A Redox‐Based Ion‐Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses
Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li x WO 3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse dri...
Saved in:
Published in | Advanced intelligent systems Vol. 5; no. 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.09.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li
x
WO
3
thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a Li
x
WO
3
channel to enable reservoir computing. Under the normal conditions, in which only the drain current (
I
D
) is used for the reservoir states, the lowest prediction error is 8.15 × 10
−4
. Performance is enhanced by the addition of
I
G
to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10
−4
, which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the
I
G
addition. An increase in memory capacity, from 2.35 without
I
G
to 3.57 with
I
G
, is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement. |
---|---|
AbstractList | Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li
x
WO
3
thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a Li
x
WO
3
channel to enable reservoir computing. Under the normal conditions, in which only the drain current (
I
D
) is used for the reservoir states, the lowest prediction error is 8.15 × 10
−4
. Performance is enhanced by the addition of
I
G
to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10
−4
, which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the
I
G
addition. An increase in memory capacity, from 2.35 without
I
G
to 3.57 with
I
G
, is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement. Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising LixWO3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a LixWO3 channel to enable reservoir computing. Under the normal conditions, in which only the drain current (ID) is used for the reservoir states, the lowest prediction error is 8.15 × 10−4. Performance is enhanced by the addition of IG to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10−4, which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the IG addition. An increase in memory capacity, from 2.35 without IG to 3.57 with IG, is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement. |
Author | Wada, Tomoki Namiki, Wataru Tsuchiya, Takashi Higuchi, Tohru Nishioka, Daiki Terabe, Kazuya |
Author_xml | – sequence: 1 givenname: Tomoki surname: Wada fullname: Wada, Tomoki organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan – sequence: 2 givenname: Daiki orcidid: 0000-0002-3369-7700 surname: Nishioka fullname: Nishioka, Daiki organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan – sequence: 3 givenname: Wataru orcidid: 0000-0003-4053-7366 surname: Namiki fullname: Namiki, Wataru organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan – sequence: 4 givenname: Takashi orcidid: 0000-0002-6950-6160 surname: Tsuchiya fullname: Tsuchiya, Takashi organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan – sequence: 5 givenname: Tohru surname: Higuchi fullname: Higuchi, Tohru organization: Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan – sequence: 6 givenname: Kazuya orcidid: 0000-0003-3988-3456 surname: Terabe fullname: Terabe, Kazuya organization: Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan |
BookMark | eNp1UctuFDEQtFAiEZJcOY_ElV3aj7E9x5BAWCkCKZCz1eNH5NVgL_ZsRDjxCXwjX4KX5SWkXLpb3VWlUtcTcpBy8oQ8pbCkAOwFxnq_ZMA4AGX8ETliUsBC9FId_DM_Jqe1rqERqKLA1BHJZ921d_nz96_fXmL1rlvl1OZLnGO6bafqy12O5Xl3M8cpftktL_J2nPzfW_d-xtnXLqbuomCrmFzXBHz3NqcpJo9lB97kVH09IYcBp-pPf_VjcvP61YfzN4urd5er87OrhRV8mBcUwULQ2g1hdHwQwmkJ6HpUTsnWghPSicFaL5mVCG4EOiqth37gSkvKj8lqr-syrs2mxI9Y7k3GaH4ucrk1WOZoJ28sEyH0oDWGILwYRjby0UoHAx-p6LFpPdtrbUr-tPV1Nuu8LanZN0xL1QP0XDWU2KNsybUWH4yN7TExp7l9ZTIUzC4ps0vK_Emq0Zb_0X6bfYDwAxavmb8 |
CitedBy_id | crossref_primary_10_1088_2634_4386_acf1c6 crossref_primary_10_1088_2634_4386_ad561a crossref_primary_10_1126_sciadv_adk6438 crossref_primary_10_1038_s44172_024_00227_y crossref_primary_10_1002_advs_202406242 crossref_primary_10_35848_1882_0786_ad2906 crossref_primary_10_1002_aisy_202300228 crossref_primary_10_1021_acs_nanolett_3c05029 crossref_primary_10_1380_vss_67_551 crossref_primary_10_35848_1347_4065_adb6ac crossref_primary_10_1088_1361_6528_adb041 crossref_primary_10_1002_advs_202410393 crossref_primary_10_35848_1347_4065_ad1fb0 crossref_primary_10_35848_1882_0786_ad2782 crossref_primary_10_1007_s10008_024_05937_z crossref_primary_10_1016_j_mtadv_2023_100393 crossref_primary_10_35848_1347_4065_adb6e5 crossref_primary_10_1016_j_mtphys_2024_101465 crossref_primary_10_35848_1347_4065_adabef crossref_primary_10_1002_advs_202411777 crossref_primary_10_1002_aelm_202400625 crossref_primary_10_1109_ACCESS_2024_3474695 crossref_primary_10_1038_s41598_023_48135_z crossref_primary_10_1002_aelm_202300652 crossref_primary_10_1063_5_0185402 |
Cites_doi | 10.1063/5.0083209 10.1021/acsami.9b14338 10.1038/s41598-019-55310-8 10.1103/PhysRevMaterials.3.064408 10.1016/j.apsusc.2021.150898 10.1002/aisy.201900084 10.1021/acssynbio.2c00184 10.1002/adfm.201804170 10.1038/s41598-017-10257-6 10.35848/1882-0786/ac926b 10.1038/s41586-019-1901-0 10.1021/acsami.1c21045 10.35848/1347-4065/ac594f 10.1002/adma.201304770 10.1021/acsami.5b02998 10.1038/srep10487 10.1002/adma.201604310 10.1021/acs.nanolett.1c01990 10.1038/s42004-021-00554-7 10.1038/nmat4756 10.1021/acsnano.0c07906 10.1063/1.4818736 10.1021/acsnano.5b07374 10.1038/s41467-020-20692-1 10.1145/2765491.2765531 10.1038/s41467-021-24260-z 10.1002/advs.202104076 10.1038/s41598-022-13687-z 10.1038/s41928-019-0313-3 10.1038/nmat4368 10.1126/science.1091277 10.1126/science.aaw5581 10.1126/sciadv.aau2057 10.1063/1.5115183 10.1038/ncomms1476 10.1088/2634-4386/ac4339 10.1126/sciadv.aaz9079 10.1038/s41467-017-02337-y 10.1016/j.neunet.2019.03.005 10.1038/s41563-018-0211-5 10.1103/PhysRevApplied.15.024030 10.1038/nmat4134 10.35848/1347-4065/ac64e5 10.1038/nature23011 10.1002/adfm.201803024 10.1021/acsami.7b01324 10.1126/sciadv.ade1156 10.1002/adma.202003984 10.1126/sciadv.abg1455 10.1021/acs.nanolett.0c00340 10.1038/nnano.2012.240 10.1038/srep00287 10.1063/1.4926572 10.1038/s41563-021-01099-9 10.1063/5.0073528 10.1515/nanoph-2016-0132 10.1088/0957-4484/24/38/384004 10.1038/s41598-022-14738-1 10.1002/aelm.202100645 10.1080/14686996.2022.2152290 10.1038/s41467-020-16261-1 10.1038/nmat4856 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1002/aisy.202300123 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2640-4567 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c24ff5088aff4e49b2b3bc6d093b145a 10_1002_aisy_202300123 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS AAYXX ACCFJ ACCMX ACXQS ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU CITATION EBS EJD GROUPED_DOAJ HCIFZ IAO ICD ITC M~E OK1 PHGZM PHGZT PIMPY 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO WIN |
ID | FETCH-LOGICAL-c439t-1a0c0f88d9fbd3944d860ad5a7d76d5afd46d49cce62c6a0db01b788959378613 |
IEDL.DBID | BENPR |
ISSN | 2640-4567 |
IngestDate | Wed Aug 27 01:27:00 EDT 2025 Fri Jul 25 08:09:44 EDT 2025 Tue Jul 01 02:06:40 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-1a0c0f88d9fbd3944d860ad5a7d76d5afd46d49cce62c6a0db01b788959378613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4053-7366 0000-0002-6950-6160 0000-0002-3369-7700 0000-0003-3988-3456 |
OpenAccessLink | https://www.proquest.com/docview/2867500537?pq-origsite=%requestingapplication% |
PQID | 2867500537 |
PQPubID | 5064933 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c24ff5088aff4e49b2b3bc6d093b145a proquest_journals_2867500537 crossref_citationtrail_10_1002_aisy_202300123 crossref_primary_10_1002_aisy_202300123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced intelligent systems |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_3_1 Goto K. (e_1_2_8_26_1) 2021; 23 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Lu A. (e_1_2_8_51_1) 2009; 95 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_38_1 doi: 10.1063/5.0083209 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.9b14338 – ident: e_1_2_8_30_1 doi: 10.1038/s41598-019-55310-8 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevMaterials.3.064408 – ident: e_1_2_8_47_1 doi: 10.1016/j.apsusc.2021.150898 – ident: e_1_2_8_27_1 doi: 10.1002/aisy.201900084 – ident: e_1_2_8_16_1 doi: 10.1021/acssynbio.2c00184 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201804170 – ident: e_1_2_8_55_1 doi: 10.1038/s41598-017-10257-6 – ident: e_1_2_8_63_1 doi: 10.35848/1882-0786/ac926b – ident: e_1_2_8_65_1 doi: 10.1038/s41586-019-1901-0 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.1c21045 – ident: e_1_2_8_42_1 doi: 10.35848/1347-4065/ac594f – volume: 23 start-page: 060351 year: 2021 ident: e_1_2_8_26_1 publication-title: New J. Phys. – ident: e_1_2_8_49_1 doi: 10.1002/adma.201304770 – ident: e_1_2_8_50_1 doi: 10.1021/acsami.5b02998 – ident: e_1_2_8_5_1 doi: 10.1038/srep10487 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201604310 – ident: e_1_2_8_40_1 doi: 10.1021/acs.nanolett.1c01990 – ident: e_1_2_8_52_1 doi: 10.1038/s42004-021-00554-7 – ident: e_1_2_8_57_1 doi: 10.1038/nmat4756 – ident: e_1_2_8_41_1 doi: 10.1021/acsnano.0c07906 – ident: e_1_2_8_48_1 doi: 10.1063/1.4818736 – ident: e_1_2_8_39_1 doi: 10.1021/acsnano.5b07374 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-020-20692-1 – ident: e_1_2_8_12_1 doi: 10.1145/2765491.2765531 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-021-24260-z – ident: e_1_2_8_24_1 doi: 10.1002/advs.202104076 – ident: e_1_2_8_17_1 doi: 10.1038/s41598-022-13687-z – ident: e_1_2_8_13_1 doi: 10.1038/s41928-019-0313-3 – ident: e_1_2_8_58_1 doi: 10.1038/nmat4368 – ident: e_1_2_8_2_1 doi: 10.1126/science.1091277 – ident: e_1_2_8_34_1 doi: 10.1126/science.aaw5581 – ident: e_1_2_8_60_1 doi: 10.1126/sciadv.aau2057 – ident: e_1_2_8_9_1 doi: 10.1063/1.5115183 – ident: e_1_2_8_28_1 doi: 10.1038/ncomms1476 – ident: e_1_2_8_7_1 doi: 10.1088/2634-4386/ac4339 – ident: e_1_2_8_54_1 doi: 10.1126/sciadv.aaz9079 – volume: 95 start-page: 222905 year: 2009 ident: e_1_2_8_51_1 publication-title: Phys. Lett. – ident: e_1_2_8_8_1 doi: 10.1038/s41467-017-02337-y – ident: e_1_2_8_3_1 doi: 10.1016/j.neunet.2019.03.005 – ident: e_1_2_8_43_1 doi: 10.1038/s41563-018-0211-5 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevApplied.15.024030 – ident: e_1_2_8_23_1 doi: 10.1038/nmat4134 – ident: e_1_2_8_62_1 doi: 10.35848/1347-4065/ac64e5 – ident: e_1_2_8_10_1 doi: 10.1038/nature23011 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.201803024 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.7b01324 – ident: e_1_2_8_22_1 doi: 10.1126/sciadv.ade1156 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202003984 – ident: e_1_2_8_15_1 doi: 10.1126/sciadv.abg1455 – ident: e_1_2_8_44_1 doi: 10.1021/acs.nanolett.0c00340 – ident: e_1_2_8_56_1 doi: 10.1038/nnano.2012.240 – ident: e_1_2_8_4_1 doi: 10.1038/srep00287 – ident: e_1_2_8_53_1 doi: 10.1063/1.4926572 – ident: e_1_2_8_19_1 doi: 10.1038/s41563-021-01099-9 – ident: e_1_2_8_29_1 doi: 10.1063/5.0073528 – ident: e_1_2_8_21_1 doi: 10.1515/nanoph-2016-0132 – ident: e_1_2_8_20_1 doi: 10.1088/0957-4484/24/38/384004 – ident: e_1_2_8_25_1 doi: 10.1038/s41598-022-14738-1 – ident: e_1_2_8_61_1 doi: 10.1002/aelm.202100645 – ident: e_1_2_8_64_1 doi: 10.1080/14686996.2022.2152290 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-020-16261-1 – ident: e_1_2_8_35_1 doi: 10.1038/nmat4856 |
SSID | ssj0002171027 |
Score | 2.3764455 |
Snippet | Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising Li
x
WO
3
thin film and lithium‐ion conducting glass... Herein, physical reservoir computing with a redox-based ion-gating reservoir (redox-IGR) comprising LixWO3 thin film and lithium-ion conducting glass ceramic... Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising LixWO3 thin film and lithium‐ion conducting glass ceramic... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | all-solid-state Autoregressive moving average Computation Electrodes Electrolytes Errors Glass ceramics Integrated circuits ion-gating reservoir ion-gating transistor lithium ion Lithium ions Memory tasks nanoionics neuromorphic Nonlinear dynamics Nonlinear response Pattern recognition Thin films Transistors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF7EkxdRVKxW2YPgxdgkbja7x1atVbAHsdBb2L9AoCSSVlFPPoLP6JM4k6S1IuLFU8JmIMvs7Mw3y-w3hByJiMXKxNJDLOIx2BOeiKTyXCCdElHKRYCXk2-HfDBiN-NovNTqC2vCanrgWnEdE7I0RRSh0pQ5JnWoz7ThFjJxHbCogkYQ85aSKfTBALQhcsZzlkY_7Khs-nKKvcIrFPEtClVk_T98cRVg-htkvUGGtFvPaJOsuHyLFF1652zx_PH23oN4Y-l1kcP7lcJqZYplc-VTkZUndDTLJtkrDgIk1hP39Y3WeJJmOb3AfhBU5ZbioRkd1jQZqkRhrJR1020y6l_enw-8pkeCZwBKzLxA-cZPhbAy1RYvuVrBfWUjFduYwyO1jFsmjXE8NFz5VvuBhrQX-YhjAbF8h6zmRe52CfUrbjwtkdILOWuEAhUryKjAX8qQyxbx5jpLTEMgjn0sJklNfRwmqONkoeMWOV7IP9TUGb9K9nAJFlJIeV0NgCEkjSEkfxlCi7TnC5g0-3CahAISooqzZu8__rFP1nDSdY1Zm6zOykd3AKBkpg8r-_sEh_XgYw priority: 102 providerName: Directory of Open Access Journals |
Title | A Redox‐Based Ion‐Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses |
URI | https://www.proquest.com/docview/2867500537 https://doaj.org/article/c24ff5088aff4e49b2b3bc6d093b145a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XHqpiqDqFlj5UIkLLklwHPuEWLrLQ2KFUFfiFvmVKmKVQHaLgAO_nZnEu6hC5ZJI9hyssT3zeTz-hpAfMuWZtpliiEUYhz3BZKo087HyWqaFkDE-Tr4ci7MJv7hJb0LAbRbSKhc2sTXUrrYYIz9IJEDbln3k6O6eYdUovF0NJTRWyTqYYAmHr_XBcHx1vYyyAOAGD5ot2Bqj5ECXs6efWDO8RRP_eKOWtP-dTW4dzegL-RwQIj3upnSDrPhqk9we02vv6kc2AK_j6HldsVONGcsUU-eah7ps9ulkXk7LZ2wEWGym_q2PdpiSlhX9hTUhqK4cxcAZHXdUGbpBYcyW9bMtMhkNf5-csVAngVmAE3MW68hGhZROFcbhQ1cnRaRdqjOXCfgVjgvHlbVeJFboyJkoNnD0RU7iTII__0rWqrry3wiNWn48o5DWC3lrpFaHRoNmwWaqRKgeYQt95TaQiGMti2ne0R8nOeo3X-q3R_aW8ncdfcZ_JQeo_qUU0l63DXXzJw-7KLcJLwqElLoouOfKJObQWOEiGGXMU90jO4vJy8NenOVvK-f7x93b5BMOp8sg2yFr8-av3wXIMTd9sipHp_2wuvrtwR2-ly_DVxKi1_g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAgFioYAPIC6YJl7HsQ8ItZTtLm33gLpSb8avoIhVUrLLo_wofiOePLZCCG49RbJHkTWe8Xy2x98APJMZz43LFUUsQnn0CSozZWhIVTAyK4RM8XHyyVxMF_z9WXa2Bb-GtzCYVjmsie1C7WuHZ-S7TEZo27KPvDn_QrFqFN6uDiU0OrM4Chff45Zt9Xp2EOf3OWOTd6dvp7SvKkBdDL5rmprEJYWUXhXW47NQL0VifGZyn4v4KTwXnivngmBOmMTbJLVxo4gMvrmM0S_-9xpc5-OxQo-Sk8PNmU6E9zFe5wM3ZMJ2Tbm6eIUVylvs8kfsa0sE_BUB2rA2uQ23ejxK9joDugNboboLn_fIh-DrH3Q_xjhPZnVFDw3mRxNM1Gu-1WXzkizW5bL8iY0RhNtluOwjHYIlZUUOsAIFMZUneExH5h0xh2lQGHNzw-oeLK5Ef_dhu6qr8ABI0rLxWYUkYsiSI40aWxP3cHGFVkyoEdBBX9r1lOVYOWOpO7JlplG_eqPfEbzYyJ93ZB3_lNxH9W-kkGS7baibT7r3We0YLwoEsKYoeODKMju2TvgkjjLlmRnBzjB5uvf8lb6004f_734KN6anJ8f6eDY_egQ3cWhd7toObK-br-FxBDtr-6S1MAIfr9qkfwM8QRDR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuCASIlAI-gLhg4nX3YR8QakhDQyGqKiL1tviJVkS7ZRMe7U_rr2NmH6kQgltPK3lHK2s8nvnGO_6GkGcyiTNtM8UQi7AY9gSTidLMR8prmYRURng5-eM8PVzE70-T0y1y2d-FwbLK3ic2jtpVFs_IR0ICtG3YR0ahK4s4nkzfnH1j2EEK_7T27TRaEzny5z8hfVu9nk1grZ8LMT349PaQdR0GmIVAvGaR5pYHKZ0KxuEVUSdTrl2iM5el8AguTl2srPWpsKnmzvDIQNKIbL6ZhEgI371BtjPIiviAbI8P5scnmxMeAPsQvbOeKZKLkS5W56-wX3mDZP6IhE3DgL_iQRPkpnfI7Q6d0v3WnO6SLV_eI1_36Yl31S82hojn6Kwq2TuN1dIUy_bqH1VRv6SLdbEsLnAQILlZ-qt3tMWztCjpBPtRUF06iod2dN7SdOgahbFS16_uk8W1aPABGZRV6R8SyhtuPqOQUgw5c6RWe0ZDRgf-WolUDQnr9ZXbjsAc-2gs85Z6WeSo33yj3yF5sZE_a6k7_ik5RvVvpJByuxmo6i95t4NzK-IQEM7qEGIfKyPMnrGp4zDLKE70kOz2i5d3fmCVX1ntzv9fPyU3wZzzD7P50SNyC2fWFrLtksG6_u4fA_JZmyediVHy-bqt-jdcSBZj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Redox-Based+Ion-Gating+Reservoir%2C+Utilizing+Double+Reservoir+States+in+Drain+and+Gate+Nonlinear+Responses&rft.jtitle=Advanced+intelligent+systems&rft.au=Wada%2C+Tomoki&rft.au=Nishioka%2C+Daiki&rft.au=Namiki%2C+Wataru&rft.au=Tsuchiya%2C+Takashi&rft.date=2023-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2640-4567&rft.volume=5&rft.issue=9&rft_id=info:doi/10.1002%2Faisy.202300123&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon |