Wearable Electronics Based on Stretchable Organic Semiconductors
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stret...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 20; pp. e2206309 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed.
Recent years have witnessed the rapid development of wearable electronics. Stretchable organic semiconductors (SOS) are ideal candidates for the next generation wearable electronics. In this review, some recent advances of SOS‐based wearable electronics are presented and classified based on their functionalities and potential applications. The potential challenges and opportunities for their future development are also discussed. |
---|---|
AbstractList | Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed. Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large‐area printing. Considerable efforts have been dedicated to the fabrication of SOS‐based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS‐based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS‐based wearable electronics are also discussed. Recent years have witnessed the rapid development of wearable electronics. Stretchable organic semiconductors (SOS) are ideal candidates for the next generation wearable electronics. In this review, some recent advances of SOS‐based wearable electronics are presented and classified based on their functionalities and potential applications. The potential challenges and opportunities for their future development are also discussed. Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed. |
Author | Liu, Yunqi Zhao, Yan Xu, Xinzhao |
Author_xml | – sequence: 1 givenname: Xinzhao surname: Xu fullname: Xu, Xinzhao organization: Fudan University – sequence: 2 givenname: Yan orcidid: 0000-0002-4216-2150 surname: Zhao fullname: Zhao, Yan email: zhaoy@fudan.edu.cn organization: Fudan University – sequence: 3 givenname: Yunqi surname: Liu fullname: Liu, Yunqi organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36794301$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLxDAQh4MoPlavHqXgxUvXvLZpbuqyPmBlD6t4DGmSaiVNNGmR_e-N7kMQxNMMzPcNw_wOwLbzzgBwjOAQQYjPY2vtEEOMYUEg3wL7qEAkL0rMtzc9gnvgIMZXCAnClO2CPVIwTglE--DiycggK2uyiTWqC941KmZXMhqdeZfNu2A69fINzMKzTNNsbtpGead71fkQD8FOLW00R6s6AI_Xk4fxbT6d3dyNL6e5ooTznFcIa8QoZiVKPasKUvCR1iWsUYV5XdaI60Kl8wypcQ0VqzitCDKl0pUeKTIAZ8u9b8G_9yZ2om2iMtZKZ3wfBWaMUUhGiCf09Bf66vvg0nUCl4jiIj2LJupkRfVVa7R4C00rw0Ksf5MAugRU8DEGUwvVdLJrvOuCbKxAUHxFIL4iEJsIkjb8pa03_ynwpfDRWLP4hxbz--n0x_0EEDSXwg |
CitedBy_id | crossref_primary_10_1016_j_synthmet_2024_117661 crossref_primary_10_3390_polym16030396 crossref_primary_10_1021_acs_analchem_4c05004 crossref_primary_10_1088_2634_4386_ad63c6 crossref_primary_10_1039_D3SC06728A crossref_primary_10_1002_elt2_77 crossref_primary_10_1088_2631_7990_ada858 crossref_primary_10_1039_D3EY00047H crossref_primary_10_1002_marc_202300624 crossref_primary_10_1002_aelm_202300026 crossref_primary_10_3390_nanoenergyadv3040017 crossref_primary_10_1002_adom_202400702 crossref_primary_10_3390_coatings14091080 crossref_primary_10_1002_idm2_12223 crossref_primary_10_1002_lpor_202401532 crossref_primary_10_1002_adfm_202505232 crossref_primary_10_1002_admt_202302048 crossref_primary_10_1021_acsaelm_4c01473 crossref_primary_10_1002_adma_202313312 crossref_primary_10_1002_adma_202417254 crossref_primary_10_1002_eem2_12806 crossref_primary_10_1016_j_molstruc_2024_141205 crossref_primary_10_1002_adom_202302121 crossref_primary_10_1002_aelm_202300559 crossref_primary_10_1016_j_snb_2024_136005 crossref_primary_10_1002_advs_202404866 crossref_primary_10_1021_acsomega_4c05648 crossref_primary_10_1002_apxr_202400151 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1021_acsmaterialslett_3c00800 crossref_primary_10_1088_1402_4896_adadb4 crossref_primary_10_1021_jacs_4c00514 crossref_primary_10_1021_acs_langmuir_4c03445 crossref_primary_10_1002_adom_202302512 crossref_primary_10_1002_cplu_202300261 crossref_primary_10_1021_acsami_3c09595 crossref_primary_10_3390_pr12091944 crossref_primary_10_1016_j_cej_2024_158769 crossref_primary_10_1002_marc_202500018 crossref_primary_10_1007_s11696_024_03618_9 crossref_primary_10_1007_s13233_024_00355_6 crossref_primary_10_1021_acsaem_3c03067 crossref_primary_10_1002_admt_202300924 crossref_primary_10_1039_D3TC02028B crossref_primary_10_1002_admt_202301810 crossref_primary_10_1039_D3TC03484D crossref_primary_10_1002_adma_202413157 crossref_primary_10_1021_acs_macromol_3c01888 crossref_primary_10_1021_acs_jpclett_4c02443 crossref_primary_10_1088_2399_1984_acd59a crossref_primary_10_1007_s44291_024_00039_6 crossref_primary_10_1002_adma_202407271 crossref_primary_10_1021_acsami_4c11976 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1021_acsapm_4c03426 crossref_primary_10_1002_adem_202402208 crossref_primary_10_1002_adma_202308952 crossref_primary_10_1039_D4TC02709D |
Cites_doi | 10.1039/C6MH00164E 10.1021/acsami.6b03451 10.1002/adma.200306107 10.1016/j.dsp.2021.103145 10.1021/acsomega.7b00873 10.1038/s41528-022-00171-x 10.1002/adfm.201604163 10.1038/s41565-022-01160-x 10.1021/acsnano.0c09426 10.1002/adfm.201302646 10.1002/adma.201800051 10.1002/adma.201205330 10.1016/j.progpolymsci.2013.07.009 10.1021/ja710079w 10.1002/adma.201902045 10.1002/aelm.202000145 10.1016/j.tsf.2011.04.188 10.1002/aelm.201600311 10.1002/smsc.202200029 10.1002/adma.201502996 10.1038/nature14543 10.1126/science.1206157 10.1007/s10853-021-06503-y 10.1038/s41587-019-0045-y 10.1038/ncomms6745 10.1002/advs.202004050 10.1126/sciadv.1501856 10.1002/aelm.201900566 10.1038/s41467-021-23798-2 10.1063/1.1527233 10.1002/advs.202002418 10.1021/acs.chemmater.9b00966 10.1039/C9TC00709A 10.1038/nmat2971 10.1016/j.neuron.2014.12.035 10.1021/acs.chemrev.7b00003 10.1021/acsnano.5b01835 10.1186/s11671-019-3084-x 10.1038/nature20102 10.1038/s41598-018-26731-8 10.1002/adma.201403560 10.1038/ncomms11924 10.1021/nn405887k 10.1021/acs.chemmater.7b00181 10.1002/adom.201800522 10.1038/s41467-018-06011-9 10.1002/adma.201404602 10.1007/BF03256330 10.1126/sciadv.1600076 10.1021/acsami.9b08622 10.1002/adfm.201808803 10.1021/nn1018768 10.1039/C7QM00497D 10.1021/acsami.6b16115 10.1126/science.aah4496 10.1039/c2jm15716k 10.1002/adma.202002217 10.1039/C9NR06096K 10.1016/j.nanoen.2021.106497 10.1002/adma.201700975 10.1002/adma.202107304 10.1038/nature21004 10.1016/j.chempr.2017.08.015 10.1002/adma.201200088 10.1021/acsami.8b21130 10.1002/aelm.201900191 10.1002/aelm.201800900 10.1038/ncomms11573 10.1021/acsami.6b09188 10.1063/1.4892012 10.1002/adma.201405864 10.1002/aelm.201500250 10.1002/adma.202110639 10.1038/s41586-018-0536-x 10.1126/science.aac5082 10.1002/aelm.201600104 10.1038/ncomms3954 10.1002/smsc.202000050 10.1039/c3tb20451k 10.1002/adma.201404378 10.1021/acs.jpclett.9b03323 10.1016/j.mser.2021.100631 10.1038/nmat2879 10.1038/ncomms8461 10.1002/adma.201600468 10.1016/S1369-7021(13)70013-0 10.1038/nmat2459 10.1007/s00396-013-3143-2 10.1016/j.rser.2012.02.021 10.1002/adma.201404707 10.1016/j.nanoen.2018.05.017 10.1016/j.mser.2017.02.001 10.1038/s41467-021-23203-y 10.1002/aelm.201900347 10.1002/adma.201400334 10.1021/acsami.6b08866 10.1002/smsc.202000057 10.1002/cptc.201900198 10.1039/C9CS00431A 10.1038/nphoton.2013.242 10.1126/science.1160309 10.1021/acsnano.7b01894 10.1109/PROC.1972.8948 10.1002/adfm.201100904 10.1039/C6TC01728B 10.1038/nmat2896 10.1002/adma.201400263 10.1002/adma.201800388 10.1002/adma.202003818 10.1002/adma.201302240 10.1039/C9TC00324J 10.1038/ncomms1772 10.1016/j.orgel.2018.06.008 10.1002/adma.201101986 10.1016/j.solmat.2015.09.049 10.3390/ma9080650 10.1016/j.mattod.2021.08.004 10.1039/C3TB21079K 10.1002/adma.201004426 10.1002/adom.201901722 10.1002/aelm.202001000 10.1088/1468-6996/10/2/024313 10.1021/acsnano.7b06823 10.1002/adfm.201600612 10.1038/natrevmats.2016.100 10.1021/nl202134z 10.1002/adfm.201601980 10.1002/adma.201703638 10.1021/acsami.0c07496 10.1002/admt.201800371 10.1002/aelm.201600471 10.1021/acs.macromol.5b00524 10.1002/aelm.201600388 10.1002/mame.201500447 10.1038/s41467-020-20256-3 10.1038/nmat4785 10.1073/pnas.0807476105 10.1109/TITB.2010.2044798 10.1002/adma.201601422 10.1126/science.1160379 10.1039/C8TC04371J 10.1002/adom.201900272 10.1109/JSEN.2016.2608330 10.1002/smsc.202100001 10.1002/smsc.202000080 10.1002/adfm.201909909 10.1002/adma.201808138 10.1002/polb.23662 10.1002/admt.201800104 10.1002/adom.201801346 10.1016/j.progpolymsci.2019.101181 10.1016/j.solmat.2012.07.013 10.1016/j.apmt.2020.100899 10.1002/adma.201305462 10.3390/electronics3010043 10.1002/adma.201200448 10.1021/acsami.7b12908 10.1021/acsnano.0c08287 10.1039/C6NR02216B 10.1039/C5NR08618C 10.1039/C4NR00265B 10.1126/sciadv.aat7387 10.1016/j.bios.2022.114115 10.1016/j.nanoen.2012.01.004 10.1021/acsami.6b08587 10.1002/lpor.202000262 10.1002/adma.201807975 10.1002/adma.201503288 10.1038/s41428-021-00510-1 10.1021/acs.accounts.8b00448 10.1038/nmat3711 10.1002/smtd.202100676 10.1002/adma.201601278 10.1002/pi.1974 10.1021/acsami.6b14220 10.1002/adma.201702308 10.1002/smll.201400874 10.1002/adfm.200800306 10.1016/j.bios.2015.06.002 10.1038/nnano.2011.184 10.1002/adma.201603436 10.1038/s41528-021-00127-7 10.1002/smtd.201800070 10.1002/adfm.201101418 10.1016/j.sbsr.2015.02.002 10.1002/aelm.202000527 10.1038/s41467-018-07943-y 10.1002/smsc.202100086 10.1002/admt.201600042 10.1021/acs.accounts.8b00465 10.1126/sciadv.aas9530 10.1002/adma.202200682 10.1021/acsami.7b09411 10.1021/acsami.5b12588 10.1002/adma.201304032 10.1038/nature07719 10.1038/ncomms4005 10.1002/adma.201204979 10.1002/inf2.12122 10.1002/aelm.201900681 10.1038/ncomms1721 10.1002/adma.200904054 10.1038/s41560-017-0001-3 10.1073/pnas.0802105105 10.1002/adfm.201001107 10.1021/acs.macromol.9b00589 10.1002/adma.201205361 10.1038/nphoton.2010.7 10.1002/adma.201705377 10.1002/adfm.201504755 10.1039/C9NR09926C 10.1002/adma.201603167 10.1002/adom.201500560 10.1002/smsc.202100109 10.1021/am500769k 10.1117/1.JPE.8.032108 10.1039/C6TC05659H 10.1038/s41563-022-01239-9 10.1021/acsami.9b23291 10.1039/C8CS00706C 10.1126/sciadv.1602076 10.1002/adma.202003309 10.1021/ma500286d 10.1126/sciadv.abd9715 10.1073/pnas.0502392102 10.1021/acsami.8b06861 10.1016/j.nanoen.2016.12.040 10.1038/s41565-018-0226-8 10.1038/natrevmats.2017.86 10.1038/nature07113 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202206309 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36794301 10_1002_smll_202206309 SMLL202206309 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2018YFA0703200 – fundername: National Natural Science Foundation of China funderid: 61890940; 51903051 – fundername: Natural Science Foundation of Shanghai funderid: 22ZR1407800 – fundername: National Natural Science Foundation of China grantid: 51903051 – fundername: National Natural Science Foundation of China grantid: 61890940 – fundername: Natural Science Foundation of Shanghai grantid: 22ZR1407800 – fundername: National Key R&D Program of China grantid: 2018YFA0703200 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4399-9b12d17427819b17b63695dd80f1b29f8f19d6c247e3f2f0c7b94b31e8cdbd5c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 02:03:55 EDT 2025 Sun Jul 13 05:33:29 EDT 2025 Thu Apr 03 07:07:28 EDT 2025 Thu Apr 24 23:15:50 EDT 2025 Tue Jul 01 02:54:26 EDT 2025 Wed Jan 22 16:21:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | organic semiconductors photodetectors biosensors light-emitting diodes photovoltaics wearable electronics |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-9b12d17427819b17b63695dd80f1b29f8f19d6c247e3f2f0c7b94b31e8cdbd5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4216-2150 |
PMID | 36794301 |
PQID | 2814262064 |
PQPubID | 1046358 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2777403519 proquest_journals_2814262064 pubmed_primary_36794301 crossref_citationtrail_10_1002_smll_202206309 crossref_primary_10_1002_smll_202206309 wiley_primary_10_1002_smll_202206309_SMLL202206309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 561 2010; 14 2013; 1 2019; 11 2019; 10 2015; 74 2019; 14 2014; 26 2016; 540 2016; 144 2020; 14 2014; 24 2008; 105 2020; 12 2012; 16 2022; 21 2020; 11 2012; 15 2016; 301 2013; 7 2018; 49 2010; 22 2018; 6 2018; 9 2011; 520 2009; 13 2018; 8 2010; 20 2018; 3 2018; 2 2009; 10 2018; 4 2005; 102 2015; 86 2022; 34 2019; 29 2018; 30 2012; 24 2022; 205 2010; 4 2012; 22 2010; 9 2021; 2021 2019; 7 2017; 64 2019; 4 2019; 5 2021; 146 2019; 31 2015; 521 2006; 55 2015; 53 2019; 37 1972; 60 2014; 47 2002; 81 2020; 32 2011; 6 2016; 16 2021; 51 2012; 107 2009; 457 2016; 4 2016; 7 2021; 53 2016; 1 2016; 2 2021; 56 2016; 3 2020; 30 2022; 6 2019; 48 2022; 2 2018; 12 2016; 28 2018; 10 2016; 26 2016; 8 2008; 130 2016; 9 2022; 17 2018; 13 2017; 5 2017; 2 2013; 25 2017; 3 2021; 22 2019; 52 2011; 11 2011; 10 2014; 292 2017; 115 2017; 9 2017; 117 2020; 8 2020; 6 2015; 48 2020; 2000 2020; 4 2014; 5 2020; 2 2014; 3 2021; 33 2014; 2 2013; 12 2017; 32 2020; 49 2011; 21 2011; 23 2014; 8 2014; 6 2016; 351 2022; 125 2021; 8 2021; 7 2011; 333 2015; 6 2021; 5 2015; 4 2017; 27 2008; 18 2015; 11 2006 2020; 100 2017; 29 2018; 61 2021; 1 2008; 321 2015; 9 2021; 90 2014; 105 2021; 15 2015; 27 2012; 3 2021; 12 2013; 38 2012; 1 2016; 539 2004; 16 2017; 16 2017; 11 2018 2009; 8 2018; 51 2008; 454 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 Massey R. S. (e_1_2_9_148_1) 2021; 2021 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 Raza M. A. (e_1_2_9_207_1) 2018 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Wang J. (e_1_2_9_106_1) 2018; 30 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_90_1 Nawaz A. (e_1_2_9_49_1) 2021; 33 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 Manunza I. (e_1_2_9_27_1) 2006 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 540 start-page: 379 year: 2016 publication-title: Nature – volume: 25 start-page: 4267 year: 2013 publication-title: Adv. Mater. – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 107 start-page: 355 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 817 year: 2013 publication-title: Nat. Photonics – volume: 48 start-page: 4339 year: 2015 publication-title: Macromolecules – volume: 520 start-page: 1291 year: 2011 publication-title: Thin Solid Films – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1223 year: 2014 publication-title: Adv. Mater. – volume: 12 start-page: 899 year: 2013 publication-title: Nat. Mater. – volume: 31 start-page: 6359 year: 2019 publication-title: Chem. Mater. – volume: 38 start-page: 1978 year: 2013 publication-title: Prog. Polym. Sci. – volume: 74 start-page: 45 year: 2015 publication-title: Biosens. Bioelectron. – volume: 28 start-page: 4177 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 641 year: 2017 publication-title: Chem – volume: 15 start-page: 1217 year: 2021 publication-title: ACS Nano – volume: 26 start-page: 3874 year: 2014 publication-title: Adv. Mater. – volume: 5 start-page: 2954 year: 2014 publication-title: Nat. Commun. – volume: 321 start-page: 1465 year: 2008 publication-title: Science – volume: 12 start-page: 1170 year: 2018 publication-title: ACS Nano – volume: 22 year: 2021 publication-title: Appl. Mater. Today – volume: 3 start-page: 43 year: 2014 publication-title: Electron – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 16 start-page: 7870 year: 2016 publication-title: IEEE Sens. J. – volume: 9 start-page: 3438 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 650 year: 2016 publication-title: Materials – volume: 60 start-page: 2 year: 1972 publication-title: Proc. IEEE – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 2 start-page: 355 year: 2018 publication-title: Mater. Chem. Front. – volume: 4 start-page: 23 year: 2015 publication-title: Sens. Bio‐Sens. Res. – volume: 64 start-page: 59 year: 2017 publication-title: Science – volume: 9 start-page: 929 year: 2010 publication-title: Nat. Mater. – volume: 7 start-page: eabd9715 year: 2021 publication-title: Sci. Adv. – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 25 start-page: 4302 year: 2013 publication-title: Adv. Mater. – volume: 292 start-page: 945 year: 2014 publication-title: Colloid Polym. Sci. – volume: 115 start-page: 1 year: 2017 publication-title: Mater. Sci. Eng., R – volume: 32 start-page: 367 year: 2017 publication-title: Nano Energy – volume: 4 start-page: eaas9530 year: 2018 publication-title: Sci. Adv. – volume: 11 start-page: 4642 year: 2011 publication-title: Nano Lett. – volume: 5 year: 2021 publication-title: Small Methods – volume: 52 start-page: 4396 year: 2019 publication-title: Macromolecules – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 9 start-page: 7322 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 34 year: 2022 publication-title: npj Flexible Electron. – volume: 457 start-page: 706 year: 2009 publication-title: Nature – volume: 454 start-page: 748 year: 2008 publication-title: Nature – volume: 20 start-page: 3577 year: 2010 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 452 year: 2016 publication-title: Mater. Horiz. – volume: 24 start-page: 2673 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 788 year: 2011 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 4440 year: 2012 publication-title: J. Mater. Chem. – volume: 205 year: 2022 publication-title: Biosens. Bioelectron. – volume: 22 start-page: 2228 year: 2010 publication-title: Adv. Mater. – volume: 2 start-page: 1131 year: 2020 publication-title: InfoMat – volume: 539 start-page: 411 year: 2016 publication-title: Nature – volume: 16 start-page: 2696 year: 2012 publication-title: Renewable Sustainable Energy Rev. – volume: 130 start-page: 3619 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7461 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: eaat7387 year: 2018 publication-title: Sci. Adv. – volume: 26 start-page: 6307 year: 2014 publication-title: Adv. Mater. – volume: 81 start-page: 4643 year: 2002 publication-title: Appl. Phys. Lett. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 4 start-page: 264 year: 2016 publication-title: Adv. Opt. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 16 start-page: 393 year: 2004 publication-title: Adv. Mater. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 11 start-page: 5992 year: 2017 publication-title: ACS Nano – volume: 2000 year: 2020 publication-title: Adv. Electron. Mater. – volume: 26 start-page: 6619 year: 2016 publication-title: Adv. Funct. Mater. – volume: 2 year: 2022 publication-title: SmallSci – volume: 10 year: 2009 publication-title: Sci. Technol. Adv. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 723 year: 2012 publication-title: Nat. Commun. – volume: 27 start-page: 6885 year: 2015 publication-title: Adv. Mater. – volume: 49 start-page: 653 year: 2020 publication-title: Chem. Soc. Rev. – volume: 301 start-page: 707 year: 2016 publication-title: Macromol. Mater. Eng. – volume: 23 start-page: 1771 year: 2011 publication-title: Adv. Mater. – volume: 10 start-page: 316 year: 2011 publication-title: Nat. Mater. – volume: 5 start-page: 5745 year: 2014 publication-title: Nat. Commun. – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 3697 year: 2011 publication-title: Adv. Funct. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 351 start-page: 1071 year: 2016 publication-title: Science – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 8 year: 2018 publication-title: J. Photonics Energy – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2944 year: 2016 publication-title: Nanoscale – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 100 year: 2020 publication-title: Prog. Polym. Sci. – volume: 17 start-page: 849 year: 2022 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 644 year: 2018 publication-title: Nano Energy – volume: 2 start-page: 5766 year: 2017 publication-title: ACS Omega – volume: 12 start-page: 3572 year: 2021 publication-title: Nat. Commun. – volume: 27 start-page: 1540 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 222 year: 2010 publication-title: Nat. Photonics – volume: 14 start-page: 758 year: 2010 publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 561 start-page: 516 year: 2018 publication-title: Nature – volume: 4 start-page: 9 year: 2020 publication-title: ChemPhotoChem. – volume: 8 start-page: 8477 year: 2018 publication-title: Sci. Rep. – volume: 30 start-page: 24 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1753 year: 2021 publication-title: ACS Nano – volume: 1 start-page: 3820 year: 2013 publication-title: J. Mater. Chem. B – volume: 21 start-page: 564 year: 2022 publication-title: Nat. Mater. – volume: 16 start-page: 356 year: 2017 publication-title: Nat. Mater. – volume: 2021 start-page: 21 year: 2021 publication-title: Proc. IEEE Sens. – volume: 47 start-page: 1981 year: 2014 publication-title: Macromolecules – volume: 28 start-page: 5969 year: 2016 publication-title: Adv. Mater. – volume: 105 year: 2008 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 8 start-page: 494 year: 2009 publication-title: Nat. Mater. – volume: 52 start-page: 277 year: 2019 publication-title: Acc. Chem. Res. – volume: 12 start-page: 2864 year: 2021 publication-title: Nat. Commun. – volume: 23 start-page: 3989 year: 2011 publication-title: Adv. Mater. – volume: 13 start-page: 1048 year: 2018 publication-title: Nat. Nanotechnol. – volume: 37 start-page: 389 year: 2019 publication-title: Nat. Biotechnol. – volume: 15 start-page: 554 year: 2012 publication-title: Mater. Today – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 61 start-page: 304 year: 2018 publication-title: Org. Electron. – volume: 7 start-page: 4725 year: 2019 publication-title: J. Mater. Chem. C – volume: 8 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 3349 year: 2015 publication-title: Adv. Mater. – volume: 144 start-page: 438 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 12 start-page: 1091 year: 2020 publication-title: Nanoscale – volume: 12 start-page: 55 year: 2021 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 191 year: 2014 publication-title: J. Mater. Chem. B – volume: 13 start-page: 245 year: 2009 publication-title: Mol. Diagn. Ther. – volume: 10 start-page: 12 year: 2019 publication-title: Nat. Commun. – volume: 27 start-page: 6230 year: 2015 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 start-page: 6666 year: 2016 publication-title: J. Mater. Chem. C – volume: 9 start-page: 1015 year: 2010 publication-title: Nat. Mater. – volume: 53 start-page: 1061 year: 2021 publication-title: Polym. J. – volume: 53 start-page: 453 year: 2015 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 3 start-page: 770 year: 2012 publication-title: Nat. Commun. – volume: 102 year: 2005 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 4253 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 676 year: 2015 publication-title: Adv. Mater. – volume: 125 year: 2022 publication-title: Digital Signal Process. – volume: 8 start-page: 1590 year: 2014 publication-title: ACS Nano – volume: 29 start-page: 3126 year: 2017 publication-title: Chem. Mater. – volume: 24 start-page: 2441 year: 2012 publication-title: Adv. Mater. – volume: 18 start-page: 2673 year: 2008 publication-title: Adv. Funct. Mater. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 55 start-page: 572 year: 2006 publication-title: Polym. Int. – volume: 5 start-page: 2892 year: 2017 publication-title: J. Mater. Chem. C – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 2 year: 2018 publication-title: Small Methods – year: 2018 – volume: 24 start-page: 1169 year: 2014 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 4 start-page: 7538 year: 2010 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 27 start-page: 1255 year: 2015 publication-title: Adv. Mater. – volume: 14 year: 2020 publication-title: Laser Photonics Rev. – volume: 86 start-page: 175 year: 2015 publication-title: Neuron – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 117 start-page: 6467 year: 2017 publication-title: Chem. Rev. – volume: 51 start-page: 2829 year: 2018 publication-title: Acc. Chem. Res. – volume: 6 start-page: 6954 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 8801 year: 2015 publication-title: ACS Nano – volume: 2 year: 2022 publication-title: Small Sci. – volume: 22 start-page: 175 year: 2012 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 9243 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 366 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 1 year: 2021 publication-title: Small Sci. – volume: 7 start-page: 5534 year: 2019 publication-title: J. Mater. Chem. C – volume: 5 start-page: 3005 year: 2014 publication-title: Nat. Commun. – volume: 48 start-page: 1566 year: 2019 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 8855 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 675 year: 2015 publication-title: Small – volume: 6 start-page: 6057 year: 2014 publication-title: Nanoscale – volume: 51 start-page: 475 year: 2021 publication-title: Mater. Today – volume: 90 year: 2021 publication-title: Nano Energy – volume: 14 start-page: 263 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 8 start-page: 5618 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3 year: 2021 publication-title: npj Flexible Electron. – volume: 27 start-page: 7638 year: 2015 publication-title: Adv. Mater. – volume: 146 year: 2021 publication-title: Mater. Sci. Eng., R – volume: 56 year: 2021 publication-title: J. Mater. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 25 start-page: 4210 year: 2013 publication-title: Adv. Mater. – start-page: 3 year: 2006 – volume: 2 start-page: 780 year: 2017 publication-title: Nat. Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 4680 year: 2016 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_236_1 doi: 10.1039/C6MH00164E – ident: e_1_2_9_90_1 doi: 10.1021/acsami.6b03451 – ident: e_1_2_9_172_1 doi: 10.1002/adma.200306107 – ident: e_1_2_9_182_1 doi: 10.1016/j.dsp.2021.103145 – ident: e_1_2_9_35_1 doi: 10.1021/acsomega.7b00873 – ident: e_1_2_9_61_1 doi: 10.1038/s41528-022-00171-x – ident: e_1_2_9_77_1 doi: 10.1002/adfm.201604163 – ident: e_1_2_9_225_1 doi: 10.1038/s41565-022-01160-x – ident: e_1_2_9_200_1 doi: 10.1021/acsnano.0c09426 – ident: e_1_2_9_233_1 doi: 10.1002/adfm.201302646 – ident: e_1_2_9_39_1 doi: 10.1002/adma.201800051 – ident: e_1_2_9_73_1 doi: 10.1002/adma.201205330 – ident: e_1_2_9_117_1 doi: 10.1016/j.progpolymsci.2013.07.009 – ident: e_1_2_9_124_1 doi: 10.1021/ja710079w – ident: e_1_2_9_184_1 doi: 10.1002/adma.201902045 – ident: e_1_2_9_9_1 doi: 10.1002/aelm.202000145 – ident: e_1_2_9_32_1 doi: 10.1016/j.tsf.2011.04.188 – ident: e_1_2_9_112_1 doi: 10.1002/aelm.201600311 – ident: e_1_2_9_164_1 doi: 10.1002/smsc.202200029 – ident: e_1_2_9_224_1 doi: 10.1002/adma.201502996 – ident: e_1_2_9_10_1 doi: 10.1038/nature14543 – ident: e_1_2_9_136_1 doi: 10.1126/science.1206157 – ident: e_1_2_9_52_1 doi: 10.1007/s10853-021-06503-y – ident: e_1_2_9_19_1 doi: 10.1038/s41587-019-0045-y – ident: e_1_2_9_109_1 doi: 10.1038/ncomms6745 – ident: e_1_2_9_31_1 doi: 10.1002/advs.202004050 – ident: e_1_2_9_40_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_9_152_1 doi: 10.1002/aelm.201900566 – ident: e_1_2_9_111_1 doi: 10.1038/s41467-021-23798-2 – ident: e_1_2_9_149_1 doi: 10.1063/1.1527233 – ident: e_1_2_9_192_1 doi: 10.1002/advs.202002418 – ident: e_1_2_9_186_1 doi: 10.1021/acs.chemmater.9b00966 – ident: e_1_2_9_26_1 doi: 10.1039/C9TC00709A – ident: e_1_2_9_138_1 doi: 10.1038/nmat2971 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuron.2014.12.035 – ident: e_1_2_9_123_1 doi: 10.1021/acs.chemrev.7b00003 – ident: e_1_2_9_98_1 doi: 10.1021/acsnano.5b01835 – ident: e_1_2_9_5_1 doi: 10.1186/s11671-019-3084-x – ident: e_1_2_9_120_1 doi: 10.1038/nature20102 – ident: e_1_2_9_151_1 doi: 10.1038/s41598-018-26731-8 – ident: e_1_2_9_1_1 doi: 10.1002/adma.201403560 – ident: e_1_2_9_206_1 doi: 10.1038/ncomms11924 – ident: e_1_2_9_110_1 doi: 10.1021/nn405887k – ident: e_1_2_9_140_1 doi: 10.1021/acs.chemmater.7b00181 – ident: e_1_2_9_181_1 doi: 10.1002/adom.201800522 – ident: e_1_2_9_226_1 doi: 10.1038/s41467-018-06011-9 – ident: e_1_2_9_85_1 doi: 10.1002/adma.201404602 – ident: e_1_2_9_145_1 doi: 10.1007/BF03256330 – ident: e_1_2_9_129_1 doi: 10.1126/sciadv.1600076 – ident: e_1_2_9_43_1 doi: 10.1021/acsami.9b08622 – ident: e_1_2_9_50_1 doi: 10.1002/adfm.201808803 – ident: e_1_2_9_66_1 doi: 10.1021/nn1018768 – ident: e_1_2_9_128_1 doi: 10.1039/C7QM00497D – ident: e_1_2_9_116_1 doi: 10.1021/acsami.6b16115 – ident: e_1_2_9_222_1 doi: 10.1126/science.aah4496 – ident: e_1_2_9_155_1 doi: 10.1039/c2jm15716k – ident: e_1_2_9_56_1 doi: 10.1002/adma.202002217 – ident: e_1_2_9_160_1 doi: 10.1039/C9NR06096K – ident: e_1_2_9_219_1 doi: 10.1016/j.nanoen.2021.106497 – ident: e_1_2_9_223_1 doi: 10.1002/adma.201700975 – ident: e_1_2_9_221_1 doi: 10.1002/adma.202107304 – ident: e_1_2_9_57_1 doi: 10.1038/nature21004 – ident: e_1_2_9_147_1 doi: 10.1016/j.chempr.2017.08.015 – ident: e_1_2_9_131_1 doi: 10.1002/adma.201200088 – ident: e_1_2_9_36_1 doi: 10.1021/acsami.8b21130 – ident: e_1_2_9_63_1 doi: 10.1002/aelm.201900191 – ident: e_1_2_9_17_1 doi: 10.1002/aelm.201800900 – ident: e_1_2_9_37_1 doi: 10.1038/ncomms11573 – ident: e_1_2_9_97_1 doi: 10.1021/acsami.6b09188 – ident: e_1_2_9_150_1 doi: 10.1063/1.4892012 – ident: e_1_2_9_158_1 doi: 10.1002/adma.201405864 – ident: e_1_2_9_69_1 doi: 10.1002/aelm.201500250 – ident: e_1_2_9_115_1 doi: 10.1002/adma.202110639 – ident: e_1_2_9_141_1 doi: 10.1038/s41586-018-0536-x – ident: e_1_2_9_13_1 doi: 10.1126/science.aac5082 – ident: e_1_2_9_119_1 doi: 10.1002/aelm.201600104 – ident: e_1_2_9_162_1 doi: 10.1038/ncomms3954 – ident: e_1_2_9_165_1 doi: 10.1002/smsc.202000050 – ident: e_1_2_9_153_1 doi: 10.1039/c3tb20451k – ident: e_1_2_9_146_1 doi: 10.1002/adma.201404378 – volume: 2021 start-page: 21 year: 2021 ident: e_1_2_9_148_1 publication-title: Proc. IEEE Sens. – ident: e_1_2_9_195_1 doi: 10.1021/acs.jpclett.9b03323 – ident: e_1_2_9_12_1 doi: 10.1016/j.mser.2021.100631 – ident: e_1_2_9_22_1 doi: 10.1038/nmat2879 – ident: e_1_2_9_76_1 doi: 10.1038/ncomms8461 – ident: e_1_2_9_188_1 doi: 10.1002/adma.201600468 – ident: e_1_2_9_54_1 doi: 10.1016/S1369-7021(13)70013-0 – ident: e_1_2_9_169_1 doi: 10.1038/nmat2459 – ident: e_1_2_9_87_1 doi: 10.1007/s00396-013-3143-2 – ident: e_1_2_9_53_1 doi: 10.1016/j.rser.2012.02.021 – ident: e_1_2_9_161_1 doi: 10.1002/adma.201404707 – ident: e_1_2_9_229_1 doi: 10.1016/j.nanoen.2018.05.017 – ident: e_1_2_9_42_1 doi: 10.1016/j.mser.2017.02.001 – ident: e_1_2_9_175_1 doi: 10.1038/s41467-021-23203-y – ident: e_1_2_9_16_1 doi: 10.1002/aelm.201900347 – ident: e_1_2_9_89_1 doi: 10.1002/adma.201400334 – ident: e_1_2_9_204_1 doi: 10.1021/acsami.6b08866 – ident: e_1_2_9_168_1 doi: 10.1002/smsc.202000057 – ident: e_1_2_9_45_1 doi: 10.1002/cptc.201900198 – ident: e_1_2_9_197_1 doi: 10.1039/C9CS00431A – ident: e_1_2_9_108_1 doi: 10.1038/nphoton.2013.242 – ident: e_1_2_9_170_1 doi: 10.1126/science.1160309 – ident: e_1_2_9_88_1 doi: 10.1021/acsnano.7b01894 – ident: e_1_2_9_163_1 doi: 10.1109/PROC.1972.8948 – ident: e_1_2_9_67_1 doi: 10.1002/adfm.201100904 – ident: e_1_2_9_102_1 doi: 10.1039/C6TC01728B – ident: e_1_2_9_173_1 doi: 10.1038/nmat2896 – ident: e_1_2_9_156_1 doi: 10.1002/adma.201400263 – ident: e_1_2_9_55_1 doi: 10.1002/adma.201800388 – ident: e_1_2_9_201_1 doi: 10.1002/adma.202003818 – ident: e_1_2_9_60_1 doi: 10.1002/adma.201302240 – ident: e_1_2_9_215_1 doi: 10.1039/C9TC00324J – ident: e_1_2_9_41_1 doi: 10.1038/ncomms1772 – ident: e_1_2_9_75_1 doi: 10.1016/j.orgel.2018.06.008 – ident: e_1_2_9_179_1 doi: 10.1002/adma.201101986 – ident: e_1_2_9_235_1 doi: 10.1016/j.solmat.2015.09.049 – ident: e_1_2_9_33_1 doi: 10.3390/ma9080650 – ident: e_1_2_9_185_1 doi: 10.1016/j.mattod.2021.08.004 – ident: e_1_2_9_154_1 doi: 10.1039/C3TB21079K – ident: e_1_2_9_25_1 doi: 10.1002/adma.201004426 – start-page: 3 volume-title: Proc. Int. Work. Wearable Implant. Body Sens. Networks year: 2006 ident: e_1_2_9_27_1 – ident: e_1_2_9_193_1 doi: 10.1002/adom.201901722 – ident: e_1_2_9_203_1 doi: 10.1002/aelm.202001000 – ident: e_1_2_9_29_1 doi: 10.1088/1468-6996/10/2/024313 – ident: e_1_2_9_143_1 doi: 10.1021/acsnano.7b06823 – ident: e_1_2_9_84_1 doi: 10.1002/adfm.201600612 – ident: e_1_2_9_198_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_9_180_1 doi: 10.1021/nl202134z – ident: e_1_2_9_212_1 doi: 10.1002/adfm.201601980 – ident: e_1_2_9_91_1 doi: 10.1002/adma.201703638 – ident: e_1_2_9_121_1 doi: 10.1021/acsami.0c07496 – ident: e_1_2_9_166_1 doi: 10.1002/admt.201800371 – ident: e_1_2_9_231_1 doi: 10.1002/aelm.201600471 – ident: e_1_2_9_118_1 doi: 10.1021/acs.macromol.5b00524 – ident: e_1_2_9_30_1 doi: 10.1002/aelm.201600388 – ident: e_1_2_9_103_1 doi: 10.1002/mame.201500447 – ident: e_1_2_9_202_1 doi: 10.1038/s41467-020-20256-3 – ident: e_1_2_9_132_1 doi: 10.1038/nmat4785 – ident: e_1_2_9_135_1 doi: 10.1073/pnas.0807476105 – ident: e_1_2_9_2_1 doi: 10.1109/TITB.2010.2044798 – ident: e_1_2_9_59_1 doi: 10.1002/adma.201601422 – ident: e_1_2_9_171_1 doi: 10.1126/science.1160379 – ident: e_1_2_9_187_1 doi: 10.1039/C8TC04371J – ident: e_1_2_9_216_1 doi: 10.1002/adom.201900272 – ident: e_1_2_9_107_1 doi: 10.1109/JSEN.2016.2608330 – ident: e_1_2_9_230_1 doi: 10.1002/smsc.202100001 – ident: e_1_2_9_95_1 doi: 10.1002/smsc.202000080 – ident: e_1_2_9_189_1 doi: 10.1002/adfm.201909909 – ident: e_1_2_9_183_1 doi: 10.1002/adma.201808138 – ident: e_1_2_9_24_1 doi: 10.1002/polb.23662 – ident: e_1_2_9_211_1 doi: 10.1002/admt.201800104 – ident: e_1_2_9_210_1 doi: 10.1002/adom.201801346 – ident: e_1_2_9_58_1 doi: 10.1016/j.progpolymsci.2019.101181 – ident: e_1_2_9_70_1 doi: 10.1016/j.solmat.2012.07.013 – ident: e_1_2_9_220_1 doi: 10.1016/j.apmt.2020.100899 – ident: e_1_2_9_68_1 doi: 10.1002/adma.201305462 – ident: e_1_2_9_213_1 doi: 10.3390/electronics3010043 – ident: e_1_2_9_127_1 doi: 10.1002/adma.201200448 – ident: e_1_2_9_125_1 doi: 10.1021/acsami.7b12908 – ident: e_1_2_9_199_1 doi: 10.1021/acsnano.0c08287 – ident: e_1_2_9_86_1 doi: 10.1039/C6NR02216B – ident: e_1_2_9_104_1 doi: 10.1039/C5NR08618C – ident: e_1_2_9_178_1 doi: 10.1039/C4NR00265B – ident: e_1_2_9_82_1 doi: 10.1126/sciadv.aat7387 – ident: e_1_2_9_4_1 doi: 10.1016/j.bios.2022.114115 – ident: e_1_2_9_227_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_9_101_1 doi: 10.1021/acsami.6b08587 – ident: e_1_2_9_191_1 doi: 10.1002/lpor.202000262 – ident: e_1_2_9_34_1 doi: 10.1002/adma.201807975 – ident: e_1_2_9_7_1 doi: 10.1002/adma.201503288 – ident: e_1_2_9_114_1 doi: 10.1038/s41428-021-00510-1 – ident: e_1_2_9_20_1 doi: 10.1021/acs.accounts.8b00448 – ident: e_1_2_9_21_1 doi: 10.1038/nmat3711 – ident: e_1_2_9_113_1 doi: 10.1002/smtd.202100676 – ident: e_1_2_9_8_1 doi: 10.1002/adma.201601278 – ident: e_1_2_9_51_1 doi: 10.1002/pi.1974 – ident: e_1_2_9_159_1 doi: 10.1021/acsami.6b14220 – ident: e_1_2_9_228_1 doi: 10.1002/adma.201702308 – ident: e_1_2_9_71_1 doi: 10.1002/smll.201400874 – ident: e_1_2_9_134_1 doi: 10.1002/adfm.200800306 – ident: e_1_2_9_46_1 doi: 10.1016/j.bios.2015.06.002 – ident: e_1_2_9_99_1 doi: 10.1038/nnano.2011.184 – volume: 30 start-page: 24 year: 2018 ident: e_1_2_9_106_1 publication-title: Adv. Mater. – ident: e_1_2_9_137_1 doi: 10.1002/adma.201603436 – ident: e_1_2_9_177_1 doi: 10.1038/s41528-021-00127-7 – ident: e_1_2_9_62_1 doi: 10.1002/smtd.201800070 – ident: e_1_2_9_79_1 doi: 10.1002/adfm.201101418 – ident: e_1_2_9_139_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_9_144_1 doi: 10.1016/j.sbsr.2015.02.002 – ident: e_1_2_9_15_1 doi: 10.1002/aelm.202000527 – ident: e_1_2_9_217_1 doi: 10.1038/s41467-018-07943-y – ident: e_1_2_9_18_1 doi: 10.1002/smsc.202100086 – ident: e_1_2_9_157_1 doi: 10.1002/admt.201600042 – ident: e_1_2_9_14_1 doi: 10.1021/acs.accounts.8b00465 – ident: e_1_2_9_214_1 doi: 10.1126/sciadv.aas9530 – ident: e_1_2_9_65_1 doi: 10.1002/adma.202200682 – ident: e_1_2_9_208_1 doi: 10.1021/acsami.7b09411 – ident: e_1_2_9_81_1 doi: 10.1021/acsami.5b12588 – ident: e_1_2_9_130_1 doi: 10.1002/adma.201304032 – ident: e_1_2_9_100_1 doi: 10.1038/nature07719 – ident: e_1_2_9_78_1 doi: 10.1038/ncomms4005 – ident: e_1_2_9_196_1 doi: 10.1002/adma.201204979 – ident: e_1_2_9_6_1 doi: 10.1002/inf2.12122 – ident: e_1_2_9_64_1 doi: 10.1002/aelm.201900681 – ident: e_1_2_9_92_1 doi: 10.1038/ncomms1721 – ident: e_1_2_9_28_1 doi: 10.1002/adma.200904054 – ident: e_1_2_9_232_1 doi: 10.1038/s41560-017-0001-3 – ident: e_1_2_9_47_1 doi: 10.1073/pnas.0802105105 – ident: e_1_2_9_176_1 doi: 10.1002/adfm.201001107 – ident: e_1_2_9_122_1 doi: 10.1021/acs.macromol.9b00589 – ident: e_1_2_9_72_1 doi: 10.1002/adma.201205361 – ident: e_1_2_9_174_1 doi: 10.1038/nphoton.2010.7 – ident: e_1_2_9_133_1 doi: 10.1002/adma.201705377 – ident: e_1_2_9_3_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_9_194_1 doi: 10.1039/C9NR09926C – ident: e_1_2_9_142_1 doi: 10.1002/adma.201603167 – start-page: 8729702 volume-title: 23rd Opto‐Electronics Communications Conf. OECC year: 2018 ident: e_1_2_9_207_1 – ident: e_1_2_9_218_1 doi: 10.1002/adom.201500560 – ident: e_1_2_9_44_1 doi: 10.1002/smsc.202100109 – ident: e_1_2_9_126_1 doi: 10.1021/am500769k – ident: e_1_2_9_167_1 doi: 10.1117/1.JPE.8.032108 – ident: e_1_2_9_93_1 doi: 10.1039/C6TC05659H – ident: e_1_2_9_83_1 doi: 10.1038/s41563-022-01239-9 – ident: e_1_2_9_80_1 doi: 10.1021/acsami.9b23291 – ident: e_1_2_9_94_1 doi: 10.1039/C8CS00706C – ident: e_1_2_9_105_1 doi: 10.1126/sciadv.1602076 – volume: 33 year: 2021 ident: e_1_2_9_49_1 publication-title: Adv. Mater. – ident: e_1_2_9_190_1 doi: 10.1002/adma.202003309 – ident: e_1_2_9_234_1 doi: 10.1021/ma500286d – ident: e_1_2_9_38_1 doi: 10.1126/sciadv.abd9715 – ident: e_1_2_9_74_1 doi: 10.1073/pnas.0502392102 – ident: e_1_2_9_205_1 doi: 10.1021/acsami.8b06861 – ident: e_1_2_9_209_1 doi: 10.1016/j.nanoen.2016.12.040 – ident: e_1_2_9_96_1 doi: 10.1038/s41565-018-0226-8 – ident: e_1_2_9_48_1 doi: 10.1038/natrevmats.2017.86 – ident: e_1_2_9_23_1 doi: 10.1038/nature07113 |
SSID | ssj0031247 |
Score | 2.6285963 |
SecondaryResourceType | review_article |
Snippet | Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206309 |
SubjectTerms | biosensors Chemical sensors Electrical properties Electronics Internet of Things light‐emitting diodes Low temperature Nanotechnology Organic light emitting diodes Organic semiconductors photodetectors Photodiodes Photovoltaic cells photovoltaics Stretchability Substrates wearable electronics Wearable technology Weight reduction |
Title | Wearable Electronics Based on Stretchable Organic Semiconductors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206309 https://www.ncbi.nlm.nih.gov/pubmed/36794301 https://www.proquest.com/docview/2814262064 https://www.proquest.com/docview/2777403519 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4PwoFBQmJyW1ip06y8VCrCrUMlIpuUewkCyVBTbvw67lzEkNBCAnGKHbi-O58n-O77wi5sCUXKXc5SIBF1HUjQSPPT2kkk24K-Fl5Om9tdC8GE_du2p1-yuIv-SHMDze0DL1eo4FHsuh8kIYWLzM8OmAMWaMwgw8DthAVPRj-KA7OS1dXAZ9FkXirZm20WWe1-6pX-gY1V5Grdj39LRLVgy4jTp7by4Vsq7cvfI7_-aptslnhUuu6VKQdspZku2TjE1vhHrl6AqvATCurZ2rnFNYNuMHYyjMLz7dBBXSDMsNTWWMMvc8z5JTN58U-mfR7j7cDWhVgoAq3KTSQDothy8I8wA3S8aTgIujGsW-njmRB6qdOEAsFk5zwlKUgWBm4kjuJr2IZdxU_II0sz5IjYgEOC2wuPRVJWDNcPwDLB-gkQVcAwzCnSWgtgFBV7ORYJGMWlrzKLMSZCc3MNMmlaf9a8nL82LJVyzOs7LMIme9oKn7hNsm5uQ2WhcclUZbkS2jjATTGg1Z4xGGpB-ZVXCCxng3DZlqav4whHI-GQ3N1_JdOJ2QdK92XsZYt0ljMl8kp4KGFPNM6_w7OQv8Z |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JToRAEK24HNSD-zKumGg8MUI368HEPaPOeHCJc0O6gYsKRmZi9K_8Fb_IKjYdjTEx8eARaKCgtgfd9QpgTRPcirjBUQPMVw3Dt1TfdiLVF6EZIX6Wdla31jq1GpfGcdts98FLWQuT80NUP9zIM7J4TQ5OP6Q331lD07tbmjtgjGij3GJd5Un49IhfbenW0T6qeJ2xw4OLvYZaNBZQJcFv1RU6CxCKMxvzodBtYXHLNYPA0SJdMDdyIt0NLMkMO-QRi1Bg4RqC66EjAxGYkuN1-2GQ2ogTXf_-WcVYxTFdZv1cMEuqRPVV8kRqbLNX3t48-AXc9mLlLNkdjsFr-ZryNS439W5H1OXzJwbJf_Uex2G0gN7KTu4rE9AXxpMw8oGQcQq2r1AsKiZTDqr2QKmyi5k-UJJYoSl8tPJsQF7EKpVzqi5IYqLNTR7Sabj8k0eYgYE4icM5UBBquhoXtvQFhkXDcTG4IToU6A4I05heA7XUuCcLAnbqA3Lr5dTRzCNNeJUmarBRjb_PqUe-HblYGpBXhKDUY46edRuwjBqsVocxeNCMkB-HSRfH2Ij-aS4ZLzGbG151K24Rd6CGYrPMfH6QwTtvNZvV1vxvTlqBocZFq-k1j05PFmAY9xdLSxdhoPPQDZcQ_nXEcuZwClz_tWW-AYrIXLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT6RAEK64mpj14GtXHV_LJm48odDd09AHEx_jRNfRGF2jN6Qb-qKCkZkY_VX-Ff-R1bx0NGYTEw8egQYK6vVBd30FsORIyjVlFDVAQpuxkNuh52s7lHFTI35WXl63tn_Ad07Y37Pm2QA8VLUwBT9E_cPNeEYer42DX0d69Zk0NLu6NFMHhBjWKFEuq9yL727xoy1b222hhv8Q0t7-t7Vjl30FbGXQty2kSyJE4sTDdChdT3LKRTOKfEe7kgjta1dEXBHmxVQTjfJKwSR1Y19FMmoqitf9BkOMO8I0i2gd1YRVFLNl3s4Fk6RtmL4qmkiHrPbL258G32Dbfqic57r2GDxWb6lY4nKx0uvKFXX_ikDyK73GcRgtgbe1UXjKBAzEySSMvKBj_AHrpyiWKSWztuvmQJm1iXk-stLEMhP4aOP5gKKEVVnHprYgTQxpbnqT_YSTT3mEKRhM0iSeAQuBpnCo9FQoMSgyX2BoQ2wo0RkQpBG3AXal8ECV9OumC8hlUBBHk8BoIqg10YDlevx1QTzy7sj5yn6CMgBlAfHdvNcAZw34XR_G0GHmg8IkTns4xkPsb2aS8RLThd3Vt6LcMAc6KDbJrec_MgTH-51OvTX7kZN-wfBhqx10dg_25uA77i7Xlc7DYPemFy8g9uvKxdzdLDj_bMN8Au8cW18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Electronics+Based+on+Stretchable+Organic+Semiconductors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Xinzhao&rft.au=Zhao%2C+Yan&rft.au=Liu%2C+Yunqi&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=20&rft_id=info:doi/10.1002%2Fsmll.202206309&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |