Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: Do Regions Outside the Hippocampus Matter?

Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric so...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 38; no. 3; pp. 546 - 552
Main Authors Tanpitukpongse, T.P., Mazurowski, M.A., Ikhena, J., Petrella, J.R.
Format Journal Article
LanguageEnglish
Published United States American Society of Neuroradiology 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.
AbstractList Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.
The authors assessed the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. One hundred ninety-two subjects (mean age, 74.8 years) diagnosed with mild cognitive impairment at baseline were studied. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different between packages. They conclude that of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. BACKGROUND AND PURPOSE:Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease.MATERIALS AND METHODS:Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes.RESULTS:On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different (P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader).CONCLUSIONS:Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.
Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease.BACKGROUND AND PURPOSEAlzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease.Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes.MATERIALS AND METHODSData were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes.On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different (P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader).RESULTSOn univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different (P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader).Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.CONCLUSIONSOf the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.
The authors assessed the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. One hundred ninety-two subjects (mean age, 74.8 years) diagnosed with mild cognitive impairment at baseline were studied. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different between packages. They conclude that of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up.
Author Ikhena, J.
Tanpitukpongse, T.P.
Mazurowski, M.A.
Petrella, J.R.
Author_xml – sequence: 1
  givenname: T.P.
  orcidid: 0000-0002-5283-8767
  surname: Tanpitukpongse
  fullname: Tanpitukpongse, T.P.
– sequence: 2
  givenname: M.A.
  orcidid: 0000-0003-4202-8602
  surname: Mazurowski
  fullname: Mazurowski, M.A.
– sequence: 3
  givenname: J.
  orcidid: 0000-0002-9736-1237
  surname: Ikhena
  fullname: Ikhena, J.
– sequence: 4
  givenname: J.R.
  orcidid: 0000-0003-2596-217X
  surname: Petrella
  fullname: Petrella, J.R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28057634$$D View this record in MEDLINE/PubMed
BookMark eNqNks9OFTEYxRsDkcvFjQ9gmrgxJoPtTDudusDcAIIJBsMf467pdL7h9jIzHdsOBB_CZ7YIEiEuXDVpfz39Ts_ZRGuDGwChl5RsF1Swd3o1-O0FJyV9hmZUFmUmufy2hmaESp6VlFQbaDOEFSGES5E_Rxt5RbgoCzZDP794aKyJ9grwebSdjTfYtfiz9pcQocFfXTf1EL01-NS18Vp7wGfOdQHbAZ9O9QpMDFhHfGLDJW6dx4vuxxJsDx7v2QA6wHu85_AJXFg3BHw8xWAbwHEJ-NCOozO6H6eQHowR_IcttN7qLsCL-3WOzj_un-0eZkfHB592F0eZYYWMGZWVoULUzJhaVGkvzyljgtVGSs2rktNCMFZAXuayraERnAOVdSVNXhaGiGKOdu50x6nuoTEwRK87NXrba3-jnLbq8clgl-rCXSle8JwJkgTe3At4932CEFVvg4Gu0wO4KShaVVRwwiv5HygvucyF4Al9_QRduckP6SdUskxTfDzZmqNXfw__MPWfVBPw9g4w3oXgoX1AKFG3lVG3lVG_K5Ng8gQ2NuqY0krGbfevK78A5iDFSw
CitedBy_id crossref_primary_10_1097_WAD_0000000000000406
crossref_primary_10_3233_ADR_220036
crossref_primary_10_3348_jksr_2023_0006
crossref_primary_10_3389_fnhum_2022_715807
crossref_primary_10_3233_JAD_181150
crossref_primary_10_32481_djph_2021_09_009
crossref_primary_10_1016_j_seizure_2019_12_014
crossref_primary_10_3389_fnins_2023_1301066
crossref_primary_10_3233_JAD_180532
crossref_primary_10_3389_fneur_2019_00831
crossref_primary_10_1007_s12021_020_09470_y
crossref_primary_10_1186_s13058_018_0965_3
crossref_primary_10_1186_s13244_022_01358_6
crossref_primary_10_3174_ajnr_A5250
crossref_primary_10_1038_s41598_020_77848_8
crossref_primary_10_3174_ajnr_A7079
crossref_primary_10_1001_jamanetworkopen_2019_3359
crossref_primary_10_1212_WNL_0000000000200046
crossref_primary_10_1007_s11682_019_00059_x
crossref_primary_10_3348_jksr_2020_0174
crossref_primary_10_3348_jksr_2022_0048
crossref_primary_10_18632_aging_102184
crossref_primary_10_1007_s40817_023_00155_3
crossref_primary_10_1016_j_mri_2018_03_003
crossref_primary_10_1016_j_artmed_2023_102607
crossref_primary_10_1148_radiol_222441
crossref_primary_10_2147_NDT_S252293
crossref_primary_10_1177_0284185117743778
crossref_primary_10_1016_j_neurop_2021_05_005
crossref_primary_10_14283_jpad_2023_134
crossref_primary_10_1177_0284185118795327
crossref_primary_10_13104_imri_2020_24_2_76
crossref_primary_10_1097_WNN_0000000000000295
crossref_primary_10_14283_jpad_2022_98
crossref_primary_10_1007_s00234_024_03280_8
crossref_primary_10_1002_trc2_12191
crossref_primary_10_1017_S1355617719000808
crossref_primary_10_1111_jon_13225
crossref_primary_10_1097_RMR_0000000000000224
crossref_primary_10_1007_s00234_022_02898_w
crossref_primary_10_3389_fneur_2024_1425502
crossref_primary_10_30773_pi_2018_02_12
crossref_primary_10_1016_j_rcl_2021_05_013
crossref_primary_10_1007_s00234_021_02746_3
crossref_primary_10_13104_imri_2021_25_3_164
crossref_primary_10_3233_JAD_190594
crossref_primary_10_3348_kjr_2022_0067
crossref_primary_10_1016_j_neurobiolaging_2017_01_021
crossref_primary_10_3174_ajnr_A7937
crossref_primary_10_1097_MD_0000000000017824
crossref_primary_10_3233_JAD_190329
crossref_primary_10_3348_kjr_2020_0518
crossref_primary_10_1017_S1355617721000564
crossref_primary_10_13104_imri_2022_26_4_237
crossref_primary_10_1017_S1355617720000454
Cites_doi 10.1148/radiol.2262011600
10.1155/2009/698156
10.1016/j.neuroimage.2009.11.046
10.1148/radiol.13122503
10.1016/j.jns.2008.04.024
10.1212/WNL.0b013e3182343314
10.1001/archgenpsychiatry.2011.96
10.3174/ajnr.A0949
10.1016/j.neurobiolaging.2013.06.015
10.3233/JAD-142820
10.1016/j.neuroimage.2014.10.002
10.1016/j.jalz.2012.06.004
10.2174/156720509788929273
10.1097/WAD.0b013e318260a79a
10.1016/j.jalz.2013.07.003
10.1111/j.1600-0447.2010.01644.x
10.2307/2531595
10.1016/j.neurobiolaging.2003.12.007
10.1212/01.wnl.0000256697.20968.d7
10.1016/j.neurobiolaging.2010.05.02327
10.1212/WNL.0b013e3181af79fb
10.1002/gps.4126
10.3174/ajnr.A1402
10.1212/01.wnl.0000180958.22678.91
10.3233/JAD-150559
10.1176/appi.neuropsych.11120377
10.1016/j.neurobiolaging.2006.11.010
10.1007/s11548-010-0412-0
10.1023/A:1010933404324
10.1016/j.neurobiolaging.2005.10.002
10.1016/j.neuroimage.2008.10.031
10.1523/JNEUROSCI.4437-12.2013
10.1212/01.wnl.0000320055.57329.34
10.1016/j.neurobiolaging.2010.01.022
10.1021/ci0342472
10.1136/jnnp-2014-309105
ContentType Journal Article
Copyright 2017 by American Journal of Neuroradiology.
Copyright American Society of Neuroradiology Mar 2017
2017 by American Journal of Neuroradiology 2017 American Journal of Neuroradiology
Copyright_xml – notice: 2017 by American Journal of Neuroradiology.
– notice: Copyright American Society of Neuroradiology Mar 2017
– notice: 2017 by American Journal of Neuroradiology 2017 American Journal of Neuroradiology
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.3174/ajnr.A5061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
EndPage 552
ExternalDocumentID PMC5352470
28057634
10_3174_ajnr_A5061
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: U19 AG024904
GroupedDBID ---
.55
.GJ
23M
2WC
53G
5GY
5RE
5VS
6J9
AAEJM
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFHIN
AFRAH
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
UDS
W8F
WOQ
WOW
X7M
ZCG
ZGI
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c439t-198c177b4ccb78c432214474bc99a5865137443e2629fbed755e19b89c263c073
ISSN 0195-6108
1936-959X
IngestDate Thu Aug 21 13:59:47 EDT 2025
Fri Jul 11 09:17:47 EDT 2025
Fri Jul 11 06:02:43 EDT 2025
Mon Jun 30 17:53:28 EDT 2025
Tue Apr 08 05:57:00 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Tue Jul 01 01:44:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2017 by American Journal of Neuroradiology.
Indicates open access to non-subscribers at www.ajnr.org
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-198c177b4ccb78c432214474bc99a5865137443e2629fbed755e19b89c263c073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5283-8767
0000-0003-2596-217X
0000-0003-4202-8602
0000-0002-9736-1237
OpenAccessLink http://www.ajnr.org/content/ajnr/38/3/546.full.pdf
PMID 28057634
PQID 1981059544
PQPubID 2046241
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5352470
proquest_miscellaneous_1881750589
proquest_miscellaneous_1856592775
proquest_journals_1981059544
pubmed_primary_28057634
crossref_primary_10_3174_ajnr_A5061
crossref_citationtrail_10_3174_ajnr_A5061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-00
2017-Mar
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oak Brook
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2017
Publisher American Society of Neuroradiology
Publisher_xml – name: American Society of Neuroradiology
References 2018022808152095000_38.3.546.5
2018022808152095000_38.3.546.6
2018022808152095000_38.3.546.29
2018022808152095000_38.3.546.7
2018022808152095000_38.3.546.8
2018022808152095000_38.3.546.1
2018022808152095000_38.3.546.2
2018022808152095000_38.3.546.3
2018022808152095000_38.3.546.4
2018022808152095000_38.3.546.11
2018022808152095000_38.3.546.33
2018022808152095000_38.3.546.10
2018022808152095000_38.3.546.32
2018022808152095000_38.3.546.13
2018022808152095000_38.3.546.35
2018022808152095000_38.3.546.12
2018022808152095000_38.3.546.34
2018022808152095000_38.3.546.15
2018022808152095000_38.3.546.14
2018022808152095000_38.3.546.36
2018022808152095000_38.3.546.17
2018022808152095000_38.3.546.16
2018022808152095000_38.3.546.31
2018022808152095000_38.3.546.30
2018022808152095000_38.3.546.19
2018022808152095000_38.3.546.18
2018022808152095000_38.3.546.22
2018022808152095000_38.3.546.21
2018022808152095000_38.3.546.24
2018022808152095000_38.3.546.23
2018022808152095000_38.3.546.9
2018022808152095000_38.3.546.26
2018022808152095000_38.3.546.25
2018022808152095000_38.3.546.28
2018022808152095000_38.3.546.27
2018022808152095000_38.3.546.20
References_xml – ident: 2018022808152095000_38.3.546.10
  doi: 10.1148/radiol.2262011600
– ident: 2018022808152095000_38.3.546.19
  doi: 10.1155/2009/698156
– ident: 2018022808152095000_38.3.546.18
  doi: 10.1016/j.neuroimage.2009.11.046
– ident: 2018022808152095000_38.3.546.11
  doi: 10.1148/radiol.13122503
– ident: 2018022808152095000_38.3.546.5
  doi: 10.1016/j.jns.2008.04.024
– ident: 2018022808152095000_38.3.546.28
  doi: 10.1212/WNL.0b013e3182343314
– ident: 2018022808152095000_38.3.546.36
  doi: 10.1001/archgenpsychiatry.2011.96
– ident: 2018022808152095000_38.3.546.32
  doi: 10.3174/ajnr.A0949
– ident: 2018022808152095000_38.3.546.22
  doi: 10.1016/j.neurobiolaging.2013.06.015
– ident: 2018022808152095000_38.3.546.21
  doi: 10.3233/JAD-142820
– ident: 2018022808152095000_38.3.546.20
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: 2018022808152095000_38.3.546.33
  doi: 10.1016/j.jalz.2012.06.004
– ident: 2018022808152095000_38.3.546.29
  doi: 10.2174/156720509788929273
– ident: 2018022808152095000_38.3.546.31
  doi: 10.1097/WAD.0b013e318260a79a
– ident: 2018022808152095000_38.3.546.34
  doi: 10.1016/j.jalz.2013.07.003
– ident: 2018022808152095000_38.3.546.25
  doi: 10.1111/j.1600-0447.2010.01644.x
– ident: 2018022808152095000_38.3.546.26
  doi: 10.2307/2531595
– ident: 2018022808152095000_38.3.546.1
  doi: 10.1016/j.neurobiolaging.2003.12.007
– ident: 2018022808152095000_38.3.546.9
  doi: 10.1212/01.wnl.0000256697.20968.d7
– ident: 2018022808152095000_38.3.546.16
  doi: 10.1016/j.neurobiolaging.2010.05.02327
– ident: 2018022808152095000_38.3.546.17
  doi: 10.1212/WNL.0b013e3181af79fb
– ident: 2018022808152095000_38.3.546.6
  doi: 10.1002/gps.4126
– ident: 2018022808152095000_38.3.546.24
  doi: 10.3174/ajnr.A1402
– ident: 2018022808152095000_38.3.546.7
  doi: 10.1212/01.wnl.0000180958.22678.91
– ident: 2018022808152095000_38.3.546.23
  doi: 10.3233/JAD-150559
– ident: 2018022808152095000_38.3.546.13
  doi: 10.1176/appi.neuropsych.11120377
– ident: 2018022808152095000_38.3.546.14
  doi: 10.1016/j.neurobiolaging.2006.11.010
– ident: 2018022808152095000_38.3.546.2
  doi: 10.1007/s11548-010-0412-0
– ident: 2018022808152095000_38.3.546.27
  doi: 10.1023/A:1010933404324
– ident: 2018022808152095000_38.3.546.4
  doi: 10.1016/j.neurobiolaging.2005.10.002
– ident: 2018022808152095000_38.3.546.15
  doi: 10.1016/j.neuroimage.2008.10.031
– ident: 2018022808152095000_38.3.546.3
  doi: 10.1523/JNEUROSCI.4437-12.2013
– ident: 2018022808152095000_38.3.546.8
  doi: 10.1212/01.wnl.0000320055.57329.34
– ident: 2018022808152095000_38.3.546.12
  doi: 10.1016/j.neurobiolaging.2010.01.022
– ident: 2018022808152095000_38.3.546.35
  doi: 10.1021/ci0342472
– ident: 2018022808152095000_38.3.546.30
  doi: 10.1136/jnnp-2014-309105
SSID ssj0005972
Score 2.428121
Snippet Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our...
The authors assessed the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 546
SubjectTerms Adult Brain
Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Atrophy
Atrophy - diagnostic imaging
Atrophy - pathology
Biomarkers
Brain
Cognitive ability
Cognitive Dysfunction - pathology
Computer programs
Conversion
Demographics
Disease Progression
Editor's Choice
Effectiveness
Female
Health risks
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - pathology
Humans
Impairment
Logistic Models
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Neurodegenerative diseases
Neuroimaging
Neurology
Patients
Regional analysis
Regression analysis
ROC Curve
Software
Software development tools
Software packages
Title Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: Do Regions Outside the Hippocampus Matter?
URI https://www.ncbi.nlm.nih.gov/pubmed/28057634
https://www.proquest.com/docview/1981059544
https://www.proquest.com/docview/1856592775
https://www.proquest.com/docview/1881750589
https://pubmed.ncbi.nlm.nih.gov/PMC5352470
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPsKAxnBC6oa2jjOhRdUbaBS1FFGi_ZWJam7dmuTKEs0qT-C38sj59jOpWVCsJeqSpw66flyfI79-TuEvBFd04FRyGyHTIRYwozhIiFr-4CFuTm3WMBwo_Dw2O5PrMEpP200ftVYS3kWGOHm2n0lN7EqHAO74i7Z_7Bs-aNwAL6DfeETLAyf_2TjUYrLLJL8M8mWK82uGMqNzBBI_pCeByX4W9_B214hyWscxytJgQWPcS6ZHH7WOkF-OfINe6vNQizXIkVVTly4wQmDoxiMcCYJc1_zDMt7ymi1v0wSGAjXSX7ZGkqVzh2SYLkYVFOnkPKZqT_T0k9yWnJwXK42jf0oWWb5RRJHZ6ri49gYGdWs-QauvtKVtodGrzzz-WIh1Oa2gVE5-yxFapc6emLU5zdgzCwJXrUtBejrNIsVJ1K27rU-O-pxyIU7yqEL5dE9ZgP8ZL3e0uUztwZtVvPfXM-HqlCAK3Hd3VEGQi4Lh9DzKDV6vKPE5GtwS9YSb6YLsbCtp2q3Nb1Hw0OU1bGczi1y24QEB2tvfPlW6dxDmmcWlTTxgZSwLnb8ruoWhax1H9tR1R-p0i7jtxZCje-Tezr3oT0F5AekIaKH5M5QszsekZ8VnqnGM43ntMAzrfBMCzxTiWe6jGiBZ-pnFPFMAc-0xDPVeH5Pj2Kq0Uw1mimgmdbQTBWaPzwmk08fx4f9tq4X0g4hrM7aXc8Nu44TWGEYOC4cM1EP0LGC0PN87tq8yxzLYsK0TW8eiJnDueh6geuFps1CGOuekL0ojsQ-odzDZgySnzmKRfiBgDRiJjpd33ZtJqwmeVv839NQi-ljTZfVFJJqNNMUzTSVZmqS12XbREnIXNvqoDDbVL-Wl1N4Isx_uAUdvipPwwCAq3p-JOIc2rgcqRGOw__WxoU0ASuINslThYTyVgoINYmzhZGyAQrQb5-JlgspRK8x_OzGVz4nd6tX_oDsZWkuXkCQnwUv5fvwGzB9A30
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Utility+of+Marketed+Volumetric+Software+Tools+in+Subjects+at+Risk+for+Alzheimer+Disease%3A+Do+Regions+Outside+the+Hippocampus+Matter%3F&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Tanpitukpongse%2C+T.P.&rft.au=Mazurowski%2C+M.A.&rft.au=Ikhena%2C+J.&rft.au=Petrella%2C+J.R.&rft.date=2017-03-01&rft.pub=American+Society+of+Neuroradiology&rft.issn=0195-6108&rft.eissn=1936-959X&rft.volume=38&rft.issue=3&rft.spage=546&rft.epage=552&rft_id=info:doi/10.3174%2Fajnr.A5061&rft_id=info%3Apmid%2F28057634&rft.externalDocID=PMC5352470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon