A Janus Nickel Cobalt Phosphide Catalyst for High‐Efficiency Neutral‐pH Water Splitting

Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 47; pp. 15445 - 15449
Main Authors Wu, Rui, Xiao, Bing, Gao, Qiang, Zheng, Ya‐Rong, Zheng, Xu‐Sheng, Zhu, Jun‐Fa, Gao, Min‐Rui, Yu, Shu‐Hong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.11.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices. Sheets and paper: Ternary Ni0.1Co0.9P porous nanosheets anchored onto conductive carbon fiber paper, can be used as a bifunctional catalytic material for driving both water reduction and oxidation reactions efficiently in neutral‐pH electrolyte under ambient conditions.
AbstractList Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices.
Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni 0.1 Co 0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1  m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni 0.1 Co 0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni 0.1 Co 0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices.
Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni Co P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni Co P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni Co P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices.
Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1 Co0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1 Co0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni0.1 Co0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices.Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1 Co0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1 Co0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni0.1 Co0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices.
Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices. Sheets and paper: Ternary Ni0.1Co0.9P porous nanosheets anchored onto conductive carbon fiber paper, can be used as a bifunctional catalytic material for driving both water reduction and oxidation reactions efficiently in neutral‐pH electrolyte under ambient conditions.
Author Zheng, Xu‐Sheng
Zhu, Jun‐Fa
Gao, Min‐Rui
Wu, Rui
Zheng, Ya‐Rong
Yu, Shu‐Hong
Gao, Qiang
Xiao, Bing
Author_xml – sequence: 1
  givenname: Rui
  surname: Wu
  fullname: Wu, Rui
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Bing
  surname: Xiao
  fullname: Xiao, Bing
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Ya‐Rong
  surname: Zheng
  fullname: Zheng, Ya‐Rong
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Xu‐Sheng
  surname: Zheng
  fullname: Zheng, Xu‐Sheng
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Jun‐Fa
  surname: Zhu
  fullname: Zhu, Jun‐Fa
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Min‐Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min‐Rui
  email: mgao@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Shu‐Hong
  orcidid: 0000-0003-3732-1011
  surname: Yu
  fullname: Yu, Shu‐Hong
  email: shyu@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30281194$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4NU7JtXjxLw4mW2eZuXHJdldVvKKmjx4CE8k0m6qdmZaZJB9taP0M_oJzFlW4WCCIH8Cb_fQ3j-x-igH3qD0BtKZpQQdga9MzNGaEMayeQLdERLRgte1_wgZ8F5UTclPUTHMd5kvmlI9Qod8pwoleIIfZ_jC-iniNdO_zAeL4YWfMKfN0McN64zeAEJ_C4mbIeAV-568-vufmmt0870eofXZkoBfH4cV_gbJBPwl9G7lFx_fYpeWvDRvH68T9DVh-XXxaq4_PTxfDG_LLTgUhaG1GBtyVpiq9ZwC1UnKwBKyo6KlnQSWsuZbXVOvOukLUUFrCJAoGlAaH6C3u_njmG4nUxMauuiNt5Db4YpKkZplY-sWEbfPUNvhin0-XeZ4pQJQWSdqbeP1NRuTafG4LYQduppbRkQe0CHIcZgrNIuQXJDn5fhvKJEPbSjHtpRf9rJ2uyZ9jT5n4LcCz-dN7v_0Gq-Pl_-dX8DyyKj0Q
CitedBy_id crossref_primary_10_1039_D0QI00908C
crossref_primary_10_3389_fchem_2021_700020
crossref_primary_10_1016_j_jcis_2021_06_009
crossref_primary_10_1002_cssc_202000173
crossref_primary_10_1016_j_apcatb_2020_119367
crossref_primary_10_1016_j_apcatb_2019_118268
crossref_primary_10_1021_acsami_9b01235
crossref_primary_10_1016_j_jallcom_2022_167670
crossref_primary_10_1002_anie_202206403
crossref_primary_10_1021_acs_nanolett_1c00179
crossref_primary_10_1016_j_cej_2021_132877
crossref_primary_10_1007_s12274_022_5329_8
crossref_primary_10_1016_j_ijhydene_2022_10_065
crossref_primary_10_1039_C9SE00905A
crossref_primary_10_1016_j_cej_2021_131309
crossref_primary_10_1002_adma_202000455
crossref_primary_10_1016_j_apcatb_2019_118393
crossref_primary_10_1021_acs_chemmater_4c02773
crossref_primary_10_1016_j_apsusc_2023_157770
crossref_primary_10_1002_smll_202201896
crossref_primary_10_1016_j_enchem_2022_100072
crossref_primary_10_1016_j_ijhydene_2023_11_017
crossref_primary_10_1016_j_mtphys_2020_100314
crossref_primary_10_1016_j_jallcom_2022_166472
crossref_primary_10_1002_smll_201900550
crossref_primary_10_1002_ejic_202200111
crossref_primary_10_1039_D3MH00366C
crossref_primary_10_1021_acsaem_1c02543
crossref_primary_10_1039_C9TA08812A
crossref_primary_10_1016_j_jelechem_2024_118514
crossref_primary_10_1021_acsnanoscienceau_2c00025
crossref_primary_10_1016_j_ijhydene_2022_02_083
crossref_primary_10_1002_advs_202402889
crossref_primary_10_1039_D0EE01856B
crossref_primary_10_1002_celc_202000919
crossref_primary_10_1002_smll_202310642
crossref_primary_10_1039_D0TA05797E
crossref_primary_10_1016_j_apsusc_2024_160081
crossref_primary_10_1007_s44405_025_00001_4
crossref_primary_10_1016_S1872_2067_24_60086_0
crossref_primary_10_1016_j_electacta_2019_135534
crossref_primary_10_1021_acsnano_2c05986
crossref_primary_10_1016_j_apcatb_2022_121678
crossref_primary_10_1016_j_electacta_2022_141807
crossref_primary_10_1016_j_cej_2021_129232
crossref_primary_10_1002_adma_201902069
crossref_primary_10_1016_j_mseb_2024_117934
crossref_primary_10_1039_D1TA01625C
crossref_primary_10_1007_s40820_020_00476_4
crossref_primary_10_1016_j_ijhydene_2023_03_296
crossref_primary_10_1016_j_jiec_2024_05_050
crossref_primary_10_1039_D2TA02493D
crossref_primary_10_1016_j_electacta_2022_141595
crossref_primary_10_1039_D2NJ00512C
crossref_primary_10_3390_molecules26216326
crossref_primary_10_1016_j_apcata_2022_118941
crossref_primary_10_1039_C9NR07159H
crossref_primary_10_1016_j_ijhydene_2024_09_042
crossref_primary_10_1115_1_4052533
crossref_primary_10_1016_j_ijhydene_2022_06_298
crossref_primary_10_1016_j_mtnano_2022_100296
crossref_primary_10_1016_j_apcatb_2020_119394
crossref_primary_10_1021_acsami_9b09312
crossref_primary_10_1039_D2QM00893A
crossref_primary_10_1007_s40843_023_2762_9
crossref_primary_10_1002_ange_202009854
crossref_primary_10_1016_j_jcis_2021_11_022
crossref_primary_10_1021_acsaem_9b00599
crossref_primary_10_1021_acsami_9b14350
crossref_primary_10_1016_j_cej_2020_128325
crossref_primary_10_1016_j_cclet_2021_01_047
crossref_primary_10_1002_smll_202100129
crossref_primary_10_1016_j_apcatb_2020_119609
crossref_primary_10_1016_j_apcatb_2021_120559
crossref_primary_10_1039_C9TA08030A
crossref_primary_10_1149_1945_7111_abb3da
crossref_primary_10_1016_j_jcis_2021_06_166
crossref_primary_10_1021_acsanm_2c02988
crossref_primary_10_1016_j_apmt_2023_101912
crossref_primary_10_1016_j_ijhydene_2024_03_192
crossref_primary_10_1016_j_cej_2022_137049
crossref_primary_10_1039_D4TA06958G
crossref_primary_10_1002_chem_201903508
crossref_primary_10_1002_inf2_12251
crossref_primary_10_1016_j_jelechem_2023_117478
crossref_primary_10_1002_cctc_202000952
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_1002_ange_201908760
crossref_primary_10_1039_D0RA10792A
crossref_primary_10_1002_chem_201905265
crossref_primary_10_1039_D3NJ01275A
crossref_primary_10_1016_j_ijhydene_2025_02_396
crossref_primary_10_1039_D3TA06794G
crossref_primary_10_1016_j_electacta_2020_136519
crossref_primary_10_1039_D0NR08237F
crossref_primary_10_1021_acsenergylett_0c00116
crossref_primary_10_1016_j_jcis_2022_10_031
crossref_primary_10_1088_1361_6528_ac5ca3
crossref_primary_10_1002_cssc_202000416
crossref_primary_10_1002_ange_202113664
crossref_primary_10_1021_jacs_4c16596
crossref_primary_10_1016_j_apcatb_2021_120335
crossref_primary_10_1115_1_4055462
crossref_primary_10_1002_ange_202010613
crossref_primary_10_1016_j_nanoms_2022_01_003
crossref_primary_10_1016_j_cej_2021_130946
crossref_primary_10_1016_j_mtphys_2021_100589
crossref_primary_10_1007_s40843_021_1947_8
crossref_primary_10_1016_j_ijhydene_2021_08_106
crossref_primary_10_1016_j_apcatb_2023_122444
crossref_primary_10_1016_j_electacta_2022_141448
crossref_primary_10_1016_j_jallcom_2022_167570
crossref_primary_10_1016_j_jpowsour_2020_229091
crossref_primary_10_1039_D0TA07616C
crossref_primary_10_1021_acsami_1c00484
crossref_primary_10_1002_ange_201915254
crossref_primary_10_1002_aenm_202302532
crossref_primary_10_1039_D3TA05646E
crossref_primary_10_1016_j_jallcom_2020_158391
crossref_primary_10_1039_C9TA03201K
crossref_primary_10_15541_jim20240074
crossref_primary_10_1002_anie_202113664
crossref_primary_10_1002_eem2_12398
crossref_primary_10_1021_acssuschemeng_1c04472
crossref_primary_10_1039_D0SE00899K
crossref_primary_10_1016_j_molstruc_2025_142055
crossref_primary_10_1007_s12274_020_2816_7
crossref_primary_10_1016_j_cclet_2020_03_046
crossref_primary_10_1002_cphc_202400956
crossref_primary_10_1002_smll_201906629
crossref_primary_10_1016_j_mtener_2024_101772
crossref_primary_10_1002_celc_202000734
crossref_primary_10_1039_C9TA03686E
crossref_primary_10_1016_j_chempr_2019_04_024
crossref_primary_10_1002_anie_201915254
crossref_primary_10_1016_j_nanoen_2019_103995
crossref_primary_10_1021_acsmaterialslett_4c00409
crossref_primary_10_1002_anie_202010613
crossref_primary_10_1021_acsami_9b23426
crossref_primary_10_1002_cctc_202101280
crossref_primary_10_1039_D1TA04518K
crossref_primary_10_1002_advs_201903777
crossref_primary_10_1021_acs_inorgchem_2c01436
crossref_primary_10_3390_nano9101436
crossref_primary_10_1002_cssc_202001413
crossref_primary_10_1016_j_nanoen_2019_103928
crossref_primary_10_1021_acsaem_3c00139
crossref_primary_10_1080_02670836_2022_2062644
crossref_primary_10_1016_j_catcom_2023_106607
crossref_primary_10_1016_j_ijhydene_2021_08_132
crossref_primary_10_1016_j_inoche_2019_107595
crossref_primary_10_1002_smll_201805103
crossref_primary_10_1002_anie_202009854
crossref_primary_10_1016_j_cej_2022_140380
crossref_primary_10_1016_j_ijhydene_2020_11_030
crossref_primary_10_1002_adma_201904548
crossref_primary_10_1016_j_cej_2021_131029
crossref_primary_10_1002_advs_202201594
crossref_primary_10_1021_acsami_1c15245
crossref_primary_10_1016_j_apcatb_2019_118555
crossref_primary_10_1021_acsami_3c07000
crossref_primary_10_1039_D0CP02741C
crossref_primary_10_1002_cssc_202000213
crossref_primary_10_1021_acscatal_0c01733
crossref_primary_10_1016_j_jcis_2021_04_013
crossref_primary_10_1021_acs_inorgchem_0c00959
crossref_primary_10_1039_D1TA03593B
crossref_primary_10_1016_j_apsusc_2019_145096
crossref_primary_10_3390_ma17102195
crossref_primary_10_1016_j_cej_2023_143462
crossref_primary_10_1002_anie_201908760
crossref_primary_10_1021_acs_chemrev_0c00094
crossref_primary_10_1038_s41467_023_39681_1
crossref_primary_10_1039_C9TA05625D
crossref_primary_10_1016_j_matchemphys_2021_124746
crossref_primary_10_1002_celc_201901623
crossref_primary_10_1021_acsomega_1c01650
crossref_primary_10_1088_1361_6463_ac8b1a
crossref_primary_10_1016_j_cej_2024_152226
crossref_primary_10_1039_D4TA02271H
crossref_primary_10_1016_j_jcis_2022_07_150
crossref_primary_10_1016_j_jcis_2019_11_039
crossref_primary_10_1002_ange_202206403
crossref_primary_10_1016_j_apsusc_2020_148818
crossref_primary_10_1002_eem2_12594
crossref_primary_10_1016_j_apsusc_2021_152021
crossref_primary_10_1016_j_ensm_2022_03_007
crossref_primary_10_1039_D1TA02621F
crossref_primary_10_1002_advs_202203678
crossref_primary_10_1016_j_cej_2021_130196
crossref_primary_10_1016_j_est_2024_110440
crossref_primary_10_1016_j_colsurfa_2024_134176
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1016_j_ijhydene_2023_12_107
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1002_adma_202007100
crossref_primary_10_1002_smll_202302056
crossref_primary_10_1039_D1TA04713B
crossref_primary_10_1016_j_jcis_2023_01_108
crossref_primary_10_1016_j_mtphys_2021_100401
crossref_primary_10_1016_j_xcrp_2021_100331
crossref_primary_10_1016_j_ijhydene_2021_08_046
crossref_primary_10_1021_acssuschemeng_9b07284
crossref_primary_10_1039_C9TA02997D
crossref_primary_10_1016_j_jpowsour_2020_229269
crossref_primary_10_1016_j_jechem_2023_04_049
crossref_primary_10_1063_5_0176450
crossref_primary_10_1039_D0TA04172F
crossref_primary_10_1021_acsami_1c14588
crossref_primary_10_1016_j_ijhydene_2023_09_133
crossref_primary_10_1016_j_checat_2023_100643
crossref_primary_10_1002_aenm_202101758
crossref_primary_10_1007_s40843_022_2061_x
crossref_primary_10_1021_acs_jpclett_9b01892
crossref_primary_10_1021_acssuschemeng_9b06514
crossref_primary_10_1016_j_jcis_2022_01_186
crossref_primary_10_1016_j_ijhydene_2021_08_171
crossref_primary_10_1016_j_mtadv_2020_100081
crossref_primary_10_1016_j_jcis_2022_05_120
crossref_primary_10_1002_smll_202006860
crossref_primary_10_1016_j_jallcom_2020_158094
crossref_primary_10_1016_j_apcatb_2020_119339
crossref_primary_10_1016_j_jelechem_2022_116805
crossref_primary_10_1007_s40843_019_1171_3
crossref_primary_10_1039_D2NR07019G
crossref_primary_10_1021_jacs_2c02989
crossref_primary_10_1039_D2TA04951A
crossref_primary_10_1021_acsaem_2c02812
crossref_primary_10_1016_j_ijhydene_2019_11_154
crossref_primary_10_1002_smll_202105830
crossref_primary_10_1039_D4MA00114A
crossref_primary_10_1002_admi_201901302
crossref_primary_10_3390_catal10040464
crossref_primary_10_1016_j_jelechem_2023_117888
crossref_primary_10_1016_j_nanoen_2023_108884
crossref_primary_10_1016_j_cej_2022_140071
crossref_primary_10_1039_C9TA00833K
crossref_primary_10_1016_j_jcis_2020_12_011
crossref_primary_10_1039_C9TA05334D
crossref_primary_10_1016_j_nanoen_2020_104529
crossref_primary_10_1016_j_jechem_2020_08_040
crossref_primary_10_1021_acsami_1c16546
crossref_primary_10_1039_D0TA10379A
crossref_primary_10_1007_s12274_021_3580_z
crossref_primary_10_1016_j_electacta_2022_140877
crossref_primary_10_1016_j_apcata_2021_118293
crossref_primary_10_1016_j_jcis_2024_04_027
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1039_D1GC03768D
crossref_primary_10_1039_D1TA04839B
crossref_primary_10_1016_j_cej_2020_128067
crossref_primary_10_1016_j_cej_2023_148304
crossref_primary_10_1016_j_jssc_2020_121182
crossref_primary_10_1002_eem2_12310
crossref_primary_10_1039_D0NR07897B
crossref_primary_10_1039_D1TA09371A
crossref_primary_10_1039_D0TA09749G
crossref_primary_10_1021_acsami_9b15194
crossref_primary_10_1002_smll_202103561
crossref_primary_10_1039_D3CP01011B
crossref_primary_10_1016_j_chemosphere_2021_131905
crossref_primary_10_1016_j_jallcom_2024_174748
crossref_primary_10_1016_j_electacta_2024_144906
crossref_primary_10_1039_D1CC06409F
crossref_primary_10_1016_j_ccr_2021_214318
crossref_primary_10_3390_nano11010202
crossref_primary_10_1021_acscatal_3c01914
crossref_primary_10_1016_j_ijhydene_2021_12_106
crossref_primary_10_1039_D0TA04638H
Cites_doi 10.1002/adma.201605838
10.1021/ja503372r
10.1002/ange.201408222
10.1039/c3cc43107j
10.1002/anie.201504358
10.1021/ja511572q
10.1016/j.nanoen.2017.08.031
10.1021/ja200144w
10.1021/am5069547
10.1002/aenm.201602355
10.1021/ja403440e
10.1038/s41467-018-04746-z
10.1039/c2ee21745g
10.1021/jacs.5b07924
10.1021/ja4081056
10.1126/science.1212858
10.1021/acs.nanolett.6b04732
10.1021/acsnano.6b04252
10.1002/smll.201601131
10.1021/jacs.7b07606
10.1039/C5CS00434A
10.1002/ange.201504358
10.1038/35104599
10.1021/jacs.5b08186
10.1021/acscatal.8b01715
10.1002/anie.201408222
10.1039/C3EE42194E
10.1002/smll.201704073
10.1002/advs.201500426
10.1021/jacs.7b12420
10.1126/science.1103197
10.1007/BF00552850
10.1002/aenm.201602068
10.1002/celc.201700392
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201808929
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15449
ExternalDocumentID 30281194
10_1002_anie_201808929
ANIE201808929
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21521001
– fundername: National Natural Science Foundation of China
  grantid: 21521001
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4399-e07aff52b0f6be3fa6d96aa105d14b0d9abf32fbcd9a3dd9f546a260a0a88a4c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:28:09 EDT 2025
Fri Jul 25 10:39:53 EDT 2025
Mon Jul 21 05:58:16 EDT 2025
Tue Jul 01 02:26:35 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Aug 20 07:27:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords phosphides
overall water splitting
hydrogen and oxygen evolution
transition metals
nanosheets
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-e07aff52b0f6be3fa6d96aa105d14b0d9abf32fbcd9a3dd9f546a260a0a88a4c3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7805-803X
0000-0003-3732-1011
PMID 30281194
PQID 2131244097
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2116116962
proquest_journals_2131244097
pubmed_primary_30281194
crossref_citationtrail_10_1002_anie_201808929
crossref_primary_10_1002_anie_201808929
wiley_primary_10_1002_anie_201808929_ANIE201808929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 19, 2018
PublicationDateYYYYMMDD 2018-11-19
PublicationDate_xml – month: 11
  year: 2018
  text: November 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2014 2014; 53 126
2017; 7
2011; 334
2018; 140
2013; 49
2017; 4
2016; 10
2017; 29
2004; 305
2015; 7
2014; 136
2011; 133
2016; 12
2017; 139
2018; 9
2018; 8
2016; 3
2015; 137
2017; 17
2015 2015; 54 127
2013; 135
1981; 59
2014; 7
2012; 5
2001; 414
2018; 14
2016; 45
e_1_2_2_4_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_8_2
e_1_2_2_29_1
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_38_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_11_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_35_1
e_1_2_2_36_1
References_xml – volume: 137
  start-page: 1587
  year: 2015
  end-page: 1592
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7883
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  publication-title: Science
– volume: 136
  start-page: 7587
  year: 2014
  end-page: 7590
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 578
  year: 2017
  end-page: 583
  publication-title: Nano Lett.
– volume: 8
  start-page: 6707
  year: 2018
  end-page: 6732
  publication-title: ACS Catal.
– volume: 139
  start-page: 12927
  year: 2017
  end-page: 12930
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 569
  year: 1981
  end-page: 583
  publication-title: Theor. Chim. Acta
– volume: 12
  start-page: 3703
  year: 2016
  end-page: 3711
  publication-title: Small
– volume: 137
  start-page: 15753
  year: 2015
  end-page: 15759
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 2610
  year: 2018
  end-page: 2618
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1605838
  year: 2017
  publication-title: Adv. Mater.
– volume: 135
  start-page: 9267
  year: 2013
  end-page: 9270
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 329
  year: 2014
  end-page: 334
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 19186
  year: 2013
  end-page: 19192
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2376
  year: 2015
  end-page: 2384
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 6656
  year: 2013
  end-page: 6658
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 10530 10676
  year: 2015 2015
  end-page: 10534 10680
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1602068
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1500426
  year: 2016
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1840
  year: 2017
  end-page: 1845
  publication-title: ChemElectroChem
– volume: 9
  start-page: 2551
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1704073
  year: 2018
  publication-title: Small
– volume: 53 126
  start-page: 14433 14661
  year: 2014 2014
  end-page: 14437 14665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  publication-title: Nature
– volume: 7
  start-page: 1602355
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 264
  year: 2017
  end-page: 273
  publication-title: Nano Energy
– volume: 305
  start-page: 972
  year: 2004
  end-page: 974
  publication-title: Science
– volume: 133
  start-page: 7264
  year: 2011
  end-page: 7267
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 14023
  year: 2015
  end-page: 14026
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8738
  year: 2016
  end-page: 8745
  publication-title: ACS Nano
– ident: e_1_2_2_20_1
  doi: 10.1002/adma.201605838
– ident: e_1_2_2_7_1
– ident: e_1_2_2_32_1
– ident: e_1_2_2_8_2
  doi: 10.1021/ja503372r
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201408222
– ident: e_1_2_2_10_2
  doi: 10.1039/c3cc43107j
– ident: e_1_2_2_13_1
  doi: 10.1002/anie.201504358
– ident: e_1_2_2_6_2
  doi: 10.1021/ja511572q
– ident: e_1_2_2_33_2
  doi: 10.1016/j.nanoen.2017.08.031
– ident: e_1_2_2_3_1
  doi: 10.1021/ja200144w
– ident: e_1_2_2_25_2
  doi: 10.1021/am5069547
– ident: e_1_2_2_30_2
  doi: 10.1002/aenm.201602355
– ident: e_1_2_2_9_2
  doi: 10.1021/ja403440e
– ident: e_1_2_2_26_2
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_2_35_1
  doi: 10.1039/c2ee21745g
– ident: e_1_2_2_29_1
– ident: e_1_2_2_12_1
  doi: 10.1021/jacs.5b07924
– ident: e_1_2_2_4_1
– ident: e_1_2_2_11_1
  doi: 10.1021/ja4081056
– ident: e_1_2_2_39_1
  doi: 10.1126/science.1212858
– ident: e_1_2_2_28_1
  doi: 10.1021/acs.nanolett.6b04732
– ident: e_1_2_2_16_2
  doi: 10.1021/acsnano.6b04252
– ident: e_1_2_2_18_2
  doi: 10.1002/smll.201601131
– ident: e_1_2_2_38_1
  doi: 10.1021/jacs.7b07606
– ident: e_1_2_2_23_2
  doi: 10.1039/C5CS00434A
– ident: e_1_2_2_13_2
  doi: 10.1002/ange.201504358
– ident: e_1_2_2_1_1
  doi: 10.1038/35104599
– ident: e_1_2_2_5_2
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_2_14_1
– ident: e_1_2_2_15_2
  doi: 10.1021/acscatal.8b01715
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201408222
– ident: e_1_2_2_27_1
  doi: 10.1039/C3EE42194E
– ident: e_1_2_2_19_2
  doi: 10.1002/smll.201704073
– ident: e_1_2_2_34_2
  doi: 10.1002/advs.201500426
– ident: e_1_2_2_22_2
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_2_24_1
– ident: e_1_2_2_2_1
  doi: 10.1126/science.1103197
– ident: e_1_2_2_36_1
  doi: 10.1007/BF00552850
– ident: e_1_2_2_17_2
  doi: 10.1002/aenm.201602068
– ident: e_1_2_2_31_2
  doi: 10.1002/celc.201700392
– ident: e_1_2_2_21_1
SSID ssj0028806
Score 2.665154
Snippet Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic...
Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15445
SubjectTerms Carbon fibers
Catalysis
Catalysts
Cobalt
Electrochemistry
Electrodes
Electrolysis
Electron states
hydrogen and oxygen evolution
Hydrogen evolution reactions
nanosheets
Nickel
overall water splitting
Oxidation
pH effects
Phosphides
Splitting
transition metals
Water splitting
Title A Janus Nickel Cobalt Phosphide Catalyst for High‐Efficiency Neutral‐pH Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201808929
https://www.ncbi.nlm.nih.gov/pubmed/30281194
https://www.proquest.com/docview/2131244097
https://www.proquest.com/docview/2116116962
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXugFKOVnoSBXQuKU1rEdJzmuVlstlbqqChWVOET-VatW2VWTHODEI_QZ-ySdSTaBBSEkenNiW3HsmcxnZ-YbQt4HoUQqnI68tD6SwaeR4VASOpMmWGFZm-vweK5mZ_LoPDn_JYq_44cYDtxQM9rvNSq4NtXBT9JQjMBG16yMZWDi4SOMDluIik4H_igOwtmFFwkRYRb6nrWR8YP17utW6Q-ouY5cW9Nz-IToftCdx8nVflObffv9Nz7Hh7zVU_J4hUvpuBOkbbLhy2fk0aRPB7dDvo7pkS6bioLsXPlrOkEikZqeXCyq5cWl83SCB0HfqpoCDKboPnL343baElRgdCed-wYPVeDmcka_AMK9oZ8AALdu18_J2eH082QWrTIzRBb3L5FnqQ4h4YYFZbwIWrlcaQ1YzcXSMJdrEwQPxkJJOJeHRCoNOyfNdJZpacULslkuSv-KUM-MUWnqXSJTkA6oDVkSrHdgWn0wckSifmUKu6Itx-wZ10VHuMwLnLJimLIR-TC0X3aEHX9tudsvdLFS3KrgsUDEw_J0RPaGaphq_I-iS79osA3A5Fjlio_Iy05AhkcJELo4zmHYvF3mf4yhGM8_Toer1__T6Q3ZwjLGR8b5Ltmsbxr_FoBSbd61ynAPi8INTg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUrr2M7ruFq22pZ2haAVSBwiP1XUKrvqJgc48RP4jfwSZpJN0IIQEtwSPxTHnok_T2a-AXgRZCoz6XTklfWRCj6LjMArqXNlgpWWt7kOj-fp7FQdfkh6b0KKhen4IQaDG2lG-70mBSeD9N5P1lAKwSbfrJznuMdfhWuU1pvo81-9HRikBIpnF2AkZUR56HveRi72Nvtv7ku_gc1N7NpuPvs3wfTD7nxOzneb2uzaL78wOv7Xe92CG2toysadLN2GK766A9uTPiPcXfg4Zoe6alYMxefcX7AJcYnU7M3ZYrU8--Q8m5At6POqZoiEGXmQfP_6bdpyVFCAJ5v7huwqWLicsfcIci_ZO8TAref1PTjdn55MZtE6OUNk6QgTeZ7pEBJheEiNl0Gnrki1RrjmYmW4K7QJUgRj8Uo6V4REpRoPT5rrPNfKyvuwVS0q_xCY58akWeZdojIUEKwNeRKsd7i7-mDUCKJ-aUq7Zi6nBBoXZce5LEqasnKYshG8HNovO86OP7bc6Ve6XOvuqhSxJNDDi2wEz4dqnGr6laIrv2ioDSLlOC1SMYIHnYQMj5IodXFc4LBFu85_GUM5nh9Mh7tH_9LpGWzPTo6PyqOD-evHcJ3KKVwyLnZgq75s_BPETbV52mrGD1acEWo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF8iosbcFISJzSOrbjJMfVdlfbAqsKqKjEIfJTRa2yq25ygBM_gd_IL2Em2YQuCCHBLfFDceyZzGdn5htCXgShRCqcjry0PpLBp5HhcCV0Jk2wwrIm1-GbmZqeyKPT5PRKFH_LD9EfuKFmNN9rVPCFC_s_SUMxAhtdszKWgYm_Tm5IxXJM3nDwtieQ4iCdbXyREBGmoe9oGxnfX--_bpZ-w5rr0LWxPZNNortRty4n53t1Zfbsl18IHf_nte6SOytgSoetJN0j13x5n9wadfngHpCPQ3qky3pJQXjO_QUdIZNIRY_P5svF2Sfn6QhPgj4vKwo4mKL_yPev38YNQwWGd9KZr_FUBQoXU_oBIO4lfQcIuPG7fkhOJuP3o2m0Ss0QWdzARJ6lOoSEGxaU8SJo5XKlNYA1F0vDXK5NEDwYC1fCuTwkUmnYOmmms0xLK7bIRjkv_WNCPTNGpal3iUxBPKA2ZEmw3oFt9cHIAYm6lSnsircc02dcFC3jMi9wyop-ygbkZd9-0TJ2_LHlTrfQxUpzlwWPBUIelqcD8ryvhqnGHym69PMa2wBOjlWu-IA8agWkf5QAoYvjHIbNm2X-yxiK4exw3N89-ZdOz8jN44NJ8fpw9mqb3MZijJWM8x2yUV3WfhdAU2WeNnrxAxZ5EBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Janus+Nickel+Cobalt+Phosphide+Catalyst+for+High%E2%80%90Efficiency+Neutral%E2%80%90pH+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Rui&rft.au=Xiao%2C+Bing&rft.au=Gao%2C+Qiang&rft.au=Ya%E2%80%90Rong+Zheng&rft.date=2018-11-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=47&rft.spage=15445&rft.epage=15449&rft_id=info:doi/10.1002%2Fanie.201808929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon