Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm

[Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 102; p. 102414
Main Authors Cao, Jingjing, Liu, Kai, Zhuo, Li, Liu, Lin, Zhu, Yuanhui, Peng, Liheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
DOI10.1016/j.jag.2021.102414

Cover

Abstract [Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from combining spectral and structural information. Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management.
AbstractList Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management.
[Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from combining spectral and structural information. Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management.
ArticleNumber 102414
Author Zhuo, Li
Zhu, Yuanhui
Peng, Liheng
Cao, Jingjing
Liu, Kai
Liu, Lin
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Cao
  fullname: Cao, Jingjing
  email: caojj5@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  email: liuk6@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 3
  givenname: Li
  surname: Zhuo
  fullname: Zhuo, Li
  email: zhuoli@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 4
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  email: liulin1@gzhu.edu.cn, lin.liu@uc.edu
  organization: Center of GeoInformatics for Public Security, School of Geographic Sciences, Guangzhou University, Guangzhou 510006, China
– sequence: 5
  givenname: Yuanhui
  surname: Zhu
  fullname: Zhu, Yuanhui
  email: zhuyhui2@gzhu.edu.cn
  organization: Center of GeoInformatics for Public Security, School of Geographic Sciences, Guangzhou University, Guangzhou 510006, China
– sequence: 6
  givenname: Liheng
  surname: Peng
  fullname: Peng, Liheng
  email: penglh6@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
BookMark eNp9kU9v1DAQxSNUJNrCB-DmI5csHseJbXFaLf8qrYSEKOJmTWwn6yiJFztb0W-PQ-DCoSfbo3lvPO93U1zNYXZF8RroDig0b4fdgP2OUQb5zTjwZ8U1SMFKyZofV_leN6qUvGIvipuUBkpBiEZeF78OYWr97Oee3O-_ly0mZ8np8exiOjuzRBwJzpYc_fv9V2JxQdKFSCac-xgeHFmbvEvEjJiS77zBxYeZXNJquJwciWHZSlnm0kJw7EP0y2l6WTzvcEzu1d_ztrj_-OHb4XN5_PLp7rA_loZXaikBFTfQ0EYx3nWSd0ZYZaGTKGjFpeGtBGa4UswhsopTh4qxhglFuQQrqtvibvO1AQd9jn7C-KgDev2nEGKvMS7ejE5jXVegAE1bM66gai0FXrXCdFwZW5vs9WbzOsfw85LX0ZNPxo0jzi5ckmaNqGvJgK9jxdZqYkgpuk4bvyWRM_WjBqpXbnrQmZteuemNW1bCf8p_n35K827TuJzkg3dRp4xlNs76mCnmVf0T6t-inLJp
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110870
crossref_primary_10_1080_01431161_2024_2429784
crossref_primary_10_3389_fpls_2022_964769
crossref_primary_10_1088_1742_6596_2123_1_012010
crossref_primary_10_1080_10106049_2024_2405123
crossref_primary_10_5194_bg_21_929_2024
crossref_primary_10_1016_j_neunet_2023_04_019
crossref_primary_10_1080_15481603_2023_2171706
crossref_primary_10_1016_j_isprsjprs_2022_12_003
crossref_primary_10_1029_2024JG008112
crossref_primary_10_1111_ele_14123
crossref_primary_10_1016_j_ejrs_2024_08_005
crossref_primary_10_1080_17538947_2024_2346277
crossref_primary_10_1007_s10661_022_09902_z
crossref_primary_10_3934_era_2024260
crossref_primary_10_3389_fmars_2025_1502123
crossref_primary_10_1007_s12237_023_01288_6
Cites_doi 10.1023/A:1010933404324
10.3390/rs12040656
10.1080/10106049.2015.1128486
10.1016/j.agrformet.2019.107744
10.3390/rs9090875
10.1016/j.isprsjprs.2013.11.013
10.1016/j.isprsjprs.2019.01.021
10.3390/rs10010089
10.1007/BF02295996
10.3390/rs10030467
10.1080/10106049.2018.1520923
10.5194/isprs-archives-XLII-2-W6-209-2017
10.1016/j.rse.2019.111543
10.1088/1681-7575/ab3261
10.1016/j.rse.2021.112285
10.1007/s40725-015-0019-3
10.1007/s12524-015-0543-4
10.1016/j.rse.2019.111223
10.1016/j.agrformet.2018.08.019
10.1016/S0034-4257(97)00083-7
10.1016/j.isprsjprs.2015.03.002
10.1080/07038992.2016.1160772
10.1080/01431161.2020.1714771
10.1080/10106049.2016.1277273
10.1111/gcb.12341
10.1111/j.1466-8238.2010.00584.x
10.1016/j.rse.2021.112403
10.1109/MGRS.2018.2867592
10.1016/j.rse.2020.112012
10.1109/36.3001
10.1016/j.isprsjprs.2020.11.008
10.3390/rs13081529
10.1016/j.rse.2020.112223
10.1016/j.isprsjprs.2014.12.026
10.1016/j.isprsjprs.2015.08.002
10.3390/rs70912192
10.1109/LGRS.2013.2254108
10.1016/j.rse.2018.12.034
10.3390/rs11172043
10.3390/rs3102222
10.3390/rs12101683
10.1146/annurev-environ-101718-033302
10.1007/s10994-005-0466-3
10.1080/014311698215801
10.1080/01431161.2019.1648907
10.3390/rs11030230
10.3390/s18040944
10.3390/rs11111338
10.1002/9781118801628.ch10
10.1109/TPAMI.2006.211
10.3390/rs12122039
10.1037/h0026256
10.3390/s17040777
10.1109/JSTARS.2017.2782324
10.1016/j.agrformet.2012.11.012
10.1016/j.agrformet.2019.02.015
10.3390/rs5073562
10.1016/j.ecss.2007.08.024
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2021.102414
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_a553191acb524913bd0143b7cf49cd5c
10_1016_j_jag_2021_102414
S0303243421001215
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-1a94c1606924ff84fc7d9d1f8a70348c4b812c4992eaa2340ea92262790481d73
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:28:45 EDT 2025
Thu Sep 04 16:33:03 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Tue Jul 01 02:15:18 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Rotation forest (RoF)
Light detection and ranging (LiDAR)
Unmanned aerial vehicle (UAV)
Mangrove species classification
Hyperspectral imaging
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-1a94c1606924ff84fc7d9d1f8a70348c4b812c4992eaa2340ea92262790481d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0303243421001215
PQID 2675582147
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_a553191acb524913bd0143b7cf49cd5c
proquest_miscellaneous_2675582147
crossref_citationtrail_10_1016_j_jag_2021_102414
crossref_primary_10_1016_j_jag_2021_102414
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Jia, Yin, Tian (b0270) 2019; 231
Pourshamsi, Xia, Yokoya, Garcia, Lavalle, Pottier, Balzter (b0225) 2021; 172
Zhang, Wang, Liu, Jia, Lin, Chu, Devlin (b0305) 2018; 10
Ghosh, Fassnacht, Joshi, Kochb (b0090) 2014; 26
Chakravortty, Li, Plaza (b0045) 2018; 11
Zhu, Liu, Myint, Du, Li, Cao, Liu, Wu (b0325) 2020; 12
Stehman (b0255) 1997; 62
Akar (b0015) 2018; 33
Xia, Du, He, Chanussot (b0290) 2014; 11
Torabzadeh, Leiterer, Hueni, Schaepman, Morsdorf (b0260) 2019; 279
Sothe, Dalponte, Almeida, Schimalski, Lima, Liesenberg, Miyoshi, Tommaselli (b0250) 2019; 11
Dan, Liao, Wu, Wu, Bao, Dan, Liu (b0060) 2016; 25
Sankey, Sankey, Li, Ravi, Wang, Caster, Kasprak (b0245) 2021; 253
Alongi (b0020) 2008; 76
Landwehr, Hall, Frank (b0160) 2005; 59
Ma, Cheng, Li, Liu, Ma (b0195) 2015; 102
Zhu, Liu, Liu, Wang, Liu (b0330) 2015; 7
Luo, Chen, Tian, Qin, Qian (b0190) 2016; 42
Saintilan, Wilson, Rogers, Rajkaran, Krauss (b0235) 2014; 20
Breiman (b0035) 2001; 45
Wang, Chen, Guan, Liao, He, Chen, Xie (b0280) 2017; 37
Jia, Wang, Mao, Ren, Wang, Wang (b0125) 2021; 255
Li, Wong, Fung (b0170) 2021; 258
Wang, Xia, Zhou, Liu, Chen (b0275) 2005; 3
Zhu, Hou, Weng, Chen (b0320) 2019; 149
Rodriguez, Kuncheva, Alonso (b0230) 2006; 28
Zhong, Wang, Xu, Wang, Jia, Hu, Zhao, Wei, Zhang (b0310) 2018; 6
Aasen, Burkart, Bolten, Bareth (b0005) 2015; 108
Jia, Wang, Zhang, Mao, Wang (b0135) 2018; 73
Wan, Lin, Zhang, Wang, Liu, Lin (b0265) 2020; 12
Lucas, Van De Kerchove, Otero, Lagomasino, Fatoyinbo, Omar, Satyanarayana, Dahdouh-Guebas (b0185) 2020; 237
Green, Clark, Mumby, Edwards, Ellis (b0105) 1998; 19
Jia, Wang, Wang, Mao, Zhang (b0130) 2019; 11
Giri, Ochieng, Tieszen, Zhu, Singh, Loveland, Masek, Duke (b0095) 2011; 20
Friess, Rogers, Lovelock, Krauss, Hamilton, Lee, Lucas, Primavera, Rajkaran, Shi (b0085) 2019; 44
Manna, Raychaudhuri (b0200) 2020; 35
Fan, Yue, Wu, Zhang, Cai, Wang, Lu, Xiang (b0080) 2018; 263
Wen, Hughes (b0285) 2020; 12
Dian, Pang, Dong, Li (b0070) 2016; 44
Colkesen, Kavzoglu (b0055) 2017; 32
Abdel-Rahman, Mutanga, Adam, Ismail (b0010) 2014; 88
Li, Hu, Noland (b0165) 2013; 171–172
Green, Berman, Switzer, Craig (b0100) 1988; 26
Zhong, Hu, Luo, Wang, Zhao, Zhang (b0315) 2020; 250
Jiang, Zhang, Yan, Qi, Fu, Fan, Chen (b0140) 2021; 13
Davis, Synes, Fricker, McCullough, Serra-Diaz, Franklin, Flint (b0065) 2019; 269–270
Li, Wong, Fung (b0175) 2017; XLII-2/W6
Cao, Leng, Liu, Liu, He, Zhu (b0040) 2018; 10
Im, Quackenbush, Li, Fang (b0120) 2014; 197–214
Liu, Liao (b0180) 2013; 32
Baatz, Schäpe (b0025) 2000
Xu, Morgenroth, Manley (b0295) 2015; 1
Hall (b0115) 1999
McNemar (b0205) 1947; 12
Piiroinen, Heiskanen, Maeda, Viinikka, Pellikka (b0220) 2017; 9
Yin, Wang (b0300) 2019; 223
Koedsin, Vaiphasa (b0150) 2013; 5
Kamal, Phinn (b0145) 2011; 3
Du, Samat, Waske, Liu, Li (b0075) 2015; 105
Pham, Yokoya, Bui, Yoshino, Friess (b0215) 2019; 11
Peng, Liu, Cao, Zhu, Li, Liu (b0210) 2019; 41
Banerjee, Raval, Cullen (b0030) 2020; 41
Sandino, Pegg, Gonzalez, Smith (b0240) 2018; 18
Kokka, Pulli, Honkavaara, Markelin, Kärhä, Ikonen (b0155) 2019; 56
Guo, Li, Sheng, Xu, Wu (b0110) 2017; 17
Cohen (b0050) 1968; 70
Ma (10.1016/j.jag.2021.102414_b0195) 2015; 102
Luo (10.1016/j.jag.2021.102414_b0190) 2016; 42
Dian (10.1016/j.jag.2021.102414_b0070) 2016; 44
Liu (10.1016/j.jag.2021.102414_b0180) 2013; 32
Zhong (10.1016/j.jag.2021.102414_b0315) 2020; 250
Im (10.1016/j.jag.2021.102414_b0120) 2014; 197–214
Wang (10.1016/j.jag.2021.102414_b0275) 2005; 3
Dan (10.1016/j.jag.2021.102414_b0060) 2016; 25
Kokka (10.1016/j.jag.2021.102414_b0155) 2019; 56
Koedsin (10.1016/j.jag.2021.102414_b0150) 2013; 5
Banerjee (10.1016/j.jag.2021.102414_b0030) 2020; 41
Jia (10.1016/j.jag.2021.102414_b0125) 2021; 255
Li (10.1016/j.jag.2021.102414_b0165) 2013; 171–172
Xu (10.1016/j.jag.2021.102414_b0295) 2015; 1
Zhu (10.1016/j.jag.2021.102414_b0320) 2019; 149
Green (10.1016/j.jag.2021.102414_b0105) 1998; 19
Giri (10.1016/j.jag.2021.102414_b0095) 2011; 20
Sothe (10.1016/j.jag.2021.102414_b0250) 2019; 11
Du (10.1016/j.jag.2021.102414_b0075) 2015; 105
Jia (10.1016/j.jag.2021.102414_b0130) 2019; 11
Li (10.1016/j.jag.2021.102414_b0170) 2021; 258
Lucas (10.1016/j.jag.2021.102414_b0185) 2020; 237
Fan (10.1016/j.jag.2021.102414_b0080) 2018; 263
Ghosh (10.1016/j.jag.2021.102414_b0090) 2014; 26
Pourshamsi (10.1016/j.jag.2021.102414_b0225) 2021; 172
Aasen (10.1016/j.jag.2021.102414_b0005) 2015; 108
Jia (10.1016/j.jag.2021.102414_b0135) 2018; 73
Abdel-Rahman (10.1016/j.jag.2021.102414_b0010) 2014; 88
Wang (10.1016/j.jag.2021.102414_b0270) 2019; 231
Cao (10.1016/j.jag.2021.102414_b0040) 2018; 10
Alongi (10.1016/j.jag.2021.102414_b0020) 2008; 76
Baatz (10.1016/j.jag.2021.102414_b0025) 2000
Zhu (10.1016/j.jag.2021.102414_b0330) 2015; 7
Breiman (10.1016/j.jag.2021.102414_b0035) 2001; 45
Sankey (10.1016/j.jag.2021.102414_b0245) 2021; 253
Akar (10.1016/j.jag.2021.102414_b0015) 2018; 33
Wang (10.1016/j.jag.2021.102414_b0280) 2017; 37
Chakravortty (10.1016/j.jag.2021.102414_b0045) 2018; 11
Cohen (10.1016/j.jag.2021.102414_b0050) 1968; 70
Colkesen (10.1016/j.jag.2021.102414_b0055) 2017; 32
Li (10.1016/j.jag.2021.102414_b0175) 2017; XLII-2/W6
Green (10.1016/j.jag.2021.102414_b0100) 1988; 26
Sandino (10.1016/j.jag.2021.102414_b0240) 2018; 18
Xia (10.1016/j.jag.2021.102414_b0290) 2014; 11
Peng (10.1016/j.jag.2021.102414_b0210) 2019; 41
Kamal (10.1016/j.jag.2021.102414_b0145) 2011; 3
Landwehr (10.1016/j.jag.2021.102414_b0160) 2005; 59
Wen (10.1016/j.jag.2021.102414_b0285) 2020; 12
McNemar (10.1016/j.jag.2021.102414_b0205) 1947; 12
Rodriguez (10.1016/j.jag.2021.102414_b0230) 2006; 28
Stehman (10.1016/j.jag.2021.102414_b0255) 1997; 62
Davis (10.1016/j.jag.2021.102414_b0065) 2019; 269–270
Jiang (10.1016/j.jag.2021.102414_b0140) 2021; 13
Zhu (10.1016/j.jag.2021.102414_b0325) 2020; 12
Torabzadeh (10.1016/j.jag.2021.102414_b0260) 2019; 279
Pham (10.1016/j.jag.2021.102414_b0215) 2019; 11
Wan (10.1016/j.jag.2021.102414_b0265) 2020; 12
Friess (10.1016/j.jag.2021.102414_b0085) 2019; 44
Zhong (10.1016/j.jag.2021.102414_b0310) 2018; 6
Zhang (10.1016/j.jag.2021.102414_b0305) 2018; 10
Manna (10.1016/j.jag.2021.102414_b0200) 2020; 35
Yin (10.1016/j.jag.2021.102414_b0300) 2019; 223
Hall (10.1016/j.jag.2021.102414_b0115) 1999
Piiroinen (10.1016/j.jag.2021.102414_b0220) 2017; 9
Guo (10.1016/j.jag.2021.102414_b0110) 2017; 17
Saintilan (10.1016/j.jag.2021.102414_b0235) 2014; 20
References_xml – volume: 3
  start-page: 13
  year: 2005
  end-page: 20
  ident: b0275
  article-title: The change of mangrove wetland ecosystem and controlling countermeasures in the Qi'ao Island
  publication-title: Wetland Sci.
– volume: 11
  start-page: 230
  year: 2019
  ident: b0215
  article-title: Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges
  publication-title: Remote Sens.
– volume: 10
  start-page: 89
  year: 2018
  ident: b0040
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
– volume: 171–172
  start-page: 104
  year: 2013
  end-page: 114
  ident: b0165
  article-title: Classification of tree species based on structural features derived from high density LiDAR data
  publication-title: Agric. For. Meteorol.
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: b0230
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 595
  year: 2016
  end-page: 603
  ident: b0070
  article-title: Urban tree species mapping using airborne LiDAR and hyperspectral data
  publication-title: J. Indian Soc. Remote Sens.
– volume: 37
  start-page: 86
  year: 2017
  end-page: 91
  ident: b0280
  article-title: Study on Zhuhai Qi'ao island main mangrove community characteristics
  publication-title: J. Central South Univ. Forestry Technol.
– volume: 11
  start-page: 1244
  year: 2018
  end-page: 1252
  ident: b0045
  article-title: A technique for subpixel analysis of dynamic mangrove ecosystems with time-series hyperspectral image data
  publication-title: Sel. Top. Appl. Earth Observ. Remote Sens. IEEE J.
– volume: 42
  start-page: 106
  year: 2016
  end-page: 116
  ident: b0190
  article-title: Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising
  publication-title: Can. J. Remote Sens.
– volume: 32
  start-page: 71
  year: 2017
  end-page: 86
  ident: b0055
  article-title: The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery
  publication-title: Geocarto Int.
– volume: 253
  start-page: 112223
  year: 2021
  ident: b0245
  article-title: Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland
  publication-title: Remote Sens. Environ.
– volume: 73
  start-page: 535
  year: 2018
  end-page: 545
  ident: b0135
  article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 944
  year: 2018
  ident: b0240
  article-title: Aerial mapping of forests affected by Pathogens using UAVs, hyperspectral sensors, and artificial intelligence
  publication-title: Sensors
– volume: 1
  start-page: 206
  year: 2015
  end-page: 219
  ident: b0295
  article-title: Integrating data from discrete return airborne LiDAR and optical sensors to enhance the accuracy of forest description: a review
  publication-title: Curr. For. Rep.
– volume: 279
  start-page: 107744
  year: 2019
  ident: b0260
  article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning
  publication-title: Agric. For. Meteorol.
– volume: 62
  start-page: 77
  year: 1997
  end-page: 89
  ident: b0255
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 12192
  year: 2015
  end-page: 12214
  ident: b0330
  article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images
  publication-title: Remote Sens.
– volume: 88
  start-page: 48
  year: 2014
  end-page: 59
  ident: b0010
  article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 26
  start-page: 49
  year: 2014
  end-page: 63
  ident: b0090
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 25
  start-page: 1237
  year: 2016
  end-page: 1243
  ident: b0060
  article-title: Resources, conservation status and main threats of mangrove wetlands in China
  publication-title: Ecol. Environ. Sci.
– volume: 108
  start-page: 245
  year: 2015
  end-page: 259
  ident: b0005
  article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 6
  start-page: 46
  year: 2018
  end-page: 62
  ident: b0310
  article-title: Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 19
  start-page: 935
  year: 1998
  end-page: 956
  ident: b0105
  article-title: Remote sensing techniques for mangrove mapping
  publication-title: Int. J. Remote Sens.
– volume: 76
  start-page: 1
  year: 2008
  end-page: 13
  ident: b0020
  article-title: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 105
  start-page: 38
  year: 2015
  end-page: 53
  ident: b0075
  article-title: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 102
  start-page: 14
  year: 2015
  end-page: 27
  ident: b0195
  article-title: Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 656
  year: 2020
  ident: b0265
  article-title: GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong
  publication-title: Remote Sens.
– volume: 11
  start-page: 2043
  year: 2019
  ident: b0130
  article-title: A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery
  publication-title: Remote Sens.
– volume: 44
  start-page: 89
  year: 2019
  end-page: 115
  ident: b0085
  article-title: The state of the world's mangrove forests: past, present, and future
  publication-title: Annu. Rev. Environ. Resour.
– volume: 197–214
  year: 2014
  ident: b0120
  article-title: Optimum scale in object-based image analysis
  publication-title: Scale Issues Remote Sens.
– volume: 56
  start-page: 055001
  year: 2019
  ident: b0155
  article-title: Flat-field calibration method for hyperspectral frame cameras
  publication-title: Metrologia
– volume: 33
  start-page: 538
  year: 2018
  end-page: 553
  ident: b0015
  article-title: The Rotation Forest algorithm and object-based classification method for land use mapping through UAV images
  publication-title: Geocarto Int.
– volume: 70
  start-page: 213
  year: 1968
  end-page: 220
  ident: b0050
  article-title: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit
  publication-title: Psychol. Bull.
– volume: 32
  start-page: 534
  year: 2013
  end-page: 539
  ident: b0180
  article-title: Mangrove reform-planting trial on Qi'ao Island
  publication-title: Ecol. Sci.
– volume: 11
  start-page: 239
  year: 2014
  end-page: 243
  ident: b0290
  article-title: Hyperspectral remote sensing image classification based on rotation forest
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 223
  start-page: 34
  year: 2019
  end-page: 49
  ident: b0300
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges
  publication-title: Remote Sens. Environ.
– volume: 255
  start-page: 112285
  year: 2021
  ident: b0125
  article-title: Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine
  publication-title: Remote Sens. Environ.
– volume: 263
  start-page: 225
  year: 2018
  end-page: 241
  ident: b0080
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
– volume: 3
  start-page: 2222
  year: 2011
  end-page: 2242
  ident: b0145
  article-title: Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach
  publication-title: Remote Sens.
– volume: 20
  start-page: 154
  year: 2011
  end-page: 159
  ident: b0095
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Glob. Ecol. Biogeogr.
– volume: 26
  start-page: 65
  year: 1988
  end-page: 74
  ident: b0100
  article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 13
  start-page: 1529
  year: 2021
  ident: b0140
  article-title: High-resolution mangrove forests classification with machine learning using Worldview and UAV hyperspectral data
  publication-title: Remote Sens.
– volume: 172
  start-page: 79
  year: 2021
  end-page: 94
  ident: b0225
  article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 269–270
  start-page: 192
  year: 2019
  end-page: 202
  ident: b0065
  article-title: LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 875
  year: 2017
  ident: b0220
  article-title: Classification of tree species in a diverse African agroforestry landscape using imaging spectroscopy and laser scanning
  publication-title: Remote Sens.
– start-page: 12
  year: 2000
  end-page: 23
  ident: b0025
  article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
  publication-title: Angewandte Geographische Informations-Verarbeitung
– volume: 35
  start-page: 434
  year: 2020
  end-page: 452
  ident: b0200
  article-title: Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition
  publication-title: Geocarto Int.
– volume: 258
  start-page: 112403
  year: 2021
  ident: b0170
  article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: b0205
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– volume: 41
  start-page: 813
  year: 2019
  end-page: 838
  ident: b0210
  article-title: Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods
  publication-title: Int. J. Remote Sens.
– volume: 17
  start-page: 777
  year: 2017
  ident: b0110
  article-title: A review of wetland remote sensing
  publication-title: Sensors
– volume: 231
  start-page: 111223
  year: 2019
  ident: b0270
  article-title: A review of remote sensing for mangrove forests: 1956–2018
  publication-title: Remote Sens. Environ.
– volume: 237
  start-page: 111543
  year: 2020
  ident: b0185
  article-title: Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2039
  year: 2020
  ident: b0325
  article-title: Integration of GF2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China's largest artificially planted mangroves
  publication-title: Remote Sens.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 149
  start-page: 146
  year: 2019
  end-page: 156
  ident: b0320
  article-title: Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 359
  year: 1999
  end-page: 366
  ident: b0115
  article-title: Feature selection for discrete and numeric class machine learning
  publication-title: Proc. 17th International Conference on Machine Learning
– volume: 59
  start-page: 161
  year: 2005
  end-page: 205
  ident: b0160
  article-title: Logistic Model Trees
  publication-title: Mach. Learn.
– volume: XLII-2/W6
  start-page: 209
  year: 2017
  end-page: 215
  ident: b0175
  article-title: Assessing the utility of UAV-borne hyperspectral image and photogrammetry derived 3D data for wetland species distribution quick mapping
  publication-title: ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 41
  start-page: 4136
  year: 2020
  end-page: 4159
  ident: b0030
  article-title: UAV-hyperspectral imaging of spectrally complex environments
  publication-title: Int. J. Remote Sens.
– volume: 250
  start-page: 112012
  year: 2020
  ident: b0315
  article-title: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1683
  year: 2020
  ident: b0285
  article-title: Coastal wetland mapping using ensemble learning algorithms: a comparative study of bagging, boosting and stacking techniques
  publication-title: Remote Sens.
– volume: 5
  start-page: 3562
  year: 2013
  end-page: 3582
  ident: b0150
  article-title: Discrimination of tropical mangroves at the species level with EO-1 hyperion data
  publication-title: Remote Sens.
– volume: 20
  start-page: 147
  year: 2014
  end-page: 157
  ident: b0235
  article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits
  publication-title: Glob. Change Biol.
– volume: 10
  start-page: 467
  year: 2018
  ident: b0305
  article-title: Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest
  publication-title: Remote Sens.
– volume: 11
  start-page: 1338
  year: 2019
  ident: b0250
  article-title: Species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data
  publication-title: Remote Sens.
– volume: 26
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.jag.2021.102414_b0090
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jag.2021.102414_b0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 12
  start-page: 656
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0265
  article-title: GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong
  publication-title: Remote Sens.
  doi: 10.3390/rs12040656
– volume: 32
  start-page: 71
  year: 2017
  ident: 10.1016/j.jag.2021.102414_b0055
  article-title: The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2015.1128486
– volume: 25
  start-page: 1237
  issue: 7
  year: 2016
  ident: 10.1016/j.jag.2021.102414_b0060
  article-title: Resources, conservation status and main threats of mangrove wetlands in China
  publication-title: Ecol. Environ. Sci.
– volume: 279
  start-page: 107744
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0260
  article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107744
– volume: 9
  start-page: 875
  issue: 9
  year: 2017
  ident: 10.1016/j.jag.2021.102414_b0220
  article-title: Classification of tree species in a diverse African agroforestry landscape using imaging spectroscopy and laser scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs9090875
– volume: 88
  start-page: 48
  year: 2014
  ident: 10.1016/j.jag.2021.102414_b0010
  article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.013
– volume: 149
  start-page: 146
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0320
  article-title: Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.021
– volume: 10
  start-page: 89
  issue: 2
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0040
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
  doi: 10.3390/rs10010089
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  ident: 10.1016/j.jag.2021.102414_b0205
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 10
  start-page: 467
  issue: 3
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0305
  article-title: Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest
  publication-title: Remote Sens.
  doi: 10.3390/rs10030467
– volume: 35
  start-page: 434
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0200
  article-title: Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1520923
– start-page: 12
  year: 2000
  ident: 10.1016/j.jag.2021.102414_b0025
  article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
– volume: XLII-2/W6
  start-page: 209
  year: 2017
  ident: 10.1016/j.jag.2021.102414_b0175
  article-title: Assessing the utility of UAV-borne hyperspectral image and photogrammetry derived 3D data for wetland species distribution quick mapping
  publication-title: ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W6-209-2017
– volume: 237
  start-page: 111543
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0185
  article-title: Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111543
– volume: 56
  start-page: 055001
  issue: 5
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0155
  article-title: Flat-field calibration method for hyperspectral frame cameras
  publication-title: Metrologia
  doi: 10.1088/1681-7575/ab3261
– volume: 255
  start-page: 112285
  year: 2021
  ident: 10.1016/j.jag.2021.102414_b0125
  article-title: Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112285
– volume: 1
  start-page: 206
  issue: 3
  year: 2015
  ident: 10.1016/j.jag.2021.102414_b0295
  article-title: Integrating data from discrete return airborne LiDAR and optical sensors to enhance the accuracy of forest description: a review
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-015-0019-3
– volume: 44
  start-page: 595
  issue: 4
  year: 2016
  ident: 10.1016/j.jag.2021.102414_b0070
  article-title: Urban tree species mapping using airborne LiDAR and hyperspectral data
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-015-0543-4
– volume: 231
  start-page: 111223
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0270
  article-title: A review of remote sensing for mangrove forests: 1956–2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111223
– volume: 263
  start-page: 225
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0080
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.08.019
– volume: 62
  start-page: 77
  year: 1997
  ident: 10.1016/j.jag.2021.102414_b0255
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00083-7
– volume: 105
  start-page: 38
  year: 2015
  ident: 10.1016/j.jag.2021.102414_b0075
  article-title: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.002
– volume: 42
  start-page: 106
  issue: 2
  year: 2016
  ident: 10.1016/j.jag.2021.102414_b0190
  article-title: Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1160772
– volume: 41
  start-page: 4136
  issue: 11
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0030
  article-title: UAV-hyperspectral imaging of spectrally complex environments
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1714771
– volume: 33
  start-page: 538
  issue: 5
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0015
  article-title: The Rotation Forest algorithm and object-based classification method for land use mapping through UAV images
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2016.1277273
– volume: 20
  start-page: 147
  year: 2014
  ident: 10.1016/j.jag.2021.102414_b0235
  article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12341
– volume: 20
  start-page: 154
  issue: 1
  year: 2011
  ident: 10.1016/j.jag.2021.102414_b0095
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00584.x
– volume: 258
  start-page: 112403
  year: 2021
  ident: 10.1016/j.jag.2021.102414_b0170
  article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112403
– volume: 6
  start-page: 46
  issue: 4
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0310
  article-title: Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2018.2867592
– volume: 250
  start-page: 112012
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0315
  article-title: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112012
– volume: 26
  start-page: 65
  issue: 1
  year: 1988
  ident: 10.1016/j.jag.2021.102414_b0100
  article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/36.3001
– volume: 172
  start-page: 79
  year: 2021
  ident: 10.1016/j.jag.2021.102414_b0225
  article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.008
– volume: 37
  start-page: 86
  issue: 4
  year: 2017
  ident: 10.1016/j.jag.2021.102414_b0280
  article-title: Study on Zhuhai Qi'ao island main mangrove community characteristics
  publication-title: J. Central South Univ. Forestry Technol.
– volume: 13
  start-page: 1529
  issue: 8
  year: 2021
  ident: 10.1016/j.jag.2021.102414_b0140
  article-title: High-resolution mangrove forests classification with machine learning using Worldview and UAV hyperspectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs13081529
– volume: 253
  start-page: 112223
  year: 2021
  ident: 10.1016/j.jag.2021.102414_b0245
  article-title: Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112223
– volume: 102
  start-page: 14
  year: 2015
  ident: 10.1016/j.jag.2021.102414_b0195
  article-title: Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.026
– volume: 108
  start-page: 245
  year: 2015
  ident: 10.1016/j.jag.2021.102414_b0005
  article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.08.002
– volume: 7
  start-page: 12192
  issue: 9
  year: 2015
  ident: 10.1016/j.jag.2021.102414_b0330
  article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images
  publication-title: Remote Sens.
  doi: 10.3390/rs70912192
– start-page: 359
  year: 1999
  ident: 10.1016/j.jag.2021.102414_b0115
  article-title: Feature selection for discrete and numeric class machine learning
– volume: 11
  start-page: 239
  year: 2014
  ident: 10.1016/j.jag.2021.102414_b0290
  article-title: Hyperspectral remote sensing image classification based on rotation forest
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2254108
– volume: 223
  start-page: 34
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0300
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.034
– volume: 11
  start-page: 2043
  issue: 17
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0130
  article-title: A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11172043
– volume: 3
  start-page: 2222
  issue: 10
  year: 2011
  ident: 10.1016/j.jag.2021.102414_b0145
  article-title: Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach
  publication-title: Remote Sens.
  doi: 10.3390/rs3102222
– volume: 12
  start-page: 1683
  issue: 10
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0285
  article-title: Coastal wetland mapping using ensemble learning algorithms: a comparative study of bagging, boosting and stacking techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs12101683
– volume: 44
  start-page: 89
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0085
  article-title: The state of the world's mangrove forests: past, present, and future
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-101718-033302
– volume: 59
  start-page: 161
  year: 2005
  ident: 10.1016/j.jag.2021.102414_b0160
  article-title: Logistic Model Trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-005-0466-3
– volume: 19
  start-page: 935
  issue: 5
  year: 1998
  ident: 10.1016/j.jag.2021.102414_b0105
  article-title: Remote sensing techniques for mangrove mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215801
– volume: 41
  start-page: 813
  issue: 3
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0210
  article-title: Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1648907
– volume: 11
  start-page: 230
  issue: 3
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0215
  article-title: Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges
  publication-title: Remote Sens.
  doi: 10.3390/rs11030230
– volume: 18
  start-page: 944
  issue: 4
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0240
  article-title: Aerial mapping of forests affected by Pathogens using UAVs, hyperspectral sensors, and artificial intelligence
  publication-title: Sensors
  doi: 10.3390/s18040944
– volume: 11
  start-page: 1338
  issue: 11
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0250
  article-title: Species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs11111338
– volume: 197–214
  year: 2014
  ident: 10.1016/j.jag.2021.102414_b0120
  article-title: Optimum scale in object-based image analysis
  publication-title: Scale Issues Remote Sens.
  doi: 10.1002/9781118801628.ch10
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 10.1016/j.jag.2021.102414_b0230
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
– volume: 12
  start-page: 2039
  issue: 12
  year: 2020
  ident: 10.1016/j.jag.2021.102414_b0325
  article-title: Integration of GF2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China's largest artificially planted mangroves
  publication-title: Remote Sens.
  doi: 10.3390/rs12122039
– volume: 70
  start-page: 213
  issue: 4
  year: 1968
  ident: 10.1016/j.jag.2021.102414_b0050
  article-title: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit
  publication-title: Psychol. Bull.
  doi: 10.1037/h0026256
– volume: 73
  start-page: 535
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0135
  article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 17
  start-page: 777
  issue: 4
  year: 2017
  ident: 10.1016/j.jag.2021.102414_b0110
  article-title: A review of wetland remote sensing
  publication-title: Sensors
  doi: 10.3390/s17040777
– volume: 11
  start-page: 1244
  issue: 4
  year: 2018
  ident: 10.1016/j.jag.2021.102414_b0045
  article-title: A technique for subpixel analysis of dynamic mangrove ecosystems with time-series hyperspectral image data
  publication-title: Sel. Top. Appl. Earth Observ. Remote Sens. IEEE J.
  doi: 10.1109/JSTARS.2017.2782324
– volume: 3
  start-page: 13
  year: 2005
  ident: 10.1016/j.jag.2021.102414_b0275
  article-title: The change of mangrove wetland ecosystem and controlling countermeasures in the Qi'ao Island
  publication-title: Wetland Sci.
– volume: 171–172
  start-page: 104
  year: 2013
  ident: 10.1016/j.jag.2021.102414_b0165
  article-title: Classification of tree species based on structural features derived from high density LiDAR data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.11.012
– volume: 269–270
  start-page: 192
  year: 2019
  ident: 10.1016/j.jag.2021.102414_b0065
  article-title: LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.02.015
– volume: 5
  start-page: 3562
  issue: 7
  year: 2013
  ident: 10.1016/j.jag.2021.102414_b0150
  article-title: Discrimination of tropical mangroves at the species level with EO-1 hyperion data
  publication-title: Remote Sens.
  doi: 10.3390/rs5073562
– volume: 32
  start-page: 534
  issue: 5
  year: 2013
  ident: 10.1016/j.jag.2021.102414_b0180
  article-title: Mangrove reform-planting trial on Qi'ao Island
  publication-title: Ecol. Sci.
– volume: 76
  start-page: 1
  year: 2008
  ident: 10.1016/j.jag.2021.102414_b0020
  article-title: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2007.08.024
SSID ssj0017768
Score 2.5230658
Snippet [Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of...
Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102414
SubjectTerms algorithms
canopy
canopy height
forest restoration
hyperspectral imagery
Hyperspectral imaging
lidar
Light detection and ranging (LiDAR)
logit analysis
mangrove forests
Mangrove species classification
Rotation forest (RoF)
spatial data
Unmanned aerial vehicle (UAV)
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp3JAlIJYaCtX6gkpwnacODluW1aogh4Qi7hZtmMvi9gEhQXx-Z2JE7r0ABeu0cS2PGP7PXnmmZDvPFhmcssTlxdpIr1iic0xyVH4IMs8BJligfPZn_xkKn9fZVcrT31hTliUB44Td2QyjBJunM2AKfDUVqhIZ5WDplyVOdx9WckGMtXfHygVi-CyvEwKmYrhPrPL7LoxMyCGgqNsgeTyxYnUCfe_OJj-26K7c2eyRTZ7wEjHcaAfyZqvt8nGiozgNtk9_letBqb9cr3_RJ5gtdvuBQg6HV8meGJV9BqYZyywbMHY1BU9nf8an1PMFaUAYenC1LO2efQUjYBIU4cIG1OKOi9STJWfUQCOtG3iRT7-BkOn5nbWtPPl9WKHTCfHFz9Pkv6phcQBIlkm3JTScSAzQMdCKGRwqiorHgoDO4IsnLQABBywI-GNEalk3pQA3IQqUW-mUukuWa-b2u8R6phVhc-ECmmG8vXGMGgdtgnmS2F4NSJsmG7teh1yfA7jVg8JZzcaPKTRQzp6aEQOn3-5iyIcrxn_QB8-G6J-dvcBokr3UaXfiqoRkUME6B6KRIgBTc1f6_vbEC0alinevZjaNw_3WgAxw5pkqfbfY3wH5AN2G7MKP5P1ZfvgvwA6Wtqv3UL4C0g6Cr4
  priority: 102
  providerName: Directory of Open Access Journals
Title Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm
URI https://dx.doi.org/10.1016/j.jag.2021.102414
https://www.proquest.com/docview/2675582147
https://doaj.org/article/a553191acb524913bd0143b7cf49cd5c
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXK9gIHBIWKLWVlJE5I0caOEyfH7dJqC6VChUW9WbbjpKnapEq3VT-fGSdZ2B564Bhr7ESe8fhNPPNMyCdWmFAnhgU2SaNAOBkGJsEkR-4KkSVFISIscP5-miyW4ut5fL5F5kMtDKZV9r6_8-neW_ct0342pzdVNf0J5gloIBKceWKy-BnZ5lGWxCOyPTv-tjhdHyZI2VXExUkWpCLiw-GmT_O61CVEiZwhh4FgYmN78iz-G7vUI3_tN6GjV-Rljx7prPvA12TL1TvkxT-cgjtk9_Bv6RqI9mv39g15gKVv_HUQdDn7HeD2ldMLCEO7assWhHWd05Pqy-yMYuIoBTxLr3Vdts29oygEUTW1CLcxv8irlGLefEkBRdK26U71sRt8OtVXZdNWq4vrt2R5dPhrvgj6excCC_BkFTCdCcsgsoHYrChSUViZZzkrUg3uQaRWGEAFFkIl7rTmkQidzgDFcZkh-Uwuo10yqpvavSPUhkamLuayiGLkstc6hNHBZ4Qu45rlYxIO061sT0qOd2NcqSH77FKBhhRqSHUaGpPP6y43HSPHU8IHqMO1IJJp-4amLVVvTUrH6IiYtiaGYJRFJkfSQyMtWKvNYzsmYrAAtWGbMFT11Ls_DtaiYM3iQYyuXXN3qzhEaVigLOTe_w39njzHpy6pcJ-MVu2d-wDgaGUmYPzzs5Mfk34RTPxPhj-Gag47
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QE4IChULJ9G4oQUbew4cXJcSqst3e4Buqg3y3acdKs2qdIt4uczk4-F5dAD12TiRJnx-D155hngIy9saBLLA5ekUSC9CgObUJGj8IXMkqKQETU4ny6S2VJ-PY_Pd-Bg6IWhsso-93c5vc3W_ZVJ_zcnN6vV5DuGJ6KBSAreCpPFD2BXxsj2RrA7PT6ZLTabCUp1HXFxkgWpjMSwudmWeV2aElmi4KRhILncWp5aFf-tVeqffN0uQkdP4UmPHtm0-8BnsOOrPXj8l6bgHuwf_mldQ9N-7t4-h1849W17HARbTn8EtHzl7AJpaNdt2aCxqXI2X32ZfmNUOMoQz7JrU5VN_dMzMkJWzRzBbaoval3KqG6-ZIgiWVN3u_r0GH46M1dl3azWF9cvYHl0eHYwC_pzFwKH8GQdcJNJx5HZIDcrilQWTuVZzovUYHqQqZMWUYFDqiS8MSKSoTcZojihMhKfyVW0D6OqrvxLYC60KvWxUEUUk5a9MSGOjjkj9JkwPB9DOPxu7XpRcjob40oP1WeXGj2kyUO689AYPm0euekUOe4z_kw-3BiSmHZ7oW5K3UeTNjElIm6cjZGM8sjmJHpolcNodXnsxiCHCNBbsYlDre5794chWjTOWdqIMZWv7261QJZGDcpSvfq_od_Dw9nZ6VzPjxcnr-ER3ekKDN_AaN3c-bcIlNb2XT8RfgOHKg6e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+UAV-based+hyperspectral+and+LiDAR+data+for+mangrove+species+classification+using+the+rotation+forest+algorithm&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Cao%2C+Jingjing&rft.au=Liu%2C+Kai&rft.au=Zhuo%2C+Li&rft.au=Liu%2C+Lin&rft.date=2021-10-01&rft.issn=1569-8432&rft.volume=102+p.102414-&rft_id=info:doi/10.1016%2Fj.jag.2021.102414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon