A factor mining model with optimized random forest for concrete dam deformation monitoring
The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional met...
Saved in:
Published in | Water Science and Engineering Vol. 14; no. 4; pp. 330 - 336 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional methods, it is essential to develop a method for extracting the factors influencing a dam. In this study, a data mining method and a model for evaluation of concrete dam deformation were developed using the evidence theory and a random forest. The model has the advantages of being easily understood, visualization with low complexity of training time, and accurate prediction. The model was applied to an actual concrete dam. The results indicated that the proposed random forest model could be used in analysis of concrete dams. |
---|---|
AbstractList | The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional methods, it is essential to develop a method for extracting the factors influencing a dam. In this study, a data mining method and a model for evaluation of concrete dam deformation were developed using the evidence theory and a random forest. The model has the advantages of being easily understood, visualization with low complexity of training time, and accurate prediction. The model was applied to an actual concrete dam. The results indicated that the proposed random forest model could be used in analysis of concrete dams. |
Author | Yang, Meng Huang, Xiao-fei Gu, Hao Gu, Chong-shi |
Author_xml | – sequence: 1 givenname: Hao surname: Gu fullname: Gu, Hao organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China – sequence: 2 givenname: Meng surname: Yang fullname: Yang, Meng email: ymym_059@126.com organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China – sequence: 3 givenname: Chong-shi surname: Gu fullname: Gu, Chong-shi organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China – sequence: 4 givenname: Xiao-fei surname: Huang fullname: Huang, Xiao-fei organization: Library of Hohai University, Hohai University, Nanjing 210098, China |
BookMark | eNp9kT1vFDEQhrcIEiHkB9C5pLnDn-tbUUURH5Ei0UBDY83a4zCnXfuwHSL49fHloKGIZGnkV_O8mpn31XCWcsJheCP4VnAxvttvHypuJZei_7ec67PhXIxWb6Sy_OVwWSvNXAht-lPnw_crFsG3XNhKidIdW3PAhT1Q-8HyodFKfzCwAinklcVcsLZjYT4nX7AhC7CygF1aoVFOnU_U7brV6-FFhKXi5d96MXz7-OHr9efN7ZdPN9dXtxuv1dQ2YvTch-iNtfM8KwNmh7sAXEdh0Qu7k_OsdypqPU0YOchRqsmooIyKNkivLoabk2_IsHeHQiuU3y4DuSchlzsHpZFf0IkgNUQFY-BSWy7AKBGjMWIKYLS23evtyetQ8s_7vqxbqXpcFkiY76uToxrNpLQwvdWeWn3JtRaMzlN7ukErQIsT3B0DcXvXA3HHQI5SD6ST4j_y39DPMe9PDPZL_iIsrnrC5DFQQd_6qvQM_QhFuafe |
CitedBy_id | crossref_primary_10_3390_w14223739 crossref_primary_10_3390_app122312103 crossref_primary_10_1016_j_bamboo_2024_100079 crossref_primary_10_1371_journal_pone_0301865 crossref_primary_10_1016_j_engstruct_2024_118845 crossref_primary_10_1016_j_measurement_2023_113579 crossref_primary_10_1016_j_engstruct_2024_117949 crossref_primary_10_1016_j_engstruct_2022_115353 crossref_primary_10_3390_w16243687 crossref_primary_10_36306_konjes_1375871 crossref_primary_10_1016_j_wse_2023_07_001 crossref_primary_10_1016_j_jhydrol_2023_129736 crossref_primary_10_1016_j_eswa_2023_122022 crossref_primary_10_1016_j_wse_2023_09_002 crossref_primary_10_3390_buildings15030357 crossref_primary_10_1016_j_wse_2023_09_001 crossref_primary_10_1111_mice_13232 crossref_primary_10_1016_j_wse_2022_04_001 crossref_primary_10_3390_math11173752 crossref_primary_10_3390_su15043202 crossref_primary_10_1007_s13369_024_08993_9 crossref_primary_10_3390_w16121643 crossref_primary_10_1515_jag_2024_0060 crossref_primary_10_1016_j_wse_2023_09_005 crossref_primary_10_1016_j_istruc_2024_108094 crossref_primary_10_1109_ACCESS_2022_3186593 |
Cites_doi | 10.1016/j.csl.2006.01.003 10.1016/j.conengprac.2010.04.005 10.1016/j.eswa.2017.08.030 10.1186/1471-2105-7-3 10.1016/j.ijpara.2008.04.007 10.1016/j.watres.2005.01.001 10.12989/scs.2016.22.5.1001 10.1016/j.wse.2019.06.003 10.1016/j.scico.2017.06.009 10.1016/j.ecolmodel.2007.05.011 10.1109/34.709601 10.1016/j.compmedimag.2010.03.006 10.1007/BF00058655 10.1002/int.20135 |
ContentType | Journal Article |
Copyright | 2021 Hohai University |
Copyright_xml | – notice: 2021 Hohai University |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.wse.2021.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 336 |
ExternalDocumentID | oai_doaj_org_article_1d24af3a6d024701a531ff5519da5447 10_1016_j_wse_2021_10_004 S1674237021001009 |
GrantInformation_xml | – fundername: State Key Program of National Natural Science of China grantid: 51739003 – fundername: National Natural Science Foundation for Young Scientists of China grantid: 51909173 – fundername: National Dam Safety Research Center grantid: CX2020B02 – fundername: Free Exploration Project of Hohai University grantid: B200201058 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS CDYEO AAYXX CITATION 7S9 L.6 GROUPED_DOAJ |
ID | FETCH-LOGICAL-c439t-16c0cdfc577bbb35a58e8da04f17ec1782bb483f4499ef0a2623953d353f7d2c3 |
IEDL.DBID | DOA |
ISSN | 1674-2370 |
IngestDate | Wed Aug 27 01:22:08 EDT 2025 Fri Jul 11 02:11:25 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Tue Jul 01 02:57:27 EDT 2025 Thu Jul 20 20:13:38 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Evaluation Random forest Influencing factors Mining method Concrete dam |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-16c0cdfc577bbb35a58e8da04f17ec1782bb483f4499ef0a2623953d353f7d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1d24af3a6d024701a531ff5519da5447 |
PQID | 2636593415 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d24af3a6d024701a531ff5519da5447 proquest_miscellaneous_2636593415 crossref_citationtrail_10_1016_j_wse_2021_10_004 crossref_primary_10_1016_j_wse_2021_10_004 elsevier_sciencedirect_doi_10_1016_j_wse_2021_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Water Science and Engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Auret, Aldrich (bib2) 2010; 18 Lee, Kouzani, Hub (bib11) 2010; 34 Peters, Baets, Verhoest, Samson, Degroeve, Becker, Huybrechts (bib17) 2007; 207 Jaan, Awesar, Guo, Nikolaos (bib10) 2019; 12 Diaz-Uriarte, Andres (bib6) 2006; 7 Ho (bib9) 1998; 20 Dutta, Dutta, Raahemi (bib7) 2017; 90 Parkhurst, Brenner, Dufour (bib15) 2005; 39 Xu, Jelinek (bib18) 2007; 21 Yu (bib19) 2008; 39 Adanur, Altunisik, Soyluk (bib1) 2016; 22 Bacchelli, Mocci, Cleve, Lanza (bib3) 2017; 150 Breiman (bib4) 1996; 24 Li, Ye (bib12) 2006; S2 Perdiguero-Alonso, Montero, Kostadinova (bib16) 2008; 38 Dempster, Chiu (bib5) 2006; 21 Ma, Wang, Zhang (bib14) 2004; 21 Gu, Su (bib8) 2015; 35 Ma, Zhu, Han, Li (bib13) 2010; 37 Dempster (10.1016/j.wse.2021.10.004_bib5) 2006; 21 Breiman (10.1016/j.wse.2021.10.004_bib4) 1996; 24 Li (10.1016/j.wse.2021.10.004_bib12) 2006; S2 Dutta (10.1016/j.wse.2021.10.004_bib7) 2017; 90 Gu (10.1016/j.wse.2021.10.004_bib8) 2015; 35 Ma (10.1016/j.wse.2021.10.004_bib14) 2004; 21 Jaan (10.1016/j.wse.2021.10.004_bib10) 2019; 12 Peters (10.1016/j.wse.2021.10.004_bib17) 2007; 207 Bacchelli (10.1016/j.wse.2021.10.004_bib3) 2017; 150 Ho (10.1016/j.wse.2021.10.004_bib9) 1998; 20 Adanur (10.1016/j.wse.2021.10.004_bib1) 2016; 22 Perdiguero-Alonso (10.1016/j.wse.2021.10.004_bib16) 2008; 38 Auret (10.1016/j.wse.2021.10.004_bib2) 2010; 18 Yu (10.1016/j.wse.2021.10.004_bib19) 2008; 39 Lee (10.1016/j.wse.2021.10.004_bib11) 2010; 34 Parkhurst (10.1016/j.wse.2021.10.004_bib15) 2005; 39 Xu (10.1016/j.wse.2021.10.004_bib18) 2007; 21 Diaz-Uriarte (10.1016/j.wse.2021.10.004_bib6) 2006; 7 Ma (10.1016/j.wse.2021.10.004_bib13) 2010; 37 |
References_xml | – volume: S2 start-page: 145 year: 2006 end-page: 149 ident: bib12 article-title: Rough set method for excavation of main causes of cracks in hydraulic concrete structures publication-title: J. Southeast Univ. (Nat. Sci. Ed.) – volume: 150 start-page: 31 year: 2017 end-page: 55 ident: bib3 article-title: Mining structured data in natural language artifacts with island parsing publication-title: Sci. Comput. Program. – volume: 12 start-page: 121 year: 2019 end-page: 128 ident: bib10 article-title: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction publication-title: Water Sci. Eng. – volume: 7 start-page: 1 year: 2006 end-page: 3 ident: bib6 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf. – volume: 22 start-page: 1001 year: 2016 end-page: 1018 ident: bib1 article-title: Stochastic response of suspension bridges for various spatial variability models publication-title: Steel Compos. Struct. – volume: 18 start-page: 990 year: 2010 end-page: 1002 ident: bib2 article-title: Change point detection in time series data with random forests publication-title: Control Eng. Pract. – volume: 38 start-page: 1425 year: 2008 end-page: 1434 ident: bib16 article-title: Random forests, a novel approach for discrimination of fish populations using parasites as biological tags publication-title: Int. J. Parasitol. – volume: 39 start-page: 1354 year: 2005 end-page: 1360 ident: bib15 article-title: Indicator bacteria at five swimming beaches: Analysis using random forests publication-title: Water Res. – volume: 39 start-page: 55 year: 2008 end-page: 57 ident: bib19 article-title: Study on the cause of cracks in concrete dam based on the fusion of rough set and neural network publication-title: Yangtze River – volume: 21 start-page: 48 year: 2004 end-page: 51 ident: bib14 article-title: Analysis of landslide monitoring data based on association rule mining publication-title: J. Yangtze River Sci. Res. Inst. – volume: 37 start-page: 33 year: 2010 end-page: 35 ident: bib13 article-title: Concrete crack genesis mining based on fuzzy neural network publication-title: J. Hydraul. Eng. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib4 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 90 start-page: 374 year: 2017 end-page: 393 ident: bib7 article-title: Detecting financial restatements using data mining techniques publication-title: Expert Syst. Appl. – volume: 35 start-page: 1 year: 2015 end-page: 12 ident: bib8 article-title: Review of research on long-term service and risk assessment of concrete dam engineering publication-title: Scientific and Technological Progress in Water Conservancy and Hydropower – volume: 34 start-page: 535 year: 2010 end-page: 542 ident: bib11 article-title: Random forest based lung nodule classification aided by clustering publication-title: Comput. Med. Imag. Graph. – volume: 21 start-page: 283 year: 2006 end-page: 297 ident: bib5 article-title: Dempster-Shafer models for object recognition and classification publication-title: Int. J. Intell. Syst. – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: bib9 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 207 start-page: 304 year: 2007 end-page: 318 ident: bib17 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. – volume: 21 start-page: 105 year: 2007 end-page: 152 ident: bib18 article-title: Random forests and the data sparseness problem in language modeling publication-title: Comput. Speech Lang. – volume: 21 start-page: 105 issue: 1 year: 2007 ident: 10.1016/j.wse.2021.10.004_bib18 article-title: Random forests and the data sparseness problem in language modeling publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2006.01.003 – volume: 18 start-page: 990 issue: 8 year: 2010 ident: 10.1016/j.wse.2021.10.004_bib2 article-title: Change point detection in time series data with random forests publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2010.04.005 – volume: 35 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.wse.2021.10.004_bib8 article-title: Review of research on long-term service and risk assessment of concrete dam engineering publication-title: Scientific and Technological Progress in Water Conservancy and Hydropower – volume: 90 start-page: 374 year: 2017 ident: 10.1016/j.wse.2021.10.004_bib7 article-title: Detecting financial restatements using data mining techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.030 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.wse.2021.10.004_bib6 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-3 – volume: S2 start-page: 145 year: 2006 ident: 10.1016/j.wse.2021.10.004_bib12 article-title: Rough set method for excavation of main causes of cracks in hydraulic concrete structures publication-title: J. Southeast Univ. (Nat. Sci. Ed.) – volume: 38 start-page: 1425 issue: 12 year: 2008 ident: 10.1016/j.wse.2021.10.004_bib16 article-title: Random forests, a novel approach for discrimination of fish populations using parasites as biological tags publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2008.04.007 – volume: 39 start-page: 1354 issue: 7 year: 2005 ident: 10.1016/j.wse.2021.10.004_bib15 article-title: Indicator bacteria at five swimming beaches: Analysis using random forests publication-title: Water Res. doi: 10.1016/j.watres.2005.01.001 – volume: 22 start-page: 1001 issue: 5 year: 2016 ident: 10.1016/j.wse.2021.10.004_bib1 article-title: Stochastic response of suspension bridges for various spatial variability models publication-title: Steel Compos. Struct. doi: 10.12989/scs.2016.22.5.1001 – volume: 12 start-page: 121 issue: 2 year: 2019 ident: 10.1016/j.wse.2021.10.004_bib10 article-title: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction publication-title: Water Sci. Eng. doi: 10.1016/j.wse.2019.06.003 – volume: 150 start-page: 31 year: 2017 ident: 10.1016/j.wse.2021.10.004_bib3 article-title: Mining structured data in natural language artifacts with island parsing publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2017.06.009 – volume: 207 start-page: 304 issue: 2–4 year: 2007 ident: 10.1016/j.wse.2021.10.004_bib17 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.05.011 – volume: 21 start-page: 48 issue: 5 year: 2004 ident: 10.1016/j.wse.2021.10.004_bib14 article-title: Analysis of landslide monitoring data based on association rule mining publication-title: J. Yangtze River Sci. Res. Inst. – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.wse.2021.10.004_bib9 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 34 start-page: 535 issue: 7 year: 2010 ident: 10.1016/j.wse.2021.10.004_bib11 article-title: Random forest based lung nodule classification aided by clustering publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2010.03.006 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.wse.2021.10.004_bib4 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 21 start-page: 283 issue: 3 year: 2006 ident: 10.1016/j.wse.2021.10.004_bib5 article-title: Dempster-Shafer models for object recognition and classification publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20135 – volume: 39 start-page: 55 issue: 16 year: 2008 ident: 10.1016/j.wse.2021.10.004_bib19 article-title: Study on the cause of cracks in concrete dam based on the fusion of rough set and neural network publication-title: Yangtze River – volume: 37 start-page: 33 issue: 3 year: 2010 ident: 10.1016/j.wse.2021.10.004_bib13 article-title: Concrete crack genesis mining based on fuzzy neural network publication-title: J. Hydraul. Eng. |
SSID | ssib011451453 ssib038074922 ssib051367794 ssib017478907 ssib007693243 ssib044764880 |
Score | 2.34699 |
Snippet | The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 330 |
SubjectTerms | algorithms Concrete dam deformation Evaluation evolution Influencing factors Mining method prediction Random forest water |
Title | A factor mining model with optimized random forest for concrete dam deformation monitoring |
URI | https://dx.doi.org/10.1016/j.wse.2021.10.004 https://www.proquest.com/docview/2636593415 https://doaj.org/article/1d24af3a6d024701a531ff5519da5447 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vIngSqk3zao8qigh6UhAvIU9Q3F3RXQQP_nZn0u5DD3rx0kJJ03YyzXxJJt9HyEFI2gurYiGdk4UQQRXOK1k0yukmiiY5jpuTr2_U5Z24upf3c1JfmBPW0gO3hjtmoRI2casCRBNdMgtOkxLE-SZYKUTeRw4xb24whZ6ECn_VjGiKoR6tmAUmZFkXzYy4DupR854skchMZxVFzNIvKq6nS6I5Oez9DSk2K3aUM8PEt6CWuf-_xbYfvXwOXRcrZLnDnPSk_dZVshAHa-ThhLZaO7SfNSJo1sShOC9Lh9CP9B8_YqAQycKwTwHZQr14ojB-BqA5ijTYPg1xuvkR7sfeAacJ18ndxfnt2WXRCS0UHvDIqGDKlz4kL7V2znFpZR3rYEuRmI6eAYhwTtQ8CRgexVTaCjBTI3ngkicdKs83yOJgOIibhHLfOA41eRehuGN1HaSLOkXPWdRC9kg5sZTxHQs5imE8m0m62ZMB4xo0Ll4C4_bI4fSWl5aC47fCp2j-aUFkz84XwKdM51PmL5_qETFpPNMBkRZgQFWPvz17f9LQBn5SXHmxgzgcv5lKcSUbAAxy6z_eb5ss4WPbrJodsjh6HcddwEYjt5d_Azhef55_AQRhBXU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+mining+model+with+optimized+random+forest+for+concrete+dam+deformation+monitoring&rft.au=Gu%2C+Hao&rft.au=Yang%2C+Meng&rft.au=Gu%2C+Chong-shi&rft.au=Huang%2C+Xiao-fei&rft.date=2021-12-01&rft.issn=1674-2370&rft.volume=14&rft.issue=4+p.330-336&rft.spage=330&rft.epage=336&rft_id=info:doi/10.1016%2Fj.wse.2021.10.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2370&client=summon |