Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profil...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 44; pp. e1904319 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.
A quasi‐two‐dimensional perovskite film with stable domain distribution is prepared based on a new spacer. The film containing pure bromide perovskite exhibits enhanced deep‐blue fluorescence with quantum yield of 77% by low‐dimensional component engineering. As a result, the corresponding light‐emitting diodes deliver stable deep‐blue emission with a peak external quantum efficiency of 2.6%. |
---|---|
AbstractList | Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6 - layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials.Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6 - layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials. Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX 6 − layers ( n )] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n 1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n 3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n 3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials. Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials. A quasi‐two‐dimensional perovskite film with stable domain distribution is prepared based on a new spacer. The film containing pure bromide perovskite exhibits enhanced deep‐blue fluorescence with quantum yield of 77% by low‐dimensional component engineering. As a result, the corresponding light‐emitting diodes deliver stable deep‐blue emission with a peak external quantum efficiency of 2.6%. Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials. Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials. |
Author | Wang, Zhao‐Kui Tian, Qi‐Sheng Chen, Bing‐Bing Yang, Sheng‐Yi Xiao, Lei‐Xin Ge, Hui‐Ting Jin, Yan Liao, Liang‐Sheng Zhang, Chun‐Feng Yuan, Shuai |
Author_xml | – sequence: 1 givenname: Shuai surname: Yuan fullname: Yuan, Shuai organization: Soochow University – sequence: 2 givenname: Zhao‐Kui surname: Wang fullname: Wang, Zhao‐Kui email: zkwang@suda.edu.cn organization: Soochow University – sequence: 3 givenname: Lei‐Xin surname: Xiao fullname: Xiao, Lei‐Xin organization: Nanjing University – sequence: 4 givenname: Chun‐Feng surname: Zhang fullname: Zhang, Chun‐Feng organization: Nanjing University – sequence: 5 givenname: Sheng‐Yi surname: Yang fullname: Yang, Sheng‐Yi organization: Soochow University – sequence: 6 givenname: Bing‐Bing surname: Chen fullname: Chen, Bing‐Bing organization: Nanjing Tech University – sequence: 7 givenname: Hui‐Ting surname: Ge fullname: Ge, Hui‐Ting organization: Soochow University – sequence: 8 givenname: Qi‐Sheng surname: Tian fullname: Tian, Qi‐Sheng organization: Soochow University – sequence: 9 givenname: Yan surname: Jin fullname: Jin, Yan organization: Soochow University – sequence: 10 givenname: Liang‐Sheng orcidid: 0000-0002-2352-9666 surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31532872$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFK0dkiUsvWfwnduLjsmkBaVFBgrPlTSbFJY6D7VCVUx-hz8iT4GVbkCohTqOZ-X0zmvmO0MHoR0DoOSVLSgh7ZTpnloxQRUpO1SO0oILRoiRKHKAFUVwUSpb1ITqK8ZIQoiSRT9Ahp4KzumILFM-nZJ39YZL1I_Y93virnze3jXUwxlwyA157N-WlY4q7_sfZRJsJ1uAPEPz3-NUmwGd2cBH3PuAGYMrt18MMeGMvvqScnDqbkh0vcGN9B_EpetybIcKzu3iMPp-dflq_LTbnb96tV5uiLblSBUiiOtPJirS1EpWQjChmuDQSGOspycWuLWklStqCULUi2-22EqpTIMq-An6MTvZzp-C_zRCTdja2MAxmBD9HzZjiqpK0ohl9-QC99HPI12eK51U1Z5Rl6sUdNW8ddHoK1plwre_fmYFyD7TBxxig161Nv1-bgrGDpkTvXNM71_Qf17Js-UB2P_mfArUXXNkBrv9D61XzfvVX-wu5b6yt |
CitedBy_id | crossref_primary_10_1016_j_synthmet_2022_117261 crossref_primary_10_1002_adma_202409867 crossref_primary_10_1002_adom_202201112 crossref_primary_10_1002_adfm_202103890 crossref_primary_10_1021_acsami_1c15879 crossref_primary_10_1016_j_apsusc_2024_161623 crossref_primary_10_1021_acsami_9b18230 crossref_primary_10_1021_acsenergylett_1c00752 crossref_primary_10_1002_adfm_202304750 crossref_primary_10_1039_D2TC02077G crossref_primary_10_1002_adfm_202303423 crossref_primary_10_1021_acs_jpcc_3c05840 crossref_primary_10_1002_adfm_202303787 crossref_primary_10_1002_adfm_202105164 crossref_primary_10_1002_inf2_12211 crossref_primary_10_1021_jacs_1c09515 crossref_primary_10_1002_adom_202100300 crossref_primary_10_1016_j_ceramint_2022_09_111 crossref_primary_10_1021_acs_jpclett_2c01774 crossref_primary_10_1021_acs_nanolett_0c00513 crossref_primary_10_1016_j_scib_2020_03_036 crossref_primary_10_1016_j_ssc_2023_115102 crossref_primary_10_1016_j_jallcom_2023_168913 crossref_primary_10_1002_adom_202100544 crossref_primary_10_1002_aelm_202200893 crossref_primary_10_3788_gzxb20235208_0816001 crossref_primary_10_1021_acsaelm_4c02285 crossref_primary_10_1021_acsaom_3c00182 crossref_primary_10_1002_adom_202302836 crossref_primary_10_1002_smsc_202000048 crossref_primary_10_1021_acsami_4c11568 crossref_primary_10_1021_acsenergylett_4c02099 crossref_primary_10_1021_acs_jpcc_2c06050 crossref_primary_10_1002_adom_202400277 crossref_primary_10_1002_adom_202101642 crossref_primary_10_1039_D4TA00532E crossref_primary_10_1002_adom_202401920 crossref_primary_10_1002_adma_202102246 crossref_primary_10_1016_j_mattod_2021_10_023 crossref_primary_10_1002_adom_202401247 crossref_primary_10_1007_s12200_020_1042_y crossref_primary_10_1039_D0TC04350H crossref_primary_10_1002_eem2_12087 crossref_primary_10_1021_acs_jpclett_3c00404 crossref_primary_10_1126_sciadv_adh2140 crossref_primary_10_1021_acsenergylett_2c02246 crossref_primary_10_1002_smll_202402786 crossref_primary_10_1038_s41377_023_01206_2 crossref_primary_10_1021_acs_jpclett_0c02476 crossref_primary_10_3390_nano12122026 crossref_primary_10_1021_acsami_0c06737 crossref_primary_10_1063_5_0105878 crossref_primary_10_1002_adfm_202410143 crossref_primary_10_1038_s41467_021_21522_8 crossref_primary_10_1016_j_fmre_2022_05_004 crossref_primary_10_1002_adfm_202006736 crossref_primary_10_1039_D2NR04735G crossref_primary_10_1002_adma_202005570 crossref_primary_10_1002_smsc_202000050 crossref_primary_10_1039_D1TA07542J crossref_primary_10_1016_j_nanoen_2022_107000 crossref_primary_10_1002_adfm_201909222 crossref_primary_10_1021_acs_chemmater_4c00015 crossref_primary_10_1063_5_0085902 crossref_primary_10_3390_ma15134571 crossref_primary_10_1002_adfm_202308095 crossref_primary_10_1002_adma_202002176 crossref_primary_10_1002_adom_202202894 crossref_primary_10_1021_acsphotonics_1c01322 crossref_primary_10_1007_s40820_021_00685_5 crossref_primary_10_1088_1674_4926_42_10_101608 crossref_primary_10_1021_acsami_2c12375 crossref_primary_10_3390_chemistry5020090 crossref_primary_10_1039_D0TC05514J crossref_primary_10_1002_adfm_202001732 crossref_primary_10_1039_D0TC03042B crossref_primary_10_1021_acs_jpcc_1c03458 crossref_primary_10_1016_j_jallcom_2021_160727 crossref_primary_10_1021_acsami_2c13349 crossref_primary_10_1002_adfm_202011093 crossref_primary_10_1021_acsmaterialslett_1c00684 crossref_primary_10_1021_acsaelm_1c01142 crossref_primary_10_1088_2752_5724_ac9b2d crossref_primary_10_1002_adfm_202401297 crossref_primary_10_1002_advs_202409736 crossref_primary_10_1021_acsami_1c09715 crossref_primary_10_1021_acsami_3c05253 crossref_primary_10_1038_s41467_020_20163_7 crossref_primary_10_1002_ejic_202300282 crossref_primary_10_1038_s41467_021_24616_5 crossref_primary_10_1002_adma_202001998 crossref_primary_10_1002_adom_202300473 crossref_primary_10_1021_acs_jpcc_2c07613 crossref_primary_10_1002_smsc_202000072 crossref_primary_10_1021_acsami_2c19979 crossref_primary_10_1002_adma_202107105 crossref_primary_10_1021_acsnano_3c12938 crossref_primary_10_1002_lpor_202200651 crossref_primary_10_34133_2021_9836752 crossref_primary_10_1002_adma_202413895 crossref_primary_10_1021_acsami_1c18439 crossref_primary_10_1039_D4NR00834K crossref_primary_10_1002_adfm_202306570 crossref_primary_10_1016_j_cplett_2020_138192 crossref_primary_10_1063_5_0042956 crossref_primary_10_1016_j_cej_2022_138021 crossref_primary_10_1063_1_5144101 crossref_primary_10_1016_j_matlet_2021_130970 crossref_primary_10_1002_adom_202300343 crossref_primary_10_1002_aelm_202201271 crossref_primary_10_1002_aenm_202203681 crossref_primary_10_1021_acsami_1c00116 crossref_primary_10_1002_adma_202411231 crossref_primary_10_1002_adom_202202901 crossref_primary_10_1002_adfm_202203962 crossref_primary_10_1021_acsphotonics_0c01394 crossref_primary_10_1002_adom_202001709 crossref_primary_10_1002_adom_202401205 crossref_primary_10_1039_D0CC03030A crossref_primary_10_1039_D2CC02268K crossref_primary_10_1016_j_orgel_2021_106299 crossref_primary_10_1063_5_0016377 crossref_primary_10_3740_MRSK_2022_32_11_449 crossref_primary_10_1002_advs_202206076 crossref_primary_10_1016_j_matre_2021_100064 crossref_primary_10_1021_acsphotonics_2c00496 crossref_primary_10_1364_OME_446259 crossref_primary_10_1016_j_cej_2024_149887 crossref_primary_10_1364_OL_445440 crossref_primary_10_1063_5_0080087 crossref_primary_10_1016_j_optmat_2022_113233 crossref_primary_10_1021_acsenergylett_1c01545 crossref_primary_10_1021_acsomega_3c00188 crossref_primary_10_1002_ange_202319730 crossref_primary_10_1016_j_cej_2024_156985 crossref_primary_10_1016_j_cej_2022_140594 crossref_primary_10_1002_advs_202306167 crossref_primary_10_1039_D4CC00117F crossref_primary_10_1021_acsami_0c13214 crossref_primary_10_1016_j_cej_2021_128511 crossref_primary_10_1117_1_AP_5_1_016001 crossref_primary_10_1557_s43579_021_00108_x crossref_primary_10_1021_acs_jpclett_0c03633 crossref_primary_10_3390_nano14231919 crossref_primary_10_1002_lpor_202000495 crossref_primary_10_1021_acsami_1c05828 crossref_primary_10_1002_lpor_202200689 crossref_primary_10_1021_acsami_1c02555 crossref_primary_10_1039_D1TC02662C crossref_primary_10_1039_D2TC02090D crossref_primary_10_1021_acsami_1c24561 crossref_primary_10_1039_D4SC01630K crossref_primary_10_1002_adfm_202206574 crossref_primary_10_1038_s41524_022_00781_z crossref_primary_10_1021_acsami_1c23594 crossref_primary_10_1016_j_cej_2024_148659 crossref_primary_10_1016_j_surfin_2024_104972 crossref_primary_10_1002_adom_202102557 crossref_primary_10_1002_adfm_202104342 crossref_primary_10_1016_j_nanoen_2022_107181 crossref_primary_10_1021_acs_nanolett_4c02110 crossref_primary_10_1016_j_cej_2021_130160 crossref_primary_10_1002_anie_202319730 crossref_primary_10_3788_CJL241067 crossref_primary_10_1016_j_mtphys_2024_101490 crossref_primary_10_1002_adfm_202400052 crossref_primary_10_1021_acs_chemmater_1c03195 crossref_primary_10_1002_ange_202403739 crossref_primary_10_1002_advs_202105307 crossref_primary_10_1021_acsenergylett_2c02877 crossref_primary_10_1039_D4TC00437J crossref_primary_10_1021_acsanm_4c04882 crossref_primary_10_1088_1674_1056_abe92b crossref_primary_10_1021_acsaelm_1c00781 crossref_primary_10_1021_jacs_4c09877 crossref_primary_10_1002_adom_202201180 crossref_primary_10_1021_acs_chemmater_4c00190 crossref_primary_10_1002_adom_202002167 crossref_primary_10_1016_j_cej_2023_142707 crossref_primary_10_1063_5_0193556 crossref_primary_10_7498_aps_70_20211046 crossref_primary_10_1002_adfm_202109495 crossref_primary_10_1002_adma_202503076 crossref_primary_10_1002_adfm_202208538 crossref_primary_10_1016_j_cej_2025_160278 crossref_primary_10_1002_adfm_202310220 crossref_primary_10_1002_adma_202307564 crossref_primary_10_1002_adfm_202000026 crossref_primary_10_1016_j_cej_2021_128774 crossref_primary_10_1039_C9QM00734B crossref_primary_10_1021_acs_jpclett_4c00339 crossref_primary_10_1016_j_cej_2024_148875 crossref_primary_10_1039_D4CE00302K crossref_primary_10_1021_acsami_0c12451 crossref_primary_10_1016_j_apsusc_2024_161685 crossref_primary_10_1039_D4TC00915K crossref_primary_10_1021_acs_chemmater_1c00903 crossref_primary_10_1021_acs_chemmater_2c03718 crossref_primary_10_1002_adom_202302477 crossref_primary_10_1002_solr_202200336 crossref_primary_10_1021_acsaelm_0c00105 crossref_primary_10_1021_acsami_4c03752 crossref_primary_10_1002_adma_202103640 crossref_primary_10_1002_sstr_202200393 crossref_primary_10_1021_acsaelm_1c00556 crossref_primary_10_1038_s41377_021_00501_0 crossref_primary_10_1021_acsenergylett_1c00129 crossref_primary_10_1021_acsmaterialslett_4c00171 crossref_primary_10_1021_acsnano_0c03765 crossref_primary_10_1002_adfm_202306199 crossref_primary_10_1002_admt_202300400 crossref_primary_10_1002_adfm_202214542 crossref_primary_10_1002_cptc_202400019 crossref_primary_10_1002_adom_202202801 crossref_primary_10_1002_admi_202102251 crossref_primary_10_1002_advs_202201807 crossref_primary_10_1038_s41928_023_00955_7 crossref_primary_10_1039_D2TC00936F crossref_primary_10_1016_j_cej_2021_129088 crossref_primary_10_1021_acsami_4c01824 crossref_primary_10_1016_j_cej_2024_151227 crossref_primary_10_1021_acsnano_4c06631 crossref_primary_10_1002_adfm_202103219 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_3390_cryst12010060 crossref_primary_10_1021_acsanm_3c06004 crossref_primary_10_1002_adom_202300631 crossref_primary_10_1007_s12274_022_4252_3 crossref_primary_10_1002_advs_202414499 crossref_primary_10_1002_adma_202205217 crossref_primary_10_1002_ange_202104201 crossref_primary_10_1002_adom_202301164 crossref_primary_10_1039_D1NR02633J crossref_primary_10_1088_1674_4926_41_5_051203 crossref_primary_10_1021_acs_jpclett_2c01059 crossref_primary_10_59717_j_xinn_mater_2023_100015 crossref_primary_10_1016_j_mtener_2021_100759 crossref_primary_10_1002_anie_202219255 crossref_primary_10_1002_adfm_202100516 crossref_primary_10_1002_anie_202412915 crossref_primary_10_1016_j_mtnano_2021_100170 crossref_primary_10_1002_admt_202200370 crossref_primary_10_1002_anie_202403739 crossref_primary_10_1002_adom_202200566 crossref_primary_10_1002_anie_202213826 crossref_primary_10_1002_adom_202400197 crossref_primary_10_1007_s40684_024_00663_3 crossref_primary_10_1038_s41467_020_20582_6 crossref_primary_10_1039_D3TC02546B crossref_primary_10_1021_acsenergylett_3c01009 crossref_primary_10_1002_adma_202410633 crossref_primary_10_1002_adma_202105585 crossref_primary_10_1039_D0TC03471A crossref_primary_10_1021_acsenergylett_1c01380 crossref_primary_10_1515_nanoph_2021_0033 crossref_primary_10_1002_ange_202219255 crossref_primary_10_1021_acsenergylett_0c01015 crossref_primary_10_1021_acs_jpclett_0c03120 crossref_primary_10_1016_j_cej_2022_136496 crossref_primary_10_1021_acs_jpclett_5c00272 crossref_primary_10_1039_D0TC04746E crossref_primary_10_1063_5_0094525 crossref_primary_10_3389_fmats_2021_635025 crossref_primary_10_1039_D1TC01545A crossref_primary_10_1002_adfm_201908339 crossref_primary_10_34133_2020_9017871 crossref_primary_10_1016_j_mtelec_2023_100079 crossref_primary_10_1007_s12274_023_5708_9 crossref_primary_10_1016_j_isci_2022_105472 crossref_primary_10_1002_ange_202213826 crossref_primary_10_1021_acsami_2c12048 crossref_primary_10_1002_adfm_202312395 crossref_primary_10_1021_acs_jpclett_2c03457 crossref_primary_10_1515_nanoph_2020_0630 crossref_primary_10_1002_smll_202100972 crossref_primary_10_1002_admt_202401868 crossref_primary_10_1002_smll_202206927 crossref_primary_10_1021_jacs_2c07172 crossref_primary_10_1021_acs_jpclett_1c00072 crossref_primary_10_1039_D1TC05140G crossref_primary_10_1002_ange_202412915 crossref_primary_10_1002_adma_202202042 crossref_primary_10_1039_D1NR06549A crossref_primary_10_1002_anie_202104201 crossref_primary_10_1007_s40843_023_2784_y crossref_primary_10_1016_j_cej_2023_146360 crossref_primary_10_1039_D1NR02769G crossref_primary_10_1002_adom_202402597 crossref_primary_10_1039_D1TC01805A crossref_primary_10_1021_acs_inorgchem_4c04805 |
Cites_doi | 10.1016/j.joule.2018.11.026 10.1038/s41467-019-08980-x 10.1021/acs.chemmater.8b02999 10.1021/acsnano.8b06441 10.1038/s41467-019-09794-7 10.1002/adma.200305619 10.1038/nature18306 10.1038/nphoton.2016.185 10.1038/s41467-018-05909-8 10.1021/acs.chemrev.5b00715 10.1038/s41467-018-02978-7 10.1021/acs.nanolett.8b03552 10.1016/0038-1098(89)90935-6 10.1002/adma.201670242 10.1038/s41563-018-0154-x 10.1038/s41566-019-0390-x 10.1002/adom.201900276 10.1038/s41467-019-09011-5 10.1038/s41566-018-0283-4 10.1021/acsami.9b02472 10.1016/j.joule.2018.08.005 10.1039/C8NR09885A 10.1021/acs.jpclett.9b00018 10.1038/s41467-018-07438-w 10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K 10.1021/ja512833n |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201904319 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31532872 10_1002_adma_201904319 ADMA201904319 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 91733301; 61674109; 11675252; 11605278 – fundername: State Administration of Foreign Experts Affairs – fundername: National Key Research and Development Program of China funderid: 2016YFA0202400 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20130288 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology – fundername: Natural Science Foundation of China grantid: 11605278 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20130288 – fundername: Natural Science Foundation of China grantid: 91733301 – fundername: National Key Research and Development Program of China grantid: 2016YFA0202400 – fundername: Natural Science Foundation of China grantid: 61674109 – fundername: Natural Science Foundation of China grantid: 11675252 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4399-e609dad670c8957562092a36a6e22f10895dc417541ce59890bbb759d9e54f7e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:09:06 EDT 2025 Fri Jul 25 08:22:12 EDT 2025 Thu Apr 03 07:09:13 EDT 2025 Tue Jul 01 02:32:41 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:37:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | deep-blue emission quasi-2D perovskite color stability light-emitting diodes domain distribution |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-e609dad670c8957562092a36a6e22f10895dc417541ce59890bbb759d9e54f7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2352-9666 |
PMID | 31532872 |
PQID | 2310883212 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2293976171 proquest_journals_2310883212 pubmed_primary_31532872 crossref_citationtrail_10_1002_adma_201904319 crossref_primary_10_1002_adma_201904319 wiley_primary_10_1002_adma_201904319_ADMA201904319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 1, 2019 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 1, 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2018; 9 2018; 17 2018; 2 2019; 3 2019; 31 2015; 137 2004; 16 2019; 11 2019; 10 2016; 536 2019; 13 2016; 10 2019; 19 2016; 116 2018; 12 2016; 28 2001; 13 1989; 69 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 |
References_xml | – volume: 13 start-page: 1690 year: 2001 publication-title: Adv. Mater. – volume: 10 start-page: 419 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 12 start-page: 783 year: 2018 publication-title: Nat. Photonics – volume: 31 start-page: 83 year: 2019 publication-title: Chem. Mater. – volume: 2 start-page: 2421 year: 2018 publication-title: Joule – volume: 10 start-page: 1276 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 7550 year: 2016 publication-title: Adv. Mater. – volume: 19 start-page: 150 year: 2019 publication-title: Nano Lett. – volume: 17 start-page: 900 year: 2018 publication-title: Nat. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 418 year: 2019 publication-title: Nat. Photonics – volume: 137 start-page: 2089 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1027 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 1645 year: 2019 publication-title: ACS Nano – volume: 11 start-page: 2109 year: 2019 publication-title: Nanoscale – volume: 69 start-page: 933 year: 1989 publication-title: Solid State Commun. – volume: 9 start-page: 4981 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 1868 year: 2019 publication-title: Nat. Commun. – volume: 16 start-page: 61 year: 2004 publication-title: Adv. Mater. – volume: 3 start-page: 794 year: 2019 publication-title: Joule – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 9 start-page: 570 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 699 year: 2016 publication-title: Nat. Photonics – volume: 9 start-page: 3541 year: 2018 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – ident: e_1_2_5_21_1 doi: 10.1016/j.joule.2018.11.026 – ident: e_1_2_5_23_1 doi: 10.1038/s41467-019-08980-x – ident: e_1_2_5_9_1 doi: 10.1021/acs.chemmater.8b02999 – ident: e_1_2_5_14_1 doi: 10.1021/acsnano.8b06441 – ident: e_1_2_5_10_1 doi: 10.1038/s41467-019-09794-7 – ident: e_1_2_5_2_1 doi: 10.1002/adma.200305619 – ident: e_1_2_5_18_1 doi: 10.1038/nature18306 – ident: e_1_2_5_11_1 doi: 10.1038/nphoton.2016.185 – ident: e_1_2_5_3_1 doi: 10.1038/s41467-018-05909-8 – ident: e_1_2_5_17_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_5_13_1 doi: 10.1038/s41467-018-02978-7 – ident: e_1_2_5_20_1 doi: 10.1021/acs.nanolett.8b03552 – ident: e_1_2_5_24_1 doi: 10.1016/0038-1098(89)90935-6 – ident: e_1_2_5_16_1 doi: 10.1002/adma.201670242 – ident: e_1_2_5_15_1 doi: 10.1038/s41563-018-0154-x – ident: e_1_2_5_19_1 doi: 10.1038/s41566-019-0390-x – ident: e_1_2_5_6_1 doi: 10.1002/adom.201900276 – ident: e_1_2_5_8_1 doi: 10.1038/s41467-019-09011-5 – ident: e_1_2_5_12_1 doi: 10.1038/s41566-018-0283-4 – ident: e_1_2_5_7_1 doi: 10.1021/acsami.9b02472 – ident: e_1_2_5_5_1 doi: 10.1016/j.joule.2018.08.005 – ident: e_1_2_5_4_1 doi: 10.1039/C8NR09885A – ident: e_1_2_5_22_1 doi: 10.1021/acs.jpclett.9b00018 – ident: e_1_2_5_26_1 doi: 10.1038/s41467-018-07438-w – ident: e_1_2_5_1_1 doi: 10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K – ident: e_1_2_5_25_1 doi: 10.1021/ja512833n |
SSID | ssj0009606 |
Score | 2.6766412 |
Snippet | Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from... Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1904319 |
SubjectTerms | color stability deep‐blue emission domain distribution Emission spectra Excitons Fluorescence Infrared radiation Light emitting diodes Materials science Optimization Organic light emitting diodes Perovskites Photoluminescence Quantum efficiency quasi‐2D perovskite |
Title | Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201904319 https://www.ncbi.nlm.nih.gov/pubmed/31532872 https://www.proquest.com/docview/2310883212 https://www.proquest.com/docview/2293976171 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB5kn-pDa6tt19oyhYJP2c1MkknyuBoXKWsvUsG3MLfA4m4iZtNCn_wJ_kZ_iefkplsphfqWZOaQyeRcvrmcbwj5xLgUng5cxwgNA5TMZI4ygeeEDFfJNGOhwHznky_i-Mz_fB6cP8jib_gh-gk3tIzaX6OBS1WO70lDpal5gyCgQQzEDD7csIWo6PSePwrheU225wVOLPyoY210-XhdfD0qPYKa68i1Dj3TF0R2jW52nFyMqpUa6d9_8Dk-5au2yPMWl9JJo0gvyYbNX5HNB2yF26T8Cu5l2eZt0iKjs-LX7fVNgucDNNweFL1LkePeDCz_XslyDjV4Qr_Zq-JniTPFdDpfLEsKWJkm1l5C8cGisnSGkwRwc7Sc1zuxaTIvjC13yNn06MfhsdOe2eBoHNk4VrixkUaEro5igIKCuzGXnpDCcp4xFx4a7QNm8RkmgEWxq5QKg9jENvCz0HqvySCHhr4llGUKuYKkBVFw5ypSNuAoL3WUuaEcEqf7Z6luCc3xXI1F2lAx8xQ7M-07c0j2-_qXDZXHX2vudSqQtiZdpgiEIzzXiQ_Jx74YjBFXWGRuiwrqAHgCfMdCNiRvGtXpX-VBbIHhKUjzWgH-0YZ0kpxM-rvd_xF6R57hdZM5uUcGq6vKvgcItVIfajO5A0gXFOo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAOlH8WChgJxClt4iROcuhhIV1t6W75USv1FmzHkVbsbqpmQwWnPkJfhVfhEXgSZvJXFoSQkHrgmNhOnHg8843t-QbgmcOlcLVvW6nQ6KBkaWap1HetwKFdMu04gaB45_GeGB54rw_9wxX42sbC1PwQ3YIbzYxKX9MEpwXpzXPWUJlWxEFo0dAIRs25yl3z-QS9tmJrJ8Yhfs75YHv_1dBqEgtYmuC3ZYQdpTIVga3DCPGK4HbEpSukMJxnjo03U-2hYfUcilIKI1spFfhRGhnfywLj4nMvwWVKI050_fH7c8Yqcggqej_XtyLhhS1PpM03l_u7bAd_A7fLWLkydoM1-Nb-pvqMy8eNcqE29JdfGCT_q_94A6430Jv167lyE1bM_BZc-4mQ8TYUb1CDzprQVJZnbJSffD89iykFQk1fwkiB5nM6fkLl70pZTLAGj9lbc5x_KmgxnA0m01nB0B1gsTFHWPxyWho2onUQvNieTarD5iye5Kkp7sDBhXz1XVidY0fvA3MyRXRI0mBTtFgqVMbn1F7qMLMD2QOrFZJEN5ztlDpkmtRs0zyhwUu6wevBi67-Uc1W8sea663MJY3WKhLC-iGlruI9eNoVo76hTSQ5N3mJdRAfIoR1AqcH92pZ7V7lovlEDxxb80ri_tKHpB-P-93Vg39p9ASuDPfHo2S0s7f7EK7S_TpQdB1WF8eleYSIcaEeV3OUwYeLFuYfZ3RwYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6oPy2CwWMBOKUNnYSJzlwWEhXLd2WgqjUW3BiR1p1d7NqNlRw6iPwKLwKr8CTMJO_siCEhNQDx8R24sTjmW9szzcAT7lQ0kk929IyRQcl05mVaM-xfE67ZCnnvqR45_0DuXPkvj72jpfgaxsLU_NDdAtuNDMqfU0TfKazrQvSUKUr3iA0aGgDw-ZY5Z75dIZOW_FiN8IRfibEYPv9qx2ryStgpYS-LSPtUCstfTsNQoQrUtihUI5U0giRcRtv6tRFu-pyClIKQjtJEt8LdWg8N_ONg8-9AlddfAwli4jeXRBWkT9Qsfs5nhVKN2hpIm2xtdjfRTP4G7ZdhMqVrRuswrf2L9VHXE42y3mymX7-hUDyf_qNN-FGA7xZv54pt2DJTG_Dyk90jHegeIP6c9IEprI8Y8P87Pv5l4gSINTkJYzUZz6lwydU_rZUxQhriIgdmtP8Y0FL4WwwGk8Khs4Ai4yZYfHLcWnYkFZB8GJ7MqqOmrNolGtT3IWjS_nqe7A8xY6uA-NZQmRIymBTtFdJkBhPUHuVBpntqx5YrYzEacPYTolDxnHNNS1iGry4G7wePO_qz2qukj_W3GhFLm50VhET0g8ocZXowZOuGLUNbSGpqclLrIPoEAEs93kP1mpR7V7loPFE_xtbi0rg_tKHuB_t97ur-__S6DFcO4wG8XD3YO8BXKfbdZToBizPT0vzEOHiPHlUzVAGHy5bln8Ah3dvEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Low-Dimensional+Components+of+Quasi-2D+Perovskite+Films+for+Deep-Blue+Light-Emitting+Diodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yuan%2C+Shuai&rft.au=Wang%2C+Zhao-Kui&rft.au=Xiao%2C+Lei-Xin&rft.au=Zhang%2C+Chun-Feng&rft.date=2019-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=44&rft.spage=e1904319&rft_id=info:doi/10.1002%2Fadma.201904319&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |