A factor mining model with optimized random forest for concrete dam deformation monitoring

The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional met...

Full description

Saved in:
Bibliographic Details
Published inWater Science and Engineering Vol. 14; no. 4; pp. 330 - 336
Main Authors Gu, Hao, Yang, Meng, Gu, Chong-shi, Huang, Xiao-fei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional methods, it is essential to develop a method for extracting the factors influencing a dam. In this study, a data mining method and a model for evaluation of concrete dam deformation were developed using the evidence theory and a random forest. The model has the advantages of being easily understood, visualization with low complexity of training time, and accurate prediction. The model was applied to an actual concrete dam. The results indicated that the proposed random forest model could be used in analysis of concrete dams.
AbstractList The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model prediction, actual dam response monitoring data can be used for diagnosis and early warning. Given the poor data mining ability of the conventional methods, it is essential to develop a method for extracting the factors influencing a dam. In this study, a data mining method and a model for evaluation of concrete dam deformation were developed using the evidence theory and a random forest. The model has the advantages of being easily understood, visualization with low complexity of training time, and accurate prediction. The model was applied to an actual concrete dam. The results indicated that the proposed random forest model could be used in analysis of concrete dams.
Author Yang, Meng
Huang, Xiao-fei
Gu, Hao
Gu, Chong-shi
Author_xml – sequence: 1
  givenname: Hao
  surname: Gu
  fullname: Gu, Hao
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Meng
  surname: Yang
  fullname: Yang, Meng
  email: ymym_059@126.com
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Chong-shi
  surname: Gu
  fullname: Gu, Chong-shi
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Xiao-fei
  surname: Huang
  fullname: Huang, Xiao-fei
  organization: Library of Hohai University, Hohai University, Nanjing 210098, China
BookMark eNp9kT1vFDEQhrcIEiHkB9C5pLnDn-tbUUURH5Ei0UBDY83a4zCnXfuwHSL49fHloKGIZGnkV_O8mpn31XCWcsJheCP4VnAxvttvHypuJZei_7ec67PhXIxWb6Sy_OVwWSvNXAht-lPnw_crFsG3XNhKidIdW3PAhT1Q-8HyodFKfzCwAinklcVcsLZjYT4nX7AhC7CygF1aoVFOnU_U7brV6-FFhKXi5d96MXz7-OHr9efN7ZdPN9dXtxuv1dQ2YvTch-iNtfM8KwNmh7sAXEdh0Qu7k_OsdypqPU0YOchRqsmooIyKNkivLoabk2_IsHeHQiuU3y4DuSchlzsHpZFf0IkgNUQFY-BSWy7AKBGjMWIKYLS23evtyetQ8s_7vqxbqXpcFkiY76uToxrNpLQwvdWeWn3JtRaMzlN7ukErQIsT3B0DcXvXA3HHQI5SD6ST4j_y39DPMe9PDPZL_iIsrnrC5DFQQd_6qvQM_QhFuafe
CitedBy_id crossref_primary_10_3390_w14223739
crossref_primary_10_3390_app122312103
crossref_primary_10_1016_j_bamboo_2024_100079
crossref_primary_10_1371_journal_pone_0301865
crossref_primary_10_1016_j_engstruct_2024_118845
crossref_primary_10_1016_j_measurement_2023_113579
crossref_primary_10_1016_j_engstruct_2024_117949
crossref_primary_10_1016_j_engstruct_2022_115353
crossref_primary_10_3390_w16243687
crossref_primary_10_36306_konjes_1375871
crossref_primary_10_1016_j_wse_2023_07_001
crossref_primary_10_1016_j_jhydrol_2023_129736
crossref_primary_10_1016_j_eswa_2023_122022
crossref_primary_10_1016_j_wse_2023_09_002
crossref_primary_10_3390_buildings15030357
crossref_primary_10_1016_j_wse_2023_09_001
crossref_primary_10_1111_mice_13232
crossref_primary_10_1016_j_wse_2022_04_001
crossref_primary_10_3390_math11173752
crossref_primary_10_3390_su15043202
crossref_primary_10_1007_s13369_024_08993_9
crossref_primary_10_3390_w16121643
crossref_primary_10_1515_jag_2024_0060
crossref_primary_10_1016_j_wse_2023_09_005
crossref_primary_10_1016_j_istruc_2024_108094
crossref_primary_10_1109_ACCESS_2022_3186593
Cites_doi 10.1016/j.csl.2006.01.003
10.1016/j.conengprac.2010.04.005
10.1016/j.eswa.2017.08.030
10.1186/1471-2105-7-3
10.1016/j.ijpara.2008.04.007
10.1016/j.watres.2005.01.001
10.12989/scs.2016.22.5.1001
10.1016/j.wse.2019.06.003
10.1016/j.scico.2017.06.009
10.1016/j.ecolmodel.2007.05.011
10.1109/34.709601
10.1016/j.compmedimag.2010.03.006
10.1007/BF00058655
10.1002/int.20135
ContentType Journal Article
Copyright 2021 Hohai University
Copyright_xml – notice: 2021 Hohai University
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.wse.2021.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 336
ExternalDocumentID oai_doaj_org_article_1d24af3a6d024701a531ff5519da5447
10_1016_j_wse_2021_10_004
S1674237021001009
GrantInformation_xml – fundername: State Key Program of National Natural Science of China
  grantid: 51739003
– fundername: National Natural Science Foundation for Young Scientists of China
  grantid: 51909173
– fundername: National Dam Safety Research Center
  grantid: CX2020B02
– fundername: Free Exploration Project of Hohai University
  grantid: B200201058
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
CDYEO
AAYXX
CITATION
7S9
L.6
GROUPED_DOAJ
ID FETCH-LOGICAL-c439t-16c0cdfc577bbb35a58e8da04f17ec1782bb483f4499ef0a2623953d353f7d2c3
IEDL.DBID DOA
ISSN 1674-2370
IngestDate Wed Aug 27 01:22:08 EDT 2025
Fri Jul 11 02:11:25 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 02:57:27 EDT 2025
Thu Jul 20 20:13:38 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Evaluation
Random forest
Influencing factors
Mining method
Concrete dam
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-16c0cdfc577bbb35a58e8da04f17ec1782bb483f4499ef0a2623953d353f7d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1d24af3a6d024701a531ff5519da5447
PQID 2636593415
PQPubID 24069
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_1d24af3a6d024701a531ff5519da5447
proquest_miscellaneous_2636593415
crossref_citationtrail_10_1016_j_wse_2021_10_004
crossref_primary_10_1016_j_wse_2021_10_004
elsevier_sciencedirect_doi_10_1016_j_wse_2021_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Water Science and Engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Auret, Aldrich (bib2) 2010; 18
Lee, Kouzani, Hub (bib11) 2010; 34
Peters, Baets, Verhoest, Samson, Degroeve, Becker, Huybrechts (bib17) 2007; 207
Jaan, Awesar, Guo, Nikolaos (bib10) 2019; 12
Diaz-Uriarte, Andres (bib6) 2006; 7
Ho (bib9) 1998; 20
Dutta, Dutta, Raahemi (bib7) 2017; 90
Parkhurst, Brenner, Dufour (bib15) 2005; 39
Xu, Jelinek (bib18) 2007; 21
Yu (bib19) 2008; 39
Adanur, Altunisik, Soyluk (bib1) 2016; 22
Bacchelli, Mocci, Cleve, Lanza (bib3) 2017; 150
Breiman (bib4) 1996; 24
Li, Ye (bib12) 2006; S2
Perdiguero-Alonso, Montero, Kostadinova (bib16) 2008; 38
Dempster, Chiu (bib5) 2006; 21
Ma, Wang, Zhang (bib14) 2004; 21
Gu, Su (bib8) 2015; 35
Ma, Zhu, Han, Li (bib13) 2010; 37
Dempster (10.1016/j.wse.2021.10.004_bib5) 2006; 21
Breiman (10.1016/j.wse.2021.10.004_bib4) 1996; 24
Li (10.1016/j.wse.2021.10.004_bib12) 2006; S2
Dutta (10.1016/j.wse.2021.10.004_bib7) 2017; 90
Gu (10.1016/j.wse.2021.10.004_bib8) 2015; 35
Ma (10.1016/j.wse.2021.10.004_bib14) 2004; 21
Jaan (10.1016/j.wse.2021.10.004_bib10) 2019; 12
Peters (10.1016/j.wse.2021.10.004_bib17) 2007; 207
Bacchelli (10.1016/j.wse.2021.10.004_bib3) 2017; 150
Ho (10.1016/j.wse.2021.10.004_bib9) 1998; 20
Adanur (10.1016/j.wse.2021.10.004_bib1) 2016; 22
Perdiguero-Alonso (10.1016/j.wse.2021.10.004_bib16) 2008; 38
Auret (10.1016/j.wse.2021.10.004_bib2) 2010; 18
Yu (10.1016/j.wse.2021.10.004_bib19) 2008; 39
Lee (10.1016/j.wse.2021.10.004_bib11) 2010; 34
Parkhurst (10.1016/j.wse.2021.10.004_bib15) 2005; 39
Xu (10.1016/j.wse.2021.10.004_bib18) 2007; 21
Diaz-Uriarte (10.1016/j.wse.2021.10.004_bib6) 2006; 7
Ma (10.1016/j.wse.2021.10.004_bib13) 2010; 37
References_xml – volume: S2
  start-page: 145
  year: 2006
  end-page: 149
  ident: bib12
  article-title: Rough set method for excavation of main causes of cracks in hydraulic concrete structures
  publication-title: J. Southeast Univ. (Nat. Sci. Ed.)
– volume: 150
  start-page: 31
  year: 2017
  end-page: 55
  ident: bib3
  article-title: Mining structured data in natural language artifacts with island parsing
  publication-title: Sci. Comput. Program.
– volume: 12
  start-page: 121
  year: 2019
  end-page: 128
  ident: bib10
  article-title: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction
  publication-title: Water Sci. Eng.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 3
  ident: bib6
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf.
– volume: 22
  start-page: 1001
  year: 2016
  end-page: 1018
  ident: bib1
  article-title: Stochastic response of suspension bridges for various spatial variability models
  publication-title: Steel Compos. Struct.
– volume: 18
  start-page: 990
  year: 2010
  end-page: 1002
  ident: bib2
  article-title: Change point detection in time series data with random forests
  publication-title: Control Eng. Pract.
– volume: 38
  start-page: 1425
  year: 2008
  end-page: 1434
  ident: bib16
  article-title: Random forests, a novel approach for discrimination of fish populations using parasites as biological tags
  publication-title: Int. J. Parasitol.
– volume: 39
  start-page: 1354
  year: 2005
  end-page: 1360
  ident: bib15
  article-title: Indicator bacteria at five swimming beaches: Analysis using random forests
  publication-title: Water Res.
– volume: 39
  start-page: 55
  year: 2008
  end-page: 57
  ident: bib19
  article-title: Study on the cause of cracks in concrete dam based on the fusion of rough set and neural network
  publication-title: Yangtze River
– volume: 21
  start-page: 48
  year: 2004
  end-page: 51
  ident: bib14
  article-title: Analysis of landslide monitoring data based on association rule mining
  publication-title: J. Yangtze River Sci. Res. Inst.
– volume: 37
  start-page: 33
  year: 2010
  end-page: 35
  ident: bib13
  article-title: Concrete crack genesis mining based on fuzzy neural network
  publication-title: J. Hydraul. Eng.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib4
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 90
  start-page: 374
  year: 2017
  end-page: 393
  ident: bib7
  article-title: Detecting financial restatements using data mining techniques
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib8
  article-title: Review of research on long-term service and risk assessment of concrete dam engineering
  publication-title: Scientific and Technological Progress in Water Conservancy and Hydropower
– volume: 34
  start-page: 535
  year: 2010
  end-page: 542
  ident: bib11
  article-title: Random forest based lung nodule classification aided by clustering
  publication-title: Comput. Med. Imag. Graph.
– volume: 21
  start-page: 283
  year: 2006
  end-page: 297
  ident: bib5
  article-title: Dempster-Shafer models for object recognition and classification
  publication-title: Int. J. Intell. Syst.
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib9
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 207
  start-page: 304
  year: 2007
  end-page: 318
  ident: bib17
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
– volume: 21
  start-page: 105
  year: 2007
  end-page: 152
  ident: bib18
  article-title: Random forests and the data sparseness problem in language modeling
  publication-title: Comput. Speech Lang.
– volume: 21
  start-page: 105
  issue: 1
  year: 2007
  ident: 10.1016/j.wse.2021.10.004_bib18
  article-title: Random forests and the data sparseness problem in language modeling
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2006.01.003
– volume: 18
  start-page: 990
  issue: 8
  year: 2010
  ident: 10.1016/j.wse.2021.10.004_bib2
  article-title: Change point detection in time series data with random forests
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2010.04.005
– volume: 35
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.wse.2021.10.004_bib8
  article-title: Review of research on long-term service and risk assessment of concrete dam engineering
  publication-title: Scientific and Technological Progress in Water Conservancy and Hydropower
– volume: 90
  start-page: 374
  year: 2017
  ident: 10.1016/j.wse.2021.10.004_bib7
  article-title: Detecting financial restatements using data mining techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.030
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.wse.2021.10.004_bib6
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-3
– volume: S2
  start-page: 145
  year: 2006
  ident: 10.1016/j.wse.2021.10.004_bib12
  article-title: Rough set method for excavation of main causes of cracks in hydraulic concrete structures
  publication-title: J. Southeast Univ. (Nat. Sci. Ed.)
– volume: 38
  start-page: 1425
  issue: 12
  year: 2008
  ident: 10.1016/j.wse.2021.10.004_bib16
  article-title: Random forests, a novel approach for discrimination of fish populations using parasites as biological tags
  publication-title: Int. J. Parasitol.
  doi: 10.1016/j.ijpara.2008.04.007
– volume: 39
  start-page: 1354
  issue: 7
  year: 2005
  ident: 10.1016/j.wse.2021.10.004_bib15
  article-title: Indicator bacteria at five swimming beaches: Analysis using random forests
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.01.001
– volume: 22
  start-page: 1001
  issue: 5
  year: 2016
  ident: 10.1016/j.wse.2021.10.004_bib1
  article-title: Stochastic response of suspension bridges for various spatial variability models
  publication-title: Steel Compos. Struct.
  doi: 10.12989/scs.2016.22.5.1001
– volume: 12
  start-page: 121
  issue: 2
  year: 2019
  ident: 10.1016/j.wse.2021.10.004_bib10
  article-title: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction
  publication-title: Water Sci. Eng.
  doi: 10.1016/j.wse.2019.06.003
– volume: 150
  start-page: 31
  year: 2017
  ident: 10.1016/j.wse.2021.10.004_bib3
  article-title: Mining structured data in natural language artifacts with island parsing
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2017.06.009
– volume: 207
  start-page: 304
  issue: 2–4
  year: 2007
  ident: 10.1016/j.wse.2021.10.004_bib17
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.05.011
– volume: 21
  start-page: 48
  issue: 5
  year: 2004
  ident: 10.1016/j.wse.2021.10.004_bib14
  article-title: Analysis of landslide monitoring data based on association rule mining
  publication-title: J. Yangtze River Sci. Res. Inst.
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.wse.2021.10.004_bib9
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 34
  start-page: 535
  issue: 7
  year: 2010
  ident: 10.1016/j.wse.2021.10.004_bib11
  article-title: Random forest based lung nodule classification aided by clustering
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2010.03.006
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.wse.2021.10.004_bib4
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 21
  start-page: 283
  issue: 3
  year: 2006
  ident: 10.1016/j.wse.2021.10.004_bib5
  article-title: Dempster-Shafer models for object recognition and classification
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20135
– volume: 39
  start-page: 55
  issue: 16
  year: 2008
  ident: 10.1016/j.wse.2021.10.004_bib19
  article-title: Study on the cause of cracks in concrete dam based on the fusion of rough set and neural network
  publication-title: Yangtze River
– volume: 37
  start-page: 33
  issue: 3
  year: 2010
  ident: 10.1016/j.wse.2021.10.004_bib13
  article-title: Concrete crack genesis mining based on fuzzy neural network
  publication-title: J. Hydraul. Eng.
SSID ssib011451453
ssib038074922
ssib051367794
ssib017478907
ssib007693243
ssib044764880
Score 2.34699
Snippet The unique structure of a dam complicates safety monitoring. Deformation can provide important information about dam evolution. In contrast to model...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 330
SubjectTerms algorithms
Concrete dam
deformation
Evaluation
evolution
Influencing factors
Mining method
prediction
Random forest
water
Title A factor mining model with optimized random forest for concrete dam deformation monitoring
URI https://dx.doi.org/10.1016/j.wse.2021.10.004
https://www.proquest.com/docview/2636593415
https://doaj.org/article/1d24af3a6d024701a531ff5519da5447
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vIngSqk3zao8qigh6UhAvIU9Q3F3RXQQP_nZn0u5DD3rx0kJJ03YyzXxJJt9HyEFI2gurYiGdk4UQQRXOK1k0yukmiiY5jpuTr2_U5Z24upf3c1JfmBPW0gO3hjtmoRI2casCRBNdMgtOkxLE-SZYKUTeRw4xb24whZ6ECn_VjGiKoR6tmAUmZFkXzYy4DupR854skchMZxVFzNIvKq6nS6I5Oez9DSk2K3aUM8PEt6CWuf-_xbYfvXwOXRcrZLnDnPSk_dZVshAHa-ThhLZaO7SfNSJo1sShOC9Lh9CP9B8_YqAQycKwTwHZQr14ojB-BqA5ijTYPg1xuvkR7sfeAacJ18ndxfnt2WXRCS0UHvDIqGDKlz4kL7V2znFpZR3rYEuRmI6eAYhwTtQ8CRgexVTaCjBTI3ngkicdKs83yOJgOIibhHLfOA41eRehuGN1HaSLOkXPWdRC9kg5sZTxHQs5imE8m0m62ZMB4xo0Ll4C4_bI4fSWl5aC47fCp2j-aUFkz84XwKdM51PmL5_qETFpPNMBkRZgQFWPvz17f9LQBn5SXHmxgzgcv5lKcSUbAAxy6z_eb5ss4WPbrJodsjh6HcddwEYjt5d_Azhef55_AQRhBXU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+mining+model+with+optimized+random+forest+for+concrete+dam+deformation+monitoring&rft.au=Gu%2C+Hao&rft.au=Yang%2C+Meng&rft.au=Gu%2C+Chong-shi&rft.au=Huang%2C+Xiao-fei&rft.date=2021-12-01&rft.issn=1674-2370&rft.volume=14&rft.issue=4+p.330-336&rft.spage=330&rft.epage=336&rft_id=info:doi/10.1016%2Fj.wse.2021.10.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2370&client=summon