Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm
[Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from c...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 102; p. 102414 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8432 1872-826X |
DOI | 10.1016/j.jag.2021.102414 |
Cover
Abstract | [Display omitted]
•An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from combining spectral and structural information.
Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management. |
---|---|
AbstractList | Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management. [Display omitted] •An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of spectrally similar mangrove species.•RoF outperforms RF and LMT for accurate mangrove species classification.•Understory mangroves benefit most from combining spectral and structural information. Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral techniques employed in mangrove monitoring are often limited to achieve the fine classification of mangrove species, due to the low spatial resolution of space-borne images and the high cost of airborne images. Moreover, using the spectral information alone is not adequate for fine-scale classification of mangrove species in complex ecosystems, because the spectral discriminability of mangrove species is generally restricted by complex canopy structures. To address these limitations, this study proposes a novel mangrove species classification method that integratively uses unmanned aerial vehicle (UAV)-based Nano-hyperspec hyperspectral imagery, light detection and ranging (LiDAR) data, and the rotation forest (RoF) ensemble learning algorithm. The proposed method was tested in China’s largest artificially planted mangroves, Qi'ao Island. First, we extracted spectral features from UAV-based hyperspectral data and structural information from LiDAR data; then we utilized the RoF algorithm to classify mangrove species based on the spectral and structural features and compared with two other popular ensemble learning algorithms, namely random forest (RF) and logistic model tree (LMT). Results showed that the combined hyperspectral and LiDAR data produced satisfactory results for all three classifiers with overall accuracy (OA) higher than 95%, and the proposed method achieved the highest OA of 97.22% and Kappa coefficient of 0.9686. Our study proved that incorporating the canopy height information can improve the classification accuracy, with the OA and Kappa coefficient being 2.43% and 0.0274 higher than using the original spectral bands alone, respectively. It is also found that the RoF algorithm is more accurate and stable in classifying mangrove species than those of RF and LMT. These findings indicated that the proposed approach could achieve fine-scale mangrove monitoring and further facilitate mangrove forest restoration and management. |
ArticleNumber | 102414 |
Author | Zhuo, Li Zhu, Yuanhui Peng, Liheng Cao, Jingjing Liu, Kai Liu, Lin |
Author_xml | – sequence: 1 givenname: Jingjing surname: Cao fullname: Cao, Jingjing email: caojj5@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 2 givenname: Kai surname: Liu fullname: Liu, Kai email: liuk6@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 3 givenname: Li surname: Zhuo fullname: Zhuo, Li email: zhuoli@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 4 givenname: Lin surname: Liu fullname: Liu, Lin email: liulin1@gzhu.edu.cn, lin.liu@uc.edu organization: Center of GeoInformatics for Public Security, School of Geographic Sciences, Guangzhou University, Guangzhou 510006, China – sequence: 5 givenname: Yuanhui surname: Zhu fullname: Zhu, Yuanhui email: zhuyhui2@gzhu.edu.cn organization: Center of GeoInformatics for Public Security, School of Geographic Sciences, Guangzhou University, Guangzhou 510006, China – sequence: 6 givenname: Liheng surname: Peng fullname: Peng, Liheng email: penglh6@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China |
BookMark | eNp9kU9v1DAQxSNUJNrCB-DmI5csHseJbXFaLf8qrYSEKOJmTWwn6yiJFztb0W-PQ-DCoSfbo3lvPO93U1zNYXZF8RroDig0b4fdgP2OUQb5zTjwZ8U1SMFKyZofV_leN6qUvGIvipuUBkpBiEZeF78OYWr97Oee3O-_ly0mZ8np8exiOjuzRBwJzpYc_fv9V2JxQdKFSCac-xgeHFmbvEvEjJiS77zBxYeZXNJquJwciWHZSlnm0kJw7EP0y2l6WTzvcEzu1d_ztrj_-OHb4XN5_PLp7rA_loZXaikBFTfQ0EYx3nWSd0ZYZaGTKGjFpeGtBGa4UswhsopTh4qxhglFuQQrqtvibvO1AQd9jn7C-KgDev2nEGKvMS7ejE5jXVegAE1bM66gai0FXrXCdFwZW5vs9WbzOsfw85LX0ZNPxo0jzi5ckmaNqGvJgK9jxdZqYkgpuk4bvyWRM_WjBqpXbnrQmZteuemNW1bCf8p_n35K827TuJzkg3dRp4xlNs76mCnmVf0T6t-inLJp |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2023_110870 crossref_primary_10_1080_01431161_2024_2429784 crossref_primary_10_3389_fpls_2022_964769 crossref_primary_10_1088_1742_6596_2123_1_012010 crossref_primary_10_1080_10106049_2024_2405123 crossref_primary_10_5194_bg_21_929_2024 crossref_primary_10_1016_j_neunet_2023_04_019 crossref_primary_10_1080_15481603_2023_2171706 crossref_primary_10_1016_j_isprsjprs_2022_12_003 crossref_primary_10_1029_2024JG008112 crossref_primary_10_1111_ele_14123 crossref_primary_10_1016_j_ejrs_2024_08_005 crossref_primary_10_1080_17538947_2024_2346277 crossref_primary_10_1007_s10661_022_09902_z crossref_primary_10_3934_era_2024260 crossref_primary_10_3389_fmars_2025_1502123 crossref_primary_10_1007_s12237_023_01288_6 |
Cites_doi | 10.1023/A:1010933404324 10.3390/rs12040656 10.1080/10106049.2015.1128486 10.1016/j.agrformet.2019.107744 10.3390/rs9090875 10.1016/j.isprsjprs.2013.11.013 10.1016/j.isprsjprs.2019.01.021 10.3390/rs10010089 10.1007/BF02295996 10.3390/rs10030467 10.1080/10106049.2018.1520923 10.5194/isprs-archives-XLII-2-W6-209-2017 10.1016/j.rse.2019.111543 10.1088/1681-7575/ab3261 10.1016/j.rse.2021.112285 10.1007/s40725-015-0019-3 10.1007/s12524-015-0543-4 10.1016/j.rse.2019.111223 10.1016/j.agrformet.2018.08.019 10.1016/S0034-4257(97)00083-7 10.1016/j.isprsjprs.2015.03.002 10.1080/07038992.2016.1160772 10.1080/01431161.2020.1714771 10.1080/10106049.2016.1277273 10.1111/gcb.12341 10.1111/j.1466-8238.2010.00584.x 10.1016/j.rse.2021.112403 10.1109/MGRS.2018.2867592 10.1016/j.rse.2020.112012 10.1109/36.3001 10.1016/j.isprsjprs.2020.11.008 10.3390/rs13081529 10.1016/j.rse.2020.112223 10.1016/j.isprsjprs.2014.12.026 10.1016/j.isprsjprs.2015.08.002 10.3390/rs70912192 10.1109/LGRS.2013.2254108 10.1016/j.rse.2018.12.034 10.3390/rs11172043 10.3390/rs3102222 10.3390/rs12101683 10.1146/annurev-environ-101718-033302 10.1007/s10994-005-0466-3 10.1080/014311698215801 10.1080/01431161.2019.1648907 10.3390/rs11030230 10.3390/s18040944 10.3390/rs11111338 10.1002/9781118801628.ch10 10.1109/TPAMI.2006.211 10.3390/rs12122039 10.1037/h0026256 10.3390/s17040777 10.1109/JSTARS.2017.2782324 10.1016/j.agrformet.2012.11.012 10.1016/j.agrformet.2019.02.015 10.3390/rs5073562 10.1016/j.ecss.2007.08.024 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2021.102414 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_a553191acb524913bd0143b7cf49cd5c 10_1016_j_jag_2021_102414 S0303243421001215 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-1a94c1606924ff84fc7d9d1f8a70348c4b812c4992eaa2340ea92262790481d73 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:28:45 EDT 2025 Thu Sep 04 16:33:03 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Tue Jul 01 02:15:18 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rotation forest (RoF) Light detection and ranging (LiDAR) Unmanned aerial vehicle (UAV) Mangrove species classification Hyperspectral imaging |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-1a94c1606924ff84fc7d9d1f8a70348c4b812c4992eaa2340ea92262790481d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0303243421001215 |
PQID | 2675582147 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a553191acb524913bd0143b7cf49cd5c proquest_miscellaneous_2675582147 crossref_citationtrail_10_1016_j_jag_2021_102414 crossref_primary_10_1016_j_jag_2021_102414 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, Jia, Yin, Tian (b0270) 2019; 231 Pourshamsi, Xia, Yokoya, Garcia, Lavalle, Pottier, Balzter (b0225) 2021; 172 Zhang, Wang, Liu, Jia, Lin, Chu, Devlin (b0305) 2018; 10 Ghosh, Fassnacht, Joshi, Kochb (b0090) 2014; 26 Chakravortty, Li, Plaza (b0045) 2018; 11 Zhu, Liu, Myint, Du, Li, Cao, Liu, Wu (b0325) 2020; 12 Stehman (b0255) 1997; 62 Akar (b0015) 2018; 33 Xia, Du, He, Chanussot (b0290) 2014; 11 Torabzadeh, Leiterer, Hueni, Schaepman, Morsdorf (b0260) 2019; 279 Sothe, Dalponte, Almeida, Schimalski, Lima, Liesenberg, Miyoshi, Tommaselli (b0250) 2019; 11 Dan, Liao, Wu, Wu, Bao, Dan, Liu (b0060) 2016; 25 Sankey, Sankey, Li, Ravi, Wang, Caster, Kasprak (b0245) 2021; 253 Alongi (b0020) 2008; 76 Landwehr, Hall, Frank (b0160) 2005; 59 Ma, Cheng, Li, Liu, Ma (b0195) 2015; 102 Zhu, Liu, Liu, Wang, Liu (b0330) 2015; 7 Luo, Chen, Tian, Qin, Qian (b0190) 2016; 42 Saintilan, Wilson, Rogers, Rajkaran, Krauss (b0235) 2014; 20 Breiman (b0035) 2001; 45 Wang, Chen, Guan, Liao, He, Chen, Xie (b0280) 2017; 37 Jia, Wang, Mao, Ren, Wang, Wang (b0125) 2021; 255 Li, Wong, Fung (b0170) 2021; 258 Wang, Xia, Zhou, Liu, Chen (b0275) 2005; 3 Zhu, Hou, Weng, Chen (b0320) 2019; 149 Rodriguez, Kuncheva, Alonso (b0230) 2006; 28 Zhong, Wang, Xu, Wang, Jia, Hu, Zhao, Wei, Zhang (b0310) 2018; 6 Aasen, Burkart, Bolten, Bareth (b0005) 2015; 108 Jia, Wang, Zhang, Mao, Wang (b0135) 2018; 73 Wan, Lin, Zhang, Wang, Liu, Lin (b0265) 2020; 12 Lucas, Van De Kerchove, Otero, Lagomasino, Fatoyinbo, Omar, Satyanarayana, Dahdouh-Guebas (b0185) 2020; 237 Green, Clark, Mumby, Edwards, Ellis (b0105) 1998; 19 Jia, Wang, Wang, Mao, Zhang (b0130) 2019; 11 Giri, Ochieng, Tieszen, Zhu, Singh, Loveland, Masek, Duke (b0095) 2011; 20 Friess, Rogers, Lovelock, Krauss, Hamilton, Lee, Lucas, Primavera, Rajkaran, Shi (b0085) 2019; 44 Manna, Raychaudhuri (b0200) 2020; 35 Fan, Yue, Wu, Zhang, Cai, Wang, Lu, Xiang (b0080) 2018; 263 Wen, Hughes (b0285) 2020; 12 Dian, Pang, Dong, Li (b0070) 2016; 44 Colkesen, Kavzoglu (b0055) 2017; 32 Abdel-Rahman, Mutanga, Adam, Ismail (b0010) 2014; 88 Li, Hu, Noland (b0165) 2013; 171–172 Green, Berman, Switzer, Craig (b0100) 1988; 26 Zhong, Hu, Luo, Wang, Zhao, Zhang (b0315) 2020; 250 Jiang, Zhang, Yan, Qi, Fu, Fan, Chen (b0140) 2021; 13 Davis, Synes, Fricker, McCullough, Serra-Diaz, Franklin, Flint (b0065) 2019; 269–270 Li, Wong, Fung (b0175) 2017; XLII-2/W6 Cao, Leng, Liu, Liu, He, Zhu (b0040) 2018; 10 Im, Quackenbush, Li, Fang (b0120) 2014; 197–214 Liu, Liao (b0180) 2013; 32 Baatz, Schäpe (b0025) 2000 Xu, Morgenroth, Manley (b0295) 2015; 1 Hall (b0115) 1999 McNemar (b0205) 1947; 12 Piiroinen, Heiskanen, Maeda, Viinikka, Pellikka (b0220) 2017; 9 Yin, Wang (b0300) 2019; 223 Koedsin, Vaiphasa (b0150) 2013; 5 Kamal, Phinn (b0145) 2011; 3 Du, Samat, Waske, Liu, Li (b0075) 2015; 105 Pham, Yokoya, Bui, Yoshino, Friess (b0215) 2019; 11 Peng, Liu, Cao, Zhu, Li, Liu (b0210) 2019; 41 Banerjee, Raval, Cullen (b0030) 2020; 41 Sandino, Pegg, Gonzalez, Smith (b0240) 2018; 18 Kokka, Pulli, Honkavaara, Markelin, Kärhä, Ikonen (b0155) 2019; 56 Guo, Li, Sheng, Xu, Wu (b0110) 2017; 17 Cohen (b0050) 1968; 70 Ma (10.1016/j.jag.2021.102414_b0195) 2015; 102 Luo (10.1016/j.jag.2021.102414_b0190) 2016; 42 Dian (10.1016/j.jag.2021.102414_b0070) 2016; 44 Liu (10.1016/j.jag.2021.102414_b0180) 2013; 32 Zhong (10.1016/j.jag.2021.102414_b0315) 2020; 250 Im (10.1016/j.jag.2021.102414_b0120) 2014; 197–214 Wang (10.1016/j.jag.2021.102414_b0275) 2005; 3 Dan (10.1016/j.jag.2021.102414_b0060) 2016; 25 Kokka (10.1016/j.jag.2021.102414_b0155) 2019; 56 Koedsin (10.1016/j.jag.2021.102414_b0150) 2013; 5 Banerjee (10.1016/j.jag.2021.102414_b0030) 2020; 41 Jia (10.1016/j.jag.2021.102414_b0125) 2021; 255 Li (10.1016/j.jag.2021.102414_b0165) 2013; 171–172 Xu (10.1016/j.jag.2021.102414_b0295) 2015; 1 Zhu (10.1016/j.jag.2021.102414_b0320) 2019; 149 Green (10.1016/j.jag.2021.102414_b0105) 1998; 19 Giri (10.1016/j.jag.2021.102414_b0095) 2011; 20 Sothe (10.1016/j.jag.2021.102414_b0250) 2019; 11 Du (10.1016/j.jag.2021.102414_b0075) 2015; 105 Jia (10.1016/j.jag.2021.102414_b0130) 2019; 11 Li (10.1016/j.jag.2021.102414_b0170) 2021; 258 Lucas (10.1016/j.jag.2021.102414_b0185) 2020; 237 Fan (10.1016/j.jag.2021.102414_b0080) 2018; 263 Ghosh (10.1016/j.jag.2021.102414_b0090) 2014; 26 Pourshamsi (10.1016/j.jag.2021.102414_b0225) 2021; 172 Aasen (10.1016/j.jag.2021.102414_b0005) 2015; 108 Jia (10.1016/j.jag.2021.102414_b0135) 2018; 73 Abdel-Rahman (10.1016/j.jag.2021.102414_b0010) 2014; 88 Wang (10.1016/j.jag.2021.102414_b0270) 2019; 231 Cao (10.1016/j.jag.2021.102414_b0040) 2018; 10 Alongi (10.1016/j.jag.2021.102414_b0020) 2008; 76 Baatz (10.1016/j.jag.2021.102414_b0025) 2000 Zhu (10.1016/j.jag.2021.102414_b0330) 2015; 7 Breiman (10.1016/j.jag.2021.102414_b0035) 2001; 45 Sankey (10.1016/j.jag.2021.102414_b0245) 2021; 253 Akar (10.1016/j.jag.2021.102414_b0015) 2018; 33 Wang (10.1016/j.jag.2021.102414_b0280) 2017; 37 Chakravortty (10.1016/j.jag.2021.102414_b0045) 2018; 11 Cohen (10.1016/j.jag.2021.102414_b0050) 1968; 70 Colkesen (10.1016/j.jag.2021.102414_b0055) 2017; 32 Li (10.1016/j.jag.2021.102414_b0175) 2017; XLII-2/W6 Green (10.1016/j.jag.2021.102414_b0100) 1988; 26 Sandino (10.1016/j.jag.2021.102414_b0240) 2018; 18 Xia (10.1016/j.jag.2021.102414_b0290) 2014; 11 Peng (10.1016/j.jag.2021.102414_b0210) 2019; 41 Kamal (10.1016/j.jag.2021.102414_b0145) 2011; 3 Landwehr (10.1016/j.jag.2021.102414_b0160) 2005; 59 Wen (10.1016/j.jag.2021.102414_b0285) 2020; 12 McNemar (10.1016/j.jag.2021.102414_b0205) 1947; 12 Rodriguez (10.1016/j.jag.2021.102414_b0230) 2006; 28 Stehman (10.1016/j.jag.2021.102414_b0255) 1997; 62 Davis (10.1016/j.jag.2021.102414_b0065) 2019; 269–270 Jiang (10.1016/j.jag.2021.102414_b0140) 2021; 13 Zhu (10.1016/j.jag.2021.102414_b0325) 2020; 12 Torabzadeh (10.1016/j.jag.2021.102414_b0260) 2019; 279 Pham (10.1016/j.jag.2021.102414_b0215) 2019; 11 Wan (10.1016/j.jag.2021.102414_b0265) 2020; 12 Friess (10.1016/j.jag.2021.102414_b0085) 2019; 44 Zhong (10.1016/j.jag.2021.102414_b0310) 2018; 6 Zhang (10.1016/j.jag.2021.102414_b0305) 2018; 10 Manna (10.1016/j.jag.2021.102414_b0200) 2020; 35 Yin (10.1016/j.jag.2021.102414_b0300) 2019; 223 Hall (10.1016/j.jag.2021.102414_b0115) 1999 Piiroinen (10.1016/j.jag.2021.102414_b0220) 2017; 9 Guo (10.1016/j.jag.2021.102414_b0110) 2017; 17 Saintilan (10.1016/j.jag.2021.102414_b0235) 2014; 20 |
References_xml | – volume: 3 start-page: 13 year: 2005 end-page: 20 ident: b0275 article-title: The change of mangrove wetland ecosystem and controlling countermeasures in the Qi'ao Island publication-title: Wetland Sci. – volume: 11 start-page: 230 year: 2019 ident: b0215 article-title: Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges publication-title: Remote Sens. – volume: 10 start-page: 89 year: 2018 ident: b0040 article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models publication-title: Remote Sens. – volume: 171–172 start-page: 104 year: 2013 end-page: 114 ident: b0165 article-title: Classification of tree species based on structural features derived from high density LiDAR data publication-title: Agric. For. Meteorol. – volume: 28 start-page: 1619 year: 2006 end-page: 1630 ident: b0230 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 595 year: 2016 end-page: 603 ident: b0070 article-title: Urban tree species mapping using airborne LiDAR and hyperspectral data publication-title: J. Indian Soc. Remote Sens. – volume: 37 start-page: 86 year: 2017 end-page: 91 ident: b0280 article-title: Study on Zhuhai Qi'ao island main mangrove community characteristics publication-title: J. Central South Univ. Forestry Technol. – volume: 11 start-page: 1244 year: 2018 end-page: 1252 ident: b0045 article-title: A technique for subpixel analysis of dynamic mangrove ecosystems with time-series hyperspectral image data publication-title: Sel. Top. Appl. Earth Observ. Remote Sens. IEEE J. – volume: 42 start-page: 106 year: 2016 end-page: 116 ident: b0190 article-title: Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising publication-title: Can. J. Remote Sens. – volume: 32 start-page: 71 year: 2017 end-page: 86 ident: b0055 article-title: The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery publication-title: Geocarto Int. – volume: 253 start-page: 112223 year: 2021 ident: b0245 article-title: Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland publication-title: Remote Sens. Environ. – volume: 73 start-page: 535 year: 2018 end-page: 545 ident: b0135 article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 944 year: 2018 ident: b0240 article-title: Aerial mapping of forests affected by Pathogens using UAVs, hyperspectral sensors, and artificial intelligence publication-title: Sensors – volume: 1 start-page: 206 year: 2015 end-page: 219 ident: b0295 article-title: Integrating data from discrete return airborne LiDAR and optical sensors to enhance the accuracy of forest description: a review publication-title: Curr. For. Rep. – volume: 279 start-page: 107744 year: 2019 ident: b0260 article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning publication-title: Agric. For. Meteorol. – volume: 62 start-page: 77 year: 1997 end-page: 89 ident: b0255 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens. Environ. – volume: 7 start-page: 12192 year: 2015 end-page: 12214 ident: b0330 article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images publication-title: Remote Sens. – volume: 88 start-page: 48 year: 2014 end-page: 59 ident: b0010 article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 26 start-page: 49 year: 2014 end-page: 63 ident: b0090 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 25 start-page: 1237 year: 2016 end-page: 1243 ident: b0060 article-title: Resources, conservation status and main threats of mangrove wetlands in China publication-title: Ecol. Environ. Sci. – volume: 108 start-page: 245 year: 2015 end-page: 259 ident: b0005 article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 6 start-page: 46 year: 2018 end-page: 62 ident: b0310 article-title: Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 19 start-page: 935 year: 1998 end-page: 956 ident: b0105 article-title: Remote sensing techniques for mangrove mapping publication-title: Int. J. Remote Sens. – volume: 76 start-page: 1 year: 2008 end-page: 13 ident: b0020 article-title: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change publication-title: Estuar. Coast. Shelf Sci. – volume: 105 start-page: 38 year: 2015 end-page: 53 ident: b0075 article-title: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 102 start-page: 14 year: 2015 end-page: 27 ident: b0195 article-title: Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 656 year: 2020 ident: b0265 article-title: GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong publication-title: Remote Sens. – volume: 11 start-page: 2043 year: 2019 ident: b0130 article-title: A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery publication-title: Remote Sens. – volume: 44 start-page: 89 year: 2019 end-page: 115 ident: b0085 article-title: The state of the world's mangrove forests: past, present, and future publication-title: Annu. Rev. Environ. Resour. – volume: 197–214 year: 2014 ident: b0120 article-title: Optimum scale in object-based image analysis publication-title: Scale Issues Remote Sens. – volume: 56 start-page: 055001 year: 2019 ident: b0155 article-title: Flat-field calibration method for hyperspectral frame cameras publication-title: Metrologia – volume: 33 start-page: 538 year: 2018 end-page: 553 ident: b0015 article-title: The Rotation Forest algorithm and object-based classification method for land use mapping through UAV images publication-title: Geocarto Int. – volume: 70 start-page: 213 year: 1968 end-page: 220 ident: b0050 article-title: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit publication-title: Psychol. Bull. – volume: 32 start-page: 534 year: 2013 end-page: 539 ident: b0180 article-title: Mangrove reform-planting trial on Qi'ao Island publication-title: Ecol. Sci. – volume: 11 start-page: 239 year: 2014 end-page: 243 ident: b0290 article-title: Hyperspectral remote sensing image classification based on rotation forest publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 223 start-page: 34 year: 2019 end-page: 49 ident: b0300 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges publication-title: Remote Sens. Environ. – volume: 255 start-page: 112285 year: 2021 ident: b0125 article-title: Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine publication-title: Remote Sens. Environ. – volume: 263 start-page: 225 year: 2018 end-page: 241 ident: b0080 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. – volume: 3 start-page: 2222 year: 2011 end-page: 2242 ident: b0145 article-title: Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach publication-title: Remote Sens. – volume: 20 start-page: 154 year: 2011 end-page: 159 ident: b0095 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Glob. Ecol. Biogeogr. – volume: 26 start-page: 65 year: 1988 end-page: 74 ident: b0100 article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 13 start-page: 1529 year: 2021 ident: b0140 article-title: High-resolution mangrove forests classification with machine learning using Worldview and UAV hyperspectral data publication-title: Remote Sens. – volume: 172 start-page: 79 year: 2021 end-page: 94 ident: b0225 article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 269–270 start-page: 192 year: 2019 end-page: 202 ident: b0065 article-title: LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes publication-title: Agric. For. Meteorol. – volume: 9 start-page: 875 year: 2017 ident: b0220 article-title: Classification of tree species in a diverse African agroforestry landscape using imaging spectroscopy and laser scanning publication-title: Remote Sens. – start-page: 12 year: 2000 end-page: 23 ident: b0025 article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation publication-title: Angewandte Geographische Informations-Verarbeitung – volume: 35 start-page: 434 year: 2020 end-page: 452 ident: b0200 article-title: Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition publication-title: Geocarto Int. – volume: 258 start-page: 112403 year: 2021 ident: b0170 article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data publication-title: Remote Sens. Environ. – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: b0205 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika – volume: 41 start-page: 813 year: 2019 end-page: 838 ident: b0210 article-title: Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods publication-title: Int. J. Remote Sens. – volume: 17 start-page: 777 year: 2017 ident: b0110 article-title: A review of wetland remote sensing publication-title: Sensors – volume: 231 start-page: 111223 year: 2019 ident: b0270 article-title: A review of remote sensing for mangrove forests: 1956–2018 publication-title: Remote Sens. Environ. – volume: 237 start-page: 111543 year: 2020 ident: b0185 article-title: Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data publication-title: Remote Sens. Environ. – volume: 12 start-page: 2039 year: 2020 ident: b0325 article-title: Integration of GF2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China's largest artificially planted mangroves publication-title: Remote Sens. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0035 article-title: Random forests publication-title: Mach. Learn. – volume: 149 start-page: 146 year: 2019 end-page: 156 ident: b0320 article-title: Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 359 year: 1999 end-page: 366 ident: b0115 article-title: Feature selection for discrete and numeric class machine learning publication-title: Proc. 17th International Conference on Machine Learning – volume: 59 start-page: 161 year: 2005 end-page: 205 ident: b0160 article-title: Logistic Model Trees publication-title: Mach. Learn. – volume: XLII-2/W6 start-page: 209 year: 2017 end-page: 215 ident: b0175 article-title: Assessing the utility of UAV-borne hyperspectral image and photogrammetry derived 3D data for wetland species distribution quick mapping publication-title: ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – volume: 41 start-page: 4136 year: 2020 end-page: 4159 ident: b0030 article-title: UAV-hyperspectral imaging of spectrally complex environments publication-title: Int. J. Remote Sens. – volume: 250 start-page: 112012 year: 2020 ident: b0315 article-title: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF publication-title: Remote Sens. Environ. – volume: 12 start-page: 1683 year: 2020 ident: b0285 article-title: Coastal wetland mapping using ensemble learning algorithms: a comparative study of bagging, boosting and stacking techniques publication-title: Remote Sens. – volume: 5 start-page: 3562 year: 2013 end-page: 3582 ident: b0150 article-title: Discrimination of tropical mangroves at the species level with EO-1 hyperion data publication-title: Remote Sens. – volume: 20 start-page: 147 year: 2014 end-page: 157 ident: b0235 article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits publication-title: Glob. Change Biol. – volume: 10 start-page: 467 year: 2018 ident: b0305 article-title: Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest publication-title: Remote Sens. – volume: 11 start-page: 1338 year: 2019 ident: b0250 article-title: Species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data publication-title: Remote Sens. – volume: 26 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.jag.2021.102414_b0090 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jag.2021.102414_b0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 12 start-page: 656 issue: 4 year: 2020 ident: 10.1016/j.jag.2021.102414_b0265 article-title: GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong publication-title: Remote Sens. doi: 10.3390/rs12040656 – volume: 32 start-page: 71 year: 2017 ident: 10.1016/j.jag.2021.102414_b0055 article-title: The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery publication-title: Geocarto Int. doi: 10.1080/10106049.2015.1128486 – volume: 25 start-page: 1237 issue: 7 year: 2016 ident: 10.1016/j.jag.2021.102414_b0060 article-title: Resources, conservation status and main threats of mangrove wetlands in China publication-title: Ecol. Environ. Sci. – volume: 279 start-page: 107744 year: 2019 ident: 10.1016/j.jag.2021.102414_b0260 article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107744 – volume: 9 start-page: 875 issue: 9 year: 2017 ident: 10.1016/j.jag.2021.102414_b0220 article-title: Classification of tree species in a diverse African agroforestry landscape using imaging spectroscopy and laser scanning publication-title: Remote Sens. doi: 10.3390/rs9090875 – volume: 88 start-page: 48 year: 2014 ident: 10.1016/j.jag.2021.102414_b0010 article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.013 – volume: 149 start-page: 146 year: 2019 ident: 10.1016/j.jag.2021.102414_b0320 article-title: Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.021 – volume: 10 start-page: 89 issue: 2 year: 2018 ident: 10.1016/j.jag.2021.102414_b0040 article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models publication-title: Remote Sens. doi: 10.3390/rs10010089 – volume: 12 start-page: 153 issue: 2 year: 1947 ident: 10.1016/j.jag.2021.102414_b0205 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 10 start-page: 467 issue: 3 year: 2018 ident: 10.1016/j.jag.2021.102414_b0305 article-title: Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest publication-title: Remote Sens. doi: 10.3390/rs10030467 – volume: 35 start-page: 434 issue: 4 year: 2020 ident: 10.1016/j.jag.2021.102414_b0200 article-title: Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1520923 – start-page: 12 year: 2000 ident: 10.1016/j.jag.2021.102414_b0025 article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation – volume: XLII-2/W6 start-page: 209 year: 2017 ident: 10.1016/j.jag.2021.102414_b0175 article-title: Assessing the utility of UAV-borne hyperspectral image and photogrammetry derived 3D data for wetland species distribution quick mapping publication-title: ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-W6-209-2017 – volume: 237 start-page: 111543 year: 2020 ident: 10.1016/j.jag.2021.102414_b0185 article-title: Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111543 – volume: 56 start-page: 055001 issue: 5 year: 2019 ident: 10.1016/j.jag.2021.102414_b0155 article-title: Flat-field calibration method for hyperspectral frame cameras publication-title: Metrologia doi: 10.1088/1681-7575/ab3261 – volume: 255 start-page: 112285 year: 2021 ident: 10.1016/j.jag.2021.102414_b0125 article-title: Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112285 – volume: 1 start-page: 206 issue: 3 year: 2015 ident: 10.1016/j.jag.2021.102414_b0295 article-title: Integrating data from discrete return airborne LiDAR and optical sensors to enhance the accuracy of forest description: a review publication-title: Curr. For. Rep. doi: 10.1007/s40725-015-0019-3 – volume: 44 start-page: 595 issue: 4 year: 2016 ident: 10.1016/j.jag.2021.102414_b0070 article-title: Urban tree species mapping using airborne LiDAR and hyperspectral data publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-015-0543-4 – volume: 231 start-page: 111223 year: 2019 ident: 10.1016/j.jag.2021.102414_b0270 article-title: A review of remote sensing for mangrove forests: 1956–2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111223 – volume: 263 start-page: 225 year: 2018 ident: 10.1016/j.jag.2021.102414_b0080 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.08.019 – volume: 62 start-page: 77 year: 1997 ident: 10.1016/j.jag.2021.102414_b0255 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00083-7 – volume: 105 start-page: 38 year: 2015 ident: 10.1016/j.jag.2021.102414_b0075 article-title: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.03.002 – volume: 42 start-page: 106 issue: 2 year: 2016 ident: 10.1016/j.jag.2021.102414_b0190 article-title: Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1160772 – volume: 41 start-page: 4136 issue: 11 year: 2020 ident: 10.1016/j.jag.2021.102414_b0030 article-title: UAV-hyperspectral imaging of spectrally complex environments publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1714771 – volume: 33 start-page: 538 issue: 5 year: 2018 ident: 10.1016/j.jag.2021.102414_b0015 article-title: The Rotation Forest algorithm and object-based classification method for land use mapping through UAV images publication-title: Geocarto Int. doi: 10.1080/10106049.2016.1277273 – volume: 20 start-page: 147 year: 2014 ident: 10.1016/j.jag.2021.102414_b0235 article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits publication-title: Glob. Change Biol. doi: 10.1111/gcb.12341 – volume: 20 start-page: 154 issue: 1 year: 2011 ident: 10.1016/j.jag.2021.102414_b0095 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00584.x – volume: 258 start-page: 112403 year: 2021 ident: 10.1016/j.jag.2021.102414_b0170 article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112403 – volume: 6 start-page: 46 issue: 4 year: 2018 ident: 10.1016/j.jag.2021.102414_b0310 article-title: Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2018.2867592 – volume: 250 start-page: 112012 year: 2020 ident: 10.1016/j.jag.2021.102414_b0315 article-title: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112012 – volume: 26 start-page: 65 issue: 1 year: 1988 ident: 10.1016/j.jag.2021.102414_b0100 article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/36.3001 – volume: 172 start-page: 79 year: 2021 ident: 10.1016/j.jag.2021.102414_b0225 article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.008 – volume: 37 start-page: 86 issue: 4 year: 2017 ident: 10.1016/j.jag.2021.102414_b0280 article-title: Study on Zhuhai Qi'ao island main mangrove community characteristics publication-title: J. Central South Univ. Forestry Technol. – volume: 13 start-page: 1529 issue: 8 year: 2021 ident: 10.1016/j.jag.2021.102414_b0140 article-title: High-resolution mangrove forests classification with machine learning using Worldview and UAV hyperspectral data publication-title: Remote Sens. doi: 10.3390/rs13081529 – volume: 253 start-page: 112223 year: 2021 ident: 10.1016/j.jag.2021.102414_b0245 article-title: Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112223 – volume: 102 start-page: 14 year: 2015 ident: 10.1016/j.jag.2021.102414_b0195 article-title: Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.026 – volume: 108 start-page: 245 year: 2015 ident: 10.1016/j.jag.2021.102414_b0005 article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.08.002 – volume: 7 start-page: 12192 issue: 9 year: 2015 ident: 10.1016/j.jag.2021.102414_b0330 article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images publication-title: Remote Sens. doi: 10.3390/rs70912192 – start-page: 359 year: 1999 ident: 10.1016/j.jag.2021.102414_b0115 article-title: Feature selection for discrete and numeric class machine learning – volume: 11 start-page: 239 year: 2014 ident: 10.1016/j.jag.2021.102414_b0290 article-title: Hyperspectral remote sensing image classification based on rotation forest publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2254108 – volume: 223 start-page: 34 year: 2019 ident: 10.1016/j.jag.2021.102414_b0300 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.034 – volume: 11 start-page: 2043 issue: 17 year: 2019 ident: 10.1016/j.jag.2021.102414_b0130 article-title: A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery publication-title: Remote Sens. doi: 10.3390/rs11172043 – volume: 3 start-page: 2222 issue: 10 year: 2011 ident: 10.1016/j.jag.2021.102414_b0145 article-title: Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach publication-title: Remote Sens. doi: 10.3390/rs3102222 – volume: 12 start-page: 1683 issue: 10 year: 2020 ident: 10.1016/j.jag.2021.102414_b0285 article-title: Coastal wetland mapping using ensemble learning algorithms: a comparative study of bagging, boosting and stacking techniques publication-title: Remote Sens. doi: 10.3390/rs12101683 – volume: 44 start-page: 89 year: 2019 ident: 10.1016/j.jag.2021.102414_b0085 article-title: The state of the world's mangrove forests: past, present, and future publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-101718-033302 – volume: 59 start-page: 161 year: 2005 ident: 10.1016/j.jag.2021.102414_b0160 article-title: Logistic Model Trees publication-title: Mach. Learn. doi: 10.1007/s10994-005-0466-3 – volume: 19 start-page: 935 issue: 5 year: 1998 ident: 10.1016/j.jag.2021.102414_b0105 article-title: Remote sensing techniques for mangrove mapping publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215801 – volume: 41 start-page: 813 issue: 3 year: 2019 ident: 10.1016/j.jag.2021.102414_b0210 article-title: Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1648907 – volume: 11 start-page: 230 issue: 3 year: 2019 ident: 10.1016/j.jag.2021.102414_b0215 article-title: Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges publication-title: Remote Sens. doi: 10.3390/rs11030230 – volume: 18 start-page: 944 issue: 4 year: 2018 ident: 10.1016/j.jag.2021.102414_b0240 article-title: Aerial mapping of forests affected by Pathogens using UAVs, hyperspectral sensors, and artificial intelligence publication-title: Sensors doi: 10.3390/s18040944 – volume: 11 start-page: 1338 issue: 11 year: 2019 ident: 10.1016/j.jag.2021.102414_b0250 article-title: Species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data publication-title: Remote Sens. doi: 10.3390/rs11111338 – volume: 197–214 year: 2014 ident: 10.1016/j.jag.2021.102414_b0120 article-title: Optimum scale in object-based image analysis publication-title: Scale Issues Remote Sens. doi: 10.1002/9781118801628.ch10 – volume: 28 start-page: 1619 issue: 10 year: 2006 ident: 10.1016/j.jag.2021.102414_b0230 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.211 – volume: 12 start-page: 2039 issue: 12 year: 2020 ident: 10.1016/j.jag.2021.102414_b0325 article-title: Integration of GF2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China's largest artificially planted mangroves publication-title: Remote Sens. doi: 10.3390/rs12122039 – volume: 70 start-page: 213 issue: 4 year: 1968 ident: 10.1016/j.jag.2021.102414_b0050 article-title: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit publication-title: Psychol. Bull. doi: 10.1037/h0026256 – volume: 73 start-page: 535 year: 2018 ident: 10.1016/j.jag.2021.102414_b0135 article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 17 start-page: 777 issue: 4 year: 2017 ident: 10.1016/j.jag.2021.102414_b0110 article-title: A review of wetland remote sensing publication-title: Sensors doi: 10.3390/s17040777 – volume: 11 start-page: 1244 issue: 4 year: 2018 ident: 10.1016/j.jag.2021.102414_b0045 article-title: A technique for subpixel analysis of dynamic mangrove ecosystems with time-series hyperspectral image data publication-title: Sel. Top. Appl. Earth Observ. Remote Sens. IEEE J. doi: 10.1109/JSTARS.2017.2782324 – volume: 3 start-page: 13 year: 2005 ident: 10.1016/j.jag.2021.102414_b0275 article-title: The change of mangrove wetland ecosystem and controlling countermeasures in the Qi'ao Island publication-title: Wetland Sci. – volume: 171–172 start-page: 104 year: 2013 ident: 10.1016/j.jag.2021.102414_b0165 article-title: Classification of tree species based on structural features derived from high density LiDAR data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.11.012 – volume: 269–270 start-page: 192 year: 2019 ident: 10.1016/j.jag.2021.102414_b0065 article-title: LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.02.015 – volume: 5 start-page: 3562 issue: 7 year: 2013 ident: 10.1016/j.jag.2021.102414_b0150 article-title: Discrimination of tropical mangroves at the species level with EO-1 hyperion data publication-title: Remote Sens. doi: 10.3390/rs5073562 – volume: 32 start-page: 534 issue: 5 year: 2013 ident: 10.1016/j.jag.2021.102414_b0180 article-title: Mangrove reform-planting trial on Qi'ao Island publication-title: Ecol. Sci. – volume: 76 start-page: 1 year: 2008 ident: 10.1016/j.jag.2021.102414_b0020 article-title: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2007.08.024 |
SSID | ssj0017768 |
Score | 2.5230658 |
Snippet | [Display omitted]
•An effective approach for mangrove monitoring with UAV hyperspectral and LiDAR data.•LiDAR-derived CHM helps better recognition of... Accurate and timely monitoring of mangrove species information is crucial for precise management and practical conservation. Conventional hyperspectral... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102414 |
SubjectTerms | algorithms canopy canopy height forest restoration hyperspectral imagery Hyperspectral imaging lidar Light detection and ranging (LiDAR) logit analysis mangrove forests Mangrove species classification Rotation forest (RoF) spatial data Unmanned aerial vehicle (UAV) |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp3JAlIJYaCtX6gkpwnacODluW1aogh4Qi7hZtmMvi9gEhQXx-Z2JE7r0ABeu0cS2PGP7PXnmmZDvPFhmcssTlxdpIr1iic0xyVH4IMs8BJligfPZn_xkKn9fZVcrT31hTliUB44Td2QyjBJunM2AKfDUVqhIZ5WDplyVOdx9WckGMtXfHygVi-CyvEwKmYrhPrPL7LoxMyCGgqNsgeTyxYnUCfe_OJj-26K7c2eyRTZ7wEjHcaAfyZqvt8nGiozgNtk9_letBqb9cr3_RJ5gtdvuBQg6HV8meGJV9BqYZyywbMHY1BU9nf8an1PMFaUAYenC1LO2efQUjYBIU4cIG1OKOi9STJWfUQCOtG3iRT7-BkOn5nbWtPPl9WKHTCfHFz9Pkv6phcQBIlkm3JTScSAzQMdCKGRwqiorHgoDO4IsnLQABBywI-GNEalk3pQA3IQqUW-mUukuWa-b2u8R6phVhc-ECmmG8vXGMGgdtgnmS2F4NSJsmG7teh1yfA7jVg8JZzcaPKTRQzp6aEQOn3-5iyIcrxn_QB8-G6J-dvcBokr3UaXfiqoRkUME6B6KRIgBTc1f6_vbEC0alinevZjaNw_3WgAxw5pkqfbfY3wH5AN2G7MKP5P1ZfvgvwA6Wtqv3UL4C0g6Cr4 priority: 102 providerName: Directory of Open Access Journals |
Title | Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm |
URI | https://dx.doi.org/10.1016/j.jag.2021.102414 https://www.proquest.com/docview/2675582147 https://doaj.org/article/a553191acb524913bd0143b7cf49cd5c |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXK9gIHBIWKLWVlJE5I0caOEyfH7dJqC6VChUW9WbbjpKnapEq3VT-fGSdZ2B564Bhr7ESe8fhNPPNMyCdWmFAnhgU2SaNAOBkGJsEkR-4KkSVFISIscP5-miyW4ut5fL5F5kMtDKZV9r6_8-neW_ct0342pzdVNf0J5gloIBKceWKy-BnZ5lGWxCOyPTv-tjhdHyZI2VXExUkWpCLiw-GmT_O61CVEiZwhh4FgYmN78iz-G7vUI3_tN6GjV-Rljx7prPvA12TL1TvkxT-cgjtk9_Bv6RqI9mv39g15gKVv_HUQdDn7HeD2ldMLCEO7assWhHWd05Pqy-yMYuIoBTxLr3Vdts29oygEUTW1CLcxv8irlGLefEkBRdK26U71sRt8OtVXZdNWq4vrt2R5dPhrvgj6excCC_BkFTCdCcsgsoHYrChSUViZZzkrUg3uQaRWGEAFFkIl7rTmkQidzgDFcZkh-Uwuo10yqpvavSPUhkamLuayiGLkstc6hNHBZ4Qu45rlYxIO061sT0qOd2NcqSH77FKBhhRqSHUaGpPP6y43HSPHU8IHqMO1IJJp-4amLVVvTUrH6IiYtiaGYJRFJkfSQyMtWKvNYzsmYrAAtWGbMFT11Ls_DtaiYM3iQYyuXXN3qzhEaVigLOTe_w39njzHpy6pcJ-MVu2d-wDgaGUmYPzzs5Mfk34RTPxPhj-Gag47 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QE4IChULJ9G4oQUbew4cXJcSqst3e4Buqg3y3acdKs2qdIt4uczk4-F5dAD12TiRJnx-D155hngIy9saBLLA5ekUSC9CgObUJGj8IXMkqKQETU4ny6S2VJ-PY_Pd-Bg6IWhsso-93c5vc3W_ZVJ_zcnN6vV5DuGJ6KBSAreCpPFD2BXxsj2RrA7PT6ZLTabCUp1HXFxkgWpjMSwudmWeV2aElmi4KRhILncWp5aFf-tVeqffN0uQkdP4UmPHtm0-8BnsOOrPXj8l6bgHuwf_mldQ9N-7t4-h1849W17HARbTn8EtHzl7AJpaNdt2aCxqXI2X32ZfmNUOMoQz7JrU5VN_dMzMkJWzRzBbaoval3KqG6-ZIgiWVN3u_r0GH46M1dl3azWF9cvYHl0eHYwC_pzFwKH8GQdcJNJx5HZIDcrilQWTuVZzovUYHqQqZMWUYFDqiS8MSKSoTcZojihMhKfyVW0D6OqrvxLYC60KvWxUEUUk5a9MSGOjjkj9JkwPB9DOPxu7XpRcjob40oP1WeXGj2kyUO689AYPm0euekUOe4z_kw-3BiSmHZ7oW5K3UeTNjElIm6cjZGM8sjmJHpolcNodXnsxiCHCNBbsYlDre5794chWjTOWdqIMZWv7261QJZGDcpSvfq_od_Dw9nZ6VzPjxcnr-ER3ekKDN_AaN3c-bcIlNb2XT8RfgOHKg6e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+UAV-based+hyperspectral+and+LiDAR+data+for+mangrove+species+classification+using+the+rotation+forest+algorithm&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Cao%2C+Jingjing&rft.au=Liu%2C+Kai&rft.au=Zhuo%2C+Li&rft.au=Liu%2C+Lin&rft.date=2021-10-01&rft.issn=1569-8432&rft.volume=102+p.102414-&rft_id=info:doi/10.1016%2Fj.jag.2021.102414&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |