A Redox‐Based Ion‐Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses

Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li x WO 3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse dri...

Full description

Saved in:
Bibliographic Details
Published inAdvanced intelligent systems Vol. 5; no. 9
Main Authors Wada, Tomoki, Nishioka, Daiki, Namiki, Wataru, Tsuchiya, Takashi, Higuchi, Tohru, Terabe, Kazuya
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.09.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li x WO 3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a Li x WO 3 channel to enable reservoir computing. Under the normal conditions, in which only the drain current ( I D ) is used for the reservoir states, the lowest prediction error is 8.15 × 10 −4 . Performance is enhanced by the addition of I G to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10 −4 , which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the I G addition. An increase in memory capacity, from 2.35 without I G to 3.57 with I G , is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement.
AbstractList Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li x WO 3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a Li x WO 3 channel to enable reservoir computing. Under the normal conditions, in which only the drain current ( I D ) is used for the reservoir states, the lowest prediction error is 8.15 × 10 −4 . Performance is enhanced by the addition of I G to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10 −4 , which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the I G addition. An increase in memory capacity, from 2.35 without I G to 3.57 with I G , is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement.
Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising LixWO3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a LixWO3 channel to enable reservoir computing. Under the normal conditions, in which only the drain current (ID) is used for the reservoir states, the lowest prediction error is 8.15 × 10−4. Performance is enhanced by the addition of IG to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10−4, which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the IG addition. An increase in memory capacity, from 2.35 without IG to 3.57 with IG, is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement.
Author Wada, Tomoki
Namiki, Wataru
Tsuchiya, Takashi
Higuchi, Tohru
Nishioka, Daiki
Terabe, Kazuya
Author_xml – sequence: 1
  givenname: Tomoki
  surname: Wada
  fullname: Wada, Tomoki
  organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
– sequence: 2
  givenname: Daiki
  orcidid: 0000-0002-3369-7700
  surname: Nishioka
  fullname: Nishioka, Daiki
  organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
– sequence: 3
  givenname: Wataru
  orcidid: 0000-0003-4053-7366
  surname: Namiki
  fullname: Namiki, Wataru
  organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
– sequence: 4
  givenname: Takashi
  orcidid: 0000-0002-6950-6160
  surname: Tsuchiya
  fullname: Tsuchiya, Takashi
  organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
– sequence: 5
  givenname: Tohru
  surname: Higuchi
  fullname: Higuchi, Tohru
  organization: Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
– sequence: 6
  givenname: Kazuya
  orcidid: 0000-0003-3988-3456
  surname: Terabe
  fullname: Terabe, Kazuya
  organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
BookMark eNp1UctuFDEQtFAiEZJcOY_ElV3aj7E9x5BAWCkCKZCz1eNH5NVgL_ZsRDjxCXwjX4KX5SWkXLpb3VWlUtcTcpBy8oQ8pbCkAOwFxnq_ZMA4AGX8ETliUsBC9FId_DM_Jqe1rqERqKLA1BHJZ921d_nz96_fXmL1rlvl1OZLnGO6bafqy12O5Xl3M8cpftktL_J2nPzfW_d-xtnXLqbuomCrmFzXBHz3NqcpJo9lB97kVH09IYcBp-pPf_VjcvP61YfzN4urd5er87OrhRV8mBcUwULQ2g1hdHwQwmkJ6HpUTsnWghPSicFaL5mVCG4EOiqth37gSkvKj8lqr-syrs2mxI9Y7k3GaH4ucrk1WOZoJ28sEyH0oDWGILwYRjby0UoHAx-p6LFpPdtrbUr-tPV1Nuu8LanZN0xL1QP0XDWU2KNsybUWH4yN7TExp7l9ZTIUzC4ps0vK_Emq0Zb_0X6bfYDwAxavmb8
CitedBy_id crossref_primary_10_1088_2634_4386_acf1c6
crossref_primary_10_1088_2634_4386_ad561a
crossref_primary_10_1126_sciadv_adk6438
crossref_primary_10_1038_s44172_024_00227_y
crossref_primary_10_1002_advs_202406242
crossref_primary_10_35848_1882_0786_ad2906
crossref_primary_10_1002_aisy_202300228
crossref_primary_10_1021_acs_nanolett_3c05029
crossref_primary_10_1380_vss_67_551
crossref_primary_10_35848_1347_4065_adb6ac
crossref_primary_10_1088_1361_6528_adb041
crossref_primary_10_1002_advs_202410393
crossref_primary_10_35848_1347_4065_ad1fb0
crossref_primary_10_35848_1882_0786_ad2782
crossref_primary_10_1007_s10008_024_05937_z
crossref_primary_10_1016_j_mtadv_2023_100393
crossref_primary_10_35848_1347_4065_adb6e5
crossref_primary_10_1016_j_mtphys_2024_101465
crossref_primary_10_35848_1347_4065_adabef
crossref_primary_10_1002_advs_202411777
crossref_primary_10_1002_aelm_202400625
crossref_primary_10_1109_ACCESS_2024_3474695
crossref_primary_10_1038_s41598_023_48135_z
crossref_primary_10_1002_aelm_202300652
crossref_primary_10_1063_5_0185402
Cites_doi 10.1063/5.0083209
10.1021/acsami.9b14338
10.1038/s41598-019-55310-8
10.1103/PhysRevMaterials.3.064408
10.1016/j.apsusc.2021.150898
10.1002/aisy.201900084
10.1021/acssynbio.2c00184
10.1002/adfm.201804170
10.1038/s41598-017-10257-6
10.35848/1882-0786/ac926b
10.1038/s41586-019-1901-0
10.1021/acsami.1c21045
10.35848/1347-4065/ac594f
10.1002/adma.201304770
10.1021/acsami.5b02998
10.1038/srep10487
10.1002/adma.201604310
10.1021/acs.nanolett.1c01990
10.1038/s42004-021-00554-7
10.1038/nmat4756
10.1021/acsnano.0c07906
10.1063/1.4818736
10.1021/acsnano.5b07374
10.1038/s41467-020-20692-1
10.1145/2765491.2765531
10.1038/s41467-021-24260-z
10.1002/advs.202104076
10.1038/s41598-022-13687-z
10.1038/s41928-019-0313-3
10.1038/nmat4368
10.1126/science.1091277
10.1126/science.aaw5581
10.1126/sciadv.aau2057
10.1063/1.5115183
10.1038/ncomms1476
10.1088/2634-4386/ac4339
10.1126/sciadv.aaz9079
10.1038/s41467-017-02337-y
10.1016/j.neunet.2019.03.005
10.1038/s41563-018-0211-5
10.1103/PhysRevApplied.15.024030
10.1038/nmat4134
10.35848/1347-4065/ac64e5
10.1038/nature23011
10.1002/adfm.201803024
10.1021/acsami.7b01324
10.1126/sciadv.ade1156
10.1002/adma.202003984
10.1126/sciadv.abg1455
10.1021/acs.nanolett.0c00340
10.1038/nnano.2012.240
10.1038/srep00287
10.1063/1.4926572
10.1038/s41563-021-01099-9
10.1063/5.0073528
10.1515/nanoph-2016-0132
10.1088/0957-4484/24/38/384004
10.1038/s41598-022-14738-1
10.1002/aelm.202100645
10.1080/14686996.2022.2152290
10.1038/s41467-020-16261-1
10.1038/nmat4856
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1002/aisy.202300123
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c24ff5088aff4e49b2b3bc6d093b145a
10_1002_aisy_202300123
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
AAYXX
ACCFJ
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
M~E
OK1
PHGZM
PHGZT
PIMPY
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
WIN
ID FETCH-LOGICAL-c439t-1a0c0f88d9fbd3944d860ad5a7d76d5afd46d49cce62c6a0db01b788959378613
IEDL.DBID BENPR
ISSN 2640-4567
IngestDate Wed Aug 27 01:27:00 EDT 2025
Fri Jul 25 08:09:44 EDT 2025
Tue Jul 01 02:06:40 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-1a0c0f88d9fbd3944d860ad5a7d76d5afd46d49cce62c6a0db01b788959378613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4053-7366
0000-0002-6950-6160
0000-0002-3369-7700
0000-0003-3988-3456
OpenAccessLink https://www.proquest.com/docview/2867500537?pq-origsite=%requestingapplication%
PQID 2867500537
PQPubID 5064933
ParticipantIDs doaj_primary_oai_doaj_org_article_c24ff5088aff4e49b2b3bc6d093b145a
proquest_journals_2867500537
crossref_citationtrail_10_1002_aisy_202300123
crossref_primary_10_1002_aisy_202300123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced intelligent systems
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
Goto K. (e_1_2_8_26_1) 2021; 23
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Lu A. (e_1_2_8_51_1) 2009; 95
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_38_1
  doi: 10.1063/5.0083209
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.9b14338
– ident: e_1_2_8_30_1
  doi: 10.1038/s41598-019-55310-8
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevMaterials.3.064408
– ident: e_1_2_8_47_1
  doi: 10.1016/j.apsusc.2021.150898
– ident: e_1_2_8_27_1
  doi: 10.1002/aisy.201900084
– ident: e_1_2_8_16_1
  doi: 10.1021/acssynbio.2c00184
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201804170
– ident: e_1_2_8_55_1
  doi: 10.1038/s41598-017-10257-6
– ident: e_1_2_8_63_1
  doi: 10.35848/1882-0786/ac926b
– ident: e_1_2_8_65_1
  doi: 10.1038/s41586-019-1901-0
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.1c21045
– ident: e_1_2_8_42_1
  doi: 10.35848/1347-4065/ac594f
– volume: 23
  start-page: 060351
  year: 2021
  ident: e_1_2_8_26_1
  publication-title: New J. Phys.
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201304770
– ident: e_1_2_8_50_1
  doi: 10.1021/acsami.5b02998
– ident: e_1_2_8_5_1
  doi: 10.1038/srep10487
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.201604310
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.nanolett.1c01990
– ident: e_1_2_8_52_1
  doi: 10.1038/s42004-021-00554-7
– ident: e_1_2_8_57_1
  doi: 10.1038/nmat4756
– ident: e_1_2_8_41_1
  doi: 10.1021/acsnano.0c07906
– ident: e_1_2_8_48_1
  doi: 10.1063/1.4818736
– ident: e_1_2_8_39_1
  doi: 10.1021/acsnano.5b07374
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-020-20692-1
– ident: e_1_2_8_12_1
  doi: 10.1145/2765491.2765531
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-021-24260-z
– ident: e_1_2_8_24_1
  doi: 10.1002/advs.202104076
– ident: e_1_2_8_17_1
  doi: 10.1038/s41598-022-13687-z
– ident: e_1_2_8_13_1
  doi: 10.1038/s41928-019-0313-3
– ident: e_1_2_8_58_1
  doi: 10.1038/nmat4368
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1091277
– ident: e_1_2_8_34_1
  doi: 10.1126/science.aaw5581
– ident: e_1_2_8_60_1
  doi: 10.1126/sciadv.aau2057
– ident: e_1_2_8_9_1
  doi: 10.1063/1.5115183
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms1476
– ident: e_1_2_8_7_1
  doi: 10.1088/2634-4386/ac4339
– ident: e_1_2_8_54_1
  doi: 10.1126/sciadv.aaz9079
– volume: 95
  start-page: 222905
  year: 2009
  ident: e_1_2_8_51_1
  publication-title: Phys. Lett.
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-017-02337-y
– ident: e_1_2_8_3_1
  doi: 10.1016/j.neunet.2019.03.005
– ident: e_1_2_8_43_1
  doi: 10.1038/s41563-018-0211-5
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevApplied.15.024030
– ident: e_1_2_8_23_1
  doi: 10.1038/nmat4134
– ident: e_1_2_8_62_1
  doi: 10.35848/1347-4065/ac64e5
– ident: e_1_2_8_10_1
  doi: 10.1038/nature23011
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.201803024
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.7b01324
– ident: e_1_2_8_22_1
  doi: 10.1126/sciadv.ade1156
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202003984
– ident: e_1_2_8_15_1
  doi: 10.1126/sciadv.abg1455
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.nanolett.0c00340
– ident: e_1_2_8_56_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_8_4_1
  doi: 10.1038/srep00287
– ident: e_1_2_8_53_1
  doi: 10.1063/1.4926572
– ident: e_1_2_8_19_1
  doi: 10.1038/s41563-021-01099-9
– ident: e_1_2_8_29_1
  doi: 10.1063/5.0073528
– ident: e_1_2_8_21_1
  doi: 10.1515/nanoph-2016-0132
– ident: e_1_2_8_20_1
  doi: 10.1088/0957-4484/24/38/384004
– ident: e_1_2_8_25_1
  doi: 10.1038/s41598-022-14738-1
– ident: e_1_2_8_61_1
  doi: 10.1002/aelm.202100645
– ident: e_1_2_8_64_1
  doi: 10.1080/14686996.2022.2152290
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-020-16261-1
– ident: e_1_2_8_35_1
  doi: 10.1038/nmat4856
SSID ssj0002171027
Score 2.3764455
Snippet Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li x WO 3 thin film and lithium‐ion conducting glass...
Herein, physical reservoir computing with a redox-based ion-gating reservoir (redox-IGR) comprising LixWO3 thin film and lithium-ion conducting glass ceramic...
Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising LixWO3 thin film and lithium‐ion conducting glass ceramic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms all-solid-state
Autoregressive moving average
Computation
Electrodes
Electrolytes
Errors
Glass ceramics
Integrated circuits
ion-gating reservoir
ion-gating transistor
lithium ion
Lithium ions
Memory tasks
nanoionics
neuromorphic
Nonlinear dynamics
Nonlinear response
Pattern recognition
Thin films
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF7EkxdRVKxW2YPgxdgkbja7x1atVbAHsdBb2L9AoCSSVlFPPoLP6JM4k6S1IuLFU8JmIMvs7Mw3y-w3hByJiMXKxNJDLOIx2BOeiKTyXCCdElHKRYCXk2-HfDBiN-NovNTqC2vCanrgWnEdE7I0RRSh0pQ5JnWoz7ThFjJxHbCogkYQ85aSKfTBALQhcsZzlkY_7Khs-nKKvcIrFPEtClVk_T98cRVg-htkvUGGtFvPaJOsuHyLFF1652zx_PH23oN4Y-l1kcP7lcJqZYplc-VTkZUndDTLJtkrDgIk1hP39Y3WeJJmOb3AfhBU5ZbioRkd1jQZqkRhrJR1020y6l_enw-8pkeCZwBKzLxA-cZPhbAy1RYvuVrBfWUjFduYwyO1jFsmjXE8NFz5VvuBhrQX-YhjAbF8h6zmRe52CfUrbjwtkdILOWuEAhUryKjAX8qQyxbx5jpLTEMgjn0sJklNfRwmqONkoeMWOV7IP9TUGb9K9nAJFlJIeV0NgCEkjSEkfxlCi7TnC5g0-3CahAISooqzZu8__rFP1nDSdY1Zm6zOykd3AKBkpg8r-_sEh_XgYw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Redox‐Based Ion‐Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses
URI https://www.proquest.com/docview/2867500537
https://doaj.org/article/c24ff5088aff4e49b2b3bc6d093b145a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XHqpiqDqFlj5UIkLLklwHPuEWLrLQ2KFUFfiFvmVKmKVQHaLgAO_nZnEu6hC5ZJI9hyssT3zeTz-hpAfMuWZtpliiEUYhz3BZKo087HyWqaFkDE-Tr4ci7MJv7hJb0LAbRbSKhc2sTXUrrYYIz9IJEDbln3k6O6eYdUovF0NJTRWyTqYYAmHr_XBcHx1vYyyAOAGD5ot2Bqj5ECXs6efWDO8RRP_eKOWtP-dTW4dzegL-RwQIj3upnSDrPhqk9we02vv6kc2AK_j6HldsVONGcsUU-eah7ps9ulkXk7LZ2wEWGym_q2PdpiSlhX9hTUhqK4cxcAZHXdUGbpBYcyW9bMtMhkNf5-csVAngVmAE3MW68hGhZROFcbhQ1cnRaRdqjOXCfgVjgvHlbVeJFboyJkoNnD0RU7iTII__0rWqrry3wiNWn48o5DWC3lrpFaHRoNmwWaqRKgeYQt95TaQiGMti2ne0R8nOeo3X-q3R_aW8ncdfcZ_JQeo_qUU0l63DXXzJw-7KLcJLwqElLoouOfKJObQWOEiGGXMU90jO4vJy8NenOVvK-f7x93b5BMOp8sg2yFr8-av3wXIMTd9sipHp_2wuvrtwR2-ly_DVxKi1_g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAgFioYAPIC6YJl7HsQ8ItZTtLm33gLpSb8avoIhVUrLLo_wofiOePLZCCG49RbJHkTWe8Xy2x98APJMZz43LFUUsQnn0CSozZWhIVTAyK4RM8XHyyVxMF_z9WXa2Bb-GtzCYVjmsie1C7WuHZ-S7TEZo27KPvDn_QrFqFN6uDiU0OrM4Chff45Zt9Xp2EOf3OWOTd6dvp7SvKkBdDL5rmprEJYWUXhXW47NQL0VifGZyn4v4KTwXnivngmBOmMTbJLVxo4gMvrmM0S_-9xpc5-OxQo-Sk8PNmU6E9zFe5wM3ZMJ2Tbm6eIUVylvs8kfsa0sE_BUB2rA2uQ23ejxK9joDugNboboLn_fIh-DrH3Q_xjhPZnVFDw3mRxNM1Gu-1WXzkizW5bL8iY0RhNtluOwjHYIlZUUOsAIFMZUneExH5h0xh2lQGHNzw-oeLK5Ef_dhu6qr8ABI0rLxWYUkYsiSI40aWxP3cHGFVkyoEdBBX9r1lOVYOWOpO7JlplG_eqPfEbzYyJ93ZB3_lNxH9W-kkGS7baibT7r3We0YLwoEsKYoeODKMju2TvgkjjLlmRnBzjB5uvf8lb6004f_734KN6anJ8f6eDY_egQ3cWhd7toObK-br-FxBDtr-6S1MAIfr9qkfwM8QRDR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuCASIlAI-gLhg4nX3YR8QakhDQyGqKiL1tviJVkS7ZRMe7U_rr2NmH6kQgltPK3lHK2s8nvnGO_6GkGcyiTNtM8UQi7AY9gSTidLMR8prmYRURng5-eM8PVzE70-T0y1y2d-FwbLK3ic2jtpVFs_IR0ICtG3YR0ahK4s4nkzfnH1j2EEK_7T27TRaEzny5z8hfVu9nk1grZ8LMT349PaQdR0GmIVAvGaR5pYHKZ0KxuEVUSdTrl2iM5el8AguTl2srPWpsKnmzvDIQNKIbL6ZhEgI371BtjPIiviAbI8P5scnmxMeAPsQvbOeKZKLkS5W56-wX3mDZP6IhE3DgL_iQRPkpnfI7Q6d0v3WnO6SLV_eI1_36Yl31S82hojn6Kwq2TuN1dIUy_bqH1VRv6SLdbEsLnAQILlZ-qt3tMWztCjpBPtRUF06iod2dN7SdOgahbFS16_uk8W1aPABGZRV6R8SyhtuPqOQUgw5c6RWe0ZDRgf-WolUDQnr9ZXbjsAc-2gs85Z6WeSo33yj3yF5sZE_a6k7_ik5RvVvpJByuxmo6i95t4NzK-IQEM7qEGIfKyPMnrGp4zDLKE70kOz2i5d3fmCVX1ntzv9fPyU3wZzzD7P50SNyC2fWFrLtksG6_u4fA_JZmyediVHy-bqt-jdcSBZj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Redox-Based+Ion-Gating+Reservoir%2C+Utilizing+Double+Reservoir+States+in+Drain+and+Gate+Nonlinear+Responses&rft.jtitle=Advanced+intelligent+systems&rft.au=Wada%2C+Tomoki&rft.au=Nishioka%2C+Daiki&rft.au=Namiki%2C+Wataru&rft.au=Tsuchiya%2C+Takashi&rft.date=2023-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2640-4567&rft.volume=5&rft.issue=9&rft_id=info:doi/10.1002%2Faisy.202300123&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon