reference: PickeringK LEfendyM G ALeT MA review of recent developments in natural fibre composites and their mechanical performanceCompos Part A-Appl S2016839811210.1016/j.compositesa.2015.08.038 – reference: LopesJLife-cycle assessment of the airbus A330-200 aircraft2010LisbonUniversidade Técnica de Lisboa – reference: DavidsonJPriceRRecycling carbon fibre2009 – reference: LiXBaiRMcKechnieJEnvironmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routesJ Clean Prod201612745146010.1016/j.jclepro.2016.03.139 – reference: JohanningAScholzDA first step towards the integration of life cycle assessment into conceptual aircraft design2013 – reference: TimmisA JHodzicAKohLEnvironmental impact assessment of aviation emission reduction through the implementation of composite materialsInt J Life Cycle Assess20152023324310.1007/s11367-014-0824-0 – reference: SongY SYounJ RGutowskiT GLife cycle energy analysis of fiberreinforced compositesCompos Part A-Appl S2009401257126510.1016/j.compositesa.2009.05.020 – reference: EickenbuschHKraussOKohlenstofffaserverstärkte kunststoffe im fahrzeugbau: Ressourceneffizienz und technologienVDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs20135 – reference: Roylance D. Introduction to composite materials. Cambridge, 2000. Available at http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F17F86ECB585A74EB2975828D95AC65A?doi=10.1.1.208.49&rep=rep1&type=pdf – reference: ArnoldE LWeagerB MNext generation sustainable composites: Development and processing of furan-flax biocompositesSeventeenth International Conference on Composite Materials Proceedings. British Composites Society2017 – reference: González-GarcíaSHospidoAFeijooGLife cycle assessment of raw materials for non-wood pulp mills: Hemp and flaxResour Conserv Recycl20105492393010.1016/j.resconrec.2010.01.011 – reference: MishraSTripathyS SMisraMNovel eco-friendly biocomposites: Biofiber reinforced biodegradable polyester amide composites— Fabrication and properties evaluationJ Reinf Plas Composit2002215570 – reference: MolinerTPebregatJCsehMLife cycle assessment of a fibre- reinforced polymer made of glass fibre and phenolic resin with brominated flame retardantSimposio de la Red Española de ACV: ACV & bioenergia, Spain2013 – reference: DengYLife cycle assessment of biobased fibre-reinforced polymer composites2014LeuvenKatholieke Universiteit Leuven – reference: Scott A. Boeing looks at pricey titanium in bid to stem 787 losses. Reuters Aerospace & Defence. Available at http://www.reuters.com/article/us-boeing-787-titanium-insight- idUSKCN0PY1PL20150724, accessed on 2016-10-26 – reference: Richter K. An aeronautic view. World Materials Forum Roundtable: KPI’s for material efficiency, 09/06/2016. Available at http://www.worldmaterialsforum.com/files/Presentations/PS2/WMF%202016%20-%20PS2%20-%20Klaus%20Richter%20Final.pdf – reference: Mechanical properties of carbon fiber composite materials, fiber/epoxy resin (120°C cure). Available at https://www.acpsales.com/upload/Mechanical-Properties-of-Carbon-Fiber-Composite-Materials.pdf, accessed at 2017-06-27 – reference: Recycling today. 2016. ELG Carbon Fibre Ltd. to highlight role of recycled carbon fibre. Available at http://www.recyclingtoday.com/article/elg-carbon-fibre-jec-world-2016-exhibit, accessed at 2016-10-23 – reference: CarvalhoHRaposoARibeiroIApplication of life cycle engineering approach to assess the pertinence of using natural fibers in composites—The rocker case studyProcedia CIRP20164836436910.1016/j.procir.2016.03.144 – reference: MichaudVLes matériaux composites, moteurs de la mobilité propre?Swiss mobility days2016 – reference: VerpoestIInnovative material concepts for high volume composite applications (the Hivocomp Project)Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich2014 – reference: PinzelliRFibres aramides pour matériaux compositesTechniques de l’Ingénieur1995A3985 – reference: Illing-GüntherHHofmannMGulichBNonwovens made of recycled carbon fibres as basic materials for compositesProceedings of the 7th International CFK-Valley Stade Convention “Latest Innovations in CFRP Technology”. Chemnitz2013 – reference: Oldest-known fibers to be used by humans discovered. Available at http://news.harvard.edu/gazette/story/2009/09/oldest-known-fibres- discovered, accessed on 2016-10-05 – reference: AsmatuluETwomeyJOvercashMRecycling of fiber-reinforced composites and direct structural composite recycling conceptJ Compos Mater20144859360810.1177/0021998313476325 – reference: FinnvedenGAlbertssonA CBerendsonJSolid waste treatment within the framework of life-cycle assessmentJ Clean Prod1995318919910.1016/0959-6526(95)00081-X – reference: DittenberD BGangaRaoH V SCritical review of recent publications on use of natural composites in infrastructureCompos Part A-Appl S2012431419142910.1016/j.compositesa.2011.11.019 – reference: MillerS ASrubar IiiW VBillingtonS LIntegrating durability-based service-life predictions with environmental impact assessments of natural fiber-reinforced composite materialsResources Conservation Recycling201599728310.1016/j.resconrec.2015.04.004 – reference: LeeC KKimY KPruitichaiwiboonPAssessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysisTransport Res D-Transport Environ20101519720310.1016/j.trd.2010.02.001 – reference: PickeringS JKellyR MKennerleyJ RA fluidised-bed process for the recovery of glass fibres from scrap thermoset compositesCompos Sci Technol20006050952310.1016/S0266-3538(99)00154-2 – reference: DuflouJ RDengYVan AckerKDo fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based studyMRS Bull20123737438210.1557/mrs.2012.33 – reference: La RosaA DReccaGSummerscalesJBio-based versus traditional polymer compositesA life cycle assessment perspective. J Clean Prod201474135144 – reference: CarberryWAirplane recycling efforts benefit Boeing operatorsBoeing AERO Magazine2008613 – reference: ChesterMLife-cycle environmental inventory of passenger transportation in the United States2008BerkeleyUniversity of California – reference: PrinçaudMAymonierCLoppinet-SeraniAEnvironmental feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical waterACS Sustain Chem Eng201421498150210.1021/sc500174m – reference: DaiQKellyJSullivanJLife-Cycle Analysis Update of Glass and Glass Fiber for the GREET ModelEnergy Systems Division, Argonne National Laboratory2015 – reference: XuXJayaramanKMorinCLife cycle assessment of woodfibre- reinforced polypropylene compositesJ Mater Process Tech200819816817710.1016/j.jmatprotec.2007.06.087 – reference: HolberyJHoustonDNatural-fiber-reinforced polymer composites in automotive applicationsJ Miner, Metal Mater Soc201658808610.1007/s11837-006-0234-2 – reference: DuflouJDeng YelinDComparative impact assessment for flax fibre versus conventional glass fibre reinforced composites: Are biobased reinforcement materials the way to go?CIRP Annals—Manuf Technol201463454810.1016/j.cirp.2014.03.061 – reference: TumolvaTKubouchiMEvaluating the Carbon storage potential of Furan resin-based green omposites18th International Conference on Composite Materials. Jeju, Korea2016 – reference: Densley TingleyDHathwayADavisonBThe environmental impact of phenolic foam insulation boardsProceedings of the Institution of Civil Engineers. London2015 – reference: WittenEKrausTKühnelMComposites-Marktbericht 2015: Marktentwicklungen, Trends, Ausblicke und HerausforderungenCCeV and AVK2015 – reference: Recycled Carbon Fibre Ltd. Converting composite waste into high quality re-usable carbon fibre. Available at http://www.recycledcarbonfibre. com, accessed at 2011-06-15 – reference: SuzukiTTakahashiJPrediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger carProceedings of the 9th Japan International SAMPE Symposium. Tokyo2005 – reference: GuYTanXYangZHot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion moldingMater Des (1980-2015)20145685286110.1016/j.matdes.2013.11.077 – reference: AssamoiBLawryshynYThe environmental comparison of landfilling vsincineration of MSW accounting for waste diversion. Waste Manage20123210191030 – reference: YangYBoomRIrionBRecycling of composite materialsChem Eng Process201251536810.1016/j.cep.2011.09.007 – reference: FAST (Flight Airworthiness Support Technology)—Special Edition A350XWB. Airbus Technical Magazine, June 2013 – reference: PickeringSRecycling and disposal of thermoset compositesProceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway2013Devon, UKDartington Hall – reference: GardinerGRecycled carbon fiber update: Closing the CFRP lifecycle loopComposites Technology2014 – reference: GuitérrezEBonoFReview of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers2013 – reference: WitikR ATeuscherRMichaudVCarbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfillingCompos Part A-Appl S201349899910.1016/j.compositesa.2013.02.009 – reference: JemioloWLife cycle assessment of current and future passenger air transport2015 – ident: 9094_CR4 – volume: 198 start-page: 168 year: 2008 ident: 9094_CR53 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2007.06.087 – volume-title: Proceedings of the 9th Japan International SAMPE Symposium. Tokyo year: 2005 ident: 9094_CR29 – volume: 54 start-page: 923 year: 2010 ident: 9094_CR48 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2010.01.011 – volume: 99 start-page: 72 year: 2015 ident: 9094_CR51 publication-title: Resources Conservation Recycling doi: 10.1016/j.resconrec.2015.04.004 – volume-title: Life Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites year: 2011 ident: 9094_CR46 – ident: 9094_CR8 – volume-title: Life cycle assessment of current and future passenger air transport year: 2015 ident: 9094_CR39 – ident: 9094_CR13 – volume: 37 start-page: 374 year: 2012 ident: 9094_CR47 publication-title: MRS Bull doi: 10.1557/mrs.2012.33 – volume: 2 start-page: 1498 year: 2014 ident: 9094_CR78 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc500174m – ident: 9094_CR17 – volume: 20 start-page: 233 year: 2015 ident: 9094_CR7 publication-title: Int J Life Cycle Assess doi: 10.1007/s11367-014-0824-0 – volume-title: Proceedings of the Institution of Civil Engineers. London year: 2015 ident: 9094_CR33 – volume: 7 start-page: 93 year: 2003 ident: 9094_CR55 publication-title: J Ind Ecol doi: 10.1162/108819803323059424 – volume: 32 start-page: 1019 year: 2012 ident: 9094_CR64 publication-title: incineration of MSW accounting for waste diversion. Waste Manage – volume-title: A first step towards the integration of life cycle assessment into conceptual aircraft design year: 2013 ident: 9094_CR38 – volume: 48 start-page: 364 year: 2016 ident: 9094_CR42 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.03.144 – volume: 47 start-page: 500 year: 2009 ident: 9094_CR83 publication-title: J Supercrit Fluid doi: 10.1016/j.supflu.2008.10.011 – volume: 63 start-page: 45 year: 2014 ident: 9094_CR43 publication-title: CIRP Annals—Manuf Technol doi: 10.1016/j.cirp.2014.03.061 – volume: 60 start-page: 509 year: 2000 ident: 9094_CR68 publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(99)00154-2 – volume: A3 start-page: 465 year: 1992 ident: 9094_CR12 publication-title: Techniques de l’Ingénieur – volume: 48 start-page: 593 year: 2014 ident: 9094_CR71 publication-title: J Compos Mater doi: 10.1177/0021998313476325 – ident: 9094_CR81 – ident: 9094_CR3 – volume: 19 start-page: 1745 year: 2011 ident: 9094_CR69 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2011.05.018 – volume-title: Seventeenth International Conference on Composite Materials Proceedings. British Composites Society year: 2017 ident: 9094_CR84 – ident: 9094_CR35 – volume-title: Life-cycle assessment of the airbus A330-200 aircraft year: 2010 ident: 9094_CR40 – volume: 15 start-page: 128 year: 2010 ident: 9094_CR82 publication-title: Int J Life Cycle Assess doi: 10.1007/s11367-009-0127-z – volume: 21 start-page: 55 year: 2002 ident: 9094_CR56 publication-title: J Reinf Plas Composit – ident: 9094_CR19 – ident: 9094_CR21 – volume: 49 start-page: 89 year: 2013 ident: 9094_CR67 publication-title: Compos Part A-Appl S doi: 10.1016/j.compositesa.2013.02.009 – volume-title: Composites Technology year: 2014 ident: 9094_CR58 – volume: 83 start-page: 61 year: 2014 ident: 9094_CR50 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.07.027 – volume: 43 start-page: 1419 year: 2012 ident: 9094_CR15 publication-title: Compos Part A-Appl S doi: 10.1016/j.compositesa.2011.11.019 – start-page: 6 volume-title: Boeing AERO Magazine year: 2008 ident: 9094_CR60 – volume-title: Life-cycle environmental inventory of passenger transportation in the United States year: 2008 ident: 9094_CR37 – volume: 83 start-page: 98 year: 2016 ident: 9094_CR25 publication-title: Compos Part A-Appl S doi: 10.1016/j.compositesa.2015.08.038 – volume: A5 start-page: 132 year: 2008 ident: 9094_CR14 publication-title: Techniques de l’Ingénieur – ident: 9094_CR2 – ident: 9094_CR6 – volume: A3 start-page: 985 year: 1995 ident: 9094_CR11 publication-title: Techniques de l’Ingénieur – volume-title: Hemp fibres for green products—An assessment of life cycle studies on hemp fibre applications year: 2011 ident: 9094_CR49 – volume-title: Energy Systems Division, Argonne National Laboratory year: 2015 ident: 9094_CR32 – volume: 94 start-page: 327 year: 2016 ident: 9094_CR45 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2016.09.006 – start-page: 5 volume-title: VDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs year: 2013 ident: 9094_CR70 – volume-title: Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry year: 2015 ident: 9094_CR44 – ident: 9094_CR72 – volume: 33 start-page: 58 year: 2014 ident: 9094_CR85 publication-title: Reinf Plast Comp doi: 10.1177/0731684413502108 – volume: 74 start-page: 135 year: 2014 ident: 9094_CR87 publication-title: A life cycle assessment perspective. J Clean Prod – ident: 9094_CR20 – volume-title: The 18th International Conference on Composite Materials. South Korea year: 2011 ident: 9094_CR27 – volume: 58 start-page: 80 year: 2016 ident: 9094_CR54 publication-title: J Miner, Metal Mater Soc doi: 10.1007/s11837-006-0234-2 – volume: 3 start-page: 189 year: 1995 ident: 9094_CR63 publication-title: J Clean Prod doi: 10.1016/0959-6526(95)00081-X – volume-title: Review of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers year: 2013 ident: 9094_CR57 – volume: 40 start-page: 1257 year: 2009 ident: 9094_CR28 publication-title: Compos Part A-Appl S doi: 10.1016/j.compositesa.2009.05.020 – ident: 9094_CR24 – volume-title: CCeV and AVK year: 2015 ident: 9094_CR59 – volume: 112 start-page: 1001 year: 2016 ident: 9094_CR61 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.08.104 – volume: 104 start-page: 17 year: 2016 ident: 9094_CR76 publication-title: Compos Part B-Eng doi: 10.1016/j.compositesb.2016.08.015 – volume-title: 18th International Conference on Composite Materials. Jeju, Korea year: 2016 ident: 9094_CR86 – volume-title: Carbon Fibers year: 1972 ident: 9094_CR18 – volume-title: Proceedings of the 7th International CFK-Valley Stade Convention “Latest Innovations in CFRP Technology”. Chemnitz year: 2013 ident: 9094_CR74 – volume: 132 start-page: 266 year: 2016 ident: 9094_CR52 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.11.047 – ident: 9094_CR5 – volume-title: A life cycle assessment of the passenger air transport system using three flight scenarios year: 2013 ident: 9094_CR41 – volume: 35 start-page: 533 year: 2015 ident: 9094_CR22 publication-title: J Reinf Plast Comp doi: 10.1177/0731684415623652 – ident: 9094_CR9 – volume: 51 start-page: 53 year: 2012 ident: 9094_CR65 publication-title: Chem Eng Process doi: 10.1016/j.cep.2011.09.007 – ident: 9094_CR75 – volume-title: Swiss mobility days year: 2016 ident: 9094_CR30 – volume: 72 start-page: 61 year: 2015 ident: 9094_CR73 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2015.01.004 – ident: 9094_CR16 – ident: 9094_CR1 – volume: 56 start-page: 280 year: 2014 ident: 9094_CR10 publication-title: Compos Part A-Appl S doi: 10.1016/j.compositesa.2013.10.014 – volume-title: Life cycle assessment of biobased fibre-reinforced polymer composites year: 2014 ident: 9094_CR36 – volume: 127 start-page: 451 year: 2016 ident: 9094_CR62 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.03.139 – ident: 9094_CR23 – volume-title: Recycling carbon fibre year: 2009 ident: 9094_CR80 – volume-title: Simposio de la Red Española de ACV: ACV & bioenergia, Spain year: 2013 ident: 9094_CR34 – volume: 56 start-page: 852 year: 2014 ident: 9094_CR26 publication-title: Mater Des (1980-2015) doi: 10.1016/j.matdes.2013.11.077 – volume-title: Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich year: 2014 ident: 9094_CR31 – volume-title: Proceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway year: 2013 ident: 9094_CR66 – volume: 81 start-page: 46 year: 2014 ident: 9094_CR79 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.06.023 – volume: 15 start-page: 197 year: 2010 ident: 9094_CR77 publication-title: Transport Res D-Transport Environ doi: 10.1016/j.trd.2010.02.001 |
SSID | ssj0000389014 |
Score | 2.4839501 |
SecondaryResourceType | review_article |
Snippet | The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1301 |
SubjectTerms | Air transportation Aircraft components Aircraft industry Automobile industry Automotive engineering Aviation Carbon fiber reinforced plastics Carbon-epoxy composites Composite materials Engineering Environmental effects Environmental impact Epoxy resins Flammability Flax Fuel consumption Gasoline Life cycle assessment Life cycle engineering Life cycles Mechanical properties Polymer matrix composites Review Synthetic products Thermosetting resins 可再生材料 潜在用途 环境分析 生命周期评估 生物纤维 综述 航空行业 高性能复合材料 |
Title | Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review |
URI | http://lib.cqvip.com/qk/60110X/201709/673125779.html https://link.springer.com/article/10.1007/s11431-016-9094-y https://www.proquest.com/docview/1936252113 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RssCA-BSlpfLABLKUxE7SjFVVQCCYqARTZMcOIFUtkFKpG-I38Av5JdylSQMIkJhz50Q-O35nv3sGOPA9qY0ShmvpSi47yuUIYgOuSSvKSGL_UYHzxWVwOpBn1_51UcedlWz38kgy_1NXxW64tFPqG_AIcxI-q8GyT6k7DuKB111srJBinJNrehPBnofCc8vTzJ9aIU2Fu_Ho9hHf-HVtqgDntzPSfOk5Xoe1AjOy7jzIG7BkR5uw-klJcAte-1XBGpqqQmqEjVN2X9x7OrUsq6qlGHHJibBlM0Z7sexhPCHiEDo_ZxadmJrOo8ayfGP__eWty4b3KXrO8CuYWkh6snn5yzYMjvtXvVNeXK_AE0QhE5wffmqFiXSkpZKpG7pp6GpMbzzlS5Jd1r6TpDIM0dwoPzKOEIr61lpHOcKKHaiPxiO7CyxKA2ODjuo4iZWmIzSCLqvcJHRMgH8I2YDmopPjh7mMBjHKEF2FYdQAp-z2OCmUyemCjGFcaSpT1GJio1HU4lkDDhcuZXt_GLfKWMbFDM1iBK6Y-mH6KxpwVMb30-PfGtv7l3UTVjzCATkprQX1ydOz3UcUM9FtWO6e3Jz321DrBb12PoY_AOD-7po |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SlKC3hgAlkktZM0Y1WBylenInWL7NiBSlVbSEHqhvgN_EJ-CXdp0gICJObcnSJfHL-z3z0DHHk1qY0ShmvpSi7ryuUIYn2uSSvKSGL_UYPzTdtv3crLrtfNxaKpF-bb-f1pinhdUMHr8xArET5ZhCWJhTKx95p-c7adQjpxTqbkTbR6HoiaW5xh_hSFlBTuh4O7B1wfvq5Ic5j57WQ0W3DO12EtR4qsMU3tBizYwSasftIP3ILXs3mbGpqqXGCEDRPWy287fbYsnfdIMWKQE03Lpox2YNloOCa6EDo_pRadmHqe5oql2Xb--8tbg_V7CXpO8C2Ymgl5smnTyzbcnp91mi2eX6rAY8QeY5wVXmKFCXWopZKJG7hJ4GosamrKkyS2rD0nTmQQoLlRXmgcIRSNrbWOcoQVO1AaDAd2F1iY-Mb6dVV3YitNXWiEWla5ceAYH_8LsgyV2SBHo6l4BvHIEFMFQVgGpxj2KM71yOlajH40V1KmrEXEQaOsRZMyHM9cinh_GFeLXEb5vEwjhKtY8GHRK8pwUuT30-Pfgu39y_oQlludm-vo-qJ9VYGVGiGBjJZWhdL48cnuI44Z64PsC_4AhEzq-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfOL6zMGTEmw3abs9yuriGw8K3krSpLog3dWuwt7E3-Av9Jc408dWRQXPnaRlJmm-ycx8A7DtNaU2ShiupSu5bCmXI4j1uSauKCMp-48KnM8v_KNreXLj3ZR9TrMq270KSRY1DcTSlA72-ibZqwvf8JgnN9jnIfonfDgOk-io5HHatt8eXbIQe5yT83tTsj0PRNOtIps_zUL8Cne99PYB3_71nKrB57d4aX4MdeZgtsSPbL8w-DyM2XQBZj6xCi7C62FdvIaiqqQdYb2EdcseqM-WZXXlFKO8ckreshmje1nW75EucGWyp8ziIKaeCwuyLL_kf39522f33QRHDvErmBrRe7KiFGYJrjuHV-0jXrZa4DEikgHuFS-xwoQ61FLJxA3cJHA1ujpN5UmiYNaeEycyCFDcKC80jhCKdGutoxxhxTJMpL3UrgALE99Yv6VaTmylaQmNAMwqNw4c4-PfQjZgbaTkqF9QalB2GSKtIAgb4FRqj-KSpZyaZdxHNb8yWS2izDSyWjRswM5oSDXfH8LrlS2jcrdmEYJYdAPRFRYN2K3s--nxb5Ot_kt6C6YuDzrR2fHF6RpMNwke5Llq6zAxeHyyGwhuBnozX8AfoavzQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+analysis+of+innovative+sustainable+composites+with+potential+use+in+aviation+sector%E2%80%94A+life+cycle+assessment+review&rft.jtitle=Science+China.+Technological+sciences&rft.au=Bachmann%2C+Jens&rft.au=Hidalgo%2C+Carme&rft.au=Bricout%2C+St%C3%A9phanie&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=60&rft.issue=9&rft.spage=1301&rft.epage=1317&rft_id=info:doi/10.1007%2Fs11431-016-9094-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60110X%2F60110X.jpg |