Full‐Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry
Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 49; pp. e1804019 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable.
A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. A synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow, and a series of noncentrosymmetric thermal metadevices is experimentally demonstrated. |
---|---|
AbstractList | Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long-held captivation is that transformation-optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long-held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation-optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation-optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave-dynamic fields in ways previously inconceivable. Abstract Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable. Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. A synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow, and a series of noncentrosymmetric thermal metadevices is experimentally demonstrated. |
Author | Hippalgaonkar, Kedar Han, Tiancheng Li, Ying Yang, Peng Li, Baowen Qiu, Cheng‐Wei Lei, Dangyuan |
Author_xml | – sequence: 1 givenname: Tiancheng surname: Han fullname: Han, Tiancheng email: tchan123@swu.edu.cn organization: Southwest University – sequence: 2 givenname: Peng surname: Yang fullname: Yang, Peng organization: Southwest University – sequence: 3 givenname: Ying surname: Li fullname: Li, Ying organization: National University of Singapore – sequence: 4 givenname: Dangyuan surname: Lei fullname: Lei, Dangyuan organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Baowen surname: Li fullname: Li, Baowen organization: University of Colorado – sequence: 6 givenname: Kedar surname: Hippalgaonkar fullname: Hippalgaonkar, Kedar organization: Institute of Materials Research and Engineering – sequence: 7 givenname: Cheng‐Wei orcidid: 0000-0003-0274-9982 surname: Qiu fullname: Qiu, Cheng‐Wei email: chengwei.qiu@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30311275$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkL1OwzAUhS0EghZYGVEkFpYUX8dO47ECWpBawQBz5Dg3wlUSFzsBdeMReEaeBFflR2JhOsP9zpHuNyS7rW2RkBOgI6CUXaiyUSNGIaOcgtwhAxAMYk6l2CUDKhMRy5RnB2To_ZJSKlOa7pODhCYAbCwGZD7t6_rj7f1eOdVghy66a1pTGoe6M7ZVdfTwhK4JucBOlfhiNPrIVtGkNd52zq6MjmZoQ9etj8hepWqPx195SB6n1w-XN_H8bnZ7OZnHmidSxgiyUknFSloCT1NQgDzTqpC6ECItlECALNOcS5UIOa7CnZYFE1yypCjFODkk59vdlbPPPfoub4zXWNeqRdv7nAFICWOeZQE9-4Mube_CXxsqaOIsmAjUaEtpZ713WOUrZxrl1jnQfOM533jOfzyHwunXbF80WP7g32IDILfAq6lx_c9cPrlaTH7HPwFseout |
CitedBy_id | crossref_primary_10_1016_j_cja_2022_08_004 crossref_primary_10_1016_j_xcrp_2023_101540 crossref_primary_10_1209_0295_5075_131_24002 crossref_primary_10_1016_j_mtphys_2022_100880 crossref_primary_10_1021_acs_chemrev_3c00708 crossref_primary_10_1039_D0TC04999A crossref_primary_10_1115_1_4047414 crossref_primary_10_1016_j_ijthermalsci_2022_107506 crossref_primary_10_1063_5_0100916 crossref_primary_10_3390_ma16103657 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120659 crossref_primary_10_1103_PhysRevApplied_13_024063 crossref_primary_10_1209_0295_5075_128_34002 crossref_primary_10_1002_admt_201900296 crossref_primary_10_1073_pnas_2217068120 crossref_primary_10_1209_0295_5075_130_34001 crossref_primary_10_1016_j_physleta_2021_127459 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121177 crossref_primary_10_1063_5_0195578 crossref_primary_10_1103_PhysRevApplied_17_044006 crossref_primary_10_1088_1361_6463_ac31f5 crossref_primary_10_1016_j_compstruct_2019_111717 crossref_primary_10_1364_AO_386811 crossref_primary_10_1103_PhysRevApplied_15_024010 crossref_primary_10_1002_adma_202201093 crossref_primary_10_1002_adma_202003084 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122568 crossref_primary_10_1016_j_isci_2022_105461 crossref_primary_10_1103_PhysRevE_100_062108 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121417 crossref_primary_10_1063_5_0079933 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124437 crossref_primary_10_1016_j_tsep_2021_100926 crossref_primary_10_1016_j_apm_2022_01_026 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125205 crossref_primary_10_1016_j_icheatmasstransfer_2024_107326 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125088 crossref_primary_10_1007_s11433_019_1430_x crossref_primary_10_1038_s41598_022_06719_1 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124033 crossref_primary_10_1002_adfm_202003270 crossref_primary_10_1016_j_physrep_2024_05_004 crossref_primary_10_1002_adfm_202002061 crossref_primary_10_3390_ma14247835 crossref_primary_10_1038_s41578_021_00283_2 crossref_primary_10_1103_PhysRevApplied_11_034056 crossref_primary_10_1103_PhysRevApplied_14_054024 crossref_primary_10_1103_PhysRevE_106_044203 crossref_primary_10_1038_s41467_021_27543_7 crossref_primary_10_1063_5_0108743 crossref_primary_10_1016_j_mtphys_2022_100819 crossref_primary_10_1016_j_isci_2022_104183 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120437 crossref_primary_10_1063_1_5123908 crossref_primary_10_1007_s11467_021_1048_y crossref_primary_10_1016_j_ijheatmasstransfer_2020_120082 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124744 crossref_primary_10_1103_PhysRevE_102_032140 crossref_primary_10_1016_j_isci_2023_107398 crossref_primary_10_1103_PhysRevApplied_12_044048 crossref_primary_10_1088_0256_307X_37_8_080502 crossref_primary_10_1103_PhysRevE_103_032128 crossref_primary_10_1007_s10338_023_00426_8 crossref_primary_10_1038_s43588_024_00660_1 crossref_primary_10_1038_s41467_024_46247_2 crossref_primary_10_1016_j_ijheatmasstransfer_2021_120948 crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_092 crossref_primary_10_1140_epjb_e2019_100377_5 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121312 crossref_primary_10_3389_fphy_2022_924890 crossref_primary_10_1088_0256_307X_38_2_020501 crossref_primary_10_1140_epjb_e2020_10122_6 |
Cites_doi | 10.1088/0953-8984/19/7/076208 10.1038/nmat2126 10.1002/adma.201707237 10.1088/0022-3727/41/8/085504 10.1063/1.4774301 10.1063/1.5000090 10.1002/adma.201304448 10.1126/science.aac9411 10.1103/PhysRevLett.112.054301 10.1103/PhysRevLett.109.053902 10.1103/PhysRevLett.102.233901 10.1126/science.1218316 10.1038/nmat3476 10.1126/science.1126493 10.1063/1.3026532 10.1103/PhysRevLett.108.214303 10.1103/PhysRevA.77.013825 10.1038/ncomms9931 10.1038/lsa.2016.177 10.1002/adma.201104012 10.1063/1.2951600 10.1142/S0217979216502441 10.1002/adma.201305586 10.1038/am.2016.197 10.1103/PhysRevE.72.016623 10.1126/science.1125907 10.1103/PhysRevLett.110.195901 10.1103/PhysRevLett.112.054302 10.1103/PhysRevLett.109.223903 10.1103/PhysRevLett.106.024301 10.1364/OE.20.008207 10.1103/PhysRevLett.115.195503 10.1126/science.1133628 10.1038/srep01593 10.1111/appy.12074 10.1038/srep20219 10.1002/adma.201600625 10.1103/PhysRevLett.100.113901 10.1103/PhysRevLett.113.205501 10.1103/PhysRevLett.103.024301 10.1002/adma.201502513 10.1103/PhysRevLett.108.014301 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201804019 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201804019 30311275 ADMA201804019 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation, Prime Minister's Office, Singapore funderid: NRFCRP15‐2015‐03 – fundername: Fundamental Research Funds for the Central Universities funderid: XDJK2016A019 – fundername: Ministry of Education, Singapore funderid: R‐263‐000‐C05‐112 – fundername: National Natural Science Foundation of China funderid: 11304253; 11474240 – fundername: Ministry of Education, Singapore grantid: R-263-000-C05-112 – fundername: National Natural Science Foundation of China grantid: 11304253 – fundername: National Research Foundation, Prime Minister's Office, Singapore grantid: NRFCRP15-2015-03 – fundername: National Natural Science Foundation of China grantid: 11474240 – fundername: Fundamental Research Funds for the Central Universities grantid: XDJK2016A019 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4399-e19fa3f2d0d14661a1e48cab9cb556ba5e1188c449a3597fa1e0db254923bd573 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 11:24:43 EDT 2024 Thu Oct 10 15:39:25 EDT 2024 Thu Sep 26 15:57:06 EDT 2024 Sat Sep 28 08:40:19 EDT 2024 Sat Aug 24 01:12:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | super expanders invisibility cloaks thermal metadevices of anisotropic geometry cloaked sensors full-parameter and omni-directionality |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-e19fa3f2d0d14661a1e48cab9cb556ba5e1188c449a3597fa1e0db254923bd573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0274-9982 |
PMID | 30311275 |
PQID | 2140942311 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2119917488 proquest_journals_2140942311 crossref_primary_10_1002_adma_201804019 pubmed_primary_30311275 wiley_primary_10_1002_adma_201804019_ADMA201804019 |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2007; 19 2013; 3 2015; 6 2013; 4 2014; 26 2008; 7 2013; 102 2008; 77 2015; 349 2006; 314 2008; 100 2008; 92 2013; 5 2008; 93 2017; 9 2012; 108 2014; 22 2006; 312 2012; 109 2014; 112 2014; 113 2016; 5 2017; 31 2016; 6 2015; 27 2011; 106 2015; 115 2013; 12 2015; 112 2009; 102 2018; 30 2013; 110 2008; 41 2005; 72 2017; 122 2016; 28 2012; 24 2012; 335 2009; 103 2012; 20 Chen H. (e_1_2_4_12_1) 2013; 4 Peng R. (e_1_2_4_5_1) 2017; 7 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 Shen L. (e_1_2_4_13_1) 2015; 112 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_33_1 Liu Y. (e_1_2_4_39_1) 2014; 22 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 93 start-page: 194102 year: 2008 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 251907 year: 2008 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 076208 year: 2007 publication-title: J. Phys.: Condens. Matter – volume: 20 start-page: 8207 year: 2012 publication-title: Opt. Express – volume: 27 start-page: 7752 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 3478 year: 2014 publication-title: Adv. Mater. – volume: 314 start-page: 977 year: 2006 publication-title: Science – volume: 4 start-page: 3652 year: 2013 publication-title: Nat. Commun. – volume: 109 start-page: 053902 year: 2012 publication-title: Phys. Rev. Lett. – volume: 102 start-page: 233901 year: 2009 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 223903 year: 2012 publication-title: Phys. Rev. Lett. – volume: 312 start-page: 1777 year: 2006 publication-title: Science – volume: 7 start-page: 011033 year: 2017 publication-title: Phys. Rev. X – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 100 start-page: 113901 year: 2008 publication-title: Phys. Rev. Lett. – volume: 5 start-page: e73 year: 2013 publication-title: NPG Asia Mater. – volume: 6 start-page: 8931 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: e341 year: 2017 publication-title: NPG Asia Mater. – volume: 122 start-page: 215107 year: 2017 publication-title: J. Appl. Phys. – volume: 112 start-page: 054302 year: 2014 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 71 year: 2012 publication-title: Adv. Mater. – volume: 26 start-page: 1731 year: 2014 publication-title: Adv. Mater. – volume: 349 start-page: 1310 year: 2015 publication-title: Science – volume: 72 start-page: 016623 year: 2005 publication-title: Phys. Rev. E – volume: 110 start-page: 195901 year: 2013 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 1593 year: 2013 publication-title: Sci. Rep. – volume: 103 start-page: 024301 year: 2009 publication-title: Phys. Rev. Lett. – volume: 41 start-page: 085504 year: 2008 publication-title: J. Phys. D: Appl. Phys. – volume: 335 start-page: 1466 year: 2012 publication-title: Science – volume: 112 start-page: 7635 year: 2015 publication-title: Adv. Opt. Mater. – volume: 77 start-page: 013825 year: 2008 publication-title: Phys. Rev. A – volume: 106 start-page: 024301 year: 2011 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 214303 year: 2012 publication-title: Phys. Rev. Lett. – volume: 113 start-page: 205501 year: 2014 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 25 year: 2013 publication-title: Nat. Mater. – volume: 102 start-page: 014102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 31 start-page: 1650244 year: 2017 publication-title: Int. J. Mod. Phys. B – volume: 22 start-page: 170006 year: 2014 publication-title: Opt. Express – volume: 6 start-page: 20219 year: 2016 publication-title: Sci. Rep. – volume: 30 start-page: 1707237 year: 2018 publication-title: Adv. Mater. – volume: 108 start-page: 014301 year: 2012 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 195503 year: 2015 publication-title: Phys. Rev. Lett. – volume: 28 start-page: 6866 year: 2016 publication-title: Adv. Mater. – volume: 112 start-page: 054301 year: 2014 publication-title: Phys. Rev. Lett. – volume: 5 start-page: e16177 year: 2016 publication-title: Light: Sci. Appl. – volume: 7 start-page: 295 year: 2008 publication-title: Nat. Mater. – ident: e_1_2_4_19_1 doi: 10.1088/0953-8984/19/7/076208 – ident: e_1_2_4_20_1 doi: 10.1038/nmat2126 – ident: e_1_2_4_42_1 doi: 10.1002/adma.201707237 – ident: e_1_2_4_26_1 doi: 10.1088/0022-3727/41/8/085504 – ident: e_1_2_4_18_1 doi: 10.1063/1.4774301 – ident: e_1_2_4_40_1 doi: 10.1063/1.5000090 – ident: e_1_2_4_41_1 doi: 10.1002/adma.201304448 – ident: e_1_2_4_8_1 doi: 10.1126/science.aac9411 – ident: e_1_2_4_31_1 doi: 10.1103/PhysRevLett.112.054301 – ident: e_1_2_4_17_1 doi: 10.1103/PhysRevLett.109.053902 – ident: e_1_2_4_38_1 doi: 10.1103/PhysRevLett.102.233901 – ident: e_1_2_4_34_1 doi: 10.1126/science.1218316 – ident: e_1_2_4_7_1 doi: 10.1038/nmat3476 – ident: e_1_2_4_2_1 doi: 10.1126/science.1126493 – volume: 4 start-page: 3652 year: 2013 ident: e_1_2_4_12_1 publication-title: Nat. Commun. contributor: fullname: Chen H. – ident: e_1_2_4_28_1 doi: 10.1063/1.3026532 – ident: e_1_2_4_29_1 doi: 10.1103/PhysRevLett.108.214303 – ident: e_1_2_4_27_1 doi: 10.1103/PhysRevA.77.013825 – ident: e_1_2_4_35_1 doi: 10.1038/ncomms9931 – ident: e_1_2_4_6_1 doi: 10.1038/lsa.2016.177 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201104012 – ident: e_1_2_4_21_1 doi: 10.1063/1.2951600 – ident: e_1_2_4_25_1 doi: 10.1142/S0217979216502441 – ident: e_1_2_4_37_1 doi: 10.1002/adma.201305586 – ident: e_1_2_4_36_1 doi: 10.1038/am.2016.197 – ident: e_1_2_4_3_1 doi: 10.1103/PhysRevE.72.016623 – ident: e_1_2_4_1_1 doi: 10.1126/science.1125907 – ident: e_1_2_4_23_1 doi: 10.1103/PhysRevLett.110.195901 – ident: e_1_2_4_32_1 doi: 10.1103/PhysRevLett.112.054302 – ident: e_1_2_4_10_1 doi: 10.1103/PhysRevLett.109.223903 – ident: e_1_2_4_14_1 doi: 10.1103/PhysRevLett.106.024301 – ident: e_1_2_4_22_1 doi: 10.1364/OE.20.008207 – ident: e_1_2_4_46_1 doi: 10.1103/PhysRevLett.115.195503 – ident: e_1_2_4_11_1 doi: 10.1126/science.1133628 – ident: e_1_2_4_30_1 doi: 10.1038/srep01593 – ident: e_1_2_4_24_1 doi: 10.1111/appy.12074 – ident: e_1_2_4_44_1 doi: 10.1038/srep20219 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201600625 – ident: e_1_2_4_4_1 doi: 10.1103/PhysRevLett.100.113901 – volume: 112 start-page: 7635 year: 2015 ident: e_1_2_4_13_1 publication-title: Adv. Opt. Mater. contributor: fullname: Shen L. – ident: e_1_2_4_43_1 doi: 10.1103/PhysRevLett.113.205501 – ident: e_1_2_4_15_1 doi: 10.1103/PhysRevLett.103.024301 – volume: 22 start-page: 170006 year: 2014 ident: e_1_2_4_39_1 publication-title: Opt. Express contributor: fullname: Liu Y. – ident: e_1_2_4_45_1 doi: 10.1002/adma.201502513 – ident: e_1_2_4_16_1 doi: 10.1103/PhysRevLett.108.014301 – volume: 7 start-page: 011033 year: 2017 ident: e_1_2_4_5_1 publication-title: Phys. Rev. X contributor: fullname: Peng R. |
SSID | ssj0009606 |
Score | 2.605889 |
Snippet | Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have... Abstract Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1804019 |
SubjectTerms | Acoustics Anisotropy cloaked sensors Electric fields Ellipsoids full‐parameter and omni‐directionality Heat transmission invisibility cloaks Materials science Metamaterials Optics Parameters Stealth technology super expanders thermal metadevices of anisotropic geometry Transformations Visibility |
Title | Full‐Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804019 https://www.ncbi.nlm.nih.gov/pubmed/30311275 https://www.proquest.com/docview/2140942311 https://search.proquest.com/docview/2119917488 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT4MwFMBfzE568PsDv4KJiScmpZTBcXFOY5wa45LdSFtKsqhgNnbQk3-Cf6N_iX1lY5seTPQGKQ3Q1_dVHr8CHCtkZKECKoZQ7SASjtBG0aGC-WlIQ1cakHbnJrjs-lc91pv5i7_kQ1QLbqgZxl6jgnMxPJ1CQ3liuEEk1NPQcD8JbWBNV-t-yo_C8NzA9ihzosAPJ9RG1zud7z7vlX6EmvORq3E97RXgk4cuK04e66NC1OXbN57jf95qFZbHcandLCfSGiyobB2WZmiFG3CN6ern-8cdx4IuLQ_79jnrlz7RLCjaes5pO_9kd1TBE2VskJ2ndjPrD_NikL_0pX2hct138LoJ3fb5w9mlM96MwZGYsjiKRCmnqZe4iTauAeFE-aHkIpKCsUBwpnSqEkrfjzjVSUqq291EeAYAJxLWoFtQy_JM7YDt6yCDSslC11O-xP3EcZdQVyiqSOql3IKTiTDil5K5EZd0ZS_G8Ymr8bFgfyKreKx7w9hDhpeOEgmx4Khq1lqDn0J4pvIRXoMlXw1tvSzYLmVc3Uo7dYLYews8I6lfniFutjrN6mz3L532YBGPyyqZfagVg5E60LFOIQ7NfP4CPqv0cQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEIBHCA7AgcfyCq_NSkicAkkch-RY8Sq7LYtWIHGLbMeRKiCpSnqAEz-B38gvYcZpAl0OSHBMHMuOxzOecSafAXY0MbJIATUnqHYYS0eiUXSY5EEWschVBqTdPQ_bV8Hva15nE9K_MBUfotlwI80w9poUnDak99-ooSI14CAvwnlI4M8pbJLR6Q1H_94IUuSgG9we404cBlHNbXT9_fH64-vSB2dz3Hc1i8_JPMi621XOyc3esJR76vE_ouO33msB5kauqd2q5tIiTOj8B8y-AxYuQYci1pen5wtBOV0oEvvvXd6rlkWzp2jjtENTf2t3dSlSbcyQXWR2K-_dF-Wg6PeUfaoLrDt4WIark-PLw7YzOo_BURS1ONqLM8EyP3VTtK-hJzwdRErIWEnOQym4xmglUkEQC4ZxSoblbip9w4CTKT9gKzCZF7leAztAP4MpxSPX14GiI8XpoFBXaqa9zM-EBbu1NJJ-hd1IKsCyn9D4JM34WLBZCysZqd994hPGCx1Fz7PgV1OMikNfQ0SuiyE9Q1lfB2jALFithNw0heu6R-R7C3wjqk_6kLSOuq3mav0rlX7CdPuy20k6Z-d_NmCG7ldJM5swWQ6Gegtdn1Jum8n9Coa2-Ik |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefpiJNcICNHyNQtiAhcUqbH3aaHKuVroO2VIhKvUW240jVtqTq0gOc-BP2N-4v4T2nTVs4TIJj4lhJ_Pyev89xPgb4oImRRQ6oOUG1w1g6EoOiE0jOsiiIXGVA2qNxOJiyzzM-2_mLv-JD1BNu5BkmXpODL9KsvYWGitRwg7wIuyFxPx-xEOUvyaJvW4AU6XND2wu4E4cs2mAbXb-9X39_WPpLa-5LVzP29J-B2Dx1teTkqrUqZUv9_APo-D-vdQRP18LU7lY96RgOdP4cnuzgCl_AkPLV-193E0ErutAg9tebfF4NimZG0cZOh4H-2h7pUqTaBCG7yOxuPr8tymWxmCv7QhdYd_njJUz7n76fD5z1bgyOopzF0V6ciSDzUzfF6Bp6wtMsUkLGSnIeSsE15iqRYiwWAWYpGZa7qfQNAU6mvBO8gkZe5Po12AxVRqAUj1xfM0UbitM2oa7UgfYyPxMWfNwYI1lU0I2kwiv7CbVPUrePBc2NrZK1890mPkG8UCZ6ngXv62J0G_oWInJdrOgaWvPVwfBlwUll4_pWOKp7xL23wDeWeuAZkm5v1K2P3vxLpTM4nPT6yfBy_OUtPKbT1YqZJjTK5Uq_Q91TylPTtX8DnQL3OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-Parameter+Omnidirectional+Thermal+Metadevices+of+Anisotropic+Geometry&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Tiancheng&rft.au=Yang%2C+Peng&rft.au=Li%2C+Ying&rft.au=Lei%2C+Dangyuan&rft.date=2018-12-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=49&rft.spage=e1804019&rft_id=info:doi/10.1002%2Fadma.201804019&rft_id=info%3Apmid%2F30311275&rft.externalDocID=30311275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |