Wearable Electronics Based on Stretchable Organic Semiconductors

Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stret...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 20; pp. e2206309 - n/a
Main Authors Xu, Xinzhao, Zhao, Yan, Liu, Yunqi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed. Recent years have witnessed the rapid development of wearable electronics. Stretchable organic semiconductors (SOS) are ideal candidates for the next generation wearable electronics. In this review, some recent advances of SOS‐based wearable electronics are presented and classified based on their functionalities and potential applications. The potential challenges and opportunities for their future development are also discussed.
AbstractList Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed.
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed. Recent years have witnessed the rapid development of wearable electronics. Stretchable organic semiconductors (SOS) are ideal candidates for the next generation wearable electronics. In this review, some recent advances of SOS‐based wearable electronics are presented and classified based on their functionalities and potential applications. The potential challenges and opportunities for their future development are also discussed.
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Author Liu, Yunqi
Zhao, Yan
Xu, Xinzhao
Author_xml – sequence: 1
  givenname: Xinzhao
  surname: Xu
  fullname: Xu, Xinzhao
  organization: Fudan University
– sequence: 2
  givenname: Yan
  orcidid: 0000-0002-4216-2150
  surname: Zhao
  fullname: Zhao, Yan
  email: zhaoy@fudan.edu.cn
  organization: Fudan University
– sequence: 3
  givenname: Yunqi
  surname: Liu
  fullname: Liu, Yunqi
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36794301$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLxDAQh4MoPlavHqXgxUvXvLZpbuqyPmBlD6t4DGmSaiVNNGmR_e-N7kMQxNMMzPcNw_wOwLbzzgBwjOAQQYjPY2vtEEOMYUEg3wL7qEAkL0rMtzc9gnvgIMZXCAnClO2CPVIwTglE--DiycggK2uyiTWqC941KmZXMhqdeZfNu2A69fINzMKzTNNsbtpGead71fkQD8FOLW00R6s6AI_Xk4fxbT6d3dyNL6e5ooTznFcIa8QoZiVKPasKUvCR1iWsUYV5XdaI60Kl8wypcQ0VqzitCDKl0pUeKTIAZ8u9b8G_9yZ2om2iMtZKZ3wfBWaMUUhGiCf09Bf66vvg0nUCl4jiIj2LJupkRfVVa7R4C00rw0Ksf5MAugRU8DEGUwvVdLJrvOuCbKxAUHxFIL4iEJsIkjb8pa03_ynwpfDRWLP4hxbz--n0x_0EEDSXwg
CitedBy_id crossref_primary_10_1016_j_synthmet_2024_117661
crossref_primary_10_3390_polym16030396
crossref_primary_10_1021_acs_analchem_4c05004
crossref_primary_10_1088_2634_4386_ad63c6
crossref_primary_10_1039_D3SC06728A
crossref_primary_10_1002_elt2_77
crossref_primary_10_1088_2631_7990_ada858
crossref_primary_10_1039_D3EY00047H
crossref_primary_10_1002_marc_202300624
crossref_primary_10_1002_aelm_202300026
crossref_primary_10_3390_nanoenergyadv3040017
crossref_primary_10_1002_adom_202400702
crossref_primary_10_3390_coatings14091080
crossref_primary_10_1002_idm2_12223
crossref_primary_10_1002_lpor_202401532
crossref_primary_10_1002_adfm_202505232
crossref_primary_10_1002_admt_202302048
crossref_primary_10_1021_acsaelm_4c01473
crossref_primary_10_1002_adma_202313312
crossref_primary_10_1002_adma_202417254
crossref_primary_10_1002_eem2_12806
crossref_primary_10_1016_j_molstruc_2024_141205
crossref_primary_10_1002_adom_202302121
crossref_primary_10_1002_aelm_202300559
crossref_primary_10_1016_j_snb_2024_136005
crossref_primary_10_1002_advs_202404866
crossref_primary_10_1021_acsomega_4c05648
crossref_primary_10_1002_apxr_202400151
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1021_acsmaterialslett_3c00800
crossref_primary_10_1088_1402_4896_adadb4
crossref_primary_10_1021_jacs_4c00514
crossref_primary_10_1021_acs_langmuir_4c03445
crossref_primary_10_1002_adom_202302512
crossref_primary_10_1002_cplu_202300261
crossref_primary_10_1021_acsami_3c09595
crossref_primary_10_3390_pr12091944
crossref_primary_10_1016_j_cej_2024_158769
crossref_primary_10_1002_marc_202500018
crossref_primary_10_1007_s11696_024_03618_9
crossref_primary_10_1007_s13233_024_00355_6
crossref_primary_10_1021_acsaem_3c03067
crossref_primary_10_1002_admt_202300924
crossref_primary_10_1039_D3TC02028B
crossref_primary_10_1002_admt_202301810
crossref_primary_10_1039_D3TC03484D
crossref_primary_10_1002_adma_202413157
crossref_primary_10_1021_acs_macromol_3c01888
crossref_primary_10_1021_acs_jpclett_4c02443
crossref_primary_10_1088_2399_1984_acd59a
crossref_primary_10_1007_s44291_024_00039_6
crossref_primary_10_1002_adma_202407271
crossref_primary_10_1021_acsami_4c11976
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1021_acsapm_4c03426
crossref_primary_10_1002_adem_202402208
crossref_primary_10_1002_adma_202308952
crossref_primary_10_1039_D4TC02709D
Cites_doi 10.1039/C6MH00164E
10.1021/acsami.6b03451
10.1002/adma.200306107
10.1016/j.dsp.2021.103145
10.1021/acsomega.7b00873
10.1038/s41528-022-00171-x
10.1002/adfm.201604163
10.1038/s41565-022-01160-x
10.1021/acsnano.0c09426
10.1002/adfm.201302646
10.1002/adma.201800051
10.1002/adma.201205330
10.1016/j.progpolymsci.2013.07.009
10.1021/ja710079w
10.1002/adma.201902045
10.1002/aelm.202000145
10.1016/j.tsf.2011.04.188
10.1002/aelm.201600311
10.1002/smsc.202200029
10.1002/adma.201502996
10.1038/nature14543
10.1126/science.1206157
10.1007/s10853-021-06503-y
10.1038/s41587-019-0045-y
10.1038/ncomms6745
10.1002/advs.202004050
10.1126/sciadv.1501856
10.1002/aelm.201900566
10.1038/s41467-021-23798-2
10.1063/1.1527233
10.1002/advs.202002418
10.1021/acs.chemmater.9b00966
10.1039/C9TC00709A
10.1038/nmat2971
10.1016/j.neuron.2014.12.035
10.1021/acs.chemrev.7b00003
10.1021/acsnano.5b01835
10.1186/s11671-019-3084-x
10.1038/nature20102
10.1038/s41598-018-26731-8
10.1002/adma.201403560
10.1038/ncomms11924
10.1021/nn405887k
10.1021/acs.chemmater.7b00181
10.1002/adom.201800522
10.1038/s41467-018-06011-9
10.1002/adma.201404602
10.1007/BF03256330
10.1126/sciadv.1600076
10.1021/acsami.9b08622
10.1002/adfm.201808803
10.1021/nn1018768
10.1039/C7QM00497D
10.1021/acsami.6b16115
10.1126/science.aah4496
10.1039/c2jm15716k
10.1002/adma.202002217
10.1039/C9NR06096K
10.1016/j.nanoen.2021.106497
10.1002/adma.201700975
10.1002/adma.202107304
10.1038/nature21004
10.1016/j.chempr.2017.08.015
10.1002/adma.201200088
10.1021/acsami.8b21130
10.1002/aelm.201900191
10.1002/aelm.201800900
10.1038/ncomms11573
10.1021/acsami.6b09188
10.1063/1.4892012
10.1002/adma.201405864
10.1002/aelm.201500250
10.1002/adma.202110639
10.1038/s41586-018-0536-x
10.1126/science.aac5082
10.1002/aelm.201600104
10.1038/ncomms3954
10.1002/smsc.202000050
10.1039/c3tb20451k
10.1002/adma.201404378
10.1021/acs.jpclett.9b03323
10.1016/j.mser.2021.100631
10.1038/nmat2879
10.1038/ncomms8461
10.1002/adma.201600468
10.1016/S1369-7021(13)70013-0
10.1038/nmat2459
10.1007/s00396-013-3143-2
10.1016/j.rser.2012.02.021
10.1002/adma.201404707
10.1016/j.nanoen.2018.05.017
10.1016/j.mser.2017.02.001
10.1038/s41467-021-23203-y
10.1002/aelm.201900347
10.1002/adma.201400334
10.1021/acsami.6b08866
10.1002/smsc.202000057
10.1002/cptc.201900198
10.1039/C9CS00431A
10.1038/nphoton.2013.242
10.1126/science.1160309
10.1021/acsnano.7b01894
10.1109/PROC.1972.8948
10.1002/adfm.201100904
10.1039/C6TC01728B
10.1038/nmat2896
10.1002/adma.201400263
10.1002/adma.201800388
10.1002/adma.202003818
10.1002/adma.201302240
10.1039/C9TC00324J
10.1038/ncomms1772
10.1016/j.orgel.2018.06.008
10.1002/adma.201101986
10.1016/j.solmat.2015.09.049
10.3390/ma9080650
10.1016/j.mattod.2021.08.004
10.1039/C3TB21079K
10.1002/adma.201004426
10.1002/adom.201901722
10.1002/aelm.202001000
10.1088/1468-6996/10/2/024313
10.1021/acsnano.7b06823
10.1002/adfm.201600612
10.1038/natrevmats.2016.100
10.1021/nl202134z
10.1002/adfm.201601980
10.1002/adma.201703638
10.1021/acsami.0c07496
10.1002/admt.201800371
10.1002/aelm.201600471
10.1021/acs.macromol.5b00524
10.1002/aelm.201600388
10.1002/mame.201500447
10.1038/s41467-020-20256-3
10.1038/nmat4785
10.1073/pnas.0807476105
10.1109/TITB.2010.2044798
10.1002/adma.201601422
10.1126/science.1160379
10.1039/C8TC04371J
10.1002/adom.201900272
10.1109/JSEN.2016.2608330
10.1002/smsc.202100001
10.1002/smsc.202000080
10.1002/adfm.201909909
10.1002/adma.201808138
10.1002/polb.23662
10.1002/admt.201800104
10.1002/adom.201801346
10.1016/j.progpolymsci.2019.101181
10.1016/j.solmat.2012.07.013
10.1016/j.apmt.2020.100899
10.1002/adma.201305462
10.3390/electronics3010043
10.1002/adma.201200448
10.1021/acsami.7b12908
10.1021/acsnano.0c08287
10.1039/C6NR02216B
10.1039/C5NR08618C
10.1039/C4NR00265B
10.1126/sciadv.aat7387
10.1016/j.bios.2022.114115
10.1016/j.nanoen.2012.01.004
10.1021/acsami.6b08587
10.1002/lpor.202000262
10.1002/adma.201807975
10.1002/adma.201503288
10.1038/s41428-021-00510-1
10.1021/acs.accounts.8b00448
10.1038/nmat3711
10.1002/smtd.202100676
10.1002/adma.201601278
10.1002/pi.1974
10.1021/acsami.6b14220
10.1002/adma.201702308
10.1002/smll.201400874
10.1002/adfm.200800306
10.1016/j.bios.2015.06.002
10.1038/nnano.2011.184
10.1002/adma.201603436
10.1038/s41528-021-00127-7
10.1002/smtd.201800070
10.1002/adfm.201101418
10.1016/j.sbsr.2015.02.002
10.1002/aelm.202000527
10.1038/s41467-018-07943-y
10.1002/smsc.202100086
10.1002/admt.201600042
10.1021/acs.accounts.8b00465
10.1126/sciadv.aas9530
10.1002/adma.202200682
10.1021/acsami.7b09411
10.1021/acsami.5b12588
10.1002/adma.201304032
10.1038/nature07719
10.1038/ncomms4005
10.1002/adma.201204979
10.1002/inf2.12122
10.1002/aelm.201900681
10.1038/ncomms1721
10.1002/adma.200904054
10.1038/s41560-017-0001-3
10.1073/pnas.0802105105
10.1002/adfm.201001107
10.1021/acs.macromol.9b00589
10.1002/adma.201205361
10.1038/nphoton.2010.7
10.1002/adma.201705377
10.1002/adfm.201504755
10.1039/C9NR09926C
10.1002/adma.201603167
10.1002/adom.201500560
10.1002/smsc.202100109
10.1021/am500769k
10.1117/1.JPE.8.032108
10.1039/C6TC05659H
10.1038/s41563-022-01239-9
10.1021/acsami.9b23291
10.1039/C8CS00706C
10.1126/sciadv.1602076
10.1002/adma.202003309
10.1021/ma500286d
10.1126/sciadv.abd9715
10.1073/pnas.0502392102
10.1021/acsami.8b06861
10.1016/j.nanoen.2016.12.040
10.1038/s41565-018-0226-8
10.1038/natrevmats.2017.86
10.1038/nature07113
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202206309
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36794301
10_1002_smll_202206309
SMLL202206309
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2018YFA0703200
– fundername: National Natural Science Foundation of China
  funderid: 61890940; 51903051
– fundername: Natural Science Foundation of Shanghai
  funderid: 22ZR1407800
– fundername: National Natural Science Foundation of China
  grantid: 51903051
– fundername: National Natural Science Foundation of China
  grantid: 61890940
– fundername: Natural Science Foundation of Shanghai
  grantid: 22ZR1407800
– fundername: National Key R&D Program of China
  grantid: 2018YFA0703200
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4399-9b12d17427819b17b63695dd80f1b29f8f19d6c247e3f2f0c7b94b31e8cdbd5c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 02:03:55 EDT 2025
Sun Jul 13 05:33:29 EDT 2025
Thu Apr 03 07:07:28 EDT 2025
Thu Apr 24 23:15:50 EDT 2025
Tue Jul 01 02:54:26 EDT 2025
Wed Jan 22 16:21:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords organic semiconductors
photodetectors
biosensors
light-emitting diodes
photovoltaics
wearable electronics
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-9b12d17427819b17b63695dd80f1b29f8f19d6c247e3f2f0c7b94b31e8cdbd5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4216-2150
PMID 36794301
PQID 2814262064
PQPubID 1046358
PageCount 20
ParticipantIDs proquest_miscellaneous_2777403519
proquest_journals_2814262064
pubmed_primary_36794301
crossref_citationtrail_10_1002_smll_202206309
crossref_primary_10_1002_smll_202206309
wiley_primary_10_1002_smll_202206309_SMLL202206309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 561
2010; 14
2013; 1
2019; 11
2019; 10
2015; 74
2019; 14
2014; 26
2016; 540
2016; 144
2020; 14
2014; 24
2008; 105
2020; 12
2012; 16
2022; 21
2020; 11
2012; 15
2016; 301
2013; 7
2018; 49
2010; 22
2018; 6
2018; 9
2011; 520
2009; 13
2018; 8
2010; 20
2018; 3
2018; 2
2009; 10
2018; 4
2005; 102
2015; 86
2022; 34
2019; 29
2018; 30
2012; 24
2022; 205
2010; 4
2012; 22
2010; 9
2021; 2021
2019; 7
2017; 64
2019; 4
2019; 5
2021; 146
2019; 31
2015; 521
2006; 55
2015; 53
2019; 37
1972; 60
2014; 47
2002; 81
2020; 32
2011; 6
2016; 16
2021; 51
2012; 107
2009; 457
2016; 4
2016; 7
2021; 53
2016; 1
2016; 2
2021; 56
2016; 3
2020; 30
2022; 6
2019; 48
2022; 2
2018; 12
2016; 28
2018; 10
2016; 26
2016; 8
2008; 130
2016; 9
2022; 17
2018; 13
2017; 5
2017; 2
2013; 25
2017; 3
2021; 22
2019; 52
2011; 11
2011; 10
2014; 292
2017; 115
2017; 9
2017; 117
2020; 8
2020; 6
2015; 48
2020; 2000
2020; 4
2014; 5
2020; 2
2014; 3
2021; 33
2014; 2
2013; 12
2017; 32
2020; 49
2011; 21
2011; 23
2014; 8
2014; 6
2016; 351
2022; 125
2021; 8
2021; 7
2011; 333
2015; 6
2021; 5
2015; 4
2017; 27
2008; 18
2015; 11
2006
2020; 100
2017; 29
2018; 61
2021; 1
2008; 321
2015; 9
2021; 90
2014; 105
2021; 15
2015; 27
2012; 3
2021; 12
2013; 38
2012; 1
2016; 539
2004; 16
2017; 16
2017; 11
2018
2009; 8
2018; 51
2008; 454
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
Massey R. S. (e_1_2_9_148_1) 2021; 2021
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
Raza M. A. (e_1_2_9_207_1) 2018
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Wang J. (e_1_2_9_106_1) 2018; 30
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_90_1
Nawaz A. (e_1_2_9_49_1) 2021; 33
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
Manunza I. (e_1_2_9_27_1) 2006
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 540
  start-page: 379
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 4267
  year: 2013
  publication-title: Adv. Mater.
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 107
  start-page: 355
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 817
  year: 2013
  publication-title: Nat. Photonics
– volume: 48
  start-page: 4339
  year: 2015
  publication-title: Macromolecules
– volume: 520
  start-page: 1291
  year: 2011
  publication-title: Thin Solid Films
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1223
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  start-page: 899
  year: 2013
  publication-title: Nat. Mater.
– volume: 31
  start-page: 6359
  year: 2019
  publication-title: Chem. Mater.
– volume: 38
  start-page: 1978
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 74
  start-page: 45
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 28
  start-page: 4177
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 641
  year: 2017
  publication-title: Chem
– volume: 15
  start-page: 1217
  year: 2021
  publication-title: ACS Nano
– volume: 26
  start-page: 3874
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2954
  year: 2014
  publication-title: Nat. Commun.
– volume: 321
  start-page: 1465
  year: 2008
  publication-title: Science
– volume: 12
  start-page: 1170
  year: 2018
  publication-title: ACS Nano
– volume: 22
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 3
  start-page: 43
  year: 2014
  publication-title: Electron
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 16
  start-page: 7870
  year: 2016
  publication-title: IEEE Sens. J.
– volume: 9
  start-page: 3438
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 650
  year: 2016
  publication-title: Materials
– volume: 60
  start-page: 2
  year: 1972
  publication-title: Proc. IEEE
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 2
  start-page: 355
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 4
  start-page: 23
  year: 2015
  publication-title: Sens. Bio‐Sens. Res.
– volume: 64
  start-page: 59
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 929
  year: 2010
  publication-title: Nat. Mater.
– volume: 7
  start-page: eabd9715
  year: 2021
  publication-title: Sci. Adv.
– volume: 521
  start-page: 467
  year: 2015
  publication-title: Nature
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 25
  start-page: 4302
  year: 2013
  publication-title: Adv. Mater.
– volume: 292
  start-page: 945
  year: 2014
  publication-title: Colloid Polym. Sci.
– volume: 115
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– volume: 32
  start-page: 367
  year: 2017
  publication-title: Nano Energy
– volume: 4
  start-page: eaas9530
  year: 2018
  publication-title: Sci. Adv.
– volume: 11
  start-page: 4642
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 52
  start-page: 4396
  year: 2019
  publication-title: Macromolecules
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 9
  start-page: 7322
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 34
  year: 2022
  publication-title: npj Flexible Electron.
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 454
  start-page: 748
  year: 2008
  publication-title: Nature
– volume: 20
  start-page: 3577
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 452
  year: 2016
  publication-title: Mater. Horiz.
– volume: 24
  start-page: 2673
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 4440
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 205
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 2228
  year: 2010
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1131
  year: 2020
  publication-title: InfoMat
– volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– volume: 16
  start-page: 2696
  year: 2012
  publication-title: Renewable Sustainable Energy Rev.
– volume: 130
  start-page: 3619
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7461
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: eaat7387
  year: 2018
  publication-title: Sci. Adv.
– volume: 26
  start-page: 6307
  year: 2014
  publication-title: Adv. Mater.
– volume: 81
  start-page: 4643
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 4
  start-page: 264
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 16
  start-page: 393
  year: 2004
  publication-title: Adv. Mater.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 11
  start-page: 5992
  year: 2017
  publication-title: ACS Nano
– volume: 2000
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 26
  start-page: 6619
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2022
  publication-title: SmallSci
– volume: 10
  year: 2009
  publication-title: Sci. Technol. Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 723
  year: 2012
  publication-title: Nat. Commun.
– volume: 27
  start-page: 6885
  year: 2015
  publication-title: Adv. Mater.
– volume: 49
  start-page: 653
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 301
  start-page: 707
  year: 2016
  publication-title: Macromol. Mater. Eng.
– volume: 23
  start-page: 1771
  year: 2011
  publication-title: Adv. Mater.
– volume: 10
  start-page: 316
  year: 2011
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5745
  year: 2014
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 3697
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 351
  start-page: 1071
  year: 2016
  publication-title: Science
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 8
  year: 2018
  publication-title: J. Photonics Energy
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2944
  year: 2016
  publication-title: Nanoscale
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 100
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 17
  start-page: 849
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 644
  year: 2018
  publication-title: Nano Energy
– volume: 2
  start-page: 5766
  year: 2017
  publication-title: ACS Omega
– volume: 12
  start-page: 3572
  year: 2021
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1540
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 222
  year: 2010
  publication-title: Nat. Photonics
– volume: 14
  start-page: 758
  year: 2010
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 561
  start-page: 516
  year: 2018
  publication-title: Nature
– volume: 4
  start-page: 9
  year: 2020
  publication-title: ChemPhotoChem.
– volume: 8
  start-page: 8477
  year: 2018
  publication-title: Sci. Rep.
– volume: 30
  start-page: 24
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1753
  year: 2021
  publication-title: ACS Nano
– volume: 1
  start-page: 3820
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 21
  start-page: 564
  year: 2022
  publication-title: Nat. Mater.
– volume: 16
  start-page: 356
  year: 2017
  publication-title: Nat. Mater.
– volume: 2021
  start-page: 21
  year: 2021
  publication-title: Proc. IEEE Sens.
– volume: 47
  start-page: 1981
  year: 2014
  publication-title: Macromolecules
– volume: 28
  start-page: 5969
  year: 2016
  publication-title: Adv. Mater.
– volume: 105
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 8
  start-page: 494
  year: 2009
  publication-title: Nat. Mater.
– volume: 52
  start-page: 277
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 2864
  year: 2021
  publication-title: Nat. Commun.
– volume: 23
  start-page: 3989
  year: 2011
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1048
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 37
  start-page: 389
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 554
  year: 2012
  publication-title: Mater. Today
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 61
  start-page: 304
  year: 2018
  publication-title: Org. Electron.
– volume: 7
  start-page: 4725
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 3349
  year: 2015
  publication-title: Adv. Mater.
– volume: 144
  start-page: 438
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 12
  start-page: 1091
  year: 2020
  publication-title: Nanoscale
– volume: 12
  start-page: 55
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 191
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 245
  year: 2009
  publication-title: Mol. Diagn. Ther.
– volume: 10
  start-page: 12
  year: 2019
  publication-title: Nat. Commun.
– volume: 27
  start-page: 6230
  year: 2015
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6666
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 1015
  year: 2010
  publication-title: Nat. Mater.
– volume: 53
  start-page: 1061
  year: 2021
  publication-title: Polym. J.
– volume: 53
  start-page: 453
  year: 2015
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 3
  start-page: 770
  year: 2012
  publication-title: Nat. Commun.
– volume: 102
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 4253
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 676
  year: 2015
  publication-title: Adv. Mater.
– volume: 125
  year: 2022
  publication-title: Digital Signal Process.
– volume: 8
  start-page: 1590
  year: 2014
  publication-title: ACS Nano
– volume: 29
  start-page: 3126
  year: 2017
  publication-title: Chem. Mater.
– volume: 24
  start-page: 2441
  year: 2012
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2673
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 55
  start-page: 572
  year: 2006
  publication-title: Polym. Int.
– volume: 5
  start-page: 2892
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 2
  year: 2018
  publication-title: Small Methods
– year: 2018
– volume: 24
  start-page: 1169
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7538
  year: 2010
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1255
  year: 2015
  publication-title: Adv. Mater.
– volume: 14
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 86
  start-page: 175
  year: 2015
  publication-title: Neuron
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 117
  start-page: 6467
  year: 2017
  publication-title: Chem. Rev.
– volume: 51
  start-page: 2829
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 6954
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8801
  year: 2015
  publication-title: ACS Nano
– volume: 2
  year: 2022
  publication-title: Small Sci.
– volume: 22
  start-page: 175
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 9243
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 366
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 7
  start-page: 5534
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 3005
  year: 2014
  publication-title: Nat. Commun.
– volume: 48
  start-page: 1566
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 8855
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 675
  year: 2015
  publication-title: Small
– volume: 6
  start-page: 6057
  year: 2014
  publication-title: Nanoscale
– volume: 51
  start-page: 475
  year: 2021
  publication-title: Mater. Today
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 14
  start-page: 263
  year: 2019
  publication-title: Nanoscale Res. Lett.
– volume: 8
  start-page: 5618
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 27
  start-page: 7638
  year: 2015
  publication-title: Adv. Mater.
– volume: 146
  year: 2021
  publication-title: Mater. Sci. Eng., R
– volume: 56
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4210
  year: 2013
  publication-title: Adv. Mater.
– start-page: 3
  year: 2006
– volume: 2
  start-page: 780
  year: 2017
  publication-title: Nat. Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 4680
  year: 2016
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_236_1
  doi: 10.1039/C6MH00164E
– ident: e_1_2_9_90_1
  doi: 10.1021/acsami.6b03451
– ident: e_1_2_9_172_1
  doi: 10.1002/adma.200306107
– ident: e_1_2_9_182_1
  doi: 10.1016/j.dsp.2021.103145
– ident: e_1_2_9_35_1
  doi: 10.1021/acsomega.7b00873
– ident: e_1_2_9_61_1
  doi: 10.1038/s41528-022-00171-x
– ident: e_1_2_9_77_1
  doi: 10.1002/adfm.201604163
– ident: e_1_2_9_225_1
  doi: 10.1038/s41565-022-01160-x
– ident: e_1_2_9_200_1
  doi: 10.1021/acsnano.0c09426
– ident: e_1_2_9_233_1
  doi: 10.1002/adfm.201302646
– ident: e_1_2_9_39_1
  doi: 10.1002/adma.201800051
– ident: e_1_2_9_73_1
  doi: 10.1002/adma.201205330
– ident: e_1_2_9_117_1
  doi: 10.1016/j.progpolymsci.2013.07.009
– ident: e_1_2_9_124_1
  doi: 10.1021/ja710079w
– ident: e_1_2_9_184_1
  doi: 10.1002/adma.201902045
– ident: e_1_2_9_9_1
  doi: 10.1002/aelm.202000145
– ident: e_1_2_9_32_1
  doi: 10.1016/j.tsf.2011.04.188
– ident: e_1_2_9_112_1
  doi: 10.1002/aelm.201600311
– ident: e_1_2_9_164_1
  doi: 10.1002/smsc.202200029
– ident: e_1_2_9_224_1
  doi: 10.1002/adma.201502996
– ident: e_1_2_9_10_1
  doi: 10.1038/nature14543
– ident: e_1_2_9_136_1
  doi: 10.1126/science.1206157
– ident: e_1_2_9_52_1
  doi: 10.1007/s10853-021-06503-y
– ident: e_1_2_9_19_1
  doi: 10.1038/s41587-019-0045-y
– ident: e_1_2_9_109_1
  doi: 10.1038/ncomms6745
– ident: e_1_2_9_31_1
  doi: 10.1002/advs.202004050
– ident: e_1_2_9_40_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_9_152_1
  doi: 10.1002/aelm.201900566
– ident: e_1_2_9_111_1
  doi: 10.1038/s41467-021-23798-2
– ident: e_1_2_9_149_1
  doi: 10.1063/1.1527233
– ident: e_1_2_9_192_1
  doi: 10.1002/advs.202002418
– ident: e_1_2_9_186_1
  doi: 10.1021/acs.chemmater.9b00966
– ident: e_1_2_9_26_1
  doi: 10.1039/C9TC00709A
– ident: e_1_2_9_138_1
  doi: 10.1038/nmat2971
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuron.2014.12.035
– ident: e_1_2_9_123_1
  doi: 10.1021/acs.chemrev.7b00003
– ident: e_1_2_9_98_1
  doi: 10.1021/acsnano.5b01835
– ident: e_1_2_9_5_1
  doi: 10.1186/s11671-019-3084-x
– ident: e_1_2_9_120_1
  doi: 10.1038/nature20102
– ident: e_1_2_9_151_1
  doi: 10.1038/s41598-018-26731-8
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.201403560
– ident: e_1_2_9_206_1
  doi: 10.1038/ncomms11924
– ident: e_1_2_9_110_1
  doi: 10.1021/nn405887k
– ident: e_1_2_9_140_1
  doi: 10.1021/acs.chemmater.7b00181
– ident: e_1_2_9_181_1
  doi: 10.1002/adom.201800522
– ident: e_1_2_9_226_1
  doi: 10.1038/s41467-018-06011-9
– ident: e_1_2_9_85_1
  doi: 10.1002/adma.201404602
– ident: e_1_2_9_145_1
  doi: 10.1007/BF03256330
– ident: e_1_2_9_129_1
  doi: 10.1126/sciadv.1600076
– ident: e_1_2_9_43_1
  doi: 10.1021/acsami.9b08622
– ident: e_1_2_9_50_1
  doi: 10.1002/adfm.201808803
– ident: e_1_2_9_66_1
  doi: 10.1021/nn1018768
– ident: e_1_2_9_128_1
  doi: 10.1039/C7QM00497D
– ident: e_1_2_9_116_1
  doi: 10.1021/acsami.6b16115
– ident: e_1_2_9_222_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_9_155_1
  doi: 10.1039/c2jm15716k
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.202002217
– ident: e_1_2_9_160_1
  doi: 10.1039/C9NR06096K
– ident: e_1_2_9_219_1
  doi: 10.1016/j.nanoen.2021.106497
– ident: e_1_2_9_223_1
  doi: 10.1002/adma.201700975
– ident: e_1_2_9_221_1
  doi: 10.1002/adma.202107304
– ident: e_1_2_9_57_1
  doi: 10.1038/nature21004
– ident: e_1_2_9_147_1
  doi: 10.1016/j.chempr.2017.08.015
– ident: e_1_2_9_131_1
  doi: 10.1002/adma.201200088
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.8b21130
– ident: e_1_2_9_63_1
  doi: 10.1002/aelm.201900191
– ident: e_1_2_9_17_1
  doi: 10.1002/aelm.201800900
– ident: e_1_2_9_37_1
  doi: 10.1038/ncomms11573
– ident: e_1_2_9_97_1
  doi: 10.1021/acsami.6b09188
– ident: e_1_2_9_150_1
  doi: 10.1063/1.4892012
– ident: e_1_2_9_158_1
  doi: 10.1002/adma.201405864
– ident: e_1_2_9_69_1
  doi: 10.1002/aelm.201500250
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202110639
– ident: e_1_2_9_141_1
  doi: 10.1038/s41586-018-0536-x
– ident: e_1_2_9_13_1
  doi: 10.1126/science.aac5082
– ident: e_1_2_9_119_1
  doi: 10.1002/aelm.201600104
– ident: e_1_2_9_162_1
  doi: 10.1038/ncomms3954
– ident: e_1_2_9_165_1
  doi: 10.1002/smsc.202000050
– ident: e_1_2_9_153_1
  doi: 10.1039/c3tb20451k
– ident: e_1_2_9_146_1
  doi: 10.1002/adma.201404378
– volume: 2021
  start-page: 21
  year: 2021
  ident: e_1_2_9_148_1
  publication-title: Proc. IEEE Sens.
– ident: e_1_2_9_195_1
  doi: 10.1021/acs.jpclett.9b03323
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mser.2021.100631
– ident: e_1_2_9_22_1
  doi: 10.1038/nmat2879
– ident: e_1_2_9_76_1
  doi: 10.1038/ncomms8461
– ident: e_1_2_9_188_1
  doi: 10.1002/adma.201600468
– ident: e_1_2_9_54_1
  doi: 10.1016/S1369-7021(13)70013-0
– ident: e_1_2_9_169_1
  doi: 10.1038/nmat2459
– ident: e_1_2_9_87_1
  doi: 10.1007/s00396-013-3143-2
– ident: e_1_2_9_53_1
  doi: 10.1016/j.rser.2012.02.021
– ident: e_1_2_9_161_1
  doi: 10.1002/adma.201404707
– ident: e_1_2_9_229_1
  doi: 10.1016/j.nanoen.2018.05.017
– ident: e_1_2_9_42_1
  doi: 10.1016/j.mser.2017.02.001
– ident: e_1_2_9_175_1
  doi: 10.1038/s41467-021-23203-y
– ident: e_1_2_9_16_1
  doi: 10.1002/aelm.201900347
– ident: e_1_2_9_89_1
  doi: 10.1002/adma.201400334
– ident: e_1_2_9_204_1
  doi: 10.1021/acsami.6b08866
– ident: e_1_2_9_168_1
  doi: 10.1002/smsc.202000057
– ident: e_1_2_9_45_1
  doi: 10.1002/cptc.201900198
– ident: e_1_2_9_197_1
  doi: 10.1039/C9CS00431A
– ident: e_1_2_9_108_1
  doi: 10.1038/nphoton.2013.242
– ident: e_1_2_9_170_1
  doi: 10.1126/science.1160309
– ident: e_1_2_9_88_1
  doi: 10.1021/acsnano.7b01894
– ident: e_1_2_9_163_1
  doi: 10.1109/PROC.1972.8948
– ident: e_1_2_9_67_1
  doi: 10.1002/adfm.201100904
– ident: e_1_2_9_102_1
  doi: 10.1039/C6TC01728B
– ident: e_1_2_9_173_1
  doi: 10.1038/nmat2896
– ident: e_1_2_9_156_1
  doi: 10.1002/adma.201400263
– ident: e_1_2_9_55_1
  doi: 10.1002/adma.201800388
– ident: e_1_2_9_201_1
  doi: 10.1002/adma.202003818
– ident: e_1_2_9_60_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_9_215_1
  doi: 10.1039/C9TC00324J
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms1772
– ident: e_1_2_9_75_1
  doi: 10.1016/j.orgel.2018.06.008
– ident: e_1_2_9_179_1
  doi: 10.1002/adma.201101986
– ident: e_1_2_9_235_1
  doi: 10.1016/j.solmat.2015.09.049
– ident: e_1_2_9_33_1
  doi: 10.3390/ma9080650
– ident: e_1_2_9_185_1
  doi: 10.1016/j.mattod.2021.08.004
– ident: e_1_2_9_154_1
  doi: 10.1039/C3TB21079K
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201004426
– start-page: 3
  volume-title: Proc. Int. Work. Wearable Implant. Body Sens. Networks
  year: 2006
  ident: e_1_2_9_27_1
– ident: e_1_2_9_193_1
  doi: 10.1002/adom.201901722
– ident: e_1_2_9_203_1
  doi: 10.1002/aelm.202001000
– ident: e_1_2_9_29_1
  doi: 10.1088/1468-6996/10/2/024313
– ident: e_1_2_9_143_1
  doi: 10.1021/acsnano.7b06823
– ident: e_1_2_9_84_1
  doi: 10.1002/adfm.201600612
– ident: e_1_2_9_198_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_9_180_1
  doi: 10.1021/nl202134z
– ident: e_1_2_9_212_1
  doi: 10.1002/adfm.201601980
– ident: e_1_2_9_91_1
  doi: 10.1002/adma.201703638
– ident: e_1_2_9_121_1
  doi: 10.1021/acsami.0c07496
– ident: e_1_2_9_166_1
  doi: 10.1002/admt.201800371
– ident: e_1_2_9_231_1
  doi: 10.1002/aelm.201600471
– ident: e_1_2_9_118_1
  doi: 10.1021/acs.macromol.5b00524
– ident: e_1_2_9_30_1
  doi: 10.1002/aelm.201600388
– ident: e_1_2_9_103_1
  doi: 10.1002/mame.201500447
– ident: e_1_2_9_202_1
  doi: 10.1038/s41467-020-20256-3
– ident: e_1_2_9_132_1
  doi: 10.1038/nmat4785
– ident: e_1_2_9_135_1
  doi: 10.1073/pnas.0807476105
– ident: e_1_2_9_2_1
  doi: 10.1109/TITB.2010.2044798
– ident: e_1_2_9_59_1
  doi: 10.1002/adma.201601422
– ident: e_1_2_9_171_1
  doi: 10.1126/science.1160379
– ident: e_1_2_9_187_1
  doi: 10.1039/C8TC04371J
– ident: e_1_2_9_216_1
  doi: 10.1002/adom.201900272
– ident: e_1_2_9_107_1
  doi: 10.1109/JSEN.2016.2608330
– ident: e_1_2_9_230_1
  doi: 10.1002/smsc.202100001
– ident: e_1_2_9_95_1
  doi: 10.1002/smsc.202000080
– ident: e_1_2_9_189_1
  doi: 10.1002/adfm.201909909
– ident: e_1_2_9_183_1
  doi: 10.1002/adma.201808138
– ident: e_1_2_9_24_1
  doi: 10.1002/polb.23662
– ident: e_1_2_9_211_1
  doi: 10.1002/admt.201800104
– ident: e_1_2_9_210_1
  doi: 10.1002/adom.201801346
– ident: e_1_2_9_58_1
  doi: 10.1016/j.progpolymsci.2019.101181
– ident: e_1_2_9_70_1
  doi: 10.1016/j.solmat.2012.07.013
– ident: e_1_2_9_220_1
  doi: 10.1016/j.apmt.2020.100899
– ident: e_1_2_9_68_1
  doi: 10.1002/adma.201305462
– ident: e_1_2_9_213_1
  doi: 10.3390/electronics3010043
– ident: e_1_2_9_127_1
  doi: 10.1002/adma.201200448
– ident: e_1_2_9_125_1
  doi: 10.1021/acsami.7b12908
– ident: e_1_2_9_199_1
  doi: 10.1021/acsnano.0c08287
– ident: e_1_2_9_86_1
  doi: 10.1039/C6NR02216B
– ident: e_1_2_9_104_1
  doi: 10.1039/C5NR08618C
– ident: e_1_2_9_178_1
  doi: 10.1039/C4NR00265B
– ident: e_1_2_9_82_1
  doi: 10.1126/sciadv.aat7387
– ident: e_1_2_9_4_1
  doi: 10.1016/j.bios.2022.114115
– ident: e_1_2_9_227_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.6b08587
– ident: e_1_2_9_191_1
  doi: 10.1002/lpor.202000262
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.201807975
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.201503288
– ident: e_1_2_9_114_1
  doi: 10.1038/s41428-021-00510-1
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.accounts.8b00448
– ident: e_1_2_9_21_1
  doi: 10.1038/nmat3711
– ident: e_1_2_9_113_1
  doi: 10.1002/smtd.202100676
– ident: e_1_2_9_8_1
  doi: 10.1002/adma.201601278
– ident: e_1_2_9_51_1
  doi: 10.1002/pi.1974
– ident: e_1_2_9_159_1
  doi: 10.1021/acsami.6b14220
– ident: e_1_2_9_228_1
  doi: 10.1002/adma.201702308
– ident: e_1_2_9_71_1
  doi: 10.1002/smll.201400874
– ident: e_1_2_9_134_1
  doi: 10.1002/adfm.200800306
– ident: e_1_2_9_46_1
  doi: 10.1016/j.bios.2015.06.002
– ident: e_1_2_9_99_1
  doi: 10.1038/nnano.2011.184
– volume: 30
  start-page: 24
  year: 2018
  ident: e_1_2_9_106_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_137_1
  doi: 10.1002/adma.201603436
– ident: e_1_2_9_177_1
  doi: 10.1038/s41528-021-00127-7
– ident: e_1_2_9_62_1
  doi: 10.1002/smtd.201800070
– ident: e_1_2_9_79_1
  doi: 10.1002/adfm.201101418
– ident: e_1_2_9_139_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_9_144_1
  doi: 10.1016/j.sbsr.2015.02.002
– ident: e_1_2_9_15_1
  doi: 10.1002/aelm.202000527
– ident: e_1_2_9_217_1
  doi: 10.1038/s41467-018-07943-y
– ident: e_1_2_9_18_1
  doi: 10.1002/smsc.202100086
– ident: e_1_2_9_157_1
  doi: 10.1002/admt.201600042
– ident: e_1_2_9_14_1
  doi: 10.1021/acs.accounts.8b00465
– ident: e_1_2_9_214_1
  doi: 10.1126/sciadv.aas9530
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.202200682
– ident: e_1_2_9_208_1
  doi: 10.1021/acsami.7b09411
– ident: e_1_2_9_81_1
  doi: 10.1021/acsami.5b12588
– ident: e_1_2_9_130_1
  doi: 10.1002/adma.201304032
– ident: e_1_2_9_100_1
  doi: 10.1038/nature07719
– ident: e_1_2_9_78_1
  doi: 10.1038/ncomms4005
– ident: e_1_2_9_196_1
  doi: 10.1002/adma.201204979
– ident: e_1_2_9_6_1
  doi: 10.1002/inf2.12122
– ident: e_1_2_9_64_1
  doi: 10.1002/aelm.201900681
– ident: e_1_2_9_92_1
  doi: 10.1038/ncomms1721
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.200904054
– ident: e_1_2_9_232_1
  doi: 10.1038/s41560-017-0001-3
– ident: e_1_2_9_47_1
  doi: 10.1073/pnas.0802105105
– ident: e_1_2_9_176_1
  doi: 10.1002/adfm.201001107
– ident: e_1_2_9_122_1
  doi: 10.1021/acs.macromol.9b00589
– ident: e_1_2_9_72_1
  doi: 10.1002/adma.201205361
– ident: e_1_2_9_174_1
  doi: 10.1038/nphoton.2010.7
– ident: e_1_2_9_133_1
  doi: 10.1002/adma.201705377
– ident: e_1_2_9_3_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_9_194_1
  doi: 10.1039/C9NR09926C
– ident: e_1_2_9_142_1
  doi: 10.1002/adma.201603167
– start-page: 8729702
  volume-title: 23rd Opto‐Electronics Communications Conf. OECC
  year: 2018
  ident: e_1_2_9_207_1
– ident: e_1_2_9_218_1
  doi: 10.1002/adom.201500560
– ident: e_1_2_9_44_1
  doi: 10.1002/smsc.202100109
– ident: e_1_2_9_126_1
  doi: 10.1021/am500769k
– ident: e_1_2_9_167_1
  doi: 10.1117/1.JPE.8.032108
– ident: e_1_2_9_93_1
  doi: 10.1039/C6TC05659H
– ident: e_1_2_9_83_1
  doi: 10.1038/s41563-022-01239-9
– ident: e_1_2_9_80_1
  doi: 10.1021/acsami.9b23291
– ident: e_1_2_9_94_1
  doi: 10.1039/C8CS00706C
– ident: e_1_2_9_105_1
  doi: 10.1126/sciadv.1602076
– volume: 33
  year: 2021
  ident: e_1_2_9_49_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_190_1
  doi: 10.1002/adma.202003309
– ident: e_1_2_9_234_1
  doi: 10.1021/ma500286d
– ident: e_1_2_9_38_1
  doi: 10.1126/sciadv.abd9715
– ident: e_1_2_9_74_1
  doi: 10.1073/pnas.0502392102
– ident: e_1_2_9_205_1
  doi: 10.1021/acsami.8b06861
– ident: e_1_2_9_209_1
  doi: 10.1016/j.nanoen.2016.12.040
– ident: e_1_2_9_96_1
  doi: 10.1038/s41565-018-0226-8
– ident: e_1_2_9_48_1
  doi: 10.1038/natrevmats.2017.86
– ident: e_1_2_9_23_1
  doi: 10.1038/nature07113
SSID ssj0031247
Score 2.6285963
SecondaryResourceType review_article
Snippet Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206309
SubjectTerms biosensors
Chemical sensors
Electrical properties
Electronics
Internet of Things
light‐emitting diodes
Low temperature
Nanotechnology
Organic light emitting diodes
Organic semiconductors
photodetectors
Photodiodes
Photovoltaic cells
photovoltaics
Stretchability
Substrates
wearable electronics
Wearable technology
Weight reduction
Title Wearable Electronics Based on Stretchable Organic Semiconductors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206309
https://www.ncbi.nlm.nih.gov/pubmed/36794301
https://www.proquest.com/docview/2814262064
https://www.proquest.com/docview/2777403519
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4PwoFBQmJyW1ip06y8VCrCrUMlIpuUewkCyVBTbvw67lzEkNBCAnGKHbi-O58n-O77wi5sCUXKXc5SIBF1HUjQSPPT2kkk24K-Fl5Om9tdC8GE_du2p1-yuIv-SHMDze0DL1eo4FHsuh8kIYWLzM8OmAMWaMwgw8DthAVPRj-KA7OS1dXAZ9FkXirZm20WWe1-6pX-gY1V5Grdj39LRLVgy4jTp7by4Vsq7cvfI7_-aptslnhUuu6VKQdspZku2TjE1vhHrl6AqvATCurZ2rnFNYNuMHYyjMLz7dBBXSDMsNTWWMMvc8z5JTN58U-mfR7j7cDWhVgoAq3KTSQDothy8I8wA3S8aTgIujGsW-njmRB6qdOEAsFk5zwlKUgWBm4kjuJr2IZdxU_II0sz5IjYgEOC2wuPRVJWDNcPwDLB-gkQVcAwzCnSWgtgFBV7ORYJGMWlrzKLMSZCc3MNMmlaf9a8nL82LJVyzOs7LMIme9oKn7hNsm5uQ2WhcclUZbkS2jjATTGg1Z4xGGpB-ZVXCCxng3DZlqav4whHI-GQ3N1_JdOJ2QdK92XsZYt0ljMl8kp4KGFPNM6_w7OQv8Z
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JToRAEK24HNSD-zKumGg8MUI368HEPaPOeHCJc0O6gYsKRmZi9K_8Fb_IKjYdjTEx8eARaKCgtgfd9QpgTRPcirjBUQPMVw3Dt1TfdiLVF6EZIX6Wdla31jq1GpfGcdts98FLWQuT80NUP9zIM7J4TQ5OP6Q331lD07tbmjtgjGij3GJd5Un49IhfbenW0T6qeJ2xw4OLvYZaNBZQJcFv1RU6CxCKMxvzodBtYXHLNYPA0SJdMDdyIt0NLMkMO-QRi1Bg4RqC66EjAxGYkuN1-2GQ2ogTXf_-WcVYxTFdZv1cMEuqRPVV8kRqbLNX3t48-AXc9mLlLNkdjsFr-ZryNS439W5H1OXzJwbJf_Uex2G0gN7KTu4rE9AXxpMw8oGQcQq2r1AsKiZTDqr2QKmyi5k-UJJYoSl8tPJsQF7EKpVzqi5IYqLNTR7Sabj8k0eYgYE4icM5UBBquhoXtvQFhkXDcTG4IToU6A4I05heA7XUuCcLAnbqA3Lr5dTRzCNNeJUmarBRjb_PqUe-HblYGpBXhKDUY46edRuwjBqsVocxeNCMkB-HSRfH2Ij-aS4ZLzGbG151K24Rd6CGYrPMfH6QwTtvNZvV1vxvTlqBocZFq-k1j05PFmAY9xdLSxdhoPPQDZcQ_nXEcuZwClz_tWW-AYrIXLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT6RAEK64mpj14GtXHV_LJm48odDd09AHEx_jRNfRGF2jN6Qb-qKCkZkY_VX-Ff-R1bx0NGYTEw8egQYK6vVBd30FsORIyjVlFDVAQpuxkNuh52s7lHFTI35WXl63tn_Ad07Y37Pm2QA8VLUwBT9E_cPNeEYer42DX0d69Zk0NLu6NFMHhBjWKFEuq9yL727xoy1b222hhv8Q0t7-t7Vjl30FbGXQty2kSyJE4sTDdChdT3LKRTOKfEe7kgjta1dEXBHmxVQTjfJKwSR1Y19FMmoqitf9BkOMO8I0i2gd1YRVFLNl3s4Fk6RtmL4qmkiHrPbL258G32Dbfqic57r2GDxWb6lY4nKx0uvKFXX_ikDyK73GcRgtgbe1UXjKBAzEySSMvKBj_AHrpyiWKSWztuvmQJm1iXk-stLEMhP4aOP5gKKEVVnHprYgTQxpbnqT_YSTT3mEKRhM0iSeAQuBpnCo9FQoMSgyX2BoQ2wo0RkQpBG3AXal8ECV9OumC8hlUBBHk8BoIqg10YDlevx1QTzy7sj5yn6CMgBlAfHdvNcAZw34XR_G0GHmg8IkTns4xkPsb2aS8RLThd3Vt6LcMAc6KDbJrec_MgTH-51OvTX7kZN-wfBhqx10dg_25uA77i7Xlc7DYPemFy8g9uvKxdzdLDj_bMN8Au8cW18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Electronics+Based+on+Stretchable+Organic+Semiconductors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Xinzhao&rft.au=Zhao%2C+Yan&rft.au=Liu%2C+Yunqi&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=20&rft_id=info:doi/10.1002%2Fsmll.202206309&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon