Full‐Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry

Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 49; pp. e1804019 - n/a
Main Authors Han, Tiancheng, Yang, Peng, Li, Ying, Lei, Dangyuan, Li, Baowen, Hippalgaonkar, Kedar, Qiu, Cheng‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. A synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow, and a series of noncentrosymmetric thermal metadevices is experimentally demonstrated.
AbstractList Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long-held captivation is that transformation-optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long-held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation-optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation-optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave-dynamic fields in ways previously inconceivable.
Abstract Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable.
Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation‐optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation‐optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave‐dynamic fields in ways previously inconceivable. A long‐held captivation is that transformation‐optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. A synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long‐held issue for molding heat flow, and a series of noncentrosymmetric thermal metadevices is experimentally demonstrated.
Author Hippalgaonkar, Kedar
Han, Tiancheng
Li, Ying
Yang, Peng
Li, Baowen
Qiu, Cheng‐Wei
Lei, Dangyuan
Author_xml – sequence: 1
  givenname: Tiancheng
  surname: Han
  fullname: Han, Tiancheng
  email: tchan123@swu.edu.cn
  organization: Southwest University
– sequence: 2
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: Southwest University
– sequence: 3
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: National University of Singapore
– sequence: 4
  givenname: Dangyuan
  surname: Lei
  fullname: Lei, Dangyuan
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Baowen
  surname: Li
  fullname: Li, Baowen
  organization: University of Colorado
– sequence: 6
  givenname: Kedar
  surname: Hippalgaonkar
  fullname: Hippalgaonkar, Kedar
  organization: Institute of Materials Research and Engineering
– sequence: 7
  givenname: Cheng‐Wei
  orcidid: 0000-0003-0274-9982
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: chengwei.qiu@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30311275$$D View this record in MEDLINE/PubMed
BookMark eNqFkL1OwzAUhS0EghZYGVEkFpYUX8dO47ECWpBawQBz5Dg3wlUSFzsBdeMReEaeBFflR2JhOsP9zpHuNyS7rW2RkBOgI6CUXaiyUSNGIaOcgtwhAxAMYk6l2CUDKhMRy5RnB2To_ZJSKlOa7pODhCYAbCwGZD7t6_rj7f1eOdVghy66a1pTGoe6M7ZVdfTwhK4JucBOlfhiNPrIVtGkNd52zq6MjmZoQ9etj8hepWqPx195SB6n1w-XN_H8bnZ7OZnHmidSxgiyUknFSloCT1NQgDzTqpC6ECItlECALNOcS5UIOa7CnZYFE1yypCjFODkk59vdlbPPPfoub4zXWNeqRdv7nAFICWOeZQE9-4Mube_CXxsqaOIsmAjUaEtpZ713WOUrZxrl1jnQfOM533jOfzyHwunXbF80WP7g32IDILfAq6lx_c9cPrlaTH7HPwFseout
CitedBy_id crossref_primary_10_1016_j_cja_2022_08_004
crossref_primary_10_1016_j_xcrp_2023_101540
crossref_primary_10_1209_0295_5075_131_24002
crossref_primary_10_1016_j_mtphys_2022_100880
crossref_primary_10_1021_acs_chemrev_3c00708
crossref_primary_10_1039_D0TC04999A
crossref_primary_10_1115_1_4047414
crossref_primary_10_1016_j_ijthermalsci_2022_107506
crossref_primary_10_1063_5_0100916
crossref_primary_10_3390_ma16103657
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120659
crossref_primary_10_1103_PhysRevApplied_13_024063
crossref_primary_10_1209_0295_5075_128_34002
crossref_primary_10_1002_admt_201900296
crossref_primary_10_1073_pnas_2217068120
crossref_primary_10_1209_0295_5075_130_34001
crossref_primary_10_1016_j_physleta_2021_127459
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121177
crossref_primary_10_1063_5_0195578
crossref_primary_10_1103_PhysRevApplied_17_044006
crossref_primary_10_1088_1361_6463_ac31f5
crossref_primary_10_1016_j_compstruct_2019_111717
crossref_primary_10_1364_AO_386811
crossref_primary_10_1103_PhysRevApplied_15_024010
crossref_primary_10_1002_adma_202201093
crossref_primary_10_1002_adma_202003084
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122568
crossref_primary_10_1016_j_isci_2022_105461
crossref_primary_10_1103_PhysRevE_100_062108
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121417
crossref_primary_10_1063_5_0079933
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124437
crossref_primary_10_1016_j_tsep_2021_100926
crossref_primary_10_1016_j_apm_2022_01_026
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125205
crossref_primary_10_1016_j_icheatmasstransfer_2024_107326
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125088
crossref_primary_10_1007_s11433_019_1430_x
crossref_primary_10_1038_s41598_022_06719_1
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124033
crossref_primary_10_1002_adfm_202003270
crossref_primary_10_1016_j_physrep_2024_05_004
crossref_primary_10_1002_adfm_202002061
crossref_primary_10_3390_ma14247835
crossref_primary_10_1038_s41578_021_00283_2
crossref_primary_10_1103_PhysRevApplied_11_034056
crossref_primary_10_1103_PhysRevApplied_14_054024
crossref_primary_10_1103_PhysRevE_106_044203
crossref_primary_10_1038_s41467_021_27543_7
crossref_primary_10_1063_5_0108743
crossref_primary_10_1016_j_mtphys_2022_100819
crossref_primary_10_1016_j_isci_2022_104183
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120437
crossref_primary_10_1063_1_5123908
crossref_primary_10_1007_s11467_021_1048_y
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120082
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124744
crossref_primary_10_1103_PhysRevE_102_032140
crossref_primary_10_1016_j_isci_2023_107398
crossref_primary_10_1103_PhysRevApplied_12_044048
crossref_primary_10_1088_0256_307X_37_8_080502
crossref_primary_10_1103_PhysRevE_103_032128
crossref_primary_10_1007_s10338_023_00426_8
crossref_primary_10_1038_s43588_024_00660_1
crossref_primary_10_1038_s41467_024_46247_2
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120948
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_092
crossref_primary_10_1140_epjb_e2019_100377_5
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121312
crossref_primary_10_3389_fphy_2022_924890
crossref_primary_10_1088_0256_307X_38_2_020501
crossref_primary_10_1140_epjb_e2020_10122_6
Cites_doi 10.1088/0953-8984/19/7/076208
10.1038/nmat2126
10.1002/adma.201707237
10.1088/0022-3727/41/8/085504
10.1063/1.4774301
10.1063/1.5000090
10.1002/adma.201304448
10.1126/science.aac9411
10.1103/PhysRevLett.112.054301
10.1103/PhysRevLett.109.053902
10.1103/PhysRevLett.102.233901
10.1126/science.1218316
10.1038/nmat3476
10.1126/science.1126493
10.1063/1.3026532
10.1103/PhysRevLett.108.214303
10.1103/PhysRevA.77.013825
10.1038/ncomms9931
10.1038/lsa.2016.177
10.1002/adma.201104012
10.1063/1.2951600
10.1142/S0217979216502441
10.1002/adma.201305586
10.1038/am.2016.197
10.1103/PhysRevE.72.016623
10.1126/science.1125907
10.1103/PhysRevLett.110.195901
10.1103/PhysRevLett.112.054302
10.1103/PhysRevLett.109.223903
10.1103/PhysRevLett.106.024301
10.1364/OE.20.008207
10.1103/PhysRevLett.115.195503
10.1126/science.1133628
10.1038/srep01593
10.1111/appy.12074
10.1038/srep20219
10.1002/adma.201600625
10.1103/PhysRevLett.100.113901
10.1103/PhysRevLett.113.205501
10.1103/PhysRevLett.103.024301
10.1002/adma.201502513
10.1103/PhysRevLett.108.014301
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201804019
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201804019
30311275
ADMA201804019
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation, Prime Minister's Office, Singapore
  funderid: NRFCRP15‐2015‐03
– fundername: Fundamental Research Funds for the Central Universities
  funderid: XDJK2016A019
– fundername: Ministry of Education, Singapore
  funderid: R‐263‐000‐C05‐112
– fundername: National Natural Science Foundation of China
  funderid: 11304253; 11474240
– fundername: Ministry of Education, Singapore
  grantid: R-263-000-C05-112
– fundername: National Natural Science Foundation of China
  grantid: 11304253
– fundername: National Research Foundation, Prime Minister's Office, Singapore
  grantid: NRFCRP15-2015-03
– fundername: National Natural Science Foundation of China
  grantid: 11474240
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XDJK2016A019
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4399-e19fa3f2d0d14661a1e48cab9cb556ba5e1188c449a3597fa1e0db254923bd573
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 11:24:43 EDT 2024
Thu Oct 10 15:39:25 EDT 2024
Thu Sep 26 15:57:06 EDT 2024
Sat Sep 28 08:40:19 EDT 2024
Sat Aug 24 01:12:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords super expanders
invisibility cloaks
thermal metadevices of anisotropic geometry
cloaked sensors
full-parameter and omni-directionality
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-e19fa3f2d0d14661a1e48cab9cb556ba5e1188c449a3597fa1e0db254923bd573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0274-9982
PMID 30311275
PQID 2140942311
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2119917488
proquest_journals_2140942311
crossref_primary_10_1002_adma_201804019
pubmed_primary_30311275
wiley_primary_10_1002_adma_201804019_ADMA201804019
PublicationCentury 2000
PublicationDate 2018-Dec
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2007; 19
2013; 3
2015; 6
2013; 4
2014; 26
2008; 7
2013; 102
2008; 77
2015; 349
2006; 314
2008; 100
2008; 92
2013; 5
2008; 93
2017; 9
2012; 108
2014; 22
2006; 312
2012; 109
2014; 112
2014; 113
2016; 5
2017; 31
2016; 6
2015; 27
2011; 106
2015; 115
2013; 12
2015; 112
2009; 102
2018; 30
2013; 110
2008; 41
2005; 72
2017; 122
2016; 28
2012; 24
2012; 335
2009; 103
2012; 20
Chen H. (e_1_2_4_12_1) 2013; 4
Peng R. (e_1_2_4_5_1) 2017; 7
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
Shen L. (e_1_2_4_13_1) 2015; 112
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_33_1
Liu Y. (e_1_2_4_39_1) 2014; 22
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 93
  start-page: 194102
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 251907
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 076208
  year: 2007
  publication-title: J. Phys.: Condens. Matter
– volume: 20
  start-page: 8207
  year: 2012
  publication-title: Opt. Express
– volume: 27
  start-page: 7752
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3478
  year: 2014
  publication-title: Adv. Mater.
– volume: 314
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 4
  start-page: 3652
  year: 2013
  publication-title: Nat. Commun.
– volume: 109
  start-page: 053902
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 233901
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 223903
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 312
  start-page: 1777
  year: 2006
  publication-title: Science
– volume: 7
  start-page: 011033
  year: 2017
  publication-title: Phys. Rev. X
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 100
  start-page: 113901
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: e73
  year: 2013
  publication-title: NPG Asia Mater.
– volume: 6
  start-page: 8931
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: e341
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 122
  start-page: 215107
  year: 2017
  publication-title: J. Appl. Phys.
– volume: 112
  start-page: 054302
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 71
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1731
  year: 2014
  publication-title: Adv. Mater.
– volume: 349
  start-page: 1310
  year: 2015
  publication-title: Science
– volume: 72
  start-page: 016623
  year: 2005
  publication-title: Phys. Rev. E
– volume: 110
  start-page: 195901
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 1593
  year: 2013
  publication-title: Sci. Rep.
– volume: 103
  start-page: 024301
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 085504
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 335
  start-page: 1466
  year: 2012
  publication-title: Science
– volume: 112
  start-page: 7635
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 77
  start-page: 013825
  year: 2008
  publication-title: Phys. Rev. A
– volume: 106
  start-page: 024301
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 214303
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 205501
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 25
  year: 2013
  publication-title: Nat. Mater.
– volume: 102
  start-page: 014102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 31
  start-page: 1650244
  year: 2017
  publication-title: Int. J. Mod. Phys. B
– volume: 22
  start-page: 170006
  year: 2014
  publication-title: Opt. Express
– volume: 6
  start-page: 20219
  year: 2016
  publication-title: Sci. Rep.
– volume: 30
  start-page: 1707237
  year: 2018
  publication-title: Adv. Mater.
– volume: 108
  start-page: 014301
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 195503
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 6866
  year: 2016
  publication-title: Adv. Mater.
– volume: 112
  start-page: 054301
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: e16177
  year: 2016
  publication-title: Light: Sci. Appl.
– volume: 7
  start-page: 295
  year: 2008
  publication-title: Nat. Mater.
– ident: e_1_2_4_19_1
  doi: 10.1088/0953-8984/19/7/076208
– ident: e_1_2_4_20_1
  doi: 10.1038/nmat2126
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201707237
– ident: e_1_2_4_26_1
  doi: 10.1088/0022-3727/41/8/085504
– ident: e_1_2_4_18_1
  doi: 10.1063/1.4774301
– ident: e_1_2_4_40_1
  doi: 10.1063/1.5000090
– ident: e_1_2_4_41_1
  doi: 10.1002/adma.201304448
– ident: e_1_2_4_8_1
  doi: 10.1126/science.aac9411
– ident: e_1_2_4_31_1
  doi: 10.1103/PhysRevLett.112.054301
– ident: e_1_2_4_17_1
  doi: 10.1103/PhysRevLett.109.053902
– ident: e_1_2_4_38_1
  doi: 10.1103/PhysRevLett.102.233901
– ident: e_1_2_4_34_1
  doi: 10.1126/science.1218316
– ident: e_1_2_4_7_1
  doi: 10.1038/nmat3476
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1126493
– volume: 4
  start-page: 3652
  year: 2013
  ident: e_1_2_4_12_1
  publication-title: Nat. Commun.
  contributor:
    fullname: Chen H.
– ident: e_1_2_4_28_1
  doi: 10.1063/1.3026532
– ident: e_1_2_4_29_1
  doi: 10.1103/PhysRevLett.108.214303
– ident: e_1_2_4_27_1
  doi: 10.1103/PhysRevA.77.013825
– ident: e_1_2_4_35_1
  doi: 10.1038/ncomms9931
– ident: e_1_2_4_6_1
  doi: 10.1038/lsa.2016.177
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201104012
– ident: e_1_2_4_21_1
  doi: 10.1063/1.2951600
– ident: e_1_2_4_25_1
  doi: 10.1142/S0217979216502441
– ident: e_1_2_4_37_1
  doi: 10.1002/adma.201305586
– ident: e_1_2_4_36_1
  doi: 10.1038/am.2016.197
– ident: e_1_2_4_3_1
  doi: 10.1103/PhysRevE.72.016623
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1125907
– ident: e_1_2_4_23_1
  doi: 10.1103/PhysRevLett.110.195901
– ident: e_1_2_4_32_1
  doi: 10.1103/PhysRevLett.112.054302
– ident: e_1_2_4_10_1
  doi: 10.1103/PhysRevLett.109.223903
– ident: e_1_2_4_14_1
  doi: 10.1103/PhysRevLett.106.024301
– ident: e_1_2_4_22_1
  doi: 10.1364/OE.20.008207
– ident: e_1_2_4_46_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_4_11_1
  doi: 10.1126/science.1133628
– ident: e_1_2_4_30_1
  doi: 10.1038/srep01593
– ident: e_1_2_4_24_1
  doi: 10.1111/appy.12074
– ident: e_1_2_4_44_1
  doi: 10.1038/srep20219
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201600625
– ident: e_1_2_4_4_1
  doi: 10.1103/PhysRevLett.100.113901
– volume: 112
  start-page: 7635
  year: 2015
  ident: e_1_2_4_13_1
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Shen L.
– ident: e_1_2_4_43_1
  doi: 10.1103/PhysRevLett.113.205501
– ident: e_1_2_4_15_1
  doi: 10.1103/PhysRevLett.103.024301
– volume: 22
  start-page: 170006
  year: 2014
  ident: e_1_2_4_39_1
  publication-title: Opt. Express
  contributor:
    fullname: Liu Y.
– ident: e_1_2_4_45_1
  doi: 10.1002/adma.201502513
– ident: e_1_2_4_16_1
  doi: 10.1103/PhysRevLett.108.014301
– volume: 7
  start-page: 011033
  year: 2017
  ident: e_1_2_4_5_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Peng R.
SSID ssj0009606
Score 2.605889
Snippet Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have...
Abstract Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1804019
SubjectTerms Acoustics
Anisotropy
cloaked sensors
Electric fields
Ellipsoids
full‐parameter and omni‐directionality
Heat transmission
invisibility cloaks
Materials science
Metamaterials
Optics
Parameters
Stealth technology
super expanders
thermal metadevices of anisotropic geometry
Transformations
Visibility
Title Full‐Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804019
https://www.ncbi.nlm.nih.gov/pubmed/30311275
https://www.proquest.com/docview/2140942311
https://search.proquest.com/docview/2119917488
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT4MwFMBfzE568PsDv4KJiScmpZTBcXFOY5wa45LdSFtKsqhgNnbQk3-Cf6N_iX1lY5seTPQGKQ3Q1_dVHr8CHCtkZKECKoZQ7SASjtBG0aGC-WlIQ1cakHbnJrjs-lc91pv5i7_kQ1QLbqgZxl6jgnMxPJ1CQ3liuEEk1NPQcD8JbWBNV-t-yo_C8NzA9ihzosAPJ9RG1zud7z7vlX6EmvORq3E97RXgk4cuK04e66NC1OXbN57jf95qFZbHcandLCfSGiyobB2WZmiFG3CN6ern-8cdx4IuLQ_79jnrlz7RLCjaes5pO_9kd1TBE2VskJ2ndjPrD_NikL_0pX2hct138LoJ3fb5w9mlM96MwZGYsjiKRCmnqZe4iTauAeFE-aHkIpKCsUBwpnSqEkrfjzjVSUqq291EeAYAJxLWoFtQy_JM7YDt6yCDSslC11O-xP3EcZdQVyiqSOql3IKTiTDil5K5EZd0ZS_G8Ymr8bFgfyKreKx7w9hDhpeOEgmx4Khq1lqDn0J4pvIRXoMlXw1tvSzYLmVc3Uo7dYLYews8I6lfniFutjrN6mz3L532YBGPyyqZfagVg5E60LFOIQ7NfP4CPqv0cQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEIBHCA7AgcfyCq_NSkicAkkch-RY8Sq7LYtWIHGLbMeRKiCpSnqAEz-B38gvYcZpAl0OSHBMHMuOxzOecSafAXY0MbJIATUnqHYYS0eiUXSY5EEWschVBqTdPQ_bV8Hva15nE9K_MBUfotlwI80w9poUnDak99-ooSI14CAvwnlI4M8pbJLR6Q1H_94IUuSgG9we404cBlHNbXT9_fH64-vSB2dz3Hc1i8_JPMi621XOyc3esJR76vE_ouO33msB5kauqd2q5tIiTOj8B8y-AxYuQYci1pen5wtBOV0oEvvvXd6rlkWzp2jjtENTf2t3dSlSbcyQXWR2K-_dF-Wg6PeUfaoLrDt4WIark-PLw7YzOo_BURS1ONqLM8EyP3VTtK-hJzwdRErIWEnOQym4xmglUkEQC4ZxSoblbip9w4CTKT9gKzCZF7leAztAP4MpxSPX14GiI8XpoFBXaqa9zM-EBbu1NJJ-hd1IKsCyn9D4JM34WLBZCysZqd994hPGCx1Fz7PgV1OMikNfQ0SuiyE9Q1lfB2jALFithNw0heu6R-R7C3wjqk_6kLSOuq3mav0rlX7CdPuy20k6Z-d_NmCG7ldJM5swWQ6Gegtdn1Jum8n9Coa2-Ik
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefpiJNcICNHyNQtiAhcUqbH3aaHKuVroO2VIhKvUW240jVtqTq0gOc-BP2N-4v4T2nTVs4TIJj4lhJ_Pyev89xPgb4oImRRQ6oOUG1w1g6EoOiE0jOsiiIXGVA2qNxOJiyzzM-2_mLv-JD1BNu5BkmXpODL9KsvYWGitRwg7wIuyFxPx-xEOUvyaJvW4AU6XND2wu4E4cs2mAbXb-9X39_WPpLa-5LVzP29J-B2Dx1teTkqrUqZUv9_APo-D-vdQRP18LU7lY96RgOdP4cnuzgCl_AkPLV-193E0ErutAg9tebfF4NimZG0cZOh4H-2h7pUqTaBCG7yOxuPr8tymWxmCv7QhdYd_njJUz7n76fD5z1bgyOopzF0V6ciSDzUzfF6Bp6wtMsUkLGSnIeSsE15iqRYiwWAWYpGZa7qfQNAU6mvBO8gkZe5Po12AxVRqAUj1xfM0UbitM2oa7UgfYyPxMWfNwYI1lU0I2kwiv7CbVPUrePBc2NrZK1890mPkG8UCZ6ngXv62J0G_oWInJdrOgaWvPVwfBlwUll4_pWOKp7xL23wDeWeuAZkm5v1K2P3vxLpTM4nPT6yfBy_OUtPKbT1YqZJjTK5Uq_Q91TylPTtX8DnQL3OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-Parameter+Omnidirectional+Thermal+Metadevices+of+Anisotropic+Geometry&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Tiancheng&rft.au=Yang%2C+Peng&rft.au=Li%2C+Ying&rft.au=Lei%2C+Dangyuan&rft.date=2018-12-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=49&rft.spage=e1804019&rft_id=info:doi/10.1002%2Fadma.201804019&rft_id=info%3Apmid%2F30311275&rft.externalDocID=30311275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon