Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review

The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently,...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 60; no. 9; pp. 1301 - 1317
Main Authors Bachmann, Jens, Hidalgo, Carme, Bricout, Stéphanie
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7321
1869-1900
DOI10.1007/s11431-016-9094-y

Cover

Loading…
Abstract The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.
AbstractList The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application of bio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.
The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.
Author BACHMANN Jens HIDALGO Carme RICOUT Stephanie
AuthorAffiliation Deutsches Zentrum fiir Lufi- und Raumfahrt e. V. (German Aerospace Centre), Institute of Composite Structures and Adaptive Systems-Department of Multifunctional Materials, Lilienthalplatz 7, 38108 Braunsehweig, Germany Leitat Technological Center, C/Innovacio 2, 08225 Terrassa, Spain Airbus Group Innovations, Fuels and Environment, 12 rue Pasteur, 92152 Suresnes, France
Author_xml – sequence: 1
  givenname: Jens
  surname: Bachmann
  fullname: Bachmann, Jens
  email: jens.bachmann@dlr.de
  organization: Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Centre), Institute of Composite Structures and Adaptive Systems-Department of Multifunctional Materials
– sequence: 2
  givenname: Carme
  surname: Hidalgo
  fullname: Hidalgo, Carme
  organization: Leitat Technological Center
– sequence: 3
  givenname: Stéphanie
  surname: Bricout
  fullname: Bricout, Stéphanie
  organization: Airbus Group Innovations, Fuels and Environment
BookMark eNp90LFOHDEQBmArIlKA8ADprKR28Ky9a1wiBEkkJJqktrx7s2C0Zx8e36It8-b4cieEUuDGLubzzPwn7CimiIx9AfkdpDTnBKAVCAmdsNJqsXxgx3DRWQFWyqP67owWRjXwiZ0RPcp61IWVoI_Z3-s4h5ziGmPxE_fRTwsF4mnkIcY0-xJm5LSl4kP0_YR8SOtNolCQ-HMoD3yTSrWh4i1hRdzPoaoUOeFQUubikk9hrHAZKvdESLRrxzPOAZ8_s4-jnwjPDvcp-3Nz_fvqp7i9-_Hr6vJWDFrZIhrZjqhWtre99noEA6OBvpNt41utVr3pWzmM2phavvKtXUml_G5JROmlQnXKvu3_3eT0tEUq7jFtc92XHFjVNW0DoGoV7KuGnIgyjm6Tw9rnxYF0u7DdPmxXw3a7sN1SjfnPDKH8i6BkH6Z3ZbOXVLvEe8xvZnoHfT20e0jx_qm61xk7o6BpjbHqBVqQpDY
CitedBy_id crossref_primary_10_1177_00219983211011532
crossref_primary_10_2478_adms_2024_0004
crossref_primary_10_1002_app_54574
crossref_primary_10_1016_j_jcomc_2021_100138
crossref_primary_10_3390_aerospace6010003
crossref_primary_10_1016_j_compstruct_2025_118943
crossref_primary_10_1016_j_ndteint_2025_103392
crossref_primary_10_1016_j_heliyon_2024_e29762
crossref_primary_10_1007_s10483_022_2917_7
crossref_primary_10_1021_acssuschemeng_4c00795
crossref_primary_10_1021_acs_macromol_2c00775
crossref_primary_10_1016_j_ijrefrig_2021_06_026
crossref_primary_10_1016_j_envc_2025_101085
crossref_primary_10_1016_j_ymssp_2024_111412
crossref_primary_10_1016_j_rcradv_2023_200173
crossref_primary_10_1016_j_procir_2024_01_124
crossref_primary_10_1021_acs_chemrev_2c00686
crossref_primary_10_1021_acs_macromol_1c00566
crossref_primary_10_1016_j_tafmec_2023_104108
crossref_primary_10_1061_JCCOF2_CCENG_4083
crossref_primary_10_1016_j_rinma_2023_100474
crossref_primary_10_1039_D4PY01106F
crossref_primary_10_1007_s11431_017_9215_7
crossref_primary_10_4028_p_L5EcYl
crossref_primary_10_1016_j_jclepro_2020_125177
crossref_primary_10_3390_aerospace9020052
crossref_primary_10_1016_j_compositesa_2024_108136
crossref_primary_10_1016_j_matdes_2020_108553
crossref_primary_10_1080_00218464_2024_2439956
crossref_primary_10_1016_j_compositesb_2024_112021
crossref_primary_10_1016_j_ijhydene_2019_03_088
crossref_primary_10_1016_j_optlastec_2024_111160
crossref_primary_10_1016_j_ultras_2024_107313
crossref_primary_10_3390_coatings11020190
crossref_primary_10_1016_j_matdes_2022_111160
crossref_primary_10_1016_j_compositesb_2023_111034
crossref_primary_10_1016_j_compscitech_2022_109303
crossref_primary_10_2139_ssrn_3795545
crossref_primary_10_3762_bjnano_11_50
crossref_primary_10_3390_su13031160
crossref_primary_10_1177_0021998320954230
crossref_primary_10_1016_j_scitotenv_2024_177645
crossref_primary_10_1007_s11356_020_10352_8
crossref_primary_10_1088_1402_4896_ad48cb
crossref_primary_10_2139_ssrn_4149408
crossref_primary_10_3390_su151310041
crossref_primary_10_3390_polym15010150
crossref_primary_10_1002_er_6120
crossref_primary_10_1016_j_atmosenv_2023_119983
crossref_primary_10_52995_jass_1261471
crossref_primary_10_1016_j_ndteint_2024_103094
crossref_primary_10_1007_s10924_021_02080_y
crossref_primary_10_3390_jcs6050144
crossref_primary_10_1016_j_jclepro_2020_124986
crossref_primary_10_1016_j_compositesb_2019_107665
crossref_primary_10_3390_en16083371
crossref_primary_10_1007_s11431_023_2553_5
crossref_primary_10_3390_su15065531
crossref_primary_10_1007_s12221_021_0024_z
crossref_primary_10_1088_2053_1591_ab6e36
crossref_primary_10_1007_s42452_020_2195_4
crossref_primary_10_1016_j_indcrop_2024_119501
crossref_primary_10_1016_j_cej_2023_146435
crossref_primary_10_1007_s42452_022_05063_3
crossref_primary_10_3390_jcs5090243
crossref_primary_10_1177_00219983221144709
crossref_primary_10_3390_s21248236
crossref_primary_10_1007_s10570_024_05921_w
crossref_primary_10_1016_j_jclepro_2022_131246
crossref_primary_10_3390_ma15092986
crossref_primary_10_3390_su14020700
crossref_primary_10_3390_polym15122653
crossref_primary_10_3390_su13052560
crossref_primary_10_1002_pc_26367
crossref_primary_10_1088_1757_899X_1096_1_012038
crossref_primary_10_1016_j_apenergy_2021_118353
crossref_primary_10_1016_j_spc_2022_03_007
crossref_primary_10_1016_j_ast_2023_108479
crossref_primary_10_1016_j_carbon_2023_118222
crossref_primary_10_1016_j_jairtraman_2023_102418
crossref_primary_10_1515_ntrev_2019_0031
crossref_primary_10_1016_j_jclepro_2019_01_198
crossref_primary_10_1016_j_jclepro_2020_121572
crossref_primary_10_1007_s11431_018_9489_1
crossref_primary_10_3390_buildings12071050
crossref_primary_10_3390_jcs5080217
crossref_primary_10_3390_fuels5040046
crossref_primary_10_1016_j_compscitech_2021_108678
crossref_primary_10_1016_j_jcomc_2024_100513
crossref_primary_10_15251_DJNB_2024_191_417
crossref_primary_10_3390_aerospace8050131
crossref_primary_10_3390_atmos13101605
crossref_primary_10_3390_jcs8040155
crossref_primary_10_1016_j_compscitech_2021_109243
crossref_primary_10_3390_jcs7110478
crossref_primary_10_1002_adma_202309662
crossref_primary_10_3390_ndt3010003
crossref_primary_10_1631_jzus_A2200105
crossref_primary_10_1515_rams_2024_0077
crossref_primary_10_1002_sd_1986
crossref_primary_10_1016_j_trd_2023_103717
crossref_primary_10_1051_mattech_2024020
crossref_primary_10_3390_polym16050580
crossref_primary_10_1002_pol_20240800
crossref_primary_10_3390_su14031922
crossref_primary_10_1016_j_apples_2024_100184
crossref_primary_10_3390_en14185748
crossref_primary_10_1016_j_paerosci_2022_100878
crossref_primary_10_3390_c9010019
crossref_primary_10_3390_polym12092129
crossref_primary_10_3390_jmmp8030120
crossref_primary_10_3390_recycling10010001
crossref_primary_10_1016_j_compositesb_2021_108654
crossref_primary_10_3390_aerospace11100844
crossref_primary_10_1021_acssuschemeng_8b04947
crossref_primary_10_1016_j_cirp_2018_05_008
crossref_primary_10_3390_polym13142326
crossref_primary_10_3390_aerospace10040341
crossref_primary_10_3390_aerospace7110157
crossref_primary_10_3390_recycling6040072
crossref_primary_10_1016_j_compositesb_2019_107582
crossref_primary_10_1016_j_conbuildmat_2024_139105
crossref_primary_10_3390_jcs5010028
Cites_doi 10.1016/j.jmatprotec.2007.06.087
10.1016/j.resconrec.2010.01.011
10.1016/j.resconrec.2015.04.004
10.1557/mrs.2012.33
10.1021/sc500174m
10.1007/s11367-014-0824-0
10.1162/108819803323059424
10.1016/j.procir.2016.03.144
10.1016/j.supflu.2008.10.011
10.1016/j.cirp.2014.03.061
10.1016/S0266-3538(99)00154-2
10.1177/0021998313476325
10.1016/j.jclepro.2011.05.018
10.1007/s11367-009-0127-z
10.1016/j.compositesa.2013.02.009
10.1016/j.jclepro.2014.07.027
10.1016/j.compositesa.2011.11.019
10.1016/j.compositesa.2015.08.038
10.1016/j.indcrop.2016.09.006
10.1177/0731684413502108
10.1007/s11837-006-0234-2
10.1016/0959-6526(95)00081-X
10.1016/j.compositesa.2009.05.020
10.1016/j.jclepro.2015.08.104
10.1016/j.compositesb.2016.08.015
10.1016/j.jclepro.2015.11.047
10.1177/0731684415623652
10.1016/j.cep.2011.09.007
10.1016/j.pmatsci.2015.01.004
10.1016/j.compositesa.2013.10.014
10.1016/j.jclepro.2016.03.139
10.1016/j.matdes.2013.11.077
10.1016/j.jclepro.2014.06.023
10.1016/j.trd.2010.02.001
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Springer Science & Business Media 2017
DBID 2RA
92L
CQIGP
W92
~WA
C6C
AAYXX
CITATION
DOI 10.1007/s11431-016-9094-y
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review
EISSN 1869-1900
EndPage 1317
ExternalDocumentID 10_1007_s11431_016_9094_y
673125779
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
-SC
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
C6C
CAJEC
CJPJV
H13
Q--
U1G
U5M
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c439t-205fe3d9b9b4a4f171f71b6052a543db7b50cf477c43da59d033a8901ee0a03e3
IEDL.DBID U2A
ISSN 1674-7321
IngestDate Fri Jul 25 11:15:25 EDT 2025
Tue Jul 01 03:26:13 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Fri Feb 21 02:33:05 EST 2025
Wed Feb 14 09:57:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords secondary structure
life cycle assessment (LCA)
bio-resin
cabin interior
composite
recycled carbon fibre
aviation
natural fibre
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-205fe3d9b9b4a4f171f71b6052a543db7b50cf477c43da59d033a8901ee0a03e3
Notes The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application ofbio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.
aviation, composite, natural fibre, recycled carbon fibre, bio-resin, cabin interior, secondary structure,fife cycle assessment (LCA)
11-5845/TH
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11431-016-9094-y
PQID 1936252113
PQPubID 2043625
PageCount 17
ParticipantIDs proquest_journals_1936252113
crossref_primary_10_1007_s11431_016_9094_y
crossref_citationtrail_10_1007_s11431_016_9094_y
springer_journals_10_1007_s11431_016_9094_y
chongqing_primary_673125779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationTitleAlternate SCIENCE CHINA Technological Sciences
PublicationYear 2017
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References ZhangXYamauchiMTakahashiJLife cycle assessment of CFRP in application of automobileThe 18th International Conference on Composite Materials. South Korea2011
AssamoiBLawryshynYThe environmental comparison of landfilling vsincineration of MSW accounting for waste diversion. Waste Manage20123210191030
DaiQKellyJSullivanJLife-Cycle Analysis Update of Glass and Glass Fiber for the GREET ModelEnergy Systems Division, Argonne National Laboratory2015
LiXBaiRMcKechnieJEnvironmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routesJ Clean Prod201612745146010.1016/j.jclepro.2016.03.139
Densley TingleyDHathwayADavisonBThe environmental impact of phenolic foam insulation boardsProceedings of the Institution of Civil Engineers. London2015
BarthMCarusMCarbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry2015HürthNova-Institut GmbH
GuitérrezEBonoFReview of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers2013
Open LCA nexus: Source for LCA data sets. Available at https://nexus.openlca.org/search, accessed on 2016-10-20
La RosaA DBanataoD RPastineS JRecycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessmentCompos Part B-Eng2016104172510.1016/j.compositesb.2016.08.015
Recycled Carbon Fibre Ltd. Converting composite waste into high quality re-usable carbon fibre. Available at http://www.recycledcarbonfibre. com, accessed at 2011-06-15
Fischer H, Schmid H G. Quality control for recycled carbon fibres. Translated from Kunststoffe 11/2013, 88–91. http://www.mcik.com/data/file/mcik/ISTAG/I_PDF_IST_recycled_carbon_fibers_2013.pdf
Oldest-known fibers to be used by humans discovered. Available at http://news.harvard.edu/gazette/story/2009/09/oldest-known-fibres- discovered, accessed on 2016-10-05
Stockholm resilience centre: The nine planetary boundaries. Available at http://www.stockholmresilience.org/research/planetaryboundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html, accessed on 2016-10-26
VerpoestIInnovative material concepts for high volume composite applications (the Hivocomp Project)Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich2014
LewisTA life cycle assessment of the passenger air transport system using three flight scenarios2013TrondheimNorwegian University of Science and Technology
Scott A. Boeing looks at pricey titanium in bid to stem 787 losses. Reuters Aerospace & Defence. Available at http://www.reuters.com/article/us-boeing-787-titanium-insight- idUSKCN0PY1PL20150724, accessed on 2016-10-26
RybickaJTiwariALeekeG ATechnology readiness level assessment of composites recycling technologiesJ Clean Prod20161121001101210.1016/j.jclepro.2015.08.104
DuflouJ RDengYVan AckerKDo fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based studyMRS Bull20123737438210.1557/mrs.2012.33
BensadounFVanderfeestenBVerpoestIEnvironmental impact assessment of end of life options for flax-MAPP compositesInd Crop Prod20169432734110.1016/j.indcrop.2016.09.006
Recycling today. 2016. ELG Carbon Fibre Ltd. to highlight role of recycled carbon fibre. Available at http://www.recyclingtoday.com/article/elg-carbon-fibre-jec-world-2016-exhibit, accessed at 2016-10-23
SongY SYounJ RGutowskiT GLife cycle energy analysis of fiberreinforced compositesCompos Part A-Appl S2009401257126510.1016/j.compositesa.2009.05.020
DissanayakeN PLife Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites2011PlymouthUniversity of Plymouth
MishraSTripathyS SMisraMNovel eco-friendly biocomposites: Biofiber reinforced biodegradable polyester amide composites— Fabrication and properties evaluationJ Reinf Plas Composit2002215570
BardonnetPRésines époxydes: Composants et propriétésTechniques de l’Ingénieur1992A3465
MolinerTPebregatJCsehMLife cycle assessment of a fibre- reinforced polymer made of glass fibre and phenolic resin with brominated flame retardantSimposio de la Red Española de ACV: ACV & bioenergia, Spain2013
DornburgVLewandowskiIPatelMComparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergyJ Ind Ecol200379311610.1162/108819803323059424
PickeringK LEfendyM G ALeT MA review of recent developments in natural fibre composites and their mechanical performanceCompos Part A-Appl S2016839811210.1016/j.compositesa.2015.08.038
HaufeJCarusMHemp fibres for green products—An assessment of life cycle studies on hemp fibre applications2011HürthEIHA Report
DittenberD BGangaRaoH V SCritical review of recent publications on use of natural composites in infrastructureCompos Part A-Appl S2012431419142910.1016/j.compositesa.2011.11.019
DavidsonJPriceRRecycling carbon fibre2009
Mechanical properties of carbon fiber composite materials, fiber/epoxy resin (120°C cure). Available at https://www.acpsales.com/upload/Mechanical-Properties-of-Carbon-Fiber-Composite-Materials.pdf, accessed at 2017-06-27
GotoMChemical recycling of plastics using sub- and supercritical fluidsJ Supercrit Fluid20094750050710.1016/j.supflu.2008.10.011
FAST (Flight Airworthiness Support Technology)—Special Edition A350XWB. Airbus Technical Magazine, June 2013
MillerS ASrubar IiiW VBillingtonS LIntegrating durability-based service-life predictions with environmental impact assessments of natural fiber-reinforced composite materialsResources Conservation Recycling201599728310.1016/j.resconrec.2015.04.004
AsmatuluETwomeyJOvercashMRecycling of fiber-reinforced composites and direct structural composite recycling conceptJ Compos Mater20144859360810.1177/0021998313476325
González-GarcíaSHospidoAFeijooGLife cycle assessment of raw materials for non-wood pulp mills: Hemp and flaxResour Conserv Recycl20105492393010.1016/j.resconrec.2010.01.011
TumolvaTKubouchiMEvaluating the Carbon storage potential of Furan resin-based green omposites18th International Conference on Composite Materials. Jeju, Korea2016
JohanningAScholzDA first step towards the integration of life cycle assessment into conceptual aircraft design2013
CarberryWAirplane recycling efforts benefit Boeing operatorsBoeing AERO Magazine2008613
La RosaA DReccaGSummerscalesJBio-based versus traditional polymer compositesA life cycle assessment perspective. J Clean Prod201474135144
ChesterMLife-cycle environmental inventory of passenger transportation in the United States2008BerkeleyUniversity of California
CarvalhoHRaposoARibeiroIApplication of life cycle engineering approach to assess the pertinence of using natural fibers in composites—The rocker case studyProcedia CIRP20164836436910.1016/j.procir.2016.03.144
European Commission Climate Action. 2016. Reducing emissions from aviation. Available at http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm, accessed on 2016-10-26
YangYBoomRIrionBRecycling of composite materialsChem Eng Process201251536810.1016/j.cep.2011.09.007
CrossleyRSchubelPStevensonAFuran matrix and flax fibre as a sustainable renewable composite: Mechanical and fire-resistant properties in comparison to phenol, epoxy and polyesterReinf Plast Comp201433586810.1177/0731684413502108
Airbus global market forecast: Mapping demand 2016/2035 (leaflet). Available at http://www.airbus.com.cn/fileadmin/media_gallery/files/brochures_publications/GMF/Global_Market_Forecast_2016-2035.pdf, accessed on 2016-10-20
TimmisA JHodzicAKohLEnvironmental impact assessment of aviation emission reduction through the implementation of composite materialsInt J Life Cycle Assess20152023324310.1007/s11367-014-0824-0
ShahU DSchubelP JOn recycled carbon fibre composites manufactured through a liquid composite moulding processJ Reinf Plast Comp20153553354010.1177/0731684415623652
Boeing traffic and market outlook. Available at http://www.boeing.com/commercial/market/long-term-market/traffic-and-market-outlook, accessed on 2016-10-20
GardinerGRecycled carbon fiber update: Closing the CFRP lifecycle loopComposites Technology2014
PinzelliRFibres aramides pour matériaux compositesTechniques de l’Ingénieur1995A3985
Technical data sheet: Lineo flaxpreg. Available at http://www.lineo. eu/products, accessed at 2017-01-05
LopesJLife-cycle assessment of the airbus A330-200 aircraft2010LisbonUniversidade Técnica de Lisboa
XuXJayaramanKMorinCLife cycle assessment of woodfibre- reinforced polypropylene compositesJ Mater Process Tech200819816817710.1016/j.jmatprotec.2007.06.087
WittenEKrausTKühnelMComposites-Marktbericht 2015: Marktentwicklungen, Trends, Ausblicke und HerausforderungenCCeV and AVK2015
EickenbuschHKraussOKohlenstofffaserverstärkte kunststoffe im fahrzeugbau: Ressourceneffizienz und technologienVDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs20135
Roylance D. Introduction to composite materials. Cambridge, 2000. Available at http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F17F86ECB585A74EB2975828D95AC65A?doi=10.1.1.208.49&rep=rep1&type=pdf
SuzukiTTakahashiJPrediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger carProceedings of the 9th Japan International SAMPE Symposium. Tokyo2005
PickeringSRecycling and disposal of thermoset compositesProceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway2013Devon, UKDartington Hall
Hexcel Corporation. HexPly® Prepreg Technology. January 2013, Publication No. FGU 017c. Available at https://www.ethz.ch/content/dam/ethz/special-interest/mavt/design-materials-fabrication/composite-materials-dam/Education/Manufacturing_of_Polymer_Composites/FS2017/Prepreg_Technology.pdf
CorreiaJ RAlmeidaN MFigueiraJ RRecycling of FRP composites: Reusing fine GFRP waste in concrete mixturesJ Clean Prod2011191745175310.1016/j.j
S J Pickering (9094_CR68) 2000; 60
H Illing-Günther (9094_CR74) 2013
A J Timmis (9094_CR7) 2015; 20
M Barth (9094_CR44) 2015
K L Pickering (9094_CR25) 2016; 83
M Goto (9094_CR83) 2009; 47
I Verpoest (9094_CR31) 2014
V Michaud (9094_CR30) 2016
Y Yang (9094_CR65) 2012; 51
D B Dittenber (9094_CR15) 2012; 43
C K Lee (9094_CR77) 2010; 15
9094_CR81
T Suzuki (9094_CR29) 2005
J R Duflou (9094_CR47) 2012; 37
M Prinçaud (9094_CR78) 2014; 2
U D Shah (9094_CR22) 2015; 35
A Berthereau (9094_CR14) 2008; A5
M Chester (9094_CR37) 2008
Y S Song (9094_CR28) 2009; 40
J Howarth (9094_CR79) 2014; 81
A D Rosa La (9094_CR87) 2014; 74
9094_CR13
J Lopes (9094_CR40) 2010
G Finnveden (9094_CR63) 1995; 3
W Jemiolo (9094_CR39) 2015
V Dornburg (9094_CR55) 2003; 7
J R Correia (9094_CR69) 2011; 19
E Guitérrez (9094_CR57) 2013
G Oliveux (9094_CR73) 2015; 72
J Holbery (9094_CR54) 2016; 58
D Densley Tingley (9094_CR33) 2015
S A Miller (9094_CR51) 2015; 99
R Pinzelli (9094_CR11) 1995; A3
E Witten (9094_CR59) 2015
S Pickering (9094_CR66) 2013
9094_CR6
9094_CR5
9094_CR4
R Crossley (9094_CR85) 2014; 33
9094_CR9
9094_CR8
J B Donnet (9094_CR18) 1972
A Johanning (9094_CR38) 2013
9094_CR19
A D Rosa La (9094_CR76) 2016; 104
9094_CR3
9094_CR17
9094_CR2
F Bensadoun (9094_CR45) 2016; 94
9094_CR1
H Carvalho (9094_CR42) 2016; 48
9094_CR16
Y Gu (9094_CR26) 2014; 56
9094_CR24
X Zhang (9094_CR27) 2011
9094_CR23
9094_CR20
9094_CR21
H Eickenbusch (9094_CR70) 2013
E L Arnold (9094_CR84) 2017
X Li (9094_CR62) 2016; 127
J Duflou (9094_CR43) 2014; 63
A Duigou Le (9094_CR50) 2014; 83
T Tumolva (9094_CR86) 2016
N P Dissanayake (9094_CR46) 2011
Q Dai (9094_CR32) 2015
Y Deng (9094_CR36) 2014
J Davidson (9094_CR80) 2009
T Moliner (9094_CR34) 2013
J Haufe (9094_CR49) 2011
B Assamoi (9094_CR64) 2012; 32
M P M Dicker (9094_CR10) 2014; 56
S A Miller (9094_CR52) 2016; 132
G Gardiner (9094_CR58) 2014
C Koffler (9094_CR82) 2010; 15
T Lewis (9094_CR41) 2013
W Carberry (9094_CR60) 2008
P Bardonnet (9094_CR12) 1992; A3
9094_CR35
E Asmatulu (9094_CR71) 2014; 48
X Xu (9094_CR53) 2008; 198
J Rybicka (9094_CR61) 2016; 112
R A Witik (9094_CR67) 2013; 49
9094_CR75
S Mishra (9094_CR56) 2002; 21
9094_CR72
S González-García (9094_CR48) 2010; 54
References_xml – reference: CorreiaJ RAlmeidaN MFigueiraJ RRecycling of FRP composites: Reusing fine GFRP waste in concrete mixturesJ Clean Prod2011191745175310.1016/j.jclepro.2011.05.018
– reference: DissanayakeN PLife Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites2011PlymouthUniversity of Plymouth
– reference: A brief history of aircraft structures. Aerospace Engineering Blog. Available at http://aerospaceengineeringblog.com/aircraft-structures, accessed on 2016-10-21
– reference: BardonnetPRésines époxydes: Composants et propriétésTechniques de l’Ingénieur1992A3465
– reference: CrossleyRSchubelPStevensonAFuran matrix and flax fibre as a sustainable renewable composite: Mechanical and fire-resistant properties in comparison to phenol, epoxy and polyesterReinf Plast Comp201433586810.1177/0731684413502108
– reference: Technical data sheet: ELG Carbon Fibre Ltd. Carbiso M Nonwoven Mats. Available at http://www.elgcf.com/products/100-recycled-carbon- fibre-nonwoven-mat, accessed at 2017-06-27
– reference: BensadounFVanderfeestenBVerpoestIEnvironmental impact assessment of end of life options for flax-MAPP compositesInd Crop Prod20169432734110.1016/j.indcrop.2016.09.006
– reference: Technical data sheet: Lineo flaxpreg. Available at http://www.lineo. eu/products, accessed at 2017-01-05
– reference: Fischer H, Schmid H G. Quality control for recycled carbon fibres. Translated from Kunststoffe 11/2013, 88–91. http://www.mcik.com/data/file/mcik/ISTAG/I_PDF_IST_recycled_carbon_fibers_2013.pdf
– reference: BarthMCarusMCarbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry2015HürthNova-Institut GmbH
– reference: DornburgVLewandowskiIPatelMComparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergyJ Ind Ecol200379311610.1162/108819803323059424
– reference: HowarthJMareddyS S RMativengaP TEnergy intensity and environmental analysis of mechanical recycling of carbon fibre compositeJ Clean Prod201481465010.1016/j.jclepro.2014.06.023
– reference: GotoMChemical recycling of plastics using sub- and supercritical fluidsJ Supercrit Fluid20094750050710.1016/j.supflu.2008.10.011
– reference: ShahU DSchubelP JOn recycled carbon fibre composites manufactured through a liquid composite moulding processJ Reinf Plast Comp20153553354010.1177/0731684415623652
– reference: LewisTA life cycle assessment of the passenger air transport system using three flight scenarios2013TrondheimNorwegian University of Science and Technology
– reference: HaufeJCarusMHemp fibres for green products—An assessment of life cycle studies on hemp fibre applications2011HürthEIHA Report
– reference: European Commission Climate Action. 2016. Reducing emissions from aviation. Available at http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm, accessed on 2016-10-26
– reference: OliveuxGDandyL OLeekeG ACurrent status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting propertiesProg Mater Sci201572619910.1016/j.pmatsci.2015.01.004
– reference: Le DuigouABaleyCCoupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre composites developmentJ Clean Prod201483616910.1016/j.jclepro.2014.07.027
– reference: Boeing traffic and market outlook. Available at http://www.boeing.com/commercial/market/long-term-market/traffic-and-market-outlook, accessed on 2016-10-20
– reference: Open LCA nexus: Source for LCA data sets. Available at https://nexus.openlca.org/search, accessed on 2016-10-20
– reference: Airbus global market forecast: Mapping demand 2016/2035 (leaflet). Available at http://www.airbus.com.cn/fileadmin/media_gallery/files/brochures_publications/GMF/Global_Market_Forecast_2016-2035.pdf, accessed on 2016-10-20
– reference: Technical Data Sheet: Hexcel M21. Available at http://www.hexcel.com/user_area/content_media/raw/Hex-Ply_M21_global_DataSheet.pdf, accessed at 2017-06-27
– reference: ZhangXYamauchiMTakahashiJLife cycle assessment of CFRP in application of automobileThe 18th International Conference on Composite Materials. South Korea2011
– reference: DonnetJ BBansalR CCarbon Fibers1972New YorkMarcel Dekker, Inc.
– reference: La RosaA DBanataoD RPastineS JRecycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessmentCompos Part B-Eng2016104172510.1016/j.compositesb.2016.08.015
– reference: European Commission. The EU emissions trading system (EU ETS). Available at https://ec.europa.eu/clima/sites/clima/files/factsheet_ ets_en.pdf, accessed on 2017-03-16
– reference: Stockholm resilience centre: The nine planetary boundaries. Available at http://www.stockholmresilience.org/research/planetaryboundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html, accessed on 2016-10-26
– reference: BerthereauADalliesEFibres de verre de renforcementTechniques de l’Ingénieur2008A5132
– reference: Hexcel Corporation. HexPly® Prepreg Technology. January 2013, Publication No. FGU 017c. Available at https://www.ethz.ch/content/dam/ethz/special-interest/mavt/design-materials-fabrication/composite-materials-dam/Education/Manufacturing_of_Polymer_Composites/FS2017/Prepreg_Technology.pdf
– reference: RybickaJTiwariALeekeG ATechnology readiness level assessment of composites recycling technologiesJ Clean Prod20161121001101210.1016/j.jclepro.2015.08.104
– reference: KofflerCRohde-BrandenburgerKOn the calculation of fuel savings through lightweight design in automotive life cycle assessmentsInt J Life Cycle Assess20101512813510.1007/s11367-009-0127-z
– reference: DickerM P MDuckworthP FBakerA BGreen composites: A review of material attributes and complementary applicationsCompos Part A-Appl S20145628028910.1016/j.compositesa.2013.10.014
– reference: MillerS ABillingtonS LLepechM DInfluence of carbon feedstock on potentially net beneficial environmental impacts of bio-based compositesJ Clean Prod201613226627810.1016/j.jclepro.2015.11.047
– reference: PickeringK LEfendyM G ALeT MA review of recent developments in natural fibre composites and their mechanical performanceCompos Part A-Appl S2016839811210.1016/j.compositesa.2015.08.038
– reference: LopesJLife-cycle assessment of the airbus A330-200 aircraft2010LisbonUniversidade Técnica de Lisboa
– reference: DavidsonJPriceRRecycling carbon fibre2009
– reference: LiXBaiRMcKechnieJEnvironmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routesJ Clean Prod201612745146010.1016/j.jclepro.2016.03.139
– reference: JohanningAScholzDA first step towards the integration of life cycle assessment into conceptual aircraft design2013
– reference: TimmisA JHodzicAKohLEnvironmental impact assessment of aviation emission reduction through the implementation of composite materialsInt J Life Cycle Assess20152023324310.1007/s11367-014-0824-0
– reference: SongY SYounJ RGutowskiT GLife cycle energy analysis of fiberreinforced compositesCompos Part A-Appl S2009401257126510.1016/j.compositesa.2009.05.020
– reference: EickenbuschHKraussOKohlenstofffaserverstärkte kunststoffe im fahrzeugbau: Ressourceneffizienz und technologienVDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs20135
– reference: Roylance D. Introduction to composite materials. Cambridge, 2000. Available at http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F17F86ECB585A74EB2975828D95AC65A?doi=10.1.1.208.49&rep=rep1&type=pdf
– reference: ArnoldE LWeagerB MNext generation sustainable composites: Development and processing of furan-flax biocompositesSeventeenth International Conference on Composite Materials Proceedings. British Composites Society2017
– reference: González-GarcíaSHospidoAFeijooGLife cycle assessment of raw materials for non-wood pulp mills: Hemp and flaxResour Conserv Recycl20105492393010.1016/j.resconrec.2010.01.011
– reference: MishraSTripathyS SMisraMNovel eco-friendly biocomposites: Biofiber reinforced biodegradable polyester amide composites— Fabrication and properties evaluationJ Reinf Plas Composit2002215570
– reference: MolinerTPebregatJCsehMLife cycle assessment of a fibre- reinforced polymer made of glass fibre and phenolic resin with brominated flame retardantSimposio de la Red Española de ACV: ACV & bioenergia, Spain2013
– reference: DengYLife cycle assessment of biobased fibre-reinforced polymer composites2014LeuvenKatholieke Universiteit Leuven
– reference: Scott A. Boeing looks at pricey titanium in bid to stem 787 losses. Reuters Aerospace & Defence. Available at http://www.reuters.com/article/us-boeing-787-titanium-insight- idUSKCN0PY1PL20150724, accessed on 2016-10-26
– reference: Richter K. An aeronautic view. World Materials Forum Roundtable: KPI’s for material efficiency, 09/06/2016. Available at http://www.worldmaterialsforum.com/files/Presentations/PS2/WMF%202016%20-%20PS2%20-%20Klaus%20Richter%20Final.pdf
– reference: Mechanical properties of carbon fiber composite materials, fiber/epoxy resin (120°C cure). Available at https://www.acpsales.com/upload/Mechanical-Properties-of-Carbon-Fiber-Composite-Materials.pdf, accessed at 2017-06-27
– reference: Recycling today. 2016. ELG Carbon Fibre Ltd. to highlight role of recycled carbon fibre. Available at http://www.recyclingtoday.com/article/elg-carbon-fibre-jec-world-2016-exhibit, accessed at 2016-10-23
– reference: CarvalhoHRaposoARibeiroIApplication of life cycle engineering approach to assess the pertinence of using natural fibers in composites—The rocker case studyProcedia CIRP20164836436910.1016/j.procir.2016.03.144
– reference: MichaudVLes matériaux composites, moteurs de la mobilité propre?Swiss mobility days2016
– reference: VerpoestIInnovative material concepts for high volume composite applications (the Hivocomp Project)Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich2014
– reference: PinzelliRFibres aramides pour matériaux compositesTechniques de l’Ingénieur1995A3985
– reference: Illing-GüntherHHofmannMGulichBNonwovens made of recycled carbon fibres as basic materials for compositesProceedings of the 7th International CFK-Valley Stade Convention “Latest Innovations in CFRP Technology”. Chemnitz2013
– reference: Oldest-known fibers to be used by humans discovered. Available at http://news.harvard.edu/gazette/story/2009/09/oldest-known-fibres- discovered, accessed on 2016-10-05
– reference: AsmatuluETwomeyJOvercashMRecycling of fiber-reinforced composites and direct structural composite recycling conceptJ Compos Mater20144859360810.1177/0021998313476325
– reference: FinnvedenGAlbertssonA CBerendsonJSolid waste treatment within the framework of life-cycle assessmentJ Clean Prod1995318919910.1016/0959-6526(95)00081-X
– reference: DittenberD BGangaRaoH V SCritical review of recent publications on use of natural composites in infrastructureCompos Part A-Appl S2012431419142910.1016/j.compositesa.2011.11.019
– reference: MillerS ASrubar IiiW VBillingtonS LIntegrating durability-based service-life predictions with environmental impact assessments of natural fiber-reinforced composite materialsResources Conservation Recycling201599728310.1016/j.resconrec.2015.04.004
– reference: LeeC KKimY KPruitichaiwiboonPAssessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysisTransport Res D-Transport Environ20101519720310.1016/j.trd.2010.02.001
– reference: PickeringS JKellyR MKennerleyJ RA fluidised-bed process for the recovery of glass fibres from scrap thermoset compositesCompos Sci Technol20006050952310.1016/S0266-3538(99)00154-2
– reference: DuflouJ RDengYVan AckerKDo fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based studyMRS Bull20123737438210.1557/mrs.2012.33
– reference: La RosaA DReccaGSummerscalesJBio-based versus traditional polymer compositesA life cycle assessment perspective. J Clean Prod201474135144
– reference: CarberryWAirplane recycling efforts benefit Boeing operatorsBoeing AERO Magazine2008613
– reference: ChesterMLife-cycle environmental inventory of passenger transportation in the United States2008BerkeleyUniversity of California
– reference: PrinçaudMAymonierCLoppinet-SeraniAEnvironmental feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical waterACS Sustain Chem Eng201421498150210.1021/sc500174m
– reference: DaiQKellyJSullivanJLife-Cycle Analysis Update of Glass and Glass Fiber for the GREET ModelEnergy Systems Division, Argonne National Laboratory2015
– reference: XuXJayaramanKMorinCLife cycle assessment of woodfibre- reinforced polypropylene compositesJ Mater Process Tech200819816817710.1016/j.jmatprotec.2007.06.087
– reference: HolberyJHoustonDNatural-fiber-reinforced polymer composites in automotive applicationsJ Miner, Metal Mater Soc201658808610.1007/s11837-006-0234-2
– reference: DuflouJDeng YelinDComparative impact assessment for flax fibre versus conventional glass fibre reinforced composites: Are biobased reinforcement materials the way to go?CIRP Annals—Manuf Technol201463454810.1016/j.cirp.2014.03.061
– reference: TumolvaTKubouchiMEvaluating the Carbon storage potential of Furan resin-based green omposites18th International Conference on Composite Materials. Jeju, Korea2016
– reference: Densley TingleyDHathwayADavisonBThe environmental impact of phenolic foam insulation boardsProceedings of the Institution of Civil Engineers. London2015
– reference: WittenEKrausTKühnelMComposites-Marktbericht 2015: Marktentwicklungen, Trends, Ausblicke und HerausforderungenCCeV and AVK2015
– reference: Recycled Carbon Fibre Ltd. Converting composite waste into high quality re-usable carbon fibre. Available at http://www.recycledcarbonfibre. com, accessed at 2011-06-15
– reference: SuzukiTTakahashiJPrediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger carProceedings of the 9th Japan International SAMPE Symposium. Tokyo2005
– reference: GuYTanXYangZHot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion moldingMater Des (1980-2015)20145685286110.1016/j.matdes.2013.11.077
– reference: AssamoiBLawryshynYThe environmental comparison of landfilling vsincineration of MSW accounting for waste diversion. Waste Manage20123210191030
– reference: YangYBoomRIrionBRecycling of composite materialsChem Eng Process201251536810.1016/j.cep.2011.09.007
– reference: FAST (Flight Airworthiness Support Technology)—Special Edition A350XWB. Airbus Technical Magazine, June 2013
– reference: PickeringSRecycling and disposal of thermoset compositesProceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway2013Devon, UKDartington Hall
– reference: GardinerGRecycled carbon fiber update: Closing the CFRP lifecycle loopComposites Technology2014
– reference: GuitérrezEBonoFReview of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers2013
– reference: WitikR ATeuscherRMichaudVCarbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfillingCompos Part A-Appl S201349899910.1016/j.compositesa.2013.02.009
– reference: JemioloWLife cycle assessment of current and future passenger air transport2015
– ident: 9094_CR4
– volume: 198
  start-page: 168
  year: 2008
  ident: 9094_CR53
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2007.06.087
– volume-title: Proceedings of the 9th Japan International SAMPE Symposium. Tokyo
  year: 2005
  ident: 9094_CR29
– volume: 54
  start-page: 923
  year: 2010
  ident: 9094_CR48
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2010.01.011
– volume: 99
  start-page: 72
  year: 2015
  ident: 9094_CR51
  publication-title: Resources Conservation Recycling
  doi: 10.1016/j.resconrec.2015.04.004
– volume-title: Life Cycle Assessment of Flax Fibres for the Reinforcement of Polymer Matrix Composites
  year: 2011
  ident: 9094_CR46
– ident: 9094_CR8
– volume-title: Life cycle assessment of current and future passenger air transport
  year: 2015
  ident: 9094_CR39
– ident: 9094_CR13
– volume: 37
  start-page: 374
  year: 2012
  ident: 9094_CR47
  publication-title: MRS Bull
  doi: 10.1557/mrs.2012.33
– volume: 2
  start-page: 1498
  year: 2014
  ident: 9094_CR78
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc500174m
– ident: 9094_CR17
– volume: 20
  start-page: 233
  year: 2015
  ident: 9094_CR7
  publication-title: Int J Life Cycle Assess
  doi: 10.1007/s11367-014-0824-0
– volume-title: Proceedings of the Institution of Civil Engineers. London
  year: 2015
  ident: 9094_CR33
– volume: 7
  start-page: 93
  year: 2003
  ident: 9094_CR55
  publication-title: J Ind Ecol
  doi: 10.1162/108819803323059424
– volume: 32
  start-page: 1019
  year: 2012
  ident: 9094_CR64
  publication-title: incineration of MSW accounting for waste diversion. Waste Manage
– volume-title: A first step towards the integration of life cycle assessment into conceptual aircraft design
  year: 2013
  ident: 9094_CR38
– volume: 48
  start-page: 364
  year: 2016
  ident: 9094_CR42
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.03.144
– volume: 47
  start-page: 500
  year: 2009
  ident: 9094_CR83
  publication-title: J Supercrit Fluid
  doi: 10.1016/j.supflu.2008.10.011
– volume: 63
  start-page: 45
  year: 2014
  ident: 9094_CR43
  publication-title: CIRP Annals—Manuf Technol
  doi: 10.1016/j.cirp.2014.03.061
– volume: 60
  start-page: 509
  year: 2000
  ident: 9094_CR68
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(99)00154-2
– volume: A3
  start-page: 465
  year: 1992
  ident: 9094_CR12
  publication-title: Techniques de l’Ingénieur
– volume: 48
  start-page: 593
  year: 2014
  ident: 9094_CR71
  publication-title: J Compos Mater
  doi: 10.1177/0021998313476325
– ident: 9094_CR81
– ident: 9094_CR3
– volume: 19
  start-page: 1745
  year: 2011
  ident: 9094_CR69
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2011.05.018
– volume-title: Seventeenth International Conference on Composite Materials Proceedings. British Composites Society
  year: 2017
  ident: 9094_CR84
– ident: 9094_CR35
– volume-title: Life-cycle assessment of the airbus A330-200 aircraft
  year: 2010
  ident: 9094_CR40
– volume: 15
  start-page: 128
  year: 2010
  ident: 9094_CR82
  publication-title: Int J Life Cycle Assess
  doi: 10.1007/s11367-009-0127-z
– volume: 21
  start-page: 55
  year: 2002
  ident: 9094_CR56
  publication-title: J Reinf Plas Composit
– ident: 9094_CR19
– ident: 9094_CR21
– volume: 49
  start-page: 89
  year: 2013
  ident: 9094_CR67
  publication-title: Compos Part A-Appl S
  doi: 10.1016/j.compositesa.2013.02.009
– volume-title: Composites Technology
  year: 2014
  ident: 9094_CR58
– volume: 83
  start-page: 61
  year: 2014
  ident: 9094_CR50
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2014.07.027
– volume: 43
  start-page: 1419
  year: 2012
  ident: 9094_CR15
  publication-title: Compos Part A-Appl S
  doi: 10.1016/j.compositesa.2011.11.019
– start-page: 6
  volume-title: Boeing AERO Magazine
  year: 2008
  ident: 9094_CR60
– volume-title: Life-cycle environmental inventory of passenger transportation in the United States
  year: 2008
  ident: 9094_CR37
– volume: 83
  start-page: 98
  year: 2016
  ident: 9094_CR25
  publication-title: Compos Part A-Appl S
  doi: 10.1016/j.compositesa.2015.08.038
– volume: A5
  start-page: 132
  year: 2008
  ident: 9094_CR14
  publication-title: Techniques de l’Ingénieur
– ident: 9094_CR2
– ident: 9094_CR6
– volume: A3
  start-page: 985
  year: 1995
  ident: 9094_CR11
  publication-title: Techniques de l’Ingénieur
– volume-title: Hemp fibres for green products—An assessment of life cycle studies on hemp fibre applications
  year: 2011
  ident: 9094_CR49
– volume-title: Energy Systems Division, Argonne National Laboratory
  year: 2015
  ident: 9094_CR32
– volume: 94
  start-page: 327
  year: 2016
  ident: 9094_CR45
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2016.09.006
– start-page: 5
  volume-title: VDI ZRE Publikationen: Kurzanalyse Nr.3 und Dokumentation des Fachgesprächs
  year: 2013
  ident: 9094_CR70
– volume-title: Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Study Providing Data for the Automotive and Insulation Industry
  year: 2015
  ident: 9094_CR44
– ident: 9094_CR72
– volume: 33
  start-page: 58
  year: 2014
  ident: 9094_CR85
  publication-title: Reinf Plast Comp
  doi: 10.1177/0731684413502108
– volume: 74
  start-page: 135
  year: 2014
  ident: 9094_CR87
  publication-title: A life cycle assessment perspective. J Clean Prod
– ident: 9094_CR20
– volume-title: The 18th International Conference on Composite Materials. South Korea
  year: 2011
  ident: 9094_CR27
– volume: 58
  start-page: 80
  year: 2016
  ident: 9094_CR54
  publication-title: J Miner, Metal Mater Soc
  doi: 10.1007/s11837-006-0234-2
– volume: 3
  start-page: 189
  year: 1995
  ident: 9094_CR63
  publication-title: J Clean Prod
  doi: 10.1016/0959-6526(95)00081-X
– volume-title: Review of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in shipping containers
  year: 2013
  ident: 9094_CR57
– volume: 40
  start-page: 1257
  year: 2009
  ident: 9094_CR28
  publication-title: Compos Part A-Appl S
  doi: 10.1016/j.compositesa.2009.05.020
– ident: 9094_CR24
– volume-title: CCeV and AVK
  year: 2015
  ident: 9094_CR59
– volume: 112
  start-page: 1001
  year: 2016
  ident: 9094_CR61
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.08.104
– volume: 104
  start-page: 17
  year: 2016
  ident: 9094_CR76
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2016.08.015
– volume-title: 18th International Conference on Composite Materials. Jeju, Korea
  year: 2016
  ident: 9094_CR86
– volume-title: Carbon Fibers
  year: 1972
  ident: 9094_CR18
– volume-title: Proceedings of the 7th International CFK-Valley Stade Convention “Latest Innovations in CFRP Technology”. Chemnitz
  year: 2013
  ident: 9094_CR74
– volume: 132
  start-page: 266
  year: 2016
  ident: 9094_CR52
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.11.047
– ident: 9094_CR5
– volume-title: A life cycle assessment of the passenger air transport system using three flight scenarios
  year: 2013
  ident: 9094_CR41
– volume: 35
  start-page: 533
  year: 2015
  ident: 9094_CR22
  publication-title: J Reinf Plast Comp
  doi: 10.1177/0731684415623652
– ident: 9094_CR9
– volume: 51
  start-page: 53
  year: 2012
  ident: 9094_CR65
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2011.09.007
– ident: 9094_CR75
– volume-title: Swiss mobility days
  year: 2016
  ident: 9094_CR30
– volume: 72
  start-page: 61
  year: 2015
  ident: 9094_CR73
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2015.01.004
– ident: 9094_CR16
– ident: 9094_CR1
– volume: 56
  start-page: 280
  year: 2014
  ident: 9094_CR10
  publication-title: Compos Part A-Appl S
  doi: 10.1016/j.compositesa.2013.10.014
– volume-title: Life cycle assessment of biobased fibre-reinforced polymer composites
  year: 2014
  ident: 9094_CR36
– volume: 127
  start-page: 451
  year: 2016
  ident: 9094_CR62
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.03.139
– ident: 9094_CR23
– volume-title: Recycling carbon fibre
  year: 2009
  ident: 9094_CR80
– volume-title: Simposio de la Red Española de ACV: ACV & bioenergia, Spain
  year: 2013
  ident: 9094_CR34
– volume: 56
  start-page: 852
  year: 2014
  ident: 9094_CR26
  publication-title: Mater Des (1980-2015)
  doi: 10.1016/j.matdes.2013.11.077
– volume-title: Symposium on the Occasion of the 5th Anniversary of the Institute for Carbon Composites. Munich
  year: 2014
  ident: 9094_CR31
– volume-title: Proceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway
  year: 2013
  ident: 9094_CR66
– volume: 81
  start-page: 46
  year: 2014
  ident: 9094_CR79
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2014.06.023
– volume: 15
  start-page: 197
  year: 2010
  ident: 9094_CR77
  publication-title: Transport Res D-Transport Environ
  doi: 10.1016/j.trd.2010.02.001
SSID ssj0000389014
Score 2.4839501
SecondaryResourceType review_article
Snippet The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1301
SubjectTerms Air transportation
Aircraft components
Aircraft industry
Automobile industry
Automotive engineering
Aviation
Carbon fiber reinforced plastics
Carbon-epoxy composites
Composite materials
Engineering
Environmental effects
Environmental impact
Epoxy resins
Flammability
Flax
Fuel consumption
Gasoline
Life cycle assessment
Life cycle engineering
Life cycles
Mechanical properties
Polymer matrix composites
Review
Synthetic products
Thermosetting resins
可再生材料
潜在用途
环境分析
生命周期评估
生物纤维
综述
航空行业
高性能复合材料
Title Environmental analysis of innovative sustainable composites with potential use in aviation sector -A life cycle assessment review
URI http://lib.cqvip.com/qk/60110X/201709/673125779.html
https://link.springer.com/article/10.1007/s11431-016-9094-y
https://www.proquest.com/docview/1936252113
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RssCA-BSlpfLABLKUxE7SjFVVQCCYqARTZMcOIFUtkFKpG-I38Av5JdylSQMIkJhz50Q-O35nv3sGOPA9qY0ShmvpSi47yuUIYgOuSSvKSGL_UYHzxWVwOpBn1_51UcedlWz38kgy_1NXxW64tFPqG_AIcxI-q8GyT6k7DuKB111srJBinJNrehPBnofCc8vTzJ9aIU2Fu_Ho9hHf-HVtqgDntzPSfOk5Xoe1AjOy7jzIG7BkR5uw-klJcAte-1XBGpqqQmqEjVN2X9x7OrUsq6qlGHHJibBlM0Z7sexhPCHiEDo_ZxadmJrOo8ayfGP__eWty4b3KXrO8CuYWkh6snn5yzYMjvtXvVNeXK_AE0QhE5wffmqFiXSkpZKpG7pp6GpMbzzlS5Jd1r6TpDIM0dwoPzKOEIr61lpHOcKKHaiPxiO7CyxKA2ODjuo4iZWmIzSCLqvcJHRMgH8I2YDmopPjh7mMBjHKEF2FYdQAp-z2OCmUyemCjGFcaSpT1GJio1HU4lkDDhcuZXt_GLfKWMbFDM1iBK6Y-mH6KxpwVMb30-PfGtv7l3UTVjzCATkprQX1ydOz3UcUM9FtWO6e3Jz321DrBb12PoY_AOD-7po
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SlKC3hgAlkktZM0Y1WBylenInWL7NiBSlVbSEHqhvgN_EJ-CXdp0gICJObcnSJfHL-z3z0DHHk1qY0ShmvpSi7ryuUIYn2uSSvKSGL_UYPzTdtv3crLrtfNxaKpF-bb-f1pinhdUMHr8xArET5ZhCWJhTKx95p-c7adQjpxTqbkTbR6HoiaW5xh_hSFlBTuh4O7B1wfvq5Ic5j57WQ0W3DO12EtR4qsMU3tBizYwSasftIP3ILXs3mbGpqqXGCEDRPWy287fbYsnfdIMWKQE03Lpox2YNloOCa6EDo_pRadmHqe5oql2Xb--8tbg_V7CXpO8C2Ymgl5smnTyzbcnp91mi2eX6rAY8QeY5wVXmKFCXWopZKJG7hJ4GosamrKkyS2rD0nTmQQoLlRXmgcIRSNrbWOcoQVO1AaDAd2F1iY-Mb6dVV3YitNXWiEWla5ceAYH_8LsgyV2SBHo6l4BvHIEFMFQVgGpxj2KM71yOlajH40V1KmrEXEQaOsRZMyHM9cinh_GFeLXEb5vEwjhKtY8GHRK8pwUuT30-Pfgu39y_oQlludm-vo-qJ9VYGVGiGBjJZWhdL48cnuI44Z64PsC_4AhEzq-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfOL6zMGTEmw3abs9yuriGw8K3krSpLog3dWuwt7E3-Av9Jc408dWRQXPnaRlJmm-ycx8A7DtNaU2ShiupSu5bCmXI4j1uSauKCMp-48KnM8v_KNreXLj3ZR9TrMq270KSRY1DcTSlA72-ibZqwvf8JgnN9jnIfonfDgOk-io5HHatt8eXbIQe5yT83tTsj0PRNOtIps_zUL8Cne99PYB3_71nKrB57d4aX4MdeZgtsSPbL8w-DyM2XQBZj6xCi7C62FdvIaiqqQdYb2EdcseqM-WZXXlFKO8ckreshmje1nW75EucGWyp8ziIKaeCwuyLL_kf39522f33QRHDvErmBrRe7KiFGYJrjuHV-0jXrZa4DEikgHuFS-xwoQ61FLJxA3cJHA1ujpN5UmiYNaeEycyCFDcKC80jhCKdGutoxxhxTJMpL3UrgALE99Yv6VaTmylaQmNAMwqNw4c4-PfQjZgbaTkqF9QalB2GSKtIAgb4FRqj-KSpZyaZdxHNb8yWS2izDSyWjRswM5oSDXfH8LrlS2jcrdmEYJYdAPRFRYN2K3s--nxb5Ot_kt6C6YuDzrR2fHF6RpMNwke5Llq6zAxeHyyGwhuBnozX8AfoavzQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+analysis+of+innovative+sustainable+composites+with+potential+use+in+aviation+sector%E2%80%94A+life+cycle+assessment+review&rft.jtitle=Science+China.+Technological+sciences&rft.au=Bachmann%2C+Jens&rft.au=Hidalgo%2C+Carme&rft.au=Bricout%2C+St%C3%A9phanie&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=60&rft.issue=9&rft.spage=1301&rft.epage=1317&rft_id=info:doi/10.1007%2Fs11431-016-9094-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60110X%2F60110X.jpg