Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes

Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profil...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 44; pp. e1904319 - n/a
Main Authors Yuan, Shuai, Wang, Zhao‐Kui, Xiao, Lei‐Xin, Zhang, Chun‐Feng, Yang, Sheng‐Yi, Chen, Bing‐Bing, Ge, Hui‐Ting, Tian, Qi‐Sheng, Jin, Yan, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials. A quasi‐two‐dimensional perovskite film with stable domain distribution is prepared based on a new spacer. The film containing pure bromide perovskite exhibits enhanced deep‐blue fluorescence with quantum yield of 77% by low‐dimensional component engineering. As a result, the corresponding light‐emitting diodes deliver stable deep‐blue emission with a peak external quantum efficiency of 2.6%.
AbstractList Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6 - layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials.Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6 - layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX 6 − layers ( n )] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n 1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n 3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n 3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials. A quasi‐two‐dimensional perovskite film with stable domain distribution is prepared based on a new spacer. The film containing pure bromide perovskite exhibits enhanced deep‐blue fluorescence with quantum yield of 77% by low‐dimensional component engineering. As a result, the corresponding light‐emitting diodes deliver stable deep‐blue emission with a peak external quantum efficiency of 2.6%.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6− layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.
Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from inefficient domain [various number of PbX layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi-2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low-dimensional component engineering, the n domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n domain, which represents the population of emission species, is remarkably increased. The optimized quasi-2D perovskite film presents blue emission from the n domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep-blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi-2D perovskites, which pave a new route to design deep-blue-emissive perovskite materials.
Author Wang, Zhao‐Kui
Tian, Qi‐Sheng
Chen, Bing‐Bing
Yang, Sheng‐Yi
Xiao, Lei‐Xin
Ge, Hui‐Ting
Jin, Yan
Liao, Liang‐Sheng
Zhang, Chun‐Feng
Yuan, Shuai
Author_xml – sequence: 1
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
  organization: Soochow University
– sequence: 2
  givenname: Zhao‐Kui
  surname: Wang
  fullname: Wang, Zhao‐Kui
  email: zkwang@suda.edu.cn
  organization: Soochow University
– sequence: 3
  givenname: Lei‐Xin
  surname: Xiao
  fullname: Xiao, Lei‐Xin
  organization: Nanjing University
– sequence: 4
  givenname: Chun‐Feng
  surname: Zhang
  fullname: Zhang, Chun‐Feng
  organization: Nanjing University
– sequence: 5
  givenname: Sheng‐Yi
  surname: Yang
  fullname: Yang, Sheng‐Yi
  organization: Soochow University
– sequence: 6
  givenname: Bing‐Bing
  surname: Chen
  fullname: Chen, Bing‐Bing
  organization: Nanjing Tech University
– sequence: 7
  givenname: Hui‐Ting
  surname: Ge
  fullname: Ge, Hui‐Ting
  organization: Soochow University
– sequence: 8
  givenname: Qi‐Sheng
  surname: Tian
  fullname: Tian, Qi‐Sheng
  organization: Soochow University
– sequence: 9
  givenname: Yan
  surname: Jin
  fullname: Jin, Yan
  organization: Soochow University
– sequence: 10
  givenname: Liang‐Sheng
  orcidid: 0000-0002-2352-9666
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31532872$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URLeFK0dkiUsvWfwnduLjsmkBaVFBgrPlTSbFJY6D7VCVUx-hz8iT4GVbkCohTqOZ-X0zmvmO0MHoR0DoOSVLSgh7ZTpnloxQRUpO1SO0oILRoiRKHKAFUVwUSpb1ITqK8ZIQoiSRT9Ahp4KzumILFM-nZJ39YZL1I_Y93virnze3jXUwxlwyA157N-WlY4q7_sfZRJsJ1uAPEPz3-NUmwGd2cBH3PuAGYMrt18MMeGMvvqScnDqbkh0vcGN9B_EpetybIcKzu3iMPp-dflq_LTbnb96tV5uiLblSBUiiOtPJirS1EpWQjChmuDQSGOspycWuLWklStqCULUi2-22EqpTIMq-An6MTvZzp-C_zRCTdja2MAxmBD9HzZjiqpK0ohl9-QC99HPI12eK51U1Z5Rl6sUdNW8ddHoK1plwre_fmYFyD7TBxxig161Nv1-bgrGDpkTvXNM71_Qf17Js-UB2P_mfArUXXNkBrv9D61XzfvVX-wu5b6yt
CitedBy_id crossref_primary_10_1016_j_synthmet_2022_117261
crossref_primary_10_1002_adma_202409867
crossref_primary_10_1002_adom_202201112
crossref_primary_10_1002_adfm_202103890
crossref_primary_10_1021_acsami_1c15879
crossref_primary_10_1016_j_apsusc_2024_161623
crossref_primary_10_1021_acsami_9b18230
crossref_primary_10_1021_acsenergylett_1c00752
crossref_primary_10_1002_adfm_202304750
crossref_primary_10_1039_D2TC02077G
crossref_primary_10_1002_adfm_202303423
crossref_primary_10_1021_acs_jpcc_3c05840
crossref_primary_10_1002_adfm_202303787
crossref_primary_10_1002_adfm_202105164
crossref_primary_10_1002_inf2_12211
crossref_primary_10_1021_jacs_1c09515
crossref_primary_10_1002_adom_202100300
crossref_primary_10_1016_j_ceramint_2022_09_111
crossref_primary_10_1021_acs_jpclett_2c01774
crossref_primary_10_1021_acs_nanolett_0c00513
crossref_primary_10_1016_j_scib_2020_03_036
crossref_primary_10_1016_j_ssc_2023_115102
crossref_primary_10_1016_j_jallcom_2023_168913
crossref_primary_10_1002_adom_202100544
crossref_primary_10_1002_aelm_202200893
crossref_primary_10_3788_gzxb20235208_0816001
crossref_primary_10_1021_acsaelm_4c02285
crossref_primary_10_1021_acsaom_3c00182
crossref_primary_10_1002_adom_202302836
crossref_primary_10_1002_smsc_202000048
crossref_primary_10_1021_acsami_4c11568
crossref_primary_10_1021_acsenergylett_4c02099
crossref_primary_10_1021_acs_jpcc_2c06050
crossref_primary_10_1002_adom_202400277
crossref_primary_10_1002_adom_202101642
crossref_primary_10_1039_D4TA00532E
crossref_primary_10_1002_adom_202401920
crossref_primary_10_1002_adma_202102246
crossref_primary_10_1016_j_mattod_2021_10_023
crossref_primary_10_1002_adom_202401247
crossref_primary_10_1007_s12200_020_1042_y
crossref_primary_10_1039_D0TC04350H
crossref_primary_10_1002_eem2_12087
crossref_primary_10_1021_acs_jpclett_3c00404
crossref_primary_10_1126_sciadv_adh2140
crossref_primary_10_1021_acsenergylett_2c02246
crossref_primary_10_1002_smll_202402786
crossref_primary_10_1038_s41377_023_01206_2
crossref_primary_10_1021_acs_jpclett_0c02476
crossref_primary_10_3390_nano12122026
crossref_primary_10_1021_acsami_0c06737
crossref_primary_10_1063_5_0105878
crossref_primary_10_1002_adfm_202410143
crossref_primary_10_1038_s41467_021_21522_8
crossref_primary_10_1016_j_fmre_2022_05_004
crossref_primary_10_1002_adfm_202006736
crossref_primary_10_1039_D2NR04735G
crossref_primary_10_1002_adma_202005570
crossref_primary_10_1002_smsc_202000050
crossref_primary_10_1039_D1TA07542J
crossref_primary_10_1016_j_nanoen_2022_107000
crossref_primary_10_1002_adfm_201909222
crossref_primary_10_1021_acs_chemmater_4c00015
crossref_primary_10_1063_5_0085902
crossref_primary_10_3390_ma15134571
crossref_primary_10_1002_adfm_202308095
crossref_primary_10_1002_adma_202002176
crossref_primary_10_1002_adom_202202894
crossref_primary_10_1021_acsphotonics_1c01322
crossref_primary_10_1007_s40820_021_00685_5
crossref_primary_10_1088_1674_4926_42_10_101608
crossref_primary_10_1021_acsami_2c12375
crossref_primary_10_3390_chemistry5020090
crossref_primary_10_1039_D0TC05514J
crossref_primary_10_1002_adfm_202001732
crossref_primary_10_1039_D0TC03042B
crossref_primary_10_1021_acs_jpcc_1c03458
crossref_primary_10_1016_j_jallcom_2021_160727
crossref_primary_10_1021_acsami_2c13349
crossref_primary_10_1002_adfm_202011093
crossref_primary_10_1021_acsmaterialslett_1c00684
crossref_primary_10_1021_acsaelm_1c01142
crossref_primary_10_1088_2752_5724_ac9b2d
crossref_primary_10_1002_adfm_202401297
crossref_primary_10_1002_advs_202409736
crossref_primary_10_1021_acsami_1c09715
crossref_primary_10_1021_acsami_3c05253
crossref_primary_10_1038_s41467_020_20163_7
crossref_primary_10_1002_ejic_202300282
crossref_primary_10_1038_s41467_021_24616_5
crossref_primary_10_1002_adma_202001998
crossref_primary_10_1002_adom_202300473
crossref_primary_10_1021_acs_jpcc_2c07613
crossref_primary_10_1002_smsc_202000072
crossref_primary_10_1021_acsami_2c19979
crossref_primary_10_1002_adma_202107105
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1002_lpor_202200651
crossref_primary_10_34133_2021_9836752
crossref_primary_10_1002_adma_202413895
crossref_primary_10_1021_acsami_1c18439
crossref_primary_10_1039_D4NR00834K
crossref_primary_10_1002_adfm_202306570
crossref_primary_10_1016_j_cplett_2020_138192
crossref_primary_10_1063_5_0042956
crossref_primary_10_1016_j_cej_2022_138021
crossref_primary_10_1063_1_5144101
crossref_primary_10_1016_j_matlet_2021_130970
crossref_primary_10_1002_adom_202300343
crossref_primary_10_1002_aelm_202201271
crossref_primary_10_1002_aenm_202203681
crossref_primary_10_1021_acsami_1c00116
crossref_primary_10_1002_adma_202411231
crossref_primary_10_1002_adom_202202901
crossref_primary_10_1002_adfm_202203962
crossref_primary_10_1021_acsphotonics_0c01394
crossref_primary_10_1002_adom_202001709
crossref_primary_10_1002_adom_202401205
crossref_primary_10_1039_D0CC03030A
crossref_primary_10_1039_D2CC02268K
crossref_primary_10_1016_j_orgel_2021_106299
crossref_primary_10_1063_5_0016377
crossref_primary_10_3740_MRSK_2022_32_11_449
crossref_primary_10_1002_advs_202206076
crossref_primary_10_1016_j_matre_2021_100064
crossref_primary_10_1021_acsphotonics_2c00496
crossref_primary_10_1364_OME_446259
crossref_primary_10_1016_j_cej_2024_149887
crossref_primary_10_1364_OL_445440
crossref_primary_10_1063_5_0080087
crossref_primary_10_1016_j_optmat_2022_113233
crossref_primary_10_1021_acsenergylett_1c01545
crossref_primary_10_1021_acsomega_3c00188
crossref_primary_10_1002_ange_202319730
crossref_primary_10_1016_j_cej_2024_156985
crossref_primary_10_1016_j_cej_2022_140594
crossref_primary_10_1002_advs_202306167
crossref_primary_10_1039_D4CC00117F
crossref_primary_10_1021_acsami_0c13214
crossref_primary_10_1016_j_cej_2021_128511
crossref_primary_10_1117_1_AP_5_1_016001
crossref_primary_10_1557_s43579_021_00108_x
crossref_primary_10_1021_acs_jpclett_0c03633
crossref_primary_10_3390_nano14231919
crossref_primary_10_1002_lpor_202000495
crossref_primary_10_1021_acsami_1c05828
crossref_primary_10_1002_lpor_202200689
crossref_primary_10_1021_acsami_1c02555
crossref_primary_10_1039_D1TC02662C
crossref_primary_10_1039_D2TC02090D
crossref_primary_10_1021_acsami_1c24561
crossref_primary_10_1039_D4SC01630K
crossref_primary_10_1002_adfm_202206574
crossref_primary_10_1038_s41524_022_00781_z
crossref_primary_10_1021_acsami_1c23594
crossref_primary_10_1016_j_cej_2024_148659
crossref_primary_10_1016_j_surfin_2024_104972
crossref_primary_10_1002_adom_202102557
crossref_primary_10_1002_adfm_202104342
crossref_primary_10_1016_j_nanoen_2022_107181
crossref_primary_10_1021_acs_nanolett_4c02110
crossref_primary_10_1016_j_cej_2021_130160
crossref_primary_10_1002_anie_202319730
crossref_primary_10_3788_CJL241067
crossref_primary_10_1016_j_mtphys_2024_101490
crossref_primary_10_1002_adfm_202400052
crossref_primary_10_1021_acs_chemmater_1c03195
crossref_primary_10_1002_ange_202403739
crossref_primary_10_1002_advs_202105307
crossref_primary_10_1021_acsenergylett_2c02877
crossref_primary_10_1039_D4TC00437J
crossref_primary_10_1021_acsanm_4c04882
crossref_primary_10_1088_1674_1056_abe92b
crossref_primary_10_1021_acsaelm_1c00781
crossref_primary_10_1021_jacs_4c09877
crossref_primary_10_1002_adom_202201180
crossref_primary_10_1021_acs_chemmater_4c00190
crossref_primary_10_1002_adom_202002167
crossref_primary_10_1016_j_cej_2023_142707
crossref_primary_10_1063_5_0193556
crossref_primary_10_7498_aps_70_20211046
crossref_primary_10_1002_adfm_202109495
crossref_primary_10_1002_adma_202503076
crossref_primary_10_1002_adfm_202208538
crossref_primary_10_1016_j_cej_2025_160278
crossref_primary_10_1002_adfm_202310220
crossref_primary_10_1002_adma_202307564
crossref_primary_10_1002_adfm_202000026
crossref_primary_10_1016_j_cej_2021_128774
crossref_primary_10_1039_C9QM00734B
crossref_primary_10_1021_acs_jpclett_4c00339
crossref_primary_10_1016_j_cej_2024_148875
crossref_primary_10_1039_D4CE00302K
crossref_primary_10_1021_acsami_0c12451
crossref_primary_10_1016_j_apsusc_2024_161685
crossref_primary_10_1039_D4TC00915K
crossref_primary_10_1021_acs_chemmater_1c00903
crossref_primary_10_1021_acs_chemmater_2c03718
crossref_primary_10_1002_adom_202302477
crossref_primary_10_1002_solr_202200336
crossref_primary_10_1021_acsaelm_0c00105
crossref_primary_10_1021_acsami_4c03752
crossref_primary_10_1002_adma_202103640
crossref_primary_10_1002_sstr_202200393
crossref_primary_10_1021_acsaelm_1c00556
crossref_primary_10_1038_s41377_021_00501_0
crossref_primary_10_1021_acsenergylett_1c00129
crossref_primary_10_1021_acsmaterialslett_4c00171
crossref_primary_10_1021_acsnano_0c03765
crossref_primary_10_1002_adfm_202306199
crossref_primary_10_1002_admt_202300400
crossref_primary_10_1002_adfm_202214542
crossref_primary_10_1002_cptc_202400019
crossref_primary_10_1002_adom_202202801
crossref_primary_10_1002_admi_202102251
crossref_primary_10_1002_advs_202201807
crossref_primary_10_1038_s41928_023_00955_7
crossref_primary_10_1039_D2TC00936F
crossref_primary_10_1016_j_cej_2021_129088
crossref_primary_10_1021_acsami_4c01824
crossref_primary_10_1016_j_cej_2024_151227
crossref_primary_10_1021_acsnano_4c06631
crossref_primary_10_1002_adfm_202103219
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_3390_cryst12010060
crossref_primary_10_1021_acsanm_3c06004
crossref_primary_10_1002_adom_202300631
crossref_primary_10_1007_s12274_022_4252_3
crossref_primary_10_1002_advs_202414499
crossref_primary_10_1002_adma_202205217
crossref_primary_10_1002_ange_202104201
crossref_primary_10_1002_adom_202301164
crossref_primary_10_1039_D1NR02633J
crossref_primary_10_1088_1674_4926_41_5_051203
crossref_primary_10_1021_acs_jpclett_2c01059
crossref_primary_10_59717_j_xinn_mater_2023_100015
crossref_primary_10_1016_j_mtener_2021_100759
crossref_primary_10_1002_anie_202219255
crossref_primary_10_1002_adfm_202100516
crossref_primary_10_1002_anie_202412915
crossref_primary_10_1016_j_mtnano_2021_100170
crossref_primary_10_1002_admt_202200370
crossref_primary_10_1002_anie_202403739
crossref_primary_10_1002_adom_202200566
crossref_primary_10_1002_anie_202213826
crossref_primary_10_1002_adom_202400197
crossref_primary_10_1007_s40684_024_00663_3
crossref_primary_10_1038_s41467_020_20582_6
crossref_primary_10_1039_D3TC02546B
crossref_primary_10_1021_acsenergylett_3c01009
crossref_primary_10_1002_adma_202410633
crossref_primary_10_1002_adma_202105585
crossref_primary_10_1039_D0TC03471A
crossref_primary_10_1021_acsenergylett_1c01380
crossref_primary_10_1515_nanoph_2021_0033
crossref_primary_10_1002_ange_202219255
crossref_primary_10_1021_acsenergylett_0c01015
crossref_primary_10_1021_acs_jpclett_0c03120
crossref_primary_10_1016_j_cej_2022_136496
crossref_primary_10_1021_acs_jpclett_5c00272
crossref_primary_10_1039_D0TC04746E
crossref_primary_10_1063_5_0094525
crossref_primary_10_3389_fmats_2021_635025
crossref_primary_10_1039_D1TC01545A
crossref_primary_10_1002_adfm_201908339
crossref_primary_10_34133_2020_9017871
crossref_primary_10_1016_j_mtelec_2023_100079
crossref_primary_10_1007_s12274_023_5708_9
crossref_primary_10_1016_j_isci_2022_105472
crossref_primary_10_1002_ange_202213826
crossref_primary_10_1021_acsami_2c12048
crossref_primary_10_1002_adfm_202312395
crossref_primary_10_1021_acs_jpclett_2c03457
crossref_primary_10_1515_nanoph_2020_0630
crossref_primary_10_1002_smll_202100972
crossref_primary_10_1002_admt_202401868
crossref_primary_10_1002_smll_202206927
crossref_primary_10_1021_jacs_2c07172
crossref_primary_10_1021_acs_jpclett_1c00072
crossref_primary_10_1039_D1TC05140G
crossref_primary_10_1002_ange_202412915
crossref_primary_10_1002_adma_202202042
crossref_primary_10_1039_D1NR06549A
crossref_primary_10_1002_anie_202104201
crossref_primary_10_1007_s40843_023_2784_y
crossref_primary_10_1016_j_cej_2023_146360
crossref_primary_10_1039_D1NR02769G
crossref_primary_10_1002_adom_202402597
crossref_primary_10_1039_D1TC01805A
crossref_primary_10_1021_acs_inorgchem_4c04805
Cites_doi 10.1016/j.joule.2018.11.026
10.1038/s41467-019-08980-x
10.1021/acs.chemmater.8b02999
10.1021/acsnano.8b06441
10.1038/s41467-019-09794-7
10.1002/adma.200305619
10.1038/nature18306
10.1038/nphoton.2016.185
10.1038/s41467-018-05909-8
10.1021/acs.chemrev.5b00715
10.1038/s41467-018-02978-7
10.1021/acs.nanolett.8b03552
10.1016/0038-1098(89)90935-6
10.1002/adma.201670242
10.1038/s41563-018-0154-x
10.1038/s41566-019-0390-x
10.1002/adom.201900276
10.1038/s41467-019-09011-5
10.1038/s41566-018-0283-4
10.1021/acsami.9b02472
10.1016/j.joule.2018.08.005
10.1039/C8NR09885A
10.1021/acs.jpclett.9b00018
10.1038/s41467-018-07438-w
10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K
10.1021/ja512833n
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201904319
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31532872
10_1002_adma_201904319
ADMA201904319
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 91733301; 61674109; 11675252; 11605278
– fundername: State Administration of Foreign Experts Affairs
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202400
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20130288
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
– fundername: Natural Science Foundation of China
  grantid: 11605278
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20130288
– fundername: Natural Science Foundation of China
  grantid: 91733301
– fundername: National Key Research and Development Program of China
  grantid: 2016YFA0202400
– fundername: Natural Science Foundation of China
  grantid: 61674109
– fundername: Natural Science Foundation of China
  grantid: 11675252
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4399-e609dad670c8957562092a36a6e22f10895dc417541ce59890bbb759d9e54f7e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:09:06 EDT 2025
Fri Jul 25 08:22:12 EDT 2025
Thu Apr 03 07:09:13 EDT 2025
Tue Jul 01 02:32:41 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:37:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords deep-blue emission
quasi-2D perovskite
color stability
light-emitting diodes
domain distribution
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-e609dad670c8957562092a36a6e22f10895dc417541ce59890bbb759d9e54f7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2352-9666
PMID 31532872
PQID 2310883212
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2293976171
proquest_journals_2310883212
pubmed_primary_31532872
crossref_citationtrail_10_1002_adma_201904319
crossref_primary_10_1002_adma_201904319
wiley_primary_10_1002_adma_201904319_ADMA201904319
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2018; 9
2018; 17
2018; 2
2019; 3
2019; 31
2015; 137
2004; 16
2019; 11
2019; 10
2016; 536
2019; 13
2016; 10
2019; 19
2016; 116
2018; 12
2016; 28
2001; 13
1989; 69
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
References_xml – volume: 13
  start-page: 1690
  year: 2001
  publication-title: Adv. Mater.
– volume: 10
  start-page: 419
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 12
  start-page: 783
  year: 2018
  publication-title: Nat. Photonics
– volume: 31
  start-page: 83
  year: 2019
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2421
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 1276
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  start-page: 7550
  year: 2016
  publication-title: Adv. Mater.
– volume: 19
  start-page: 150
  year: 2019
  publication-title: Nano Lett.
– volume: 17
  start-page: 900
  year: 2018
  publication-title: Nat. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 418
  year: 2019
  publication-title: Nat. Photonics
– volume: 137
  start-page: 2089
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1027
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1645
  year: 2019
  publication-title: ACS Nano
– volume: 11
  start-page: 2109
  year: 2019
  publication-title: Nanoscale
– volume: 69
  start-page: 933
  year: 1989
  publication-title: Solid State Commun.
– volume: 9
  start-page: 4981
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1868
  year: 2019
  publication-title: Nat. Commun.
– volume: 16
  start-page: 61
  year: 2004
  publication-title: Adv. Mater.
– volume: 3
  start-page: 794
  year: 2019
  publication-title: Joule
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 9
  start-page: 570
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 699
  year: 2016
  publication-title: Nat. Photonics
– volume: 9
  start-page: 3541
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_5_21_1
  doi: 10.1016/j.joule.2018.11.026
– ident: e_1_2_5_23_1
  doi: 10.1038/s41467-019-08980-x
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.chemmater.8b02999
– ident: e_1_2_5_14_1
  doi: 10.1021/acsnano.8b06441
– ident: e_1_2_5_10_1
  doi: 10.1038/s41467-019-09794-7
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.200305619
– ident: e_1_2_5_18_1
  doi: 10.1038/nature18306
– ident: e_1_2_5_11_1
  doi: 10.1038/nphoton.2016.185
– ident: e_1_2_5_3_1
  doi: 10.1038/s41467-018-05909-8
– ident: e_1_2_5_17_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_5_13_1
  doi: 10.1038/s41467-018-02978-7
– ident: e_1_2_5_20_1
  doi: 10.1021/acs.nanolett.8b03552
– ident: e_1_2_5_24_1
  doi: 10.1016/0038-1098(89)90935-6
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201670242
– ident: e_1_2_5_15_1
  doi: 10.1038/s41563-018-0154-x
– ident: e_1_2_5_19_1
  doi: 10.1038/s41566-019-0390-x
– ident: e_1_2_5_6_1
  doi: 10.1002/adom.201900276
– ident: e_1_2_5_8_1
  doi: 10.1038/s41467-019-09011-5
– ident: e_1_2_5_12_1
  doi: 10.1038/s41566-018-0283-4
– ident: e_1_2_5_7_1
  doi: 10.1021/acsami.9b02472
– ident: e_1_2_5_5_1
  doi: 10.1016/j.joule.2018.08.005
– ident: e_1_2_5_4_1
  doi: 10.1039/C8NR09885A
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.jpclett.9b00018
– ident: e_1_2_5_26_1
  doi: 10.1038/s41467-018-07438-w
– ident: e_1_2_5_1_1
  doi: 10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K
– ident: e_1_2_5_25_1
  doi: 10.1021/ja512833n
SSID ssj0009606
Score 2.6766412
Snippet Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from...
Compared to efficient green and near-infrared light-emitting diodes (LEDs), less progress has been made on deep-blue perovskite LEDs. They suffer from...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1904319
SubjectTerms color stability
deep‐blue emission
domain distribution
Emission spectra
Excitons
Fluorescence
Infrared radiation
Light emitting diodes
Materials science
Optimization
Organic light emitting diodes
Perovskites
Photoluminescence
Quantum efficiency
quasi‐2D perovskite
Title Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201904319
https://www.ncbi.nlm.nih.gov/pubmed/31532872
https://www.proquest.com/docview/2310883212
https://www.proquest.com/docview/2293976171
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB5kn-pDa6tt19oyhYJP2c1MkknyuBoXKWsvUsG3MLfA4m4iZtNCn_wJ_kZ_iefkplsphfqWZOaQyeRcvrmcbwj5xLgUng5cxwgNA5TMZI4ygeeEDFfJNGOhwHznky_i-Mz_fB6cP8jib_gh-gk3tIzaX6OBS1WO70lDpal5gyCgQQzEDD7csIWo6PSePwrheU225wVOLPyoY210-XhdfD0qPYKa68i1Dj3TF0R2jW52nFyMqpUa6d9_8Dk-5au2yPMWl9JJo0gvyYbNX5HNB2yF26T8Cu5l2eZt0iKjs-LX7fVNgucDNNweFL1LkePeDCz_XslyDjV4Qr_Zq-JniTPFdDpfLEsKWJkm1l5C8cGisnSGkwRwc7Sc1zuxaTIvjC13yNn06MfhsdOe2eBoHNk4VrixkUaEro5igIKCuzGXnpDCcp4xFx4a7QNm8RkmgEWxq5QKg9jENvCz0HqvySCHhr4llGUKuYKkBVFw5ypSNuAoL3WUuaEcEqf7Z6luCc3xXI1F2lAx8xQ7M-07c0j2-_qXDZXHX2vudSqQtiZdpgiEIzzXiQ_Jx74YjBFXWGRuiwrqAHgCfMdCNiRvGtXpX-VBbIHhKUjzWgH-0YZ0kpxM-rvd_xF6R57hdZM5uUcGq6vKvgcItVIfajO5A0gXFOo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAOlH8WChgJxClt4iROcuhhIV1t6W75USv1FmzHkVbsbqpmQwWnPkJfhVfhEXgSZvJXFoSQkHrgmNhOnHg8843t-QbgmcOlcLVvW6nQ6KBkaWap1HetwKFdMu04gaB45_GeGB54rw_9wxX42sbC1PwQ3YIbzYxKX9MEpwXpzXPWUJlWxEFo0dAIRs25yl3z-QS9tmJrJ8Yhfs75YHv_1dBqEgtYmuC3ZYQdpTIVga3DCPGK4HbEpSukMJxnjo03U-2hYfUcilIKI1spFfhRGhnfywLj4nMvwWVKI050_fH7c8Yqcggqej_XtyLhhS1PpM03l_u7bAd_A7fLWLkydoM1-Nb-pvqMy8eNcqE29JdfGCT_q_94A6430Jv167lyE1bM_BZc-4mQ8TYUb1CDzprQVJZnbJSffD89iykFQk1fwkiB5nM6fkLl70pZTLAGj9lbc5x_KmgxnA0m01nB0B1gsTFHWPxyWho2onUQvNieTarD5iye5Kkp7sDBhXz1XVidY0fvA3MyRXRI0mBTtFgqVMbn1F7qMLMD2QOrFZJEN5ztlDpkmtRs0zyhwUu6wevBi67-Uc1W8sea663MJY3WKhLC-iGlruI9eNoVo76hTSQ5N3mJdRAfIoR1AqcH92pZ7V7lovlEDxxb80ri_tKHpB-P-93Vg39p9ASuDPfHo2S0s7f7EK7S_TpQdB1WF8eleYSIcaEeV3OUwYeLFuYfZ3RwYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6oPy2CwWMBOKUNnYSJzlwWEhXLd2WgqjUW3BiR1p1d7NqNlRw6iPwKLwKr8CTMJO_siCEhNQDx8R24sTjmW9szzcAT7lQ0kk929IyRQcl05mVaM-xfE67ZCnnvqR45_0DuXPkvj72jpfgaxsLU_NDdAtuNDMqfU0TfKazrQvSUKUr3iA0aGgDw-ZY5Z75dIZOW_FiN8IRfibEYPv9qx2ryStgpYS-LSPtUCstfTsNQoQrUtihUI5U0giRcRtv6tRFu-pyClIKQjtJEt8LdWg8N_ONg8-9AlddfAwli4jeXRBWkT9Qsfs5nhVKN2hpIm2xtdjfRTP4G7ZdhMqVrRuswrf2L9VHXE42y3mymX7-hUDyf_qNN-FGA7xZv54pt2DJTG_Dyk90jHegeIP6c9IEprI8Y8P87Pv5l4gSINTkJYzUZz6lwydU_rZUxQhriIgdmtP8Y0FL4WwwGk8Khs4Ai4yZYfHLcWnYkFZB8GJ7MqqOmrNolGtT3IWjS_nqe7A8xY6uA-NZQmRIymBTtFdJkBhPUHuVBpntqx5YrYzEacPYTolDxnHNNS1iGry4G7wePO_qz2qukj_W3GhFLm50VhET0g8ocZXowZOuGLUNbSGpqclLrIPoEAEs93kP1mpR7V7loPFE_xtbi0rg_tKHuB_t97ur-__S6DFcO4wG8XD3YO8BXKfbdZToBizPT0vzEOHiPHlUzVAGHy5bln8Ah3dvEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Low-Dimensional+Components+of+Quasi-2D+Perovskite+Films+for+Deep-Blue+Light-Emitting+Diodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yuan%2C+Shuai&rft.au=Wang%2C+Zhao-Kui&rft.au=Xiao%2C+Lei-Xin&rft.au=Zhang%2C+Chun-Feng&rft.date=2019-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=44&rft.spage=e1904319&rft_id=info:doi/10.1002%2Fadma.201904319&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon