Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors

Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in con...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 12; pp. e1706589 - n/a
Main Authors Jiang, Ying, Liu, Zhiyuan, Matsuhisa, Naoji, Qi, Dianpeng, Leow, Wan Ru, Yang, Hui, Yu, Jiancan, Chen, Geng, Liu, Yaqing, Wan, Changjin, Liu, Zhuangjian, Chen, Xiaodong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201706589

Cover

Loading…
Abstract Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24‐fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. Auxetic mechanical metamaterials are employed to significantly enhance the sensitivity of stretchable strain sensors, by regulating the transverse Poisson effect due to auxetic expansion. High sensitivity with almost 24‐fold improvement is achieved, together with high maximum stretchability and cyclic durability. Additionally, the underlying mechanism, elongated microcracks, is proven by both experiments and numerical simulations.
AbstractList Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24‐fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. Auxetic mechanical metamaterials are employed to significantly enhance the sensitivity of stretchable strain sensors, by regulating the transverse Poisson effect due to auxetic expansion. High sensitivity with almost 24‐fold improvement is achieved, together with high maximum stretchability and cyclic durability. Additionally, the underlying mechanism, elongated microcracks, is proven by both experiments and numerical simulations.
Author Chen, Xiaodong
Liu, Yaqing
Liu, Zhiyuan
Jiang, Ying
Wan, Changjin
Liu, Zhuangjian
Matsuhisa, Naoji
Qi, Dianpeng
Chen, Geng
Yu, Jiancan
Leow, Wan Ru
Yang, Hui
Author_xml – sequence: 1
  givenname: Ying
  surname: Jiang
  fullname: Jiang, Ying
  organization: Nanyang Technological University
– sequence: 2
  givenname: Zhiyuan
  surname: Liu
  fullname: Liu, Zhiyuan
  organization: Nanyang Technological University
– sequence: 3
  givenname: Naoji
  surname: Matsuhisa
  fullname: Matsuhisa, Naoji
  organization: Nanyang Technological University
– sequence: 4
  givenname: Dianpeng
  surname: Qi
  fullname: Qi, Dianpeng
  organization: Nanyang Technological University
– sequence: 5
  givenname: Wan Ru
  surname: Leow
  fullname: Leow, Wan Ru
  organization: Nanyang Technological University
– sequence: 6
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  organization: Nanyang Technological University
– sequence: 7
  givenname: Jiancan
  surname: Yu
  fullname: Yu, Jiancan
  organization: Nanyang Technological University
– sequence: 8
  givenname: Geng
  surname: Chen
  fullname: Chen, Geng
  organization: Nanyang Technological University
– sequence: 9
  givenname: Yaqing
  surname: Liu
  fullname: Liu, Yaqing
  organization: Nanyang Technological University
– sequence: 10
  givenname: Changjin
  surname: Wan
  fullname: Wan, Changjin
  organization: Nanyang Technological University
– sequence: 11
  givenname: Zhuangjian
  surname: Liu
  fullname: Liu, Zhuangjian
  email: liuzj@ihpc.a-star.edu.sg
  organization: Technology and Research
– sequence: 12
  givenname: Xiaodong
  orcidid: 0000-0002-3312-1664
  surname: Chen
  fullname: Chen, Xiaodong
  email: chenxd@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29380896$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URKeFLUsUiQ2bDP6InbzlqLSA1IpF6dpynBfhKrGL7QDz73E6LUiVECs_yec82feekCMfPBLymtEto5S_N8NstpyylirZwTOyYZKzuqEgj8iGgpA1qKY7Jicp3VJKQVH1ghxzEB3tQG3IzW75hdnZ6grtN-OdNVMZs5lNxujMlKocqnNfrixW1-iTy-6Hy_sqjNV1jpiL1U-4zsb5eyLE9JI8H4uLrx7OU3Jzcf717FN9-eXj57PdZW0bAVC3cgTLrECJAxcN9NIqYApa2ypkFAaUI1eoehyNbbmCQXDV9J20KHqlrDgl7w5772L4vmDKenbJ4jQZj2FJmgGI9dMdK-jbJ-htWKIvr9NrfC3nUjSFevNALf2Mg76LbjZxrx8DK0BzAGwMKUUctXXZZBf8GsCkGdVrL3rtRf_ppWjbJ9rj5n8KcBB-ugn3_6H17sPV7q_7G-9Gn68
CitedBy_id crossref_primary_10_34133_cbsystems_0065
crossref_primary_10_1021_acsami_0c18818
crossref_primary_10_1038_s41524_024_01430_3
crossref_primary_10_1002_advs_202206099
crossref_primary_10_1016_j_tws_2021_107882
crossref_primary_10_1021_acsapm_0c00779
crossref_primary_10_1016_j_matdes_2021_109930
crossref_primary_10_1021_acsami_0c00176
crossref_primary_10_1007_s10999_023_09648_7
crossref_primary_10_1016_j_apmt_2024_102249
crossref_primary_10_1080_17452759_2024_2401933
crossref_primary_10_1088_1402_4896_acba5c
crossref_primary_10_1177_14644207241229995
crossref_primary_10_1016_j_tws_2021_107758
crossref_primary_10_1016_j_ijsolstr_2024_112919
crossref_primary_10_1088_1361_6463_abf678
crossref_primary_10_1002_smll_202401565
crossref_primary_10_1016_j_ceramint_2023_07_213
crossref_primary_10_1039_C8NR07737A
crossref_primary_10_1002_adfm_202410235
crossref_primary_10_1016_j_engstruct_2022_114399
crossref_primary_10_1016_j_compstruct_2022_116094
crossref_primary_10_1016_j_sna_2021_112673
crossref_primary_10_1142_S1758825121501155
crossref_primary_10_3390_s20113132
crossref_primary_10_1016_j_ijmecsci_2024_109013
crossref_primary_10_1080_15376494_2022_2033890
crossref_primary_10_3390_mi14010062
crossref_primary_10_1002_adma_202003155
crossref_primary_10_1039_D2CP03275A
crossref_primary_10_1002_smtd_202100900
crossref_primary_10_1016_j_cej_2024_150796
crossref_primary_10_1016_j_matdes_2020_108788
crossref_primary_10_1063_5_0006075
crossref_primary_10_1016_j_cej_2024_150671
crossref_primary_10_1016_j_matlet_2022_132835
crossref_primary_10_1016_j_matt_2021_06_034
crossref_primary_10_1016_j_cej_2025_159539
crossref_primary_10_1063_1_5052192
crossref_primary_10_1002_adem_202301359
crossref_primary_10_1007_s11665_023_08243_3
crossref_primary_10_1016_j_device_2024_100570
crossref_primary_10_1061__ASCE_EM_1943_7889_0002149
crossref_primary_10_1002_aelm_202200993
crossref_primary_10_1021_acsami_3c05209
crossref_primary_10_1038_s41551_022_00954_7
crossref_primary_10_1002_adfm_202214265
crossref_primary_10_1016_j_jmps_2018_08_025
crossref_primary_10_1088_1361_665X_ad9fbf
crossref_primary_10_1002_admt_202101544
crossref_primary_10_1016_j_eml_2020_100930
crossref_primary_10_1016_j_mtcomm_2023_107810
crossref_primary_10_1016_j_ijmecsci_2020_106169
crossref_primary_10_1021_acsaelm_4c01737
crossref_primary_10_1002_aelm_202000058
crossref_primary_10_1063_5_0238353
crossref_primary_10_1002_adom_202400136
crossref_primary_10_1016_j_compscitech_2022_109565
crossref_primary_10_1039_C8CS00801A
crossref_primary_10_1002_adma_202007977
crossref_primary_10_32604_cmc_2022_029433
crossref_primary_10_1016_j_polymertesting_2022_107687
crossref_primary_10_1021_acsami_2c02690
crossref_primary_10_1002_adma_202003014
crossref_primary_10_3390_mi10080505
crossref_primary_10_1002_adsr_202300109
crossref_primary_10_1002_adfm_201904706
crossref_primary_10_1016_j_matdes_2018_11_002
crossref_primary_10_1088_1361_6463_adade5
crossref_primary_10_1002_mame_202100866
crossref_primary_10_3233_JIFS_189362
crossref_primary_10_1177_10996362241275532
crossref_primary_10_1016_j_optmat_2020_110507
crossref_primary_10_1016_j_compscitech_2021_109111
crossref_primary_10_1016_j_nanoen_2024_109686
crossref_primary_10_1080_14686996_2024_2331959
crossref_primary_10_1002_adma_201905399
crossref_primary_10_1080_15376494_2021_2020940
crossref_primary_10_1088_1742_6596_2730_1_012038
crossref_primary_10_1016_j_compstruct_2021_114892
crossref_primary_10_1088_1402_4896_ac700f
crossref_primary_10_1016_j_sna_2021_112753
crossref_primary_10_1016_j_ceramint_2024_11_234
crossref_primary_10_1002_adem_202001082
crossref_primary_10_1007_s12274_019_2547_9
crossref_primary_10_1021_acsami_0c03996
crossref_primary_10_1039_D0TA04915H
crossref_primary_10_1039_D1TC00416F
crossref_primary_10_1016_j_cej_2023_142734
crossref_primary_10_1177_09544062221101832
crossref_primary_10_1007_s40430_024_05094_4
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1016_j_tws_2024_112504
crossref_primary_10_1002_pc_29656
crossref_primary_10_1002_advs_202303338
crossref_primary_10_1016_j_mechmat_2020_103661
crossref_primary_10_1088_1361_6463_abde6a
crossref_primary_10_1142_S1758825123500576
crossref_primary_10_1017_pma_2024_3
crossref_primary_10_1016_j_cej_2024_151612
crossref_primary_10_1002_adfm_201807569
crossref_primary_10_1016_j_compstruct_2020_113355
crossref_primary_10_1016_j_euromechsol_2021_104386
crossref_primary_10_1016_j_nanoen_2021_106603
crossref_primary_10_1016_j_cej_2024_158115
crossref_primary_10_1021_acsami_4c13402
crossref_primary_10_1142_S1793292021500442
crossref_primary_10_1002_adfm_201903732
crossref_primary_10_1016_j_matdes_2023_112530
crossref_primary_10_1021_acs_nanolett_2c01967
crossref_primary_10_1080_15376494_2025_2477229
crossref_primary_10_1002_adma_201905522
crossref_primary_10_1109_JSEN_2023_3339835
crossref_primary_10_1140_epjd_s10053_023_00658_w
crossref_primary_10_1039_D3EE00843F
crossref_primary_10_3390_polym16020238
crossref_primary_10_1007_s40820_019_0323_8
crossref_primary_10_3390_ma16093603
crossref_primary_10_1016_j_compscitech_2022_109714
crossref_primary_10_1016_j_compstruct_2020_112560
crossref_primary_10_1002_adem_202300524
crossref_primary_10_1002_adma_202200070
crossref_primary_10_1126_sciadv_abf1966
crossref_primary_10_1016_j_ijsolstr_2024_113040
crossref_primary_10_1002_admt_201900452
crossref_primary_10_1016_j_sna_2022_113776
crossref_primary_10_1021_acsapm_0c01232
crossref_primary_10_1039_C8TC04753G
crossref_primary_10_1016_j_eml_2020_100637
crossref_primary_10_1088_1361_665X_ad3bfa
crossref_primary_10_1016_j_ijbiomac_2021_03_145
crossref_primary_10_1016_j_cemconcomp_2023_105046
crossref_primary_10_3389_fphy_2022_1024964
crossref_primary_10_1002_adem_202300750
crossref_primary_10_3390_nano10101980
crossref_primary_10_1002_adma_201800572
crossref_primary_10_1016_j_cjmeam_2023_100073
crossref_primary_10_1557_s43577_021_00079_3
crossref_primary_10_1007_s11433_018_9239_9
crossref_primary_10_1002_smll_202206299
crossref_primary_10_1002_admt_201900309
crossref_primary_10_1109_JSEN_2023_3296248
crossref_primary_10_3390_ma15196963
crossref_primary_10_1016_j_compstruct_2020_112579
crossref_primary_10_1021_acsnano_1c09288
crossref_primary_10_3390_cryst10080686
crossref_primary_10_1109_JSEN_2021_3102960
crossref_primary_10_1021_acsami_4c04966
crossref_primary_10_1038_s41467_020_15990_7
crossref_primary_10_2139_ssrn_4122077
crossref_primary_10_1007_s10853_023_09212_w
crossref_primary_10_3389_femat_2022_1000781
crossref_primary_10_1016_j_compstruct_2023_117858
crossref_primary_10_1021_acsnano_0c04730
crossref_primary_10_1016_j_cej_2022_138088
crossref_primary_10_3389_fmats_2023_1273961
crossref_primary_10_1016_j_compstruct_2022_115269
crossref_primary_10_1016_j_ijsolstr_2021_111232
crossref_primary_10_1016_j_compositesb_2024_112089
crossref_primary_10_1002_aenm_202301252
crossref_primary_10_1016_j_ijmecsci_2021_107037
crossref_primary_10_3390_gels8110698
crossref_primary_10_1002_adfm_202214119
crossref_primary_10_1080_14686996_2022_2157682
crossref_primary_10_1021_acssuschemeng_9b04690
crossref_primary_10_1039_C9NA00770A
crossref_primary_10_1002_adfm_201800850
crossref_primary_10_1021_acsami_2c16741
crossref_primary_10_1088_2058_8585_ac20bf
crossref_primary_10_1016_j_tws_2024_112483
crossref_primary_10_1016_j_sna_2021_113218
crossref_primary_10_1039_D2LC00141A
crossref_primary_10_1016_j_matdes_2021_110178
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1002_adma_201903130
crossref_primary_10_3390_app122010437
crossref_primary_10_1093_nsr_nwae158
crossref_primary_10_1021_acsanm_2c01950
crossref_primary_10_1016_j_coco_2024_102078
crossref_primary_10_1002_adfm_201801834
crossref_primary_10_1016_j_ijmecsci_2022_107750
crossref_primary_10_1007_s11431_019_1502_7
crossref_primary_10_1016_j_surfin_2024_104385
crossref_primary_10_1061__ASCE_EM_1943_7889_0002002
crossref_primary_10_1002_adem_201800036
crossref_primary_10_1515_nanoph_2020_0052
crossref_primary_10_1002_aenm_202301159
crossref_primary_10_1038_s41528_024_00301_7
crossref_primary_10_1177_0040517520924850
crossref_primary_10_1002_pol_20240090
crossref_primary_10_1016_j_sna_2025_116429
crossref_primary_10_1016_j_tibtech_2022_12_012
crossref_primary_10_5850_JKSCT_2024_48_6_1320
crossref_primary_10_1002_admt_202400405
crossref_primary_10_1021_acsami_4c15777
crossref_primary_10_3390_nano12050882
crossref_primary_10_1038_s41598_020_60170_8
crossref_primary_10_1007_s40684_021_00356_1
crossref_primary_10_1002_app_56859
crossref_primary_10_1142_S1758825122500983
crossref_primary_10_2139_ssrn_3996049
crossref_primary_10_1038_s41467_022_33021_5
crossref_primary_10_1109_LRA_2023_3246841
crossref_primary_10_1002_adfm_202109109
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1016_j_ceramint_2023_12_110
crossref_primary_10_1088_2631_7990_ace668
crossref_primary_10_1016_j_sna_2022_113602
crossref_primary_10_1016_j_ijmecsci_2021_106267
crossref_primary_10_1021_acsnano_8b07805
crossref_primary_10_1590_1679_78257438
crossref_primary_10_1002_admt_202200477
crossref_primary_10_1002_adfm_202406789
crossref_primary_10_1002_adma_202102131
crossref_primary_10_1002_admt_202001247
crossref_primary_10_1016_j_compositesb_2023_110585
crossref_primary_10_1016_j_ymssp_2022_109065
crossref_primary_10_1088_1361_665X_abdada
crossref_primary_10_1016_j_cej_2022_136270
crossref_primary_10_20517_ss_2023_30
crossref_primary_10_1016_j_colsurfa_2019_04_096
crossref_primary_10_1016_j_electacta_2022_140259
crossref_primary_10_1016_j_mtener_2023_101387
crossref_primary_10_1063_5_0096247
crossref_primary_10_1080_00405000_2020_1729055
crossref_primary_10_1016_j_compstruct_2021_115154
crossref_primary_10_1021_acs_chemmater_9b02274
crossref_primary_10_1038_s41467_022_28696_9
crossref_primary_10_1016_j_cma_2019_07_014
crossref_primary_10_3762_bjnano_11_166
crossref_primary_10_1007_s12274_021_3447_3
crossref_primary_10_1021_acsnano_8b08911
crossref_primary_10_1142_S0217984920502115
crossref_primary_10_1007_s00289_022_04221_2
crossref_primary_10_1038_s41467_019_11803_8
crossref_primary_10_1016_j_nanoen_2021_106074
crossref_primary_10_3390_ma14164521
crossref_primary_10_1002_advs_202102662
crossref_primary_10_1038_s43246_022_00322_7
crossref_primary_10_1039_D0TC00373E
crossref_primary_10_1103_PhysRevB_102_174106
crossref_primary_10_1016_j_compscitech_2021_108729
crossref_primary_10_1021_acsami_2c19679
crossref_primary_10_1126_sciadv_ads9258
crossref_primary_10_1002_adfm_202418425
crossref_primary_10_1016_j_cej_2022_140436
crossref_primary_10_1021_acsnano_3c08624
crossref_primary_10_1007_s12596_024_01834_w
crossref_primary_10_1088_1402_4896_ac4f9c
crossref_primary_10_1002_admt_202001216
crossref_primary_10_1039_D0TC05526C
crossref_primary_10_1002_admt_202000008
crossref_primary_10_20517_ss_2024_38
crossref_primary_10_1038_s41467_023_39792_9
crossref_primary_10_1021_acsami_8b10672
crossref_primary_10_1088_1361_6528_ac5da0
crossref_primary_10_1021_acsami_2c22727
crossref_primary_10_1021_acsami_4c03363
crossref_primary_10_1016_j_mechmat_2024_105138
crossref_primary_10_1039_D1TA08521B
crossref_primary_10_1016_j_mattod_2021_05_007
crossref_primary_10_1002_adma_202300447
crossref_primary_10_1021_acsami_9b14476
crossref_primary_10_1126_sciadv_aba0616
crossref_primary_10_1115_1_4068033
crossref_primary_10_3390_s23239544
crossref_primary_10_1002_adma_201901360
crossref_primary_10_1016_j_tws_2021_108373
crossref_primary_10_1088_1361_6463_abb1e5
crossref_primary_10_3390_s19071490
crossref_primary_10_1016_j_carbon_2022_02_003
crossref_primary_10_1021_acsami_0c11815
crossref_primary_10_1007_s40820_023_01013_9
crossref_primary_10_1016_j_ijmecsci_2023_108732
crossref_primary_10_3390_machines12110813
crossref_primary_10_1364_AO_448356
crossref_primary_10_1007_s10443_022_10084_7
crossref_primary_10_1002_adma_202413774
crossref_primary_10_1016_j_nanoen_2020_104814
crossref_primary_10_1016_j_matdes_2019_107669
crossref_primary_10_1115_1_4044335
crossref_primary_10_3390_polym15092003
crossref_primary_10_1039_D1MH00908G
crossref_primary_10_1002_adem_202000312
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1016_j_ijmecsci_2019_105073
crossref_primary_10_1021_acscentsci_9b00155
crossref_primary_10_1016_j_compstruct_2022_116421
crossref_primary_10_1021_acsanm_2c03268
crossref_primary_10_1002_pssb_202000439
crossref_primary_10_1021_acs_accounts_8b00499
crossref_primary_10_1021_acs_chemrev_3c00374
crossref_primary_10_1007_s40033_025_00875_0
crossref_primary_10_1016_j_engstruct_2024_117482
crossref_primary_10_1038_s41467_022_34844_y
crossref_primary_10_1007_s40684_023_00549_w
crossref_primary_10_2174_2452271604666211130123921
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1002_aisy_201900090
crossref_primary_10_1002_adma_202200823
crossref_primary_10_1002_advs_202206867
crossref_primary_10_1002_advs_202304091
crossref_primary_10_1002_adfm_202213895
crossref_primary_10_1016_j_matt_2022_02_022
crossref_primary_10_1002_adma_202310145
crossref_primary_10_1016_j_compositesb_2020_108229
crossref_primary_10_1039_C9TC02486G
crossref_primary_10_1039_D3MH02193A
crossref_primary_10_1007_s40820_022_00887_5
crossref_primary_10_1002_adma_202106212
crossref_primary_10_1016_j_rser_2024_114285
crossref_primary_10_1039_C9TB02352F
crossref_primary_10_1002_admt_202000550
crossref_primary_10_1016_j_engstruct_2025_119838
crossref_primary_10_1088_1361_665X_abfb82
crossref_primary_10_1016_j_istruc_2022_02_033
crossref_primary_10_1016_j_nanoen_2020_105446
crossref_primary_10_1021_acsami_2c01837
crossref_primary_10_1016_j_cej_2022_136317
crossref_primary_10_1038_s41467_023_44156_4
crossref_primary_10_1002_adem_201800864
crossref_primary_10_3390_mi14071402
crossref_primary_10_1016_j_matdes_2025_113805
crossref_primary_10_1177_0731684421990867
crossref_primary_10_1016_j_sna_2024_115608
crossref_primary_10_1002_admt_202000780
crossref_primary_10_1002_admt_202300981
crossref_primary_10_1016_j_cej_2024_150982
crossref_primary_10_1002_adma_202209321
crossref_primary_10_1177_0040517521993490
crossref_primary_10_3390_s21010161
crossref_primary_10_1142_S1758825125500012
crossref_primary_10_3390_s24113329
crossref_primary_10_1016_j_compscitech_2019_05_017
crossref_primary_10_34133_research_0002
crossref_primary_10_1002_adem_202100646
crossref_primary_10_1002_adma_201805468
crossref_primary_10_1016_j_jallcom_2019_02_117
crossref_primary_10_1002_adma_202001130
crossref_primary_10_1016_j_nanoen_2018_10_049
crossref_primary_10_1021_acsami_0c13427
crossref_primary_10_1016_j_ijmecsci_2021_106733
crossref_primary_10_1016_j_sna_2020_111939
crossref_primary_10_1039_C9TC04006D
crossref_primary_10_1080_15376494_2025_2481231
crossref_primary_10_1016_j_cad_2023_103631
crossref_primary_10_1016_j_msea_2020_140096
crossref_primary_10_1002_adma_202304631
crossref_primary_10_1007_s11431_023_2621_5
crossref_primary_10_1016_j_ijmecsci_2024_109788
crossref_primary_10_1016_j_compstruct_2024_118333
crossref_primary_10_1016_j_xcrp_2024_101893
crossref_primary_10_1021_acssensors_0c01297
crossref_primary_10_1007_s10853_024_10097_6
crossref_primary_10_1016_j_ijsolstr_2024_112777
crossref_primary_10_1016_j_ijmecsci_2020_106205
crossref_primary_10_1016_j_mechmat_2022_104244
crossref_primary_10_1021_acsami_2c20390
crossref_primary_10_1016_j_cej_2023_145075
crossref_primary_10_1016_j_compositesb_2022_110146
crossref_primary_10_1016_j_ijsolstr_2020_09_003
crossref_primary_10_1016_j_tws_2023_110858
crossref_primary_10_1038_s41467_023_41222_9
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1002_adfm_202421746
crossref_primary_10_1021_acssensors_4c02895
crossref_primary_10_1002_aelm_201900347
crossref_primary_10_3390_electronics12010018
crossref_primary_10_1039_D0MH00716A
crossref_primary_10_1002_adfm_201806714
crossref_primary_10_1038_s41598_021_03588_y
crossref_primary_10_1088_1361_665X_ac25c9
crossref_primary_10_3390_mi9070321
crossref_primary_10_1039_D4MH00757C
crossref_primary_10_1016_j_ijmecsci_2023_108579
crossref_primary_10_1021_acsami_1c06295
crossref_primary_10_1016_j_jmst_2021_08_081
crossref_primary_10_1177_14759217211053991
crossref_primary_10_1002_adma_202200444
crossref_primary_10_1002_adfm_202211771
crossref_primary_10_3389_fmats_2024_1361408
crossref_primary_10_1016_j_addma_2023_103470
crossref_primary_10_3390_ma16155306
crossref_primary_10_1088_2040_8986_abd984
crossref_primary_10_1177_0040517519881814
crossref_primary_10_1016_j_matdes_2025_113819
crossref_primary_10_1177_14644207231174325
crossref_primary_10_1186_s11671_019_3186_5
crossref_primary_10_1002_admi_202300350
crossref_primary_10_1016_j_matdes_2020_109313
crossref_primary_10_1016_j_mtcomm_2022_103186
crossref_primary_10_1089_soro_2022_0026
crossref_primary_10_1002_adma_202420322
crossref_primary_10_1088_2631_6331_abd373
crossref_primary_10_3390_s21175820
crossref_primary_10_1021_acsami_9b21197
crossref_primary_10_1109_JSEN_2020_3035808
crossref_primary_10_1002_aelm_202000269
crossref_primary_10_1103_PhysRevApplied_19_064065
crossref_primary_10_1016_j_compositesa_2021_106351
crossref_primary_10_1007_s10409_024_24363_x
crossref_primary_10_1007_s12221_023_00179_8
crossref_primary_10_1002_adfm_202306820
crossref_primary_10_1016_j_mtcomm_2022_105132
crossref_primary_10_1039_D0TA05129B
crossref_primary_10_1016_j_nanoen_2023_108303
Cites_doi 10.1002/adfm.201700341
10.1002/adma.201603160
10.1038/ncomms6032
10.1126/science.1255908
10.1021/acs.chemrev.7b00291
10.1063/1.3076103
10.1021/nn3010558
10.1063/1.4961493
10.1021/nn501204t
10.1002/adma.201201644
10.1002/adfm.201605630
10.1002/adfm.201303886
10.1021/nl204052z
10.1002/adfm.201504717
10.1002/adma.201504244
10.1002/adma.201702308
10.1126/science.1182383
10.1002/admt.201700081
10.1038/srep03048
10.1126/science.1252876
10.1038/nature14543
10.1126/science.1252291
10.1002/adma.201701780
10.1002/adma.201504150
10.1002/adfm.201504755
10.1039/c3nr03536k
10.1021/nn506341u
10.1002/adma.201103406
10.1002/adma.201504239
10.1038/srep07254
10.1371/journal.pone.0179766
10.1002/admi.201700278
10.1002/adma.201503288
10.1039/c3nr05496a
10.1038/nnano.2015.115
10.1038/nnano.2014.38
10.1063/1.3594240
10.1038/srep45013
10.1039/C6RA27333E
10.1063/1.1806275
10.1038/nmat2459
10.1038/nmat3331
10.1002/adma.201601572
10.1002/adfm.201203670
10.1002/advs.201600190
10.1002/adma.201600720
10.1038/ncomms1772
10.1038/s41598-017-08484-y
10.1002/adma.201601422
10.1557/mrs.2017.7
10.1021/acsnano.5b01613
10.1002/adma.201502809
10.1016/j.mattod.2014.05.006
10.1038/natrevmats.2017.66
10.1038/nature14002
10.1002/adma.201602425
10.1002/adfm.201400379
10.1063/1.2201874
10.1038/nnano.2011.36
10.1021/acsami.5b05001
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201706589
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29380896
10_1002_adma_201706589
ADMA201706589
Genre article
Journal Article
GrantInformation_xml – fundername: Singapore Ministry of Education
  funderid: MOE2015‐T2‐2‐060
– fundername: National Research Foundation (NRF)
  funderid: NRF2016NRF‐NRFI001‐21
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4399-75f9c1c3e5ed2349b5c691697c76e109de5f26e6befac7269d3264b85ce3b66c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:19:10 EDT 2025
Mon Jul 14 10:27:57 EDT 2025
Wed Feb 19 02:43:46 EST 2025
Tue Jul 01 00:44:39 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Jan 22 17:01:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords auxetics
high sensitivity
mechanical metamaterials
stretchable strain sensors
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-75f9c1c3e5ed2349b5c691697c76e109de5f26e6befac7269d3264b85ce3b66c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3312-1664
PMID 29380896
PQID 2017722534
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1993009681
proquest_journals_2017722534
pubmed_primary_29380896
crossref_citationtrail_10_1002_adma_201706589
crossref_primary_10_1002_adma_201706589
wiley_primary_10_1002_adma_201706589_ADMA201706589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Mar
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 42
2004; 85
2013; 3
2017; 2
2014; 516
2017; 4
2010; 327
2016; 109
2015; 521
2017; 27
2013; 23
2015; 10
2014; 24
2011; 98
2017; 29
2015; 9
2013; 5
2012; 12
2011; 6
2015; 7
2012; 11
2017; 117
2014; 5
2014; 4
2015; 27
2012; 3
2009; 94
2006; 88
2017; 12
2009; 8
2011; 23
2014; 17
2012; 6
2014; 9
2016; 28
2014; 8
2012; 24
2014; 6
2016; 26
2014; 345
2014; 344
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_58_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_60_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 12
  start-page: e0179766
  year: 2017
  publication-title: PLoS One
– volume: 29
  start-page: 1701780
  year: 2017
  publication-title: Adv. Mater.
– volume: 88
  start-page: 204103
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 4666
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1605630
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 19700
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1702308
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4369
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 7254
  year: 2014
  publication-title: Sci. Rep.
– volume: 27
  start-page: 5931
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7959
  year: 2017
  publication-title: Sci. Rep.
– volume: 23
  start-page: 4020
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 94
  start-page: 071902
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 3048
  year: 2013
  publication-title: Sci. Rep.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 4782
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 6252
  year: 2015
  publication-title: ACS Nano
– volume: 7
  start-page: 45013
  year: 2017
  publication-title: Sci. Rep.
– volume: 28
  start-page: 4177
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 12350
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 2345
  year: 2014
  publication-title: Nanoscale
– volume: 8
  start-page: 5154
  year: 2014
  publication-title: ACS Nano
– volume: 345
  start-page: 1322
  year: 2014
  publication-title: Science
– volume: 28
  start-page: 10244
  year: 2016
  publication-title: Adv. Mater.
– volume: 42
  start-page: 103
  year: 2017
  publication-title: MRS Bull.
– volume: 28
  start-page: 4203
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 608
  year: 2012
  publication-title: Nat. Mater.
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 8
  start-page: 494
  year: 2009
  publication-title: Nat. Mater.
– volume: 28
  start-page: 722
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1821
  year: 2012
  publication-title: Nano Lett.
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 345
  start-page: 647
  year: 2014
  publication-title: Science
– volume: 98
  start-page: 212112
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 083502
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 516
  start-page: 222
  year: 2014
  publication-title: Nature
– volume: 28
  start-page: 6359
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5111
  year: 2017
  publication-title: RSC Adv.
– volume: 344
  start-page: 1373
  year: 2014
  publication-title: Science
– volume: 521
  start-page: 467
  year: 2015
  publication-title: Nature
– volume: 4
  start-page: 1600190
  year: 2017
  publication-title: Adv. Sci.
– volume: 117
  start-page: 12893
  year: 2017
  publication-title: Chem. Rev.
– volume: 10
  start-page: 629
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 1622
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1700278
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 26
  start-page: 1322
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6230
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5032
  year: 2014
  publication-title: Nat. Commun.
– volume: 2
  start-page: 17066
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 28
  start-page: 8130
  year: 2016
  publication-title: Adv. Mater.
– volume: 17
  start-page: 321
  year: 2014
  publication-title: Mater. Today
– volume: 24
  start-page: 3846
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1700341
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 85
  start-page: 3435
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 1700081
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  start-page: 5440
  year: 2011
  publication-title: Adv. Mater.
– volume: 3
  start-page: 770
  year: 2012
  publication-title: Nat. Commun.
– ident: e_1_2_4_10_1
  doi: 10.1002/adfm.201700341
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201603160
– ident: e_1_2_4_15_1
  doi: 10.1038/ncomms6032
– ident: e_1_2_4_49_1
  doi: 10.1126/science.1255908
– ident: e_1_2_4_45_1
  doi: 10.1021/acs.chemrev.7b00291
– ident: e_1_2_4_60_1
  doi: 10.1063/1.3076103
– ident: e_1_2_4_9_1
  doi: 10.1021/nn3010558
– ident: e_1_2_4_17_1
  doi: 10.1063/1.4961493
– ident: e_1_2_4_24_1
  doi: 10.1021/nn501204t
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201201644
– ident: e_1_2_4_3_1
  doi: 10.1002/adfm.201605630
– ident: e_1_2_4_7_1
  doi: 10.1002/adfm.201303886
– ident: e_1_2_4_13_1
  doi: 10.1021/nl204052z
– ident: e_1_2_4_26_1
  doi: 10.1002/adfm.201504717
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201702308
– ident: e_1_2_4_54_1
  doi: 10.1126/science.1182383
– ident: e_1_2_4_8_1
  doi: 10.1002/admt.201700081
– ident: e_1_2_4_12_1
  doi: 10.1038/srep03048
– ident: e_1_2_4_47_1
  doi: 10.1126/science.1252876
– ident: e_1_2_4_11_1
  doi: 10.1038/nature14543
– ident: e_1_2_4_50_1
  doi: 10.1126/science.1252291
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201701780
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201504150
– ident: e_1_2_4_20_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_4_4_1
  doi: 10.1039/c3nr03536k
– ident: e_1_2_4_34_1
  doi: 10.1021/nn506341u
– ident: e_1_2_4_36_1
  doi: 10.1002/adma.201103406
– ident: e_1_2_4_37_1
  doi: 10.1002/adma.201504239
– ident: e_1_2_4_38_1
  doi: 10.1038/srep07254
– ident: e_1_2_4_21_1
  doi: 10.1371/journal.pone.0179766
– ident: e_1_2_4_44_1
  doi: 10.1002/admi.201700278
– ident: e_1_2_4_57_1
  doi: 10.1002/adma.201503288
– ident: e_1_2_4_14_1
  doi: 10.1039/c3nr05496a
– ident: e_1_2_4_33_1
  doi: 10.1038/nnano.2015.115
– ident: e_1_2_4_19_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_4_59_1
  doi: 10.1063/1.3594240
– ident: e_1_2_4_31_1
  doi: 10.1038/srep45013
– ident: e_1_2_4_51_1
  doi: 10.1039/C6RA27333E
– ident: e_1_2_4_52_1
  doi: 10.1063/1.1806275
– ident: e_1_2_4_56_1
  doi: 10.1038/nmat2459
– ident: e_1_2_4_46_1
  doi: 10.1038/nmat3331
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_4_53_1
  doi: 10.1002/adfm.201203670
– ident: e_1_2_4_16_1
  doi: 10.1002/advs.201600190
– ident: e_1_2_4_30_1
  doi: 10.1002/adma.201600720
– ident: e_1_2_4_55_1
  doi: 10.1038/ncomms1772
– ident: e_1_2_4_39_1
  doi: 10.1038/s41598-017-08484-y
– ident: e_1_2_4_1_1
  doi: 10.1002/adma.201601422
– ident: e_1_2_4_40_1
  doi: 10.1557/mrs.2017.7
– ident: e_1_2_4_29_1
  doi: 10.1021/acsnano.5b01613
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201502809
– ident: e_1_2_4_58_1
  doi: 10.1016/j.mattod.2014.05.006
– ident: e_1_2_4_43_1
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_2_4_22_1
  doi: 10.1038/nature14002
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201602425
– ident: e_1_2_4_28_1
  doi: 10.1002/adfm.201400379
– ident: e_1_2_4_41_1
  doi: 10.1063/1.2201874
– ident: e_1_2_4_27_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_4_32_1
  doi: 10.1021/acsami.5b05001
SSID ssj0009606
Score 2.6727912
Snippet Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle...
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1706589
SubjectTerms auxetics
Computer simulation
Elastomers
Elongated structure
high sensitivity
Materials science
mechanical metamaterials
Metamaterials
Microcracks
Poisson's ratio
Sensitivity enhancement
Sensors
Strain concentration
stretchable strain sensors
Substrates
Synergistic effect
Title Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706589
https://www.ncbi.nlm.nih.gov/pubmed/29380896
https://www.proquest.com/docview/2017722534
https://www.proquest.com/docview/1993009681
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kT_rg90d1SgXBp25d26Tt49CNIcwHdbC3kq-iKK1sHYh_vblkq5sigr6lNKHX3F3yS3L3C8AFYwQPbYWnqB_i1o12KV9QT8SYOZPrWcHcEjG8pYNRdDMm46UsfssPUW-4oWeY8RodnPFp-5M0lEnDG4T0LyTBDD4M2EJUdPfJH4Xw3JDthcRLaZQsWBv9oL3afHVW-gY1V5GrmXr6W8AWQtuIk-fWrOIt8f6Fz_E_f7UNm3Nc6natIe3Amip2YWOJrXAPRt3ZG6Y8ukOF6cKoXV2smMa81ozdqnR7xSPakXuPgfH2Zgq3zF08_Nb2gXlaWGZPhalRTqb7MOr3Hq4G3vxWBk_g2sWLSZ6KjggVUTIIo5QTQTXGTGOtXtXxU6lIHlBFucqZiAOaSo0QI54QoUJOqQgPoFGUhToCl0upVzdh7kuSRpJTprFHrBdwecLzgEvugLfQSibmlOUo4ktmyZaDDLsrq7vLgcu6_qsl6_ixZnOh5GzutFPzNtbjWxg5cF6_1u6GZyisUOVsmmG8I9pV0nHg0BpH_SktfeInKXUgMCr-RYasez3s1k_Hf2l0Auu6nNiYuCY0qslMnWqQVPEz4wgfFRYHlA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HNSD-1LXCoKnaqdt0uY4uDAu40Ed8FaapShKK04HxF9vXjKtjiKC3tImoWnee8mX5L0vAHtZRvDQVniK-iFu3WiT8gX1RIyRM7meFcwtEd0r2ulF53ek9ibEWBjLD9FsuKFlmPEaDRw3pA8_WEMzaYiDkP-FJGwcJvFab7Oquv5gkEKAbuj2QuIxGiU1b6MfHI7WH52XvoHNUexqJp_TOeB1s63PyePBoOIH4u0Lo-O__mseZofQ1G1bXVqAMVUswswnwsIl6LUHrxj16HYVRgyjgHWyyjTstZrsVqV7UtyjKrk36BtvL6dwy9zF82-tIhiqhensoTAlypf-MvROT26POt7wYgZP4PLFi0nOREuEiigZhBHjRFANM1msJaxaPpOK5AFVlKs8E3FAmdQgMeIJESrklIpwBSaKslBr4HIp9QInzH1JWCQ5zTT8iPUaLk94HnDJHfBqsaRiyFqOTXxKLd9ykGJ3pU13ObDflH-2fB0_ltyspZwO7bZvcmM9xIWRA7tNtrY4PEbJClUO-im6PKJiJS0HVq12NJ_SrU_8hFEHAiPjX9qQto-77eZp_S-VdmCqc9u9TC_Pri42YFq_T6yL3CZMVC8DtaUxU8W3jVW8A46dC68
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIaHxwIDBCAzIJKQ9ZUuT2Ekeq3VV-Wg1DSr1LfKnQEzJtKYS4q_nzm7TdROaBG9ObCuO787-2b77GeCDEIwObVVkeJzS1g2aVKx4pHKKnLE4K7hbIsYTPppmn2ZsdiOK3_NDdBtuZBluvCYDv9L2ZE0aKrTjDSL6F1aUW_Aw43FBej24WBNIET53bHspi0qeFSvaxjg52ay_OS3dwZqb0NXNPcNdEKtWe5eTn8eLVh6r37cIHf_nt57CkyUwDftek57BA1M_h8c36Ar3YNpf_KKYx3BsKF6YxIvJViDo9Xoctk14Vn8nRQq_kme8v5oibGxIp9-oIBSoRWnxo3Ylmuv5C5gOz76djqLltQyRosVLlDNbqp5KDTM6SbNSMsURZJY5ytf04lIbZhNuuDRWqDzhpUaImMmCKZNKzlX6ErbrpjavIJRa4_ImtbFmZaYlFwg-clzB2ULaRGoZQLSSSqWWnOXUxMvKsy0nFXVX1XVXAEdd-SvP1vHXkgcrIVdLq5273BwHuDQL4LDLRnujQxRRm2Yxr8jhkfSq6AWw75Wj-xS2vkAd5AEkTsT3tKHqD8b97un1v1R6D4_OB8Pqy8fJ5zewg68L7x93ANvt9cK8RcDUynfOJv4Ad0sKZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auxetic+Mechanical+Metamaterials+to+Enhance+Sensitivity+of+Stretchable+Strain+Sensors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Ying&rft.au=Liu%2C+Zhiyuan&rft.au=Matsuhisa%2C+Naoji&rft.au=Dianpeng+Qi&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=12&rft_id=info:doi/10.1002%2Fadma.201706589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon