Mesoporosity‐Enabled Selectivity of Mesoporous Palladium‐Based Nanocrystals Catalysts in Semihydrogenation of Alkynes

We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1‐phenyl‐1‐prop...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 8; pp. e202114539 - n/a
Main Authors Lv, Hao, Qin, Huaiyu, Sun, Mingzi, Jia, Fengrui, Huang, Bolong, Liu, Ben
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.02.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1‐phenyl‐1‐propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over‐hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes. Mesoporosity engineering is demonstrated as an efficient route for boosting catalytic selectivity of Pd‐based nanobundle catalysts in the semihydrogenation of alkynes. Mechanistic studies reveal that the continuous crystalline framework and penetrated mesoporous channel of mesoporous Pd‐based catalysts synergistically weaken the adsorption and binding strength of alkenes and energetically disable further over‐hydrogenation of alkenes to alkanes.
AbstractList We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1‐phenyl‐1‐propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over‐hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes. Mesoporosity engineering is demonstrated as an efficient route for boosting catalytic selectivity of Pd‐based nanobundle catalysts in the semihydrogenation of alkynes. Mechanistic studies reveal that the continuous crystalline framework and penetrated mesoporous channel of mesoporous Pd‐based catalysts synergistically weaken the adsorption and binding strength of alkenes and energetically disable further over‐hydrogenation of alkenes to alkanes.
We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1‐phenyl‐1‐propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over‐hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes.
Abstract We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1‐phenyl‐1‐propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over‐hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes.
Author Qin, Huaiyu
Lv, Hao
Huang, Bolong
Liu, Ben
Sun, Mingzi
Jia, Fengrui
Author_xml – sequence: 1
  givenname: Hao
  surname: Lv
  fullname: Lv, Hao
  organization: Sichuan University
– sequence: 2
  givenname: Huaiyu
  surname: Qin
  fullname: Qin, Huaiyu
  organization: Sichuan University
– sequence: 3
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: The Hong Kong Polytechnic University, Hung Hom
– sequence: 4
  givenname: Fengrui
  surname: Jia
  fullname: Jia, Fengrui
  organization: Sichuan University
– sequence: 5
  givenname: Bolong
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University, Hung Hom
– sequence: 6
  givenname: Ben
  orcidid: 0000-0003-1305-5900
  surname: Liu
  fullname: Liu, Ben
  email: ben.liu@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34913234$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq2KqsDSa49VJC5csvVnEh-X1RaQgFYCzpETT8A0sbdx0iq3_gR-I7-EWS0fUi-cZmQ988gz7z7Z8cEDIV8YnTNK-TfjHcw55YxJJfQHsscUZ6nIc7GDvRQizQvFdsl-jPfIFwXNPpFdITUTXMg9Ml1ADOvQh-iG6fHfw8qbqgWbXEEL9eD-4GsSmuSFGmPy07StsW7skD42EdlL40PdT3EwbUyWBgv2MXEeLZ27m2wfbsGbwQW_cS3aX5OHeEA-NjgAn5_rjNx8X10vT9PzHydny8V5WkuhddrYSoKyssiFsA21VHNlmLRZIw0vKlVllTVAa6qgBqkbWRtJldRFxqjIcilm5GjrXffh9whxKDsXa8AlPOA-JUdQM6rwIjNy-B96H8be4--Q4kpnBZcZUvMtVePVYg9Nue5dZ_qpZLTchFJuQilfQ8GBr8_aserAvuIvKSCgt8Bf18L0jq5cXJ6t3uRPQJ2efw
CitedBy_id crossref_primary_10_1002_ange_202116179
crossref_primary_10_1021_acscatal_3c02563
crossref_primary_10_1002_adfm_202210976
crossref_primary_10_1002_adma_202407940
crossref_primary_10_1016_j_renene_2023_04_117
crossref_primary_10_1002_adsu_202400226
crossref_primary_10_1002_anie_202400281
crossref_primary_10_1002_adma_202209635
crossref_primary_10_1016_j_fuel_2022_123982
crossref_primary_10_1039_D2NR03608H
crossref_primary_10_1002_cey2_396
crossref_primary_10_1039_D3SC04244H
crossref_primary_10_1039_D2DT02765H
crossref_primary_10_1016_j_fuel_2024_131106
crossref_primary_10_1002_aenm_202302274
crossref_primary_10_1002_anie_202304420
crossref_primary_10_1002_smll_202206052
crossref_primary_10_1038_s41596_023_00872_1
crossref_primary_10_1007_s12274_023_6280_z
crossref_primary_10_1021_acs_iecr_3c01496
crossref_primary_10_1002_cnma_202200191
crossref_primary_10_1039_D2DT03865J
crossref_primary_10_1002_adma_202201954
crossref_primary_10_1002_anie_202116179
crossref_primary_10_1016_j_apsusc_2024_159411
crossref_primary_10_1021_acscatal_3c02450
crossref_primary_10_1002_adma_202203612
crossref_primary_10_1016_j_mcat_2022_112865
crossref_primary_10_1021_acs_jpclett_2c01092
crossref_primary_10_1002_adma_202207522
crossref_primary_10_1021_acsnano_4c02710
crossref_primary_10_1002_ange_202400281
crossref_primary_10_1016_j_ijhydene_2022_06_152
crossref_primary_10_3390_molecules28062572
crossref_primary_10_1002_ange_202304420
crossref_primary_10_1016_j_fuel_2023_130200
Cites_doi 10.1002/ange.201607942
10.1021/ja002261e
10.1021/acs.chemrev.9b00230
10.1002/anie.202014017
10.1002/adma.202000992
10.1039/C6SC00083E
10.1038/ncomms4242
10.1021/acsnano.9b06339
10.1038/s41929-019-0364-x
10.1002/anie.201208901
10.1021/jacs.5b07521
10.1002/anie.201602429
10.1002/adma.202002435
10.1021/acs.chemrev.7b00272
10.1002/smll.202005354
10.1002/anie.201610432
10.1021/jacs.0c01699
10.1038/nmat4555
10.1016/j.chempr.2018.02.011
10.1002/ange.202008852
10.1021/acscatal.7b00037
10.1002/ange.202006299
10.1038/s41467-019-11794-6
10.1002/anie.201607942
10.1038/s41467-017-00421-x
10.1038/s41467-018-05052-4
10.1002/ange.202014017
10.1002/ange.201208901
10.1021/acs.nanolett.9b01223
10.1021/acscatal.5b02749
10.1021/acsnano.0c02731
10.1126/science.1155200
10.1021/jacs.7b01471
10.1002/ange.201602429
10.1016/j.chempr.2019.02.026
10.1002/anie.201903827
10.1002/anie.202008852
10.1021/ja106568t
10.1002/adma.201502593
10.1021/ja5008917
10.1002/cctc.201501269
10.1021/acscentsci.8b00490
10.1038/ncomms6787
10.1021/jacs.0c13185
10.1038/s41929-019-0334-3
10.1021/ja204557m
10.1038/s41929-021-00649-3
10.1002/anie.202106515
10.1021/acscatal.1c00200
10.1038/s41929-018-0168-4
10.1002/ange.201903827
10.1002/ange.201610432
10.1021/jacs.9b10816
10.1038/ncomms14136
10.1021/acs.chemrev.5b00255
10.31635/ccschem.021.202100958
10.1039/C8CS00846A
10.1021/ja2058617
10.1021/acscentsci.0c01262
10.1002/ange.202106515
10.1002/anie.202006299
10.1039/C9SC01728C
10.1021/jacs.8b01868
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202114539
DatabaseName PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202114539
34913234
ANIE202114539
Genre article
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Supramolecular Structure and Materials
  funderid: sklssm2021011
– fundername: Fundamental Research Funds for the Central Universities
– fundername: State Key Laboratory of Supramolecular Structure and Materials
  grantid: sklssm2021011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4399-fdb4e5d48733df0d0925a14d6f4a28b5b6bdae0c05ece49f4ca40549861036743
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Sat Aug 17 00:39:56 EDT 2024
Fri Sep 13 07:18:43 EDT 2024
Fri Aug 23 02:00:00 EDT 2024
Sat Sep 28 08:21:47 EDT 2024
Sat Aug 24 00:57:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Semihydrogenation
Catalytic Mechanism
Crystalline Framework
Mesoporosity
Mesoporous Metal
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-fdb4e5d48733df0d0925a14d6f4a28b5b6bdae0c05ece49f4ca40549861036743
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1305-5900
PMID 34913234
PQID 2625968246
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2610910591
proquest_journals_2625968246
crossref_primary_10_1002_anie_202114539
pubmed_primary_34913234
wiley_primary_10_1002_anie_202114539_ANIE202114539
PublicationCentury 2000
PublicationDate February 14, 2022
PublicationDateYYYYMMDD 2022-02-14
PublicationDate_xml – month: 02
  year: 2022
  text: February 14, 2022
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2021; 4
2018; 140
2021; 3
2019; 5
2019; 2
2020; 120
2020; 142
2019; 10
2019; 13
2020 2020; 59 132
2019; 19
2020; 14
2021; 143
2020; 32
2017 2017; 56 129
2008; 320
2016; 15
2014; 136
2011; 133
2019 2019; 58 131
2017; 117
2017; 139
2013 2013; 52 125
2018; 9
2020; 6
2016; 6
2016; 7
2014; 5
2016 2016; 55 128
2018; 4
2021; 11
2015; 137
2015; 115
2018; 1
2021; 17
2019; 48
2010; 132
2021 2021; 60 133
2000; 122
2016; 28
2016; 8
e_1_2_8_26_3
e_1_2_8_28_2
e_1_2_8_22_3
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_47_3
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_36_3
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_36_2
(e_1_2_8_46_3) 2020; 132
e_1_2_8_53_3
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_51_3
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_58_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_33_1
e_1_2_8_50_2
e_1_2_8_50_3
References_xml – volume: 55 128
  start-page: 15282 15508
  year: 2016 2016
  end-page: 15286 15512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 14745
  year: 2010
  end-page: 14747
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1412
  year: 2018
  end-page: 1419
  publication-title: ACS Cent. Sci.
– volume: 137
  start-page: 13452
  year: 2015
  end-page: 13455
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5231
  year: 2021
  end-page: 5239
  publication-title: ACS Catal.
– volume: 8
  start-page: 21
  year: 2016
  end-page: 33
  publication-title: ChemCatChem
– volume: 19
  start-page: 3379
  year: 2019
  end-page: 3385
  publication-title: Nano Lett.
– volume: 1
  start-page: 946
  year: 2018
  end-page: 951
  publication-title: Nat. Catal.
– volume: 133
  start-page: 12787
  year: 2011
  end-page: 12794
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 6400
  year: 2020
  end-page: 6408
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 12052
  year: 2019
  end-page: 12061
  publication-title: ACS Nano
– volume: 10
  start-page: 6423
  year: 2019
  end-page: 6430
  publication-title: Chem. Sci.
– volume: 59 132
  start-page: 16440 16582
  year: 2020 2020
  end-page: 16444 16586
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 3265
  year: 2019
  end-page: 3278
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 3500
  year: 2016
  end-page: 3505
  publication-title: Chem. Sci.
– volume: 6
  start-page: 2347
  year: 2020
  end-page: 2353
  publication-title: ACS Cent. Sci.
– volume: 28
  start-page: 993
  year: 2016
  end-page: 1010
  publication-title: Adv. Mater.
– volume: 142
  start-page: 962
  year: 2020
  end-page: 972
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 5791
  year: 2018
  end-page: 5797
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 9178 9324
  year: 2016 2016
  end-page: 9182 9328
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 2520 2580
  year: 2013 2013
  end-page: 2524 2584
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 10712
  year: 2000
  end-page: 10713
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 14136
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2545
  year: 2016
  end-page: 2558
  publication-title: ACS Catal.
– volume: 120
  start-page: 683
  year: 2020
  end-page: 733
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 19297 19459
  year: 2020 2020
  end-page: 19303 19465
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 2634
  year: 2018
  publication-title: Nat. Commun.
– volume: 143
  start-page: 4483
  year: 2021
  end-page: 4499
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 18309 18457
  year: 2021 2021
  end-page: 18317 18465
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 3242
  year: 2014
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 796 814
  year: 2017 2017
  end-page: 800 818
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1080
  year: 2018
  end-page: 1091
  publication-title: Chem
– volume: 3
  start-page: 1435
  year: 2021
  end-page: 1444
  publication-title: CCS Chem.
– volume: 8
  start-page: 340
  year: 2017
  publication-title: Nat. Commun.
– volume: 320
  start-page: 86
  year: 2008
  end-page: 89
  publication-title: Science
– volume: 17
  year: 2021
  publication-title: Small
– volume: 136
  start-page: 4861
  year: 2014
  end-page: 4864
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5787
  year: 2014
  publication-title: Nat. Commun.
– volume: 133
  start-page: 14526
  year: 2011
  end-page: 14529
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1235
  year: 2019
  end-page: 1247
  publication-title: Chem
– volume: 2
  start-page: 955
  year: 2019
  end-page: 970
  publication-title: Nat. Catal.
– volume: 10
  start-page: 3787
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 595
  year: 2021
  end-page: 606
  publication-title: Nat. Catal.
– volume: 7
  start-page: 3721
  year: 2017
  end-page: 3729
  publication-title: ACS Catal.
– volume: 139
  start-page: 7294
  year: 2017
  end-page: 7301
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 7734
  year: 2020
  end-page: 7759
  publication-title: ACS Nano
– volume: 117
  start-page: 11522
  year: 2017
  end-page: 11569
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 15
  start-page: 564
  year: 2016
  end-page: 569
  publication-title: Nat. Mater.
– volume: 2
  start-page: 873
  year: 2019
  end-page: 881
  publication-title: Nat. Catal.
– volume: 115
  start-page: 8896
  year: 2015
  end-page: 8943
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 4474 4524
  year: 2021 2021
  end-page: 4478 4528
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 7668 7750
  year: 2019 2019
  end-page: 7672 7754
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_8_45_1
– ident: e_1_2_8_50_3
  doi: 10.1002/ange.201607942
– ident: e_1_2_8_57_1
  doi: 10.1021/ja002261e
– ident: e_1_2_8_14_1
– ident: e_1_2_8_12_2
  doi: 10.1021/acs.chemrev.9b00230
– ident: e_1_2_8_47_2
  doi: 10.1002/anie.202014017
– ident: e_1_2_8_43_2
  doi: 10.1002/adma.202000992
– ident: e_1_2_8_38_2
  doi: 10.1039/C6SC00083E
– ident: e_1_2_8_39_2
  doi: 10.1038/ncomms4242
– ident: e_1_2_8_60_2
  doi: 10.1021/acsnano.9b06339
– ident: e_1_2_8_6_2
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_2_8_36_2
  doi: 10.1002/anie.201208901
– ident: e_1_2_8_5_2
  doi: 10.1021/jacs.5b07521
– ident: e_1_2_8_26_2
  doi: 10.1002/anie.201602429
– ident: e_1_2_8_42_2
  doi: 10.1002/adma.202002435
– ident: e_1_2_8_2_2
  doi: 10.1021/acs.chemrev.7b00272
– ident: e_1_2_8_32_2
  doi: 10.1002/smll.202005354
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.201610432
– ident: e_1_2_8_55_2
  doi: 10.1021/jacs.0c01699
– ident: e_1_2_8_58_1
– ident: e_1_2_8_28_2
  doi: 10.1038/nmat4555
– ident: e_1_2_8_4_2
  doi: 10.1016/j.chempr.2018.02.011
– ident: e_1_2_8_53_3
  doi: 10.1002/ange.202008852
– ident: e_1_2_8_17_2
  doi: 10.1021/acscatal.7b00037
– volume: 132
  start-page: 16582
  year: 2020
  ident: e_1_2_8_46_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202006299
– ident: e_1_2_8_19_2
  doi: 10.1038/s41467-019-11794-6
– ident: e_1_2_8_50_2
  doi: 10.1002/anie.201607942
– ident: e_1_2_8_27_2
  doi: 10.1038/s41467-017-00421-x
– ident: e_1_2_8_18_2
  doi: 10.1038/s41467-018-05052-4
– ident: e_1_2_8_47_3
  doi: 10.1002/ange.202014017
– ident: e_1_2_8_36_3
  doi: 10.1002/ange.201208901
– ident: e_1_2_8_41_2
  doi: 10.1021/acs.nanolett.9b01223
– ident: e_1_2_8_62_1
  doi: 10.1021/acscatal.5b02749
– ident: e_1_2_8_54_2
  doi: 10.1021/acsnano.0c02731
– ident: e_1_2_8_29_1
– ident: e_1_2_8_10_2
  doi: 10.1126/science.1155200
– ident: e_1_2_8_20_2
  doi: 10.1021/jacs.7b01471
– ident: e_1_2_8_26_3
  doi: 10.1002/ange.201602429
– ident: e_1_2_8_21_2
  doi: 10.1016/j.chempr.2019.02.026
– ident: e_1_2_8_22_2
  doi: 10.1002/anie.201903827
– ident: e_1_2_8_53_2
  doi: 10.1002/anie.202008852
– ident: e_1_2_8_16_2
  doi: 10.1021/ja106568t
– ident: e_1_2_8_31_2
  doi: 10.1002/adma.201502593
– ident: e_1_2_8_61_1
  doi: 10.1021/ja5008917
– ident: e_1_2_8_3_2
  doi: 10.1002/cctc.201501269
– ident: e_1_2_8_35_2
  doi: 10.1021/acscentsci.8b00490
– ident: e_1_2_8_11_2
  doi: 10.1038/ncomms6787
– ident: e_1_2_8_8_2
  doi: 10.1021/jacs.0c13185
– ident: e_1_2_8_15_2
  doi: 10.1038/s41929-019-0334-3
– ident: e_1_2_8_33_1
– ident: e_1_2_8_9_2
  doi: 10.1021/ja204557m
– ident: e_1_2_8_1_1
– ident: e_1_2_8_13_2
  doi: 10.1038/s41929-021-00649-3
– ident: e_1_2_8_24_2
  doi: 10.1002/anie.202106515
– ident: e_1_2_8_25_2
  doi: 10.1021/acscatal.1c00200
– ident: e_1_2_8_52_2
  doi: 10.1038/s41929-018-0168-4
– ident: e_1_2_8_7_1
– ident: e_1_2_8_22_3
  doi: 10.1002/ange.201903827
– ident: e_1_2_8_51_3
  doi: 10.1002/ange.201610432
– ident: e_1_2_8_23_2
  doi: 10.1021/jacs.9b10816
– ident: e_1_2_8_59_2
  doi: 10.1038/ncomms14136
– ident: e_1_2_8_30_2
  doi: 10.1021/acs.chemrev.5b00255
– ident: e_1_2_8_44_2
  doi: 10.31635/ccschem.021.202100958
– ident: e_1_2_8_48_2
  doi: 10.1039/C8CS00846A
– ident: e_1_2_8_49_1
– ident: e_1_2_8_34_2
  doi: 10.1021/ja2058617
– ident: e_1_2_8_56_1
  doi: 10.1021/acscentsci.0c01262
– ident: e_1_2_8_24_3
  doi: 10.1002/ange.202106515
– ident: e_1_2_8_46_2
  doi: 10.1002/anie.202006299
– ident: e_1_2_8_37_2
  doi: 10.1039/C9SC01728C
– ident: e_1_2_8_40_2
  doi: 10.1021/jacs.8b01868
SSID ssj0028806
Score 2.5752137
Snippet We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The best...
We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)-based nanobundles catalysts. The best...
Abstract We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)‐based nanobundles catalysts. The...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202114539
SubjectTerms Alkanes
Alkenes
Alkynes
Catalysts
Catalytic Mechanism
Crystal structure
Crystalline Framework
Crystallinity
Density functional theory
Hydrogenation
Mesoporosity
Mesoporous Metal
Nanocrystals
Palladium
Selectivity
Semihydrogenation
Title Mesoporosity‐Enabled Selectivity of Mesoporous Palladium‐Based Nanocrystals Catalysts in Semihydrogenation of Alkynes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202114539
https://www.ncbi.nlm.nih.gov/pubmed/34913234
https://www.proquest.com/docview/2625968246/abstract/
https://search.proquest.com/docview/2610910591
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UClGegRUZC4pQ261eS43a1VUFqhYBKvUV-ilXbpNrsHsKJn8Bv5Jcw42wCCwckuCWK7TgzY_sbx_MNIa9FYbxTkqdBaZcKZ1WqcxZSgN6a5ROW25iL4OxcnV6Id5fy8pco_p4fYtxww5ER52sc4Nq0Rz9JQzECG_w7cGCE5BjBh2x6iIo-jPxRDIyzDy_iPMUs9ANrY8aOtqtvr0p_QM1t5BqXnpP7RA-d7k-cXB2uV-bQfvmNz_F_vuoBubfBpXTaG9IeuePrh2R3NqSDe0S6M982ANbxkFf3_eu3eQy6cvRjTKQTU1DQJtCh1Lql73GP3i3WN1D6GBZLR2Eqb-yyA0B63dIZbhzBdUsXNbRys_jcuWUD9hxtBduaXl91MBM_Jhcn80-z03STtyG16N2kwRnhpQNXiHMXMpeVTOqJcCqA_gsjjTJO-8xm0lsvyiCsBtgoygKgHMegiCdkp25q_4xQUJrJQi59ZqDt3BRl0FJZlTnHgzQ-IW8GvVW3PT1H1RMxswpFWY2iTMj-oNZqM0zbiqH3pwomVEJejY9BsPjXRNcehAVlkDsVUOgkIU97cxhfxUUJ3jwXCWFRqX_pQzU9fzsf757_S6UX5C7DAAxMSSP2yc5qufYHAItW5mU0_R9tnAhb
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOZQL74ehwCIhcXLr7Mv2MUSpUmgiBK3EzfK-RNTWRnFyMCd-Ar-RX8LsOjYKHJDgZsu76_U8dr8Z78wAvOKZskYKFjtZmpgbLeMypS5G6F3SdERTHWoRzBdyds7ffhL9aUIfC9Plhxgcbl4zwnrtFdw7pI9-ZQ31Idho4KEFwwXLr8MN1HkRrKoPQwYpiuLZBRgxFvs69H3exoQe7fbf3Zf-AJu72DVsPse3QfXT7s6cXBxu1upQf_0to-N_fdcduLWFpmTcydJduGare7A_6SvC3Yd2bpsa8bo_59X--PZ9GuKuDPkYaumEKhSkdqRvtWnIe--mN8vNFbZ-g_ulIbia13rVIia9bMjE-47wuiHLCke5Wn5uzapGkQ7i4scaX160uBg_gPPj6dlkFm9LN8TaGzixM4pbYdAaYsy4xCQ5FeWIG-lQBDIllFSmtIlOhNWW547rEpEjzzNEc8zHRTyEvaqu7GMgyDWVuFTYROHYqcpyVwqpZWIMc0LZCF73jCu-dBk6ii4XMy08KYuBlBEc9HwttpraFNQbgDKjXEbwcniMhPU_TsrKIrGwjU-fikB0FMGjTh6GVzGeo0HPeAQ0cPUvcyjGi5PpcPfkXzq9gP3Z2fy0OD1ZvHsKN6mPx_AVavgB7K1XG_sMUdJaPQ968BP34wx9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLy7uhBYKExClt1q8kx2W7qxboqgIq9RbFL7Fqm1Sb3UM48RP4jf0lHTubwMIBCW6JYjvOzNj-xvF8A_CGpdJowWlkRaEjppWIioTYCKF3QZIBSZTPRXA8FYen7P0ZP_slir_lh-g33NzI8PO1G-BX2u7_JA11Edjo36EDwzjNbsMdJihxdn3wqSeQImidbXwRpZFLQ9_RNsZkf73--rL0B9Zch65-7ZlsQdH1uj1ycr63XMg99e03Qsf_-awHsLkCpuGwtaSHcMuUj-DeqMsH9xiaY1NXiNbdKa_m-vuPsY-60uFnn0nH56AIKxt2pZZ1eOI26fVseYml3-FqqUOcyys1bxCRXtThyO0c4XUdzkps5XL2tdHzCg3aG4tra3hx3uBU_AROJ-Mvo8NolbghUs69iayWzHCNvhCl2sY6zggvBkwLiwaQSi6F1IWJVcyNMiyzTBWIG1mWIpajLiriKWyUVWm2IUSlydgm3MQS205kmtmCCyViranl0gTwttNbftXyc-QtEzPJnSjzXpQB7HZqzVfjtM6Jc_9ESpgI4HX_GAXrfpsUpUFhYRlHnoowdBDAs9Yc-ldRlqE7T1kAxCv1L33Ih9OjcX_3_F8qvYK7JweT_OPR9MMO3CcuGMOlp2G7sLGYL80LhEgL-dKPghvPcQss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporosity%E2%80%90Enabled+Selectivity+of+Mesoporous+Palladium%E2%80%90Based+Nanocrystals+Catalysts+in+Semihydrogenation+of+Alkynes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lv%2C+Hao&rft.au=Qin%2C+Huaiyu&rft.au=Sun%2C+Mingzi&rft.au=Jia%2C+Fengrui&rft.date=2022-02-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=8&rft_id=info:doi/10.1002%2Fanie.202114539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202114539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon