A Janus Nickel Cobalt Phosphide Catalyst for High‐Efficiency Neutral‐pH Water Splitting
Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 47; pp. 15445 - 15449 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.11.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices.
Sheets and paper: Ternary Ni0.1Co0.9P porous nanosheets anchored onto conductive carbon fiber paper, can be used as a bifunctional catalytic material for driving both water reduction and oxidation reactions efficiently in neutral‐pH electrolyte under ambient conditions. |
---|---|
AbstractList | Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices. Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni 0.1 Co 0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni 0.1 Co 0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni 0.1 Co 0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices. Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni Co P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni Co P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni Co P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices. Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1 Co0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1 Co0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni0.1 Co0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices.Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1 Co0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1 Co0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni0.1 Co0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices. Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral‐pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1Co0.9P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1Co0.9P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral‐pH water. We attribute this performance to the new ternary Ni0.1Co0.9P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low‐cost catalysts for neutral‐pH water splitting devices. Sheets and paper: Ternary Ni0.1Co0.9P porous nanosheets anchored onto conductive carbon fiber paper, can be used as a bifunctional catalytic material for driving both water reduction and oxidation reactions efficiently in neutral‐pH electrolyte under ambient conditions. |
Author | Zheng, Xu‐Sheng Zhu, Jun‐Fa Gao, Min‐Rui Wu, Rui Zheng, Ya‐Rong Yu, Shu‐Hong Gao, Qiang Xiao, Bing |
Author_xml | – sequence: 1 givenname: Rui surname: Wu fullname: Wu, Rui organization: University of Science and Technology of China – sequence: 2 givenname: Bing surname: Xiao fullname: Xiao, Bing organization: Xi'an Jiaotong University – sequence: 3 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: University of Science and Technology of China – sequence: 4 givenname: Ya‐Rong surname: Zheng fullname: Zheng, Ya‐Rong organization: University of Science and Technology of China – sequence: 5 givenname: Xu‐Sheng surname: Zheng fullname: Zheng, Xu‐Sheng organization: University of Science and Technology of China – sequence: 6 givenname: Jun‐Fa surname: Zhu fullname: Zhu, Jun‐Fa organization: University of Science and Technology of China – sequence: 7 givenname: Min‐Rui orcidid: 0000-0002-7805-803X surname: Gao fullname: Gao, Min‐Rui email: mgao@ustc.edu.cn organization: University of Science and Technology of China – sequence: 8 givenname: Shu‐Hong orcidid: 0000-0003-3732-1011 surname: Yu fullname: Yu, Shu‐Hong email: shyu@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30281194$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFDEYx4NU7JtXjxLw4mW2eZuXHJdldVvKKmjx4CE8k0m6qdmZaZJB9taP0M_oJzFlW4WCCIH8Cb_fQ3j-x-igH3qD0BtKZpQQdga9MzNGaEMayeQLdERLRgte1_wgZ8F5UTclPUTHMd5kvmlI9Qod8pwoleIIfZ_jC-iniNdO_zAeL4YWfMKfN0McN64zeAEJ_C4mbIeAV-568-vufmmt0870eofXZkoBfH4cV_gbJBPwl9G7lFx_fYpeWvDRvH68T9DVh-XXxaq4_PTxfDG_LLTgUhaG1GBtyVpiq9ZwC1UnKwBKyo6KlnQSWsuZbXVOvOukLUUFrCJAoGlAaH6C3u_njmG4nUxMauuiNt5Db4YpKkZplY-sWEbfPUNvhin0-XeZ4pQJQWSdqbeP1NRuTafG4LYQduppbRkQe0CHIcZgrNIuQXJDn5fhvKJEPbSjHtpRf9rJ2uyZ9jT5n4LcCz-dN7v_0Gq-Pl_-dX8DyyKj0Q |
CitedBy_id | crossref_primary_10_1039_D0QI00908C crossref_primary_10_3389_fchem_2021_700020 crossref_primary_10_1016_j_jcis_2021_06_009 crossref_primary_10_1002_cssc_202000173 crossref_primary_10_1016_j_apcatb_2020_119367 crossref_primary_10_1016_j_apcatb_2019_118268 crossref_primary_10_1021_acsami_9b01235 crossref_primary_10_1016_j_jallcom_2022_167670 crossref_primary_10_1002_anie_202206403 crossref_primary_10_1021_acs_nanolett_1c00179 crossref_primary_10_1016_j_cej_2021_132877 crossref_primary_10_1007_s12274_022_5329_8 crossref_primary_10_1016_j_ijhydene_2022_10_065 crossref_primary_10_1039_C9SE00905A crossref_primary_10_1016_j_cej_2021_131309 crossref_primary_10_1002_adma_202000455 crossref_primary_10_1016_j_apcatb_2019_118393 crossref_primary_10_1021_acs_chemmater_4c02773 crossref_primary_10_1016_j_apsusc_2023_157770 crossref_primary_10_1002_smll_202201896 crossref_primary_10_1016_j_enchem_2022_100072 crossref_primary_10_1016_j_ijhydene_2023_11_017 crossref_primary_10_1016_j_mtphys_2020_100314 crossref_primary_10_1016_j_jallcom_2022_166472 crossref_primary_10_1002_smll_201900550 crossref_primary_10_1002_ejic_202200111 crossref_primary_10_1039_D3MH00366C crossref_primary_10_1021_acsaem_1c02543 crossref_primary_10_1039_C9TA08812A crossref_primary_10_1016_j_jelechem_2024_118514 crossref_primary_10_1021_acsnanoscienceau_2c00025 crossref_primary_10_1016_j_ijhydene_2022_02_083 crossref_primary_10_1002_advs_202402889 crossref_primary_10_1039_D0EE01856B crossref_primary_10_1002_celc_202000919 crossref_primary_10_1002_smll_202310642 crossref_primary_10_1039_D0TA05797E crossref_primary_10_1016_j_apsusc_2024_160081 crossref_primary_10_1007_s44405_025_00001_4 crossref_primary_10_1016_S1872_2067_24_60086_0 crossref_primary_10_1016_j_electacta_2019_135534 crossref_primary_10_1021_acsnano_2c05986 crossref_primary_10_1016_j_apcatb_2022_121678 crossref_primary_10_1016_j_electacta_2022_141807 crossref_primary_10_1016_j_cej_2021_129232 crossref_primary_10_1002_adma_201902069 crossref_primary_10_1016_j_mseb_2024_117934 crossref_primary_10_1039_D1TA01625C crossref_primary_10_1007_s40820_020_00476_4 crossref_primary_10_1016_j_ijhydene_2023_03_296 crossref_primary_10_1016_j_jiec_2024_05_050 crossref_primary_10_1039_D2TA02493D crossref_primary_10_1016_j_electacta_2022_141595 crossref_primary_10_1039_D2NJ00512C crossref_primary_10_3390_molecules26216326 crossref_primary_10_1016_j_apcata_2022_118941 crossref_primary_10_1039_C9NR07159H crossref_primary_10_1016_j_ijhydene_2024_09_042 crossref_primary_10_1115_1_4052533 crossref_primary_10_1016_j_ijhydene_2022_06_298 crossref_primary_10_1016_j_mtnano_2022_100296 crossref_primary_10_1016_j_apcatb_2020_119394 crossref_primary_10_1021_acsami_9b09312 crossref_primary_10_1039_D2QM00893A crossref_primary_10_1007_s40843_023_2762_9 crossref_primary_10_1002_ange_202009854 crossref_primary_10_1016_j_jcis_2021_11_022 crossref_primary_10_1021_acsaem_9b00599 crossref_primary_10_1021_acsami_9b14350 crossref_primary_10_1016_j_cej_2020_128325 crossref_primary_10_1016_j_cclet_2021_01_047 crossref_primary_10_1002_smll_202100129 crossref_primary_10_1016_j_apcatb_2020_119609 crossref_primary_10_1016_j_apcatb_2021_120559 crossref_primary_10_1039_C9TA08030A crossref_primary_10_1149_1945_7111_abb3da crossref_primary_10_1016_j_jcis_2021_06_166 crossref_primary_10_1021_acsanm_2c02988 crossref_primary_10_1016_j_apmt_2023_101912 crossref_primary_10_1016_j_ijhydene_2024_03_192 crossref_primary_10_1016_j_cej_2022_137049 crossref_primary_10_1039_D4TA06958G crossref_primary_10_1002_chem_201903508 crossref_primary_10_1002_inf2_12251 crossref_primary_10_1016_j_jelechem_2023_117478 crossref_primary_10_1002_cctc_202000952 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_1002_ange_201908760 crossref_primary_10_1039_D0RA10792A crossref_primary_10_1002_chem_201905265 crossref_primary_10_1039_D3NJ01275A crossref_primary_10_1016_j_ijhydene_2025_02_396 crossref_primary_10_1039_D3TA06794G crossref_primary_10_1016_j_electacta_2020_136519 crossref_primary_10_1039_D0NR08237F crossref_primary_10_1021_acsenergylett_0c00116 crossref_primary_10_1016_j_jcis_2022_10_031 crossref_primary_10_1088_1361_6528_ac5ca3 crossref_primary_10_1002_cssc_202000416 crossref_primary_10_1002_ange_202113664 crossref_primary_10_1021_jacs_4c16596 crossref_primary_10_1016_j_apcatb_2021_120335 crossref_primary_10_1115_1_4055462 crossref_primary_10_1002_ange_202010613 crossref_primary_10_1016_j_nanoms_2022_01_003 crossref_primary_10_1016_j_cej_2021_130946 crossref_primary_10_1016_j_mtphys_2021_100589 crossref_primary_10_1007_s40843_021_1947_8 crossref_primary_10_1016_j_ijhydene_2021_08_106 crossref_primary_10_1016_j_apcatb_2023_122444 crossref_primary_10_1016_j_electacta_2022_141448 crossref_primary_10_1016_j_jallcom_2022_167570 crossref_primary_10_1016_j_jpowsour_2020_229091 crossref_primary_10_1039_D0TA07616C crossref_primary_10_1021_acsami_1c00484 crossref_primary_10_1002_ange_201915254 crossref_primary_10_1002_aenm_202302532 crossref_primary_10_1039_D3TA05646E crossref_primary_10_1016_j_jallcom_2020_158391 crossref_primary_10_1039_C9TA03201K crossref_primary_10_15541_jim20240074 crossref_primary_10_1002_anie_202113664 crossref_primary_10_1002_eem2_12398 crossref_primary_10_1021_acssuschemeng_1c04472 crossref_primary_10_1039_D0SE00899K crossref_primary_10_1016_j_molstruc_2025_142055 crossref_primary_10_1007_s12274_020_2816_7 crossref_primary_10_1016_j_cclet_2020_03_046 crossref_primary_10_1002_cphc_202400956 crossref_primary_10_1002_smll_201906629 crossref_primary_10_1016_j_mtener_2024_101772 crossref_primary_10_1002_celc_202000734 crossref_primary_10_1039_C9TA03686E crossref_primary_10_1016_j_chempr_2019_04_024 crossref_primary_10_1002_anie_201915254 crossref_primary_10_1016_j_nanoen_2019_103995 crossref_primary_10_1021_acsmaterialslett_4c00409 crossref_primary_10_1002_anie_202010613 crossref_primary_10_1021_acsami_9b23426 crossref_primary_10_1002_cctc_202101280 crossref_primary_10_1039_D1TA04518K crossref_primary_10_1002_advs_201903777 crossref_primary_10_1021_acs_inorgchem_2c01436 crossref_primary_10_3390_nano9101436 crossref_primary_10_1002_cssc_202001413 crossref_primary_10_1016_j_nanoen_2019_103928 crossref_primary_10_1021_acsaem_3c00139 crossref_primary_10_1080_02670836_2022_2062644 crossref_primary_10_1016_j_catcom_2023_106607 crossref_primary_10_1016_j_ijhydene_2021_08_132 crossref_primary_10_1016_j_inoche_2019_107595 crossref_primary_10_1002_smll_201805103 crossref_primary_10_1002_anie_202009854 crossref_primary_10_1016_j_cej_2022_140380 crossref_primary_10_1016_j_ijhydene_2020_11_030 crossref_primary_10_1002_adma_201904548 crossref_primary_10_1016_j_cej_2021_131029 crossref_primary_10_1002_advs_202201594 crossref_primary_10_1021_acsami_1c15245 crossref_primary_10_1016_j_apcatb_2019_118555 crossref_primary_10_1021_acsami_3c07000 crossref_primary_10_1039_D0CP02741C crossref_primary_10_1002_cssc_202000213 crossref_primary_10_1021_acscatal_0c01733 crossref_primary_10_1016_j_jcis_2021_04_013 crossref_primary_10_1021_acs_inorgchem_0c00959 crossref_primary_10_1039_D1TA03593B crossref_primary_10_1016_j_apsusc_2019_145096 crossref_primary_10_3390_ma17102195 crossref_primary_10_1016_j_cej_2023_143462 crossref_primary_10_1002_anie_201908760 crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1038_s41467_023_39681_1 crossref_primary_10_1039_C9TA05625D crossref_primary_10_1016_j_matchemphys_2021_124746 crossref_primary_10_1002_celc_201901623 crossref_primary_10_1021_acsomega_1c01650 crossref_primary_10_1088_1361_6463_ac8b1a crossref_primary_10_1016_j_cej_2024_152226 crossref_primary_10_1039_D4TA02271H crossref_primary_10_1016_j_jcis_2022_07_150 crossref_primary_10_1016_j_jcis_2019_11_039 crossref_primary_10_1002_ange_202206403 crossref_primary_10_1016_j_apsusc_2020_148818 crossref_primary_10_1002_eem2_12594 crossref_primary_10_1016_j_apsusc_2021_152021 crossref_primary_10_1016_j_ensm_2022_03_007 crossref_primary_10_1039_D1TA02621F crossref_primary_10_1002_advs_202203678 crossref_primary_10_1016_j_cej_2021_130196 crossref_primary_10_1016_j_est_2024_110440 crossref_primary_10_1016_j_colsurfa_2024_134176 crossref_primary_10_1039_D1CS00323B crossref_primary_10_1016_j_ijhydene_2023_12_107 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1002_adma_202007100 crossref_primary_10_1002_smll_202302056 crossref_primary_10_1039_D1TA04713B crossref_primary_10_1016_j_jcis_2023_01_108 crossref_primary_10_1016_j_mtphys_2021_100401 crossref_primary_10_1016_j_xcrp_2021_100331 crossref_primary_10_1016_j_ijhydene_2021_08_046 crossref_primary_10_1021_acssuschemeng_9b07284 crossref_primary_10_1039_C9TA02997D crossref_primary_10_1016_j_jpowsour_2020_229269 crossref_primary_10_1016_j_jechem_2023_04_049 crossref_primary_10_1063_5_0176450 crossref_primary_10_1039_D0TA04172F crossref_primary_10_1021_acsami_1c14588 crossref_primary_10_1016_j_ijhydene_2023_09_133 crossref_primary_10_1016_j_checat_2023_100643 crossref_primary_10_1002_aenm_202101758 crossref_primary_10_1007_s40843_022_2061_x crossref_primary_10_1021_acs_jpclett_9b01892 crossref_primary_10_1021_acssuschemeng_9b06514 crossref_primary_10_1016_j_jcis_2022_01_186 crossref_primary_10_1016_j_ijhydene_2021_08_171 crossref_primary_10_1016_j_mtadv_2020_100081 crossref_primary_10_1016_j_jcis_2022_05_120 crossref_primary_10_1002_smll_202006860 crossref_primary_10_1016_j_jallcom_2020_158094 crossref_primary_10_1016_j_apcatb_2020_119339 crossref_primary_10_1016_j_jelechem_2022_116805 crossref_primary_10_1007_s40843_019_1171_3 crossref_primary_10_1039_D2NR07019G crossref_primary_10_1021_jacs_2c02989 crossref_primary_10_1039_D2TA04951A crossref_primary_10_1021_acsaem_2c02812 crossref_primary_10_1016_j_ijhydene_2019_11_154 crossref_primary_10_1002_smll_202105830 crossref_primary_10_1039_D4MA00114A crossref_primary_10_1002_admi_201901302 crossref_primary_10_3390_catal10040464 crossref_primary_10_1016_j_jelechem_2023_117888 crossref_primary_10_1016_j_nanoen_2023_108884 crossref_primary_10_1016_j_cej_2022_140071 crossref_primary_10_1039_C9TA00833K crossref_primary_10_1016_j_jcis_2020_12_011 crossref_primary_10_1039_C9TA05334D crossref_primary_10_1016_j_nanoen_2020_104529 crossref_primary_10_1016_j_jechem_2020_08_040 crossref_primary_10_1021_acsami_1c16546 crossref_primary_10_1039_D0TA10379A crossref_primary_10_1007_s12274_021_3580_z crossref_primary_10_1016_j_electacta_2022_140877 crossref_primary_10_1016_j_apcata_2021_118293 crossref_primary_10_1016_j_jcis_2024_04_027 crossref_primary_10_1002_adfm_202212160 crossref_primary_10_1039_D1GC03768D crossref_primary_10_1039_D1TA04839B crossref_primary_10_1016_j_cej_2020_128067 crossref_primary_10_1016_j_cej_2023_148304 crossref_primary_10_1016_j_jssc_2020_121182 crossref_primary_10_1002_eem2_12310 crossref_primary_10_1039_D0NR07897B crossref_primary_10_1039_D1TA09371A crossref_primary_10_1039_D0TA09749G crossref_primary_10_1021_acsami_9b15194 crossref_primary_10_1002_smll_202103561 crossref_primary_10_1039_D3CP01011B crossref_primary_10_1016_j_chemosphere_2021_131905 crossref_primary_10_1016_j_jallcom_2024_174748 crossref_primary_10_1016_j_electacta_2024_144906 crossref_primary_10_1039_D1CC06409F crossref_primary_10_1016_j_ccr_2021_214318 crossref_primary_10_3390_nano11010202 crossref_primary_10_1021_acscatal_3c01914 crossref_primary_10_1016_j_ijhydene_2021_12_106 crossref_primary_10_1039_D0TA04638H |
Cites_doi | 10.1002/adma.201605838 10.1021/ja503372r 10.1002/ange.201408222 10.1039/c3cc43107j 10.1002/anie.201504358 10.1021/ja511572q 10.1016/j.nanoen.2017.08.031 10.1021/ja200144w 10.1021/am5069547 10.1002/aenm.201602355 10.1021/ja403440e 10.1038/s41467-018-04746-z 10.1039/c2ee21745g 10.1021/jacs.5b07924 10.1021/ja4081056 10.1126/science.1212858 10.1021/acs.nanolett.6b04732 10.1021/acsnano.6b04252 10.1002/smll.201601131 10.1021/jacs.7b07606 10.1039/C5CS00434A 10.1002/ange.201504358 10.1038/35104599 10.1021/jacs.5b08186 10.1021/acscatal.8b01715 10.1002/anie.201408222 10.1039/C3EE42194E 10.1002/smll.201704073 10.1002/advs.201500426 10.1021/jacs.7b12420 10.1126/science.1103197 10.1007/BF00552850 10.1002/aenm.201602068 10.1002/celc.201700392 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201808929 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 15449 |
ExternalDocumentID | 30281194 10_1002_anie_201808929 ANIE201808929 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21521001 – fundername: National Natural Science Foundation of China grantid: 21521001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4399-e07aff52b0f6be3fa6d96aa105d14b0d9abf32fbcd9a3dd9f546a260a0a88a4c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:28:09 EDT 2025 Fri Jul 25 10:39:53 EDT 2025 Mon Jul 21 05:58:16 EDT 2025 Tue Jul 01 02:26:35 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Aug 20 07:27:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | phosphides overall water splitting hydrogen and oxygen evolution transition metals nanosheets |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-e07aff52b0f6be3fa6d96aa105d14b0d9abf32fbcd9a3dd9f546a260a0a88a4c3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7805-803X 0000-0003-3732-1011 |
PMID | 30281194 |
PQID | 2131244097 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2116116962 proquest_journals_2131244097 pubmed_primary_30281194 crossref_citationtrail_10_1002_anie_201808929 crossref_primary_10_1002_anie_201808929 wiley_primary_10_1002_anie_201808929_ANIE201808929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 19, 2018 |
PublicationDateYYYYMMDD | 2018-11-19 |
PublicationDate_xml | – month: 11 year: 2018 text: November 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2014 2014; 53 126 2017; 7 2011; 334 2018; 140 2013; 49 2017; 4 2016; 10 2017; 29 2004; 305 2015; 7 2014; 136 2011; 133 2016; 12 2017; 139 2018; 9 2018; 8 2016; 3 2015; 137 2017; 17 2015 2015; 54 127 2013; 135 1981; 59 2014; 7 2012; 5 2001; 414 2018; 14 2016; 45 e_1_2_2_4_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_8_2 e_1_2_2_29_1 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_38_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_11_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_35_1 e_1_2_2_36_1 |
References_xml | – volume: 137 start-page: 1587 year: 2015 end-page: 1592 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7883 year: 2012 publication-title: Energy Environ. Sci. – volume: 334 start-page: 1383 year: 2011 end-page: 1385 publication-title: Science – volume: 136 start-page: 7587 year: 2014 end-page: 7590 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 578 year: 2017 end-page: 583 publication-title: Nano Lett. – volume: 8 start-page: 6707 year: 2018 end-page: 6732 publication-title: ACS Catal. – volume: 139 start-page: 12927 year: 2017 end-page: 12930 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 569 year: 1981 end-page: 583 publication-title: Theor. Chim. Acta – volume: 12 start-page: 3703 year: 2016 end-page: 3711 publication-title: Small – volume: 137 start-page: 15753 year: 2015 end-page: 15759 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 2610 year: 2018 end-page: 2618 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1605838 year: 2017 publication-title: Adv. Mater. – volume: 135 start-page: 9267 year: 2013 end-page: 9270 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 329 year: 2014 end-page: 334 publication-title: Energy Environ. Sci. – volume: 135 start-page: 19186 year: 2013 end-page: 19192 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2376 year: 2015 end-page: 2384 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 1529 year: 2016 end-page: 1541 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 6656 year: 2013 end-page: 6658 publication-title: Chem. Commun. – volume: 54 127 start-page: 10530 10676 year: 2015 2015 end-page: 10534 10680 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1602068 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1500426 year: 2016 publication-title: Adv. Sci. – volume: 4 start-page: 1840 year: 2017 end-page: 1845 publication-title: ChemElectroChem – volume: 9 start-page: 2551 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 1704073 year: 2018 publication-title: Small – volume: 53 126 start-page: 14433 14661 year: 2014 2014 end-page: 14437 14665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 414 start-page: 332 year: 2001 end-page: 337 publication-title: Nature – volume: 7 start-page: 1602355 year: 2017 publication-title: Adv. Energy Mater. – volume: 40 start-page: 264 year: 2017 end-page: 273 publication-title: Nano Energy – volume: 305 start-page: 972 year: 2004 end-page: 974 publication-title: Science – volume: 133 start-page: 7264 year: 2011 end-page: 7267 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 14023 year: 2015 end-page: 14026 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8738 year: 2016 end-page: 8745 publication-title: ACS Nano – ident: e_1_2_2_20_1 doi: 10.1002/adma.201605838 – ident: e_1_2_2_7_1 – ident: e_1_2_2_32_1 – ident: e_1_2_2_8_2 doi: 10.1021/ja503372r – ident: e_1_2_2_37_2 doi: 10.1002/ange.201408222 – ident: e_1_2_2_10_2 doi: 10.1039/c3cc43107j – ident: e_1_2_2_13_1 doi: 10.1002/anie.201504358 – ident: e_1_2_2_6_2 doi: 10.1021/ja511572q – ident: e_1_2_2_33_2 doi: 10.1016/j.nanoen.2017.08.031 – ident: e_1_2_2_3_1 doi: 10.1021/ja200144w – ident: e_1_2_2_25_2 doi: 10.1021/am5069547 – ident: e_1_2_2_30_2 doi: 10.1002/aenm.201602355 – ident: e_1_2_2_9_2 doi: 10.1021/ja403440e – ident: e_1_2_2_26_2 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_2_35_1 doi: 10.1039/c2ee21745g – ident: e_1_2_2_29_1 – ident: e_1_2_2_12_1 doi: 10.1021/jacs.5b07924 – ident: e_1_2_2_4_1 – ident: e_1_2_2_11_1 doi: 10.1021/ja4081056 – ident: e_1_2_2_39_1 doi: 10.1126/science.1212858 – ident: e_1_2_2_28_1 doi: 10.1021/acs.nanolett.6b04732 – ident: e_1_2_2_16_2 doi: 10.1021/acsnano.6b04252 – ident: e_1_2_2_18_2 doi: 10.1002/smll.201601131 – ident: e_1_2_2_38_1 doi: 10.1021/jacs.7b07606 – ident: e_1_2_2_23_2 doi: 10.1039/C5CS00434A – ident: e_1_2_2_13_2 doi: 10.1002/ange.201504358 – ident: e_1_2_2_1_1 doi: 10.1038/35104599 – ident: e_1_2_2_5_2 doi: 10.1021/jacs.5b08186 – ident: e_1_2_2_14_1 – ident: e_1_2_2_15_2 doi: 10.1021/acscatal.8b01715 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201408222 – ident: e_1_2_2_27_1 doi: 10.1039/C3EE42194E – ident: e_1_2_2_19_2 doi: 10.1002/smll.201704073 – ident: e_1_2_2_34_2 doi: 10.1002/advs.201500426 – ident: e_1_2_2_22_2 doi: 10.1021/jacs.7b12420 – ident: e_1_2_2_24_1 – ident: e_1_2_2_2_1 doi: 10.1126/science.1103197 – ident: e_1_2_2_36_1 doi: 10.1007/BF00552850 – ident: e_1_2_2_17_2 doi: 10.1002/aenm.201602068 – ident: e_1_2_2_31_2 doi: 10.1002/celc.201700392 – ident: e_1_2_2_21_1 |
SSID | ssj0028806 |
Score | 2.665154 |
Snippet | Transition‐metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic... Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15445 |
SubjectTerms | Carbon fibers Catalysis Catalysts Cobalt Electrochemistry Electrodes Electrolysis Electron states hydrogen and oxygen evolution Hydrogen evolution reactions nanosheets Nickel overall water splitting Oxidation pH effects Phosphides Splitting transition metals Water splitting |
Title | A Janus Nickel Cobalt Phosphide Catalyst for High‐Efficiency Neutral‐pH Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201808929 https://www.ncbi.nlm.nih.gov/pubmed/30281194 https://www.proquest.com/docview/2131244097 https://www.proquest.com/docview/2116116962 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXugFKOVnoSBXQuKU1rEdJzmuVlstlbqqChWVOET-VatW2VWTHODEI_QZ-ySdSTaBBSEkenNiW3HsmcxnZ-YbQt4HoUQqnI68tD6SwaeR4VASOpMmWGFZm-vweK5mZ_LoPDn_JYq_44cYDtxQM9rvNSq4NtXBT9JQjMBG16yMZWDi4SOMDluIik4H_igOwtmFFwkRYRb6nrWR8YP17utW6Q-ouY5cW9Nz-IToftCdx8nVflObffv9Nz7Hh7zVU_J4hUvpuBOkbbLhy2fk0aRPB7dDvo7pkS6bioLsXPlrOkEikZqeXCyq5cWl83SCB0HfqpoCDKboPnL343baElRgdCed-wYPVeDmcka_AMK9oZ8AALdu18_J2eH082QWrTIzRBb3L5FnqQ4h4YYFZbwIWrlcaQ1YzcXSMJdrEwQPxkJJOJeHRCoNOyfNdJZpacULslkuSv-KUM-MUWnqXSJTkA6oDVkSrHdgWn0wckSifmUKu6Itx-wZ10VHuMwLnLJimLIR-TC0X3aEHX9tudsvdLFS3KrgsUDEw_J0RPaGaphq_I-iS79osA3A5Fjlio_Iy05AhkcJELo4zmHYvF3mf4yhGM8_Toer1__T6Q3ZwjLGR8b5Ltmsbxr_FoBSbd61ynAPi8INTg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUrr2M7ruFq22pZ2haAVSBwiP1XUKrvqJgc48RP4jfwSZpJN0IIQEtwSPxTHnok_T2a-AXgRZCoz6XTklfWRCj6LjMArqXNlgpWWt7kOj-fp7FQdfkh6b0KKhen4IQaDG2lG-70mBSeD9N5P1lAKwSbfrJznuMdfhWuU1pvo81-9HRikBIpnF2AkZUR56HveRi72Nvtv7ku_gc1N7NpuPvs3wfTD7nxOzneb2uzaL78wOv7Xe92CG2toysadLN2GK766A9uTPiPcXfg4Zoe6alYMxefcX7AJcYnU7M3ZYrU8--Q8m5At6POqZoiEGXmQfP_6bdpyVFCAJ5v7huwqWLicsfcIci_ZO8TAref1PTjdn55MZtE6OUNk6QgTeZ7pEBJheEiNl0Gnrki1RrjmYmW4K7QJUgRj8Uo6V4REpRoPT5rrPNfKyvuwVS0q_xCY58akWeZdojIUEKwNeRKsd7i7-mDUCKJ-aUq7Zi6nBBoXZce5LEqasnKYshG8HNovO86OP7bc6Ve6XOvuqhSxJNDDi2wEz4dqnGr6laIrv2ioDSLlOC1SMYIHnYQMj5IodXFc4LBFu85_GUM5nh9Mh7tH_9LpGWzPTo6PyqOD-evHcJ3KKVwyLnZgq75s_BPETbV52mrGD1acEWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF8iosbcFISJzSOrbjJMfVdlfbAqsKqKjEIfJTRa2yq25ygBM_gd_IL2Em2YQuCCHBLfFDceyZzGdn5htCXgShRCqcjry0PpLBp5HhcCV0Jk2wwrIm1-GbmZqeyKPT5PRKFH_LD9EfuKFmNN9rVPCFC_s_SUMxAhtdszKWgYm_Tm5IxXJM3nDwtieQ4iCdbXyREBGmoe9oGxnfX--_bpZ-w5rr0LWxPZNNortRty4n53t1Zfbsl18IHf_nte6SOytgSoetJN0j13x5n9wadfngHpCPQ3qky3pJQXjO_QUdIZNIRY_P5svF2Sfn6QhPgj4vKwo4mKL_yPev38YNQwWGd9KZr_FUBQoXU_oBIO4lfQcIuPG7fkhOJuP3o2m0Ss0QWdzARJ6lOoSEGxaU8SJo5XKlNYA1F0vDXK5NEDwYC1fCuTwkUmnYOmmms0xLK7bIRjkv_WNCPTNGpal3iUxBPKA2ZEmw3oFt9cHIAYm6lSnsircc02dcFC3jMi9wyop-ygbkZd9-0TJ2_LHlTrfQxUpzlwWPBUIelqcD8ryvhqnGHym69PMa2wBOjlWu-IA8agWkf5QAoYvjHIbNm2X-yxiK4exw3N89-ZdOz8jN44NJ8fpw9mqb3MZijJWM8x2yUV3WfhdAU2WeNnrxAxZ5EBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Janus+Nickel+Cobalt+Phosphide+Catalyst+for+High%E2%80%90Efficiency+Neutral%E2%80%90pH+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Rui&rft.au=Xiao%2C+Bing&rft.au=Gao%2C+Qiang&rft.au=Ya%E2%80%90Rong+Zheng&rft.date=2018-11-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=47&rft.spage=15445&rft.epage=15449&rft_id=info:doi/10.1002%2Fanie.201808929&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |