Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in con...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 12; pp. e1706589 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201706589 |
Cover
Loading…
Abstract | Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24‐fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.
Auxetic mechanical metamaterials are employed to significantly enhance the sensitivity of stretchable strain sensors, by regulating the transverse Poisson effect due to auxetic expansion. High sensitivity with almost 24‐fold improvement is achieved, together with high maximum stretchability and cyclic durability. Additionally, the underlying mechanism, elongated microcracks, is proven by both experiments and numerical simulations. |
---|---|
AbstractList | Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24‐fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. Auxetic mechanical metamaterials are employed to significantly enhance the sensitivity of stretchable strain sensors, by regulating the transverse Poisson effect due to auxetic expansion. High sensitivity with almost 24‐fold improvement is achieved, together with high maximum stretchability and cyclic durability. Additionally, the underlying mechanism, elongated microcracks, is proven by both experiments and numerical simulations. |
Author | Chen, Xiaodong Liu, Yaqing Liu, Zhiyuan Jiang, Ying Wan, Changjin Liu, Zhuangjian Matsuhisa, Naoji Qi, Dianpeng Chen, Geng Yu, Jiancan Leow, Wan Ru Yang, Hui |
Author_xml | – sequence: 1 givenname: Ying surname: Jiang fullname: Jiang, Ying organization: Nanyang Technological University – sequence: 2 givenname: Zhiyuan surname: Liu fullname: Liu, Zhiyuan organization: Nanyang Technological University – sequence: 3 givenname: Naoji surname: Matsuhisa fullname: Matsuhisa, Naoji organization: Nanyang Technological University – sequence: 4 givenname: Dianpeng surname: Qi fullname: Qi, Dianpeng organization: Nanyang Technological University – sequence: 5 givenname: Wan Ru surname: Leow fullname: Leow, Wan Ru organization: Nanyang Technological University – sequence: 6 givenname: Hui surname: Yang fullname: Yang, Hui organization: Nanyang Technological University – sequence: 7 givenname: Jiancan surname: Yu fullname: Yu, Jiancan organization: Nanyang Technological University – sequence: 8 givenname: Geng surname: Chen fullname: Chen, Geng organization: Nanyang Technological University – sequence: 9 givenname: Yaqing surname: Liu fullname: Liu, Yaqing organization: Nanyang Technological University – sequence: 10 givenname: Changjin surname: Wan fullname: Wan, Changjin organization: Nanyang Technological University – sequence: 11 givenname: Zhuangjian surname: Liu fullname: Liu, Zhuangjian email: liuzj@ihpc.a-star.edu.sg organization: Technology and Research – sequence: 12 givenname: Xiaodong orcidid: 0000-0002-3312-1664 surname: Chen fullname: Chen, Xiaodong email: chenxd@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29380896$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URKeFLUsUiQ2bDP6InbzlqLSA1IpF6dpynBfhKrGL7QDz73E6LUiVECs_yec82feekCMfPBLymtEto5S_N8NstpyylirZwTOyYZKzuqEgj8iGgpA1qKY7Jicp3VJKQVH1ghxzEB3tQG3IzW75hdnZ6grtN-OdNVMZs5lNxujMlKocqnNfrixW1-iTy-6Hy_sqjNV1jpiL1U-4zsb5eyLE9JI8H4uLrx7OU3Jzcf717FN9-eXj57PdZW0bAVC3cgTLrECJAxcN9NIqYApa2ypkFAaUI1eoehyNbbmCQXDV9J20KHqlrDgl7w5772L4vmDKenbJ4jQZj2FJmgGI9dMdK-jbJ-htWKIvr9NrfC3nUjSFevNALf2Mg76LbjZxrx8DK0BzAGwMKUUctXXZZBf8GsCkGdVrL3rtRf_ppWjbJ9rj5n8KcBB-ugn3_6H17sPV7q_7G-9Gn68 |
CitedBy_id | crossref_primary_10_34133_cbsystems_0065 crossref_primary_10_1021_acsami_0c18818 crossref_primary_10_1038_s41524_024_01430_3 crossref_primary_10_1002_advs_202206099 crossref_primary_10_1016_j_tws_2021_107882 crossref_primary_10_1021_acsapm_0c00779 crossref_primary_10_1016_j_matdes_2021_109930 crossref_primary_10_1021_acsami_0c00176 crossref_primary_10_1007_s10999_023_09648_7 crossref_primary_10_1016_j_apmt_2024_102249 crossref_primary_10_1080_17452759_2024_2401933 crossref_primary_10_1088_1402_4896_acba5c crossref_primary_10_1177_14644207241229995 crossref_primary_10_1016_j_tws_2021_107758 crossref_primary_10_1016_j_ijsolstr_2024_112919 crossref_primary_10_1088_1361_6463_abf678 crossref_primary_10_1002_smll_202401565 crossref_primary_10_1016_j_ceramint_2023_07_213 crossref_primary_10_1039_C8NR07737A crossref_primary_10_1002_adfm_202410235 crossref_primary_10_1016_j_engstruct_2022_114399 crossref_primary_10_1016_j_compstruct_2022_116094 crossref_primary_10_1016_j_sna_2021_112673 crossref_primary_10_1142_S1758825121501155 crossref_primary_10_3390_s20113132 crossref_primary_10_1016_j_ijmecsci_2024_109013 crossref_primary_10_1080_15376494_2022_2033890 crossref_primary_10_3390_mi14010062 crossref_primary_10_1002_adma_202003155 crossref_primary_10_1039_D2CP03275A crossref_primary_10_1002_smtd_202100900 crossref_primary_10_1016_j_cej_2024_150796 crossref_primary_10_1016_j_matdes_2020_108788 crossref_primary_10_1063_5_0006075 crossref_primary_10_1016_j_cej_2024_150671 crossref_primary_10_1016_j_matlet_2022_132835 crossref_primary_10_1016_j_matt_2021_06_034 crossref_primary_10_1016_j_cej_2025_159539 crossref_primary_10_1063_1_5052192 crossref_primary_10_1002_adem_202301359 crossref_primary_10_1007_s11665_023_08243_3 crossref_primary_10_1016_j_device_2024_100570 crossref_primary_10_1061__ASCE_EM_1943_7889_0002149 crossref_primary_10_1002_aelm_202200993 crossref_primary_10_1021_acsami_3c05209 crossref_primary_10_1038_s41551_022_00954_7 crossref_primary_10_1002_adfm_202214265 crossref_primary_10_1016_j_jmps_2018_08_025 crossref_primary_10_1088_1361_665X_ad9fbf crossref_primary_10_1002_admt_202101544 crossref_primary_10_1016_j_eml_2020_100930 crossref_primary_10_1016_j_mtcomm_2023_107810 crossref_primary_10_1016_j_ijmecsci_2020_106169 crossref_primary_10_1021_acsaelm_4c01737 crossref_primary_10_1002_aelm_202000058 crossref_primary_10_1063_5_0238353 crossref_primary_10_1002_adom_202400136 crossref_primary_10_1016_j_compscitech_2022_109565 crossref_primary_10_1039_C8CS00801A crossref_primary_10_1002_adma_202007977 crossref_primary_10_32604_cmc_2022_029433 crossref_primary_10_1016_j_polymertesting_2022_107687 crossref_primary_10_1021_acsami_2c02690 crossref_primary_10_1002_adma_202003014 crossref_primary_10_3390_mi10080505 crossref_primary_10_1002_adsr_202300109 crossref_primary_10_1002_adfm_201904706 crossref_primary_10_1016_j_matdes_2018_11_002 crossref_primary_10_1088_1361_6463_adade5 crossref_primary_10_1002_mame_202100866 crossref_primary_10_3233_JIFS_189362 crossref_primary_10_1177_10996362241275532 crossref_primary_10_1016_j_optmat_2020_110507 crossref_primary_10_1016_j_compscitech_2021_109111 crossref_primary_10_1016_j_nanoen_2024_109686 crossref_primary_10_1080_14686996_2024_2331959 crossref_primary_10_1002_adma_201905399 crossref_primary_10_1080_15376494_2021_2020940 crossref_primary_10_1088_1742_6596_2730_1_012038 crossref_primary_10_1016_j_compstruct_2021_114892 crossref_primary_10_1088_1402_4896_ac700f crossref_primary_10_1016_j_sna_2021_112753 crossref_primary_10_1016_j_ceramint_2024_11_234 crossref_primary_10_1002_adem_202001082 crossref_primary_10_1007_s12274_019_2547_9 crossref_primary_10_1021_acsami_0c03996 crossref_primary_10_1039_D0TA04915H crossref_primary_10_1039_D1TC00416F crossref_primary_10_1016_j_cej_2023_142734 crossref_primary_10_1177_09544062221101832 crossref_primary_10_1007_s40430_024_05094_4 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1016_j_tws_2024_112504 crossref_primary_10_1002_pc_29656 crossref_primary_10_1002_advs_202303338 crossref_primary_10_1016_j_mechmat_2020_103661 crossref_primary_10_1088_1361_6463_abde6a crossref_primary_10_1142_S1758825123500576 crossref_primary_10_1017_pma_2024_3 crossref_primary_10_1016_j_cej_2024_151612 crossref_primary_10_1002_adfm_201807569 crossref_primary_10_1016_j_compstruct_2020_113355 crossref_primary_10_1016_j_euromechsol_2021_104386 crossref_primary_10_1016_j_nanoen_2021_106603 crossref_primary_10_1016_j_cej_2024_158115 crossref_primary_10_1021_acsami_4c13402 crossref_primary_10_1142_S1793292021500442 crossref_primary_10_1002_adfm_201903732 crossref_primary_10_1016_j_matdes_2023_112530 crossref_primary_10_1021_acs_nanolett_2c01967 crossref_primary_10_1080_15376494_2025_2477229 crossref_primary_10_1002_adma_201905522 crossref_primary_10_1109_JSEN_2023_3339835 crossref_primary_10_1140_epjd_s10053_023_00658_w crossref_primary_10_1039_D3EE00843F crossref_primary_10_3390_polym16020238 crossref_primary_10_1007_s40820_019_0323_8 crossref_primary_10_3390_ma16093603 crossref_primary_10_1016_j_compscitech_2022_109714 crossref_primary_10_1016_j_compstruct_2020_112560 crossref_primary_10_1002_adem_202300524 crossref_primary_10_1002_adma_202200070 crossref_primary_10_1126_sciadv_abf1966 crossref_primary_10_1016_j_ijsolstr_2024_113040 crossref_primary_10_1002_admt_201900452 crossref_primary_10_1016_j_sna_2022_113776 crossref_primary_10_1021_acsapm_0c01232 crossref_primary_10_1039_C8TC04753G crossref_primary_10_1016_j_eml_2020_100637 crossref_primary_10_1088_1361_665X_ad3bfa crossref_primary_10_1016_j_ijbiomac_2021_03_145 crossref_primary_10_1016_j_cemconcomp_2023_105046 crossref_primary_10_3389_fphy_2022_1024964 crossref_primary_10_1002_adem_202300750 crossref_primary_10_3390_nano10101980 crossref_primary_10_1002_adma_201800572 crossref_primary_10_1016_j_cjmeam_2023_100073 crossref_primary_10_1557_s43577_021_00079_3 crossref_primary_10_1007_s11433_018_9239_9 crossref_primary_10_1002_smll_202206299 crossref_primary_10_1002_admt_201900309 crossref_primary_10_1109_JSEN_2023_3296248 crossref_primary_10_3390_ma15196963 crossref_primary_10_1016_j_compstruct_2020_112579 crossref_primary_10_1021_acsnano_1c09288 crossref_primary_10_3390_cryst10080686 crossref_primary_10_1109_JSEN_2021_3102960 crossref_primary_10_1021_acsami_4c04966 crossref_primary_10_1038_s41467_020_15990_7 crossref_primary_10_2139_ssrn_4122077 crossref_primary_10_1007_s10853_023_09212_w crossref_primary_10_3389_femat_2022_1000781 crossref_primary_10_1016_j_compstruct_2023_117858 crossref_primary_10_1021_acsnano_0c04730 crossref_primary_10_1016_j_cej_2022_138088 crossref_primary_10_3389_fmats_2023_1273961 crossref_primary_10_1016_j_compstruct_2022_115269 crossref_primary_10_1016_j_ijsolstr_2021_111232 crossref_primary_10_1016_j_compositesb_2024_112089 crossref_primary_10_1002_aenm_202301252 crossref_primary_10_1016_j_ijmecsci_2021_107037 crossref_primary_10_3390_gels8110698 crossref_primary_10_1002_adfm_202214119 crossref_primary_10_1080_14686996_2022_2157682 crossref_primary_10_1021_acssuschemeng_9b04690 crossref_primary_10_1039_C9NA00770A crossref_primary_10_1002_adfm_201800850 crossref_primary_10_1021_acsami_2c16741 crossref_primary_10_1088_2058_8585_ac20bf crossref_primary_10_1016_j_tws_2024_112483 crossref_primary_10_1016_j_sna_2021_113218 crossref_primary_10_1039_D2LC00141A crossref_primary_10_1016_j_matdes_2021_110178 crossref_primary_10_1002_adma_202418705 crossref_primary_10_1002_adma_201903130 crossref_primary_10_3390_app122010437 crossref_primary_10_1093_nsr_nwae158 crossref_primary_10_1021_acsanm_2c01950 crossref_primary_10_1016_j_coco_2024_102078 crossref_primary_10_1002_adfm_201801834 crossref_primary_10_1016_j_ijmecsci_2022_107750 crossref_primary_10_1007_s11431_019_1502_7 crossref_primary_10_1016_j_surfin_2024_104385 crossref_primary_10_1061__ASCE_EM_1943_7889_0002002 crossref_primary_10_1002_adem_201800036 crossref_primary_10_1515_nanoph_2020_0052 crossref_primary_10_1002_aenm_202301159 crossref_primary_10_1038_s41528_024_00301_7 crossref_primary_10_1177_0040517520924850 crossref_primary_10_1002_pol_20240090 crossref_primary_10_1016_j_sna_2025_116429 crossref_primary_10_1016_j_tibtech_2022_12_012 crossref_primary_10_5850_JKSCT_2024_48_6_1320 crossref_primary_10_1002_admt_202400405 crossref_primary_10_1021_acsami_4c15777 crossref_primary_10_3390_nano12050882 crossref_primary_10_1038_s41598_020_60170_8 crossref_primary_10_1007_s40684_021_00356_1 crossref_primary_10_1002_app_56859 crossref_primary_10_1142_S1758825122500983 crossref_primary_10_2139_ssrn_3996049 crossref_primary_10_1038_s41467_022_33021_5 crossref_primary_10_1109_LRA_2023_3246841 crossref_primary_10_1002_adfm_202109109 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1016_j_ceramint_2023_12_110 crossref_primary_10_1088_2631_7990_ace668 crossref_primary_10_1016_j_sna_2022_113602 crossref_primary_10_1016_j_ijmecsci_2021_106267 crossref_primary_10_1021_acsnano_8b07805 crossref_primary_10_1590_1679_78257438 crossref_primary_10_1002_admt_202200477 crossref_primary_10_1002_adfm_202406789 crossref_primary_10_1002_adma_202102131 crossref_primary_10_1002_admt_202001247 crossref_primary_10_1016_j_compositesb_2023_110585 crossref_primary_10_1016_j_ymssp_2022_109065 crossref_primary_10_1088_1361_665X_abdada crossref_primary_10_1016_j_cej_2022_136270 crossref_primary_10_20517_ss_2023_30 crossref_primary_10_1016_j_colsurfa_2019_04_096 crossref_primary_10_1016_j_electacta_2022_140259 crossref_primary_10_1016_j_mtener_2023_101387 crossref_primary_10_1063_5_0096247 crossref_primary_10_1080_00405000_2020_1729055 crossref_primary_10_1016_j_compstruct_2021_115154 crossref_primary_10_1021_acs_chemmater_9b02274 crossref_primary_10_1038_s41467_022_28696_9 crossref_primary_10_1016_j_cma_2019_07_014 crossref_primary_10_3762_bjnano_11_166 crossref_primary_10_1007_s12274_021_3447_3 crossref_primary_10_1021_acsnano_8b08911 crossref_primary_10_1142_S0217984920502115 crossref_primary_10_1007_s00289_022_04221_2 crossref_primary_10_1038_s41467_019_11803_8 crossref_primary_10_1016_j_nanoen_2021_106074 crossref_primary_10_3390_ma14164521 crossref_primary_10_1002_advs_202102662 crossref_primary_10_1038_s43246_022_00322_7 crossref_primary_10_1039_D0TC00373E crossref_primary_10_1103_PhysRevB_102_174106 crossref_primary_10_1016_j_compscitech_2021_108729 crossref_primary_10_1021_acsami_2c19679 crossref_primary_10_1126_sciadv_ads9258 crossref_primary_10_1002_adfm_202418425 crossref_primary_10_1016_j_cej_2022_140436 crossref_primary_10_1021_acsnano_3c08624 crossref_primary_10_1007_s12596_024_01834_w crossref_primary_10_1088_1402_4896_ac4f9c crossref_primary_10_1002_admt_202001216 crossref_primary_10_1039_D0TC05526C crossref_primary_10_1002_admt_202000008 crossref_primary_10_20517_ss_2024_38 crossref_primary_10_1038_s41467_023_39792_9 crossref_primary_10_1021_acsami_8b10672 crossref_primary_10_1088_1361_6528_ac5da0 crossref_primary_10_1021_acsami_2c22727 crossref_primary_10_1021_acsami_4c03363 crossref_primary_10_1016_j_mechmat_2024_105138 crossref_primary_10_1039_D1TA08521B crossref_primary_10_1016_j_mattod_2021_05_007 crossref_primary_10_1002_adma_202300447 crossref_primary_10_1021_acsami_9b14476 crossref_primary_10_1126_sciadv_aba0616 crossref_primary_10_1115_1_4068033 crossref_primary_10_3390_s23239544 crossref_primary_10_1002_adma_201901360 crossref_primary_10_1016_j_tws_2021_108373 crossref_primary_10_1088_1361_6463_abb1e5 crossref_primary_10_3390_s19071490 crossref_primary_10_1016_j_carbon_2022_02_003 crossref_primary_10_1021_acsami_0c11815 crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1016_j_ijmecsci_2023_108732 crossref_primary_10_3390_machines12110813 crossref_primary_10_1364_AO_448356 crossref_primary_10_1007_s10443_022_10084_7 crossref_primary_10_1002_adma_202413774 crossref_primary_10_1016_j_nanoen_2020_104814 crossref_primary_10_1016_j_matdes_2019_107669 crossref_primary_10_1115_1_4044335 crossref_primary_10_3390_polym15092003 crossref_primary_10_1039_D1MH00908G crossref_primary_10_1002_adem_202000312 crossref_primary_10_1002_adma_201902434 crossref_primary_10_1016_j_ijmecsci_2019_105073 crossref_primary_10_1021_acscentsci_9b00155 crossref_primary_10_1016_j_compstruct_2022_116421 crossref_primary_10_1021_acsanm_2c03268 crossref_primary_10_1002_pssb_202000439 crossref_primary_10_1021_acs_accounts_8b00499 crossref_primary_10_1021_acs_chemrev_3c00374 crossref_primary_10_1007_s40033_025_00875_0 crossref_primary_10_1016_j_engstruct_2024_117482 crossref_primary_10_1038_s41467_022_34844_y crossref_primary_10_1007_s40684_023_00549_w crossref_primary_10_2174_2452271604666211130123921 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1002_aisy_201900090 crossref_primary_10_1002_adma_202200823 crossref_primary_10_1002_advs_202206867 crossref_primary_10_1002_advs_202304091 crossref_primary_10_1002_adfm_202213895 crossref_primary_10_1016_j_matt_2022_02_022 crossref_primary_10_1002_adma_202310145 crossref_primary_10_1016_j_compositesb_2020_108229 crossref_primary_10_1039_C9TC02486G crossref_primary_10_1039_D3MH02193A crossref_primary_10_1007_s40820_022_00887_5 crossref_primary_10_1002_adma_202106212 crossref_primary_10_1016_j_rser_2024_114285 crossref_primary_10_1039_C9TB02352F crossref_primary_10_1002_admt_202000550 crossref_primary_10_1016_j_engstruct_2025_119838 crossref_primary_10_1088_1361_665X_abfb82 crossref_primary_10_1016_j_istruc_2022_02_033 crossref_primary_10_1016_j_nanoen_2020_105446 crossref_primary_10_1021_acsami_2c01837 crossref_primary_10_1016_j_cej_2022_136317 crossref_primary_10_1038_s41467_023_44156_4 crossref_primary_10_1002_adem_201800864 crossref_primary_10_3390_mi14071402 crossref_primary_10_1016_j_matdes_2025_113805 crossref_primary_10_1177_0731684421990867 crossref_primary_10_1016_j_sna_2024_115608 crossref_primary_10_1002_admt_202000780 crossref_primary_10_1002_admt_202300981 crossref_primary_10_1016_j_cej_2024_150982 crossref_primary_10_1002_adma_202209321 crossref_primary_10_1177_0040517521993490 crossref_primary_10_3390_s21010161 crossref_primary_10_1142_S1758825125500012 crossref_primary_10_3390_s24113329 crossref_primary_10_1016_j_compscitech_2019_05_017 crossref_primary_10_34133_research_0002 crossref_primary_10_1002_adem_202100646 crossref_primary_10_1002_adma_201805468 crossref_primary_10_1016_j_jallcom_2019_02_117 crossref_primary_10_1002_adma_202001130 crossref_primary_10_1016_j_nanoen_2018_10_049 crossref_primary_10_1021_acsami_0c13427 crossref_primary_10_1016_j_ijmecsci_2021_106733 crossref_primary_10_1016_j_sna_2020_111939 crossref_primary_10_1039_C9TC04006D crossref_primary_10_1080_15376494_2025_2481231 crossref_primary_10_1016_j_cad_2023_103631 crossref_primary_10_1016_j_msea_2020_140096 crossref_primary_10_1002_adma_202304631 crossref_primary_10_1007_s11431_023_2621_5 crossref_primary_10_1016_j_ijmecsci_2024_109788 crossref_primary_10_1016_j_compstruct_2024_118333 crossref_primary_10_1016_j_xcrp_2024_101893 crossref_primary_10_1021_acssensors_0c01297 crossref_primary_10_1007_s10853_024_10097_6 crossref_primary_10_1016_j_ijsolstr_2024_112777 crossref_primary_10_1016_j_ijmecsci_2020_106205 crossref_primary_10_1016_j_mechmat_2022_104244 crossref_primary_10_1021_acsami_2c20390 crossref_primary_10_1016_j_cej_2023_145075 crossref_primary_10_1016_j_compositesb_2022_110146 crossref_primary_10_1016_j_ijsolstr_2020_09_003 crossref_primary_10_1016_j_tws_2023_110858 crossref_primary_10_1038_s41467_023_41222_9 crossref_primary_10_1002_adma_202413929 crossref_primary_10_1002_adfm_202421746 crossref_primary_10_1021_acssensors_4c02895 crossref_primary_10_1002_aelm_201900347 crossref_primary_10_3390_electronics12010018 crossref_primary_10_1039_D0MH00716A crossref_primary_10_1002_adfm_201806714 crossref_primary_10_1038_s41598_021_03588_y crossref_primary_10_1088_1361_665X_ac25c9 crossref_primary_10_3390_mi9070321 crossref_primary_10_1039_D4MH00757C crossref_primary_10_1016_j_ijmecsci_2023_108579 crossref_primary_10_1021_acsami_1c06295 crossref_primary_10_1016_j_jmst_2021_08_081 crossref_primary_10_1177_14759217211053991 crossref_primary_10_1002_adma_202200444 crossref_primary_10_1002_adfm_202211771 crossref_primary_10_3389_fmats_2024_1361408 crossref_primary_10_1016_j_addma_2023_103470 crossref_primary_10_3390_ma16155306 crossref_primary_10_1088_2040_8986_abd984 crossref_primary_10_1177_0040517519881814 crossref_primary_10_1016_j_matdes_2025_113819 crossref_primary_10_1177_14644207231174325 crossref_primary_10_1186_s11671_019_3186_5 crossref_primary_10_1002_admi_202300350 crossref_primary_10_1016_j_matdes_2020_109313 crossref_primary_10_1016_j_mtcomm_2022_103186 crossref_primary_10_1089_soro_2022_0026 crossref_primary_10_1002_adma_202420322 crossref_primary_10_1088_2631_6331_abd373 crossref_primary_10_3390_s21175820 crossref_primary_10_1021_acsami_9b21197 crossref_primary_10_1109_JSEN_2020_3035808 crossref_primary_10_1002_aelm_202000269 crossref_primary_10_1103_PhysRevApplied_19_064065 crossref_primary_10_1016_j_compositesa_2021_106351 crossref_primary_10_1007_s10409_024_24363_x crossref_primary_10_1007_s12221_023_00179_8 crossref_primary_10_1002_adfm_202306820 crossref_primary_10_1016_j_mtcomm_2022_105132 crossref_primary_10_1039_D0TA05129B crossref_primary_10_1016_j_nanoen_2023_108303 |
Cites_doi | 10.1002/adfm.201700341 10.1002/adma.201603160 10.1038/ncomms6032 10.1126/science.1255908 10.1021/acs.chemrev.7b00291 10.1063/1.3076103 10.1021/nn3010558 10.1063/1.4961493 10.1021/nn501204t 10.1002/adma.201201644 10.1002/adfm.201605630 10.1002/adfm.201303886 10.1021/nl204052z 10.1002/adfm.201504717 10.1002/adma.201504244 10.1002/adma.201702308 10.1126/science.1182383 10.1002/admt.201700081 10.1038/srep03048 10.1126/science.1252876 10.1038/nature14543 10.1126/science.1252291 10.1002/adma.201701780 10.1002/adma.201504150 10.1002/adfm.201504755 10.1039/c3nr03536k 10.1021/nn506341u 10.1002/adma.201103406 10.1002/adma.201504239 10.1038/srep07254 10.1371/journal.pone.0179766 10.1002/admi.201700278 10.1002/adma.201503288 10.1039/c3nr05496a 10.1038/nnano.2015.115 10.1038/nnano.2014.38 10.1063/1.3594240 10.1038/srep45013 10.1039/C6RA27333E 10.1063/1.1806275 10.1038/nmat2459 10.1038/nmat3331 10.1002/adma.201601572 10.1002/adfm.201203670 10.1002/advs.201600190 10.1002/adma.201600720 10.1038/ncomms1772 10.1038/s41598-017-08484-y 10.1002/adma.201601422 10.1557/mrs.2017.7 10.1021/acsnano.5b01613 10.1002/adma.201502809 10.1016/j.mattod.2014.05.006 10.1038/natrevmats.2017.66 10.1038/nature14002 10.1002/adma.201602425 10.1002/adfm.201400379 10.1063/1.2201874 10.1038/nnano.2011.36 10.1021/acsami.5b05001 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201706589 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29380896 10_1002_adma_201706589 ADMA201706589 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Singapore Ministry of Education funderid: MOE2015‐T2‐2‐060 – fundername: National Research Foundation (NRF) funderid: NRF2016NRF‐NRFI001‐21 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4399-75f9c1c3e5ed2349b5c691697c76e109de5f26e6befac7269d3264b85ce3b66c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:19:10 EDT 2025 Mon Jul 14 10:27:57 EDT 2025 Wed Feb 19 02:43:46 EST 2025 Tue Jul 01 00:44:39 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Jan 22 17:01:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | auxetics high sensitivity mechanical metamaterials stretchable strain sensors |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-75f9c1c3e5ed2349b5c691697c76e109de5f26e6befac7269d3264b85ce3b66c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3312-1664 |
PMID | 29380896 |
PQID | 2017722534 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1993009681 proquest_journals_2017722534 pubmed_primary_29380896 crossref_citationtrail_10_1002_adma_201706589 crossref_primary_10_1002_adma_201706589 wiley_primary_10_1002_adma_201706589_ADMA201706589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Mar |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-Mar |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 42 2004; 85 2013; 3 2017; 2 2014; 516 2017; 4 2010; 327 2016; 109 2015; 521 2017; 27 2013; 23 2015; 10 2014; 24 2011; 98 2017; 29 2015; 9 2013; 5 2012; 12 2011; 6 2015; 7 2012; 11 2017; 117 2014; 5 2014; 4 2015; 27 2012; 3 2009; 94 2006; 88 2017; 12 2009; 8 2011; 23 2014; 17 2012; 6 2014; 9 2016; 28 2014; 8 2012; 24 2014; 6 2016; 26 2014; 345 2014; 344 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_60_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 12 start-page: e0179766 year: 2017 publication-title: PLoS One – volume: 29 start-page: 1701780 year: 2017 publication-title: Adv. Mater. – volume: 88 start-page: 204103 year: 2006 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 4666 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1605630 year: 2017 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 19700 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1702308 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 4369 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 7254 year: 2014 publication-title: Sci. Rep. – volume: 27 start-page: 5931 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 7959 year: 2017 publication-title: Sci. Rep. – volume: 23 start-page: 4020 year: 2013 publication-title: Adv. Funct. Mater. – volume: 94 start-page: 071902 year: 2009 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 3048 year: 2013 publication-title: Sci. Rep. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 4782 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 6252 year: 2015 publication-title: ACS Nano – volume: 7 start-page: 45013 year: 2017 publication-title: Sci. Rep. – volume: 28 start-page: 4177 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 12350 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 2345 year: 2014 publication-title: Nanoscale – volume: 8 start-page: 5154 year: 2014 publication-title: ACS Nano – volume: 345 start-page: 1322 year: 2014 publication-title: Science – volume: 28 start-page: 10244 year: 2016 publication-title: Adv. Mater. – volume: 42 start-page: 103 year: 2017 publication-title: MRS Bull. – volume: 28 start-page: 4203 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 608 year: 2012 publication-title: Nat. Mater. – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 8 start-page: 494 year: 2009 publication-title: Nat. Mater. – volume: 28 start-page: 722 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 1821 year: 2012 publication-title: Nano Lett. – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 345 start-page: 647 year: 2014 publication-title: Science – volume: 98 start-page: 212112 year: 2011 publication-title: Appl. Phys. Lett. – volume: 109 start-page: 083502 year: 2016 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 516 start-page: 222 year: 2014 publication-title: Nature – volume: 28 start-page: 6359 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 5111 year: 2017 publication-title: RSC Adv. – volume: 344 start-page: 1373 year: 2014 publication-title: Science – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 4 start-page: 1600190 year: 2017 publication-title: Adv. Sci. – volume: 117 start-page: 12893 year: 2017 publication-title: Chem. Rev. – volume: 10 start-page: 629 year: 2015 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 1622 year: 2015 publication-title: ACS Nano – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1700278 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 26 start-page: 1322 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 6230 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 5032 year: 2014 publication-title: Nat. Commun. – volume: 2 start-page: 17066 year: 2017 publication-title: Nat. Rev. Mater. – volume: 28 start-page: 8130 year: 2016 publication-title: Adv. Mater. – volume: 17 start-page: 321 year: 2014 publication-title: Mater. Today – volume: 24 start-page: 3846 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1700341 year: 2017 publication-title: Adv. Funct. Mater. – volume: 85 start-page: 3435 year: 2004 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 1700081 year: 2017 publication-title: Adv. Mater. Technol. – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 5440 year: 2011 publication-title: Adv. Mater. – volume: 3 start-page: 770 year: 2012 publication-title: Nat. Commun. – ident: e_1_2_4_10_1 doi: 10.1002/adfm.201700341 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201603160 – ident: e_1_2_4_15_1 doi: 10.1038/ncomms6032 – ident: e_1_2_4_49_1 doi: 10.1126/science.1255908 – ident: e_1_2_4_45_1 doi: 10.1021/acs.chemrev.7b00291 – ident: e_1_2_4_60_1 doi: 10.1063/1.3076103 – ident: e_1_2_4_9_1 doi: 10.1021/nn3010558 – ident: e_1_2_4_17_1 doi: 10.1063/1.4961493 – ident: e_1_2_4_24_1 doi: 10.1021/nn501204t – ident: e_1_2_4_42_1 doi: 10.1002/adma.201201644 – ident: e_1_2_4_3_1 doi: 10.1002/adfm.201605630 – ident: e_1_2_4_7_1 doi: 10.1002/adfm.201303886 – ident: e_1_2_4_13_1 doi: 10.1021/nl204052z – ident: e_1_2_4_26_1 doi: 10.1002/adfm.201504717 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201504244 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201702308 – ident: e_1_2_4_54_1 doi: 10.1126/science.1182383 – ident: e_1_2_4_8_1 doi: 10.1002/admt.201700081 – ident: e_1_2_4_12_1 doi: 10.1038/srep03048 – ident: e_1_2_4_47_1 doi: 10.1126/science.1252876 – ident: e_1_2_4_11_1 doi: 10.1038/nature14543 – ident: e_1_2_4_50_1 doi: 10.1126/science.1252291 – ident: e_1_2_4_35_1 doi: 10.1002/adma.201701780 – ident: e_1_2_4_2_1 doi: 10.1002/adma.201504150 – ident: e_1_2_4_20_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_4_4_1 doi: 10.1039/c3nr03536k – ident: e_1_2_4_34_1 doi: 10.1021/nn506341u – ident: e_1_2_4_36_1 doi: 10.1002/adma.201103406 – ident: e_1_2_4_37_1 doi: 10.1002/adma.201504239 – ident: e_1_2_4_38_1 doi: 10.1038/srep07254 – ident: e_1_2_4_21_1 doi: 10.1371/journal.pone.0179766 – ident: e_1_2_4_44_1 doi: 10.1002/admi.201700278 – ident: e_1_2_4_57_1 doi: 10.1002/adma.201503288 – ident: e_1_2_4_14_1 doi: 10.1039/c3nr05496a – ident: e_1_2_4_33_1 doi: 10.1038/nnano.2015.115 – ident: e_1_2_4_19_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_4_59_1 doi: 10.1063/1.3594240 – ident: e_1_2_4_31_1 doi: 10.1038/srep45013 – ident: e_1_2_4_51_1 doi: 10.1039/C6RA27333E – ident: e_1_2_4_52_1 doi: 10.1063/1.1806275 – ident: e_1_2_4_56_1 doi: 10.1038/nmat2459 – ident: e_1_2_4_46_1 doi: 10.1038/nmat3331 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201601572 – ident: e_1_2_4_53_1 doi: 10.1002/adfm.201203670 – ident: e_1_2_4_16_1 doi: 10.1002/advs.201600190 – ident: e_1_2_4_30_1 doi: 10.1002/adma.201600720 – ident: e_1_2_4_55_1 doi: 10.1038/ncomms1772 – ident: e_1_2_4_39_1 doi: 10.1038/s41598-017-08484-y – ident: e_1_2_4_1_1 doi: 10.1002/adma.201601422 – ident: e_1_2_4_40_1 doi: 10.1557/mrs.2017.7 – ident: e_1_2_4_29_1 doi: 10.1021/acsnano.5b01613 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201502809 – ident: e_1_2_4_58_1 doi: 10.1016/j.mattod.2014.05.006 – ident: e_1_2_4_43_1 doi: 10.1038/natrevmats.2017.66 – ident: e_1_2_4_22_1 doi: 10.1038/nature14002 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201602425 – ident: e_1_2_4_28_1 doi: 10.1002/adfm.201400379 – ident: e_1_2_4_41_1 doi: 10.1063/1.2201874 – ident: e_1_2_4_27_1 doi: 10.1038/nnano.2011.36 – ident: e_1_2_4_32_1 doi: 10.1021/acsami.5b05001 |
SSID | ssj0009606 |
Score | 2.6727912 |
Snippet | Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle... Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1706589 |
SubjectTerms | auxetics Computer simulation Elastomers Elongated structure high sensitivity Materials science mechanical metamaterials Metamaterials Microcracks Poisson's ratio Sensitivity enhancement Sensors Strain concentration stretchable strain sensors Substrates Synergistic effect |
Title | Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706589 https://www.ncbi.nlm.nih.gov/pubmed/29380896 https://www.proquest.com/docview/2017722534 https://www.proquest.com/docview/1993009681 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kT_rg90d1SgXBp25d26Tt49CNIcwHdbC3kq-iKK1sHYh_vblkq5sigr6lNKHX3F3yS3L3C8AFYwQPbYWnqB_i1o12KV9QT8SYOZPrWcHcEjG8pYNRdDMm46UsfssPUW-4oWeY8RodnPFp-5M0lEnDG4T0LyTBDD4M2EJUdPfJH4Xw3JDthcRLaZQsWBv9oL3afHVW-gY1V5GrmXr6W8AWQtuIk-fWrOIt8f6Fz_E_f7UNm3Nc6natIe3Amip2YWOJrXAPRt3ZG6Y8ukOF6cKoXV2smMa81ozdqnR7xSPakXuPgfH2Zgq3zF08_Nb2gXlaWGZPhalRTqb7MOr3Hq4G3vxWBk_g2sWLSZ6KjggVUTIIo5QTQTXGTGOtXtXxU6lIHlBFucqZiAOaSo0QI54QoUJOqQgPoFGUhToCl0upVzdh7kuSRpJTprFHrBdwecLzgEvugLfQSibmlOUo4ktmyZaDDLsrq7vLgcu6_qsl6_ixZnOh5GzutFPzNtbjWxg5cF6_1u6GZyisUOVsmmG8I9pV0nHg0BpH_SktfeInKXUgMCr-RYasez3s1k_Hf2l0Auu6nNiYuCY0qslMnWqQVPEz4wgfFRYHlA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HNSD-1LXCoKnaqdt0uY4uDAu40Ed8FaapShKK04HxF9vXjKtjiKC3tImoWnee8mX5L0vAHtZRvDQVniK-iFu3WiT8gX1RIyRM7meFcwtEd0r2ulF53ek9ibEWBjLD9FsuKFlmPEaDRw3pA8_WEMzaYiDkP-FJGwcJvFab7Oquv5gkEKAbuj2QuIxGiU1b6MfHI7WH52XvoHNUexqJp_TOeB1s63PyePBoOIH4u0Lo-O__mseZofQ1G1bXVqAMVUswswnwsIl6LUHrxj16HYVRgyjgHWyyjTstZrsVqV7UtyjKrk36BtvL6dwy9zF82-tIhiqhensoTAlypf-MvROT26POt7wYgZP4PLFi0nOREuEiigZhBHjRFANM1msJaxaPpOK5AFVlKs8E3FAmdQgMeIJESrklIpwBSaKslBr4HIp9QInzH1JWCQ5zTT8iPUaLk94HnDJHfBqsaRiyFqOTXxKLd9ykGJ3pU13ObDflH-2fB0_ltyspZwO7bZvcmM9xIWRA7tNtrY4PEbJClUO-im6PKJiJS0HVq12NJ_SrU_8hFEHAiPjX9qQto-77eZp_S-VdmCqc9u9TC_Pri42YFq_T6yL3CZMVC8DtaUxU8W3jVW8A46dC68 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIaHxwIDBCAzIJKQ9ZUuT2Ekeq3VV-Wg1DSr1LfKnQEzJtKYS4q_nzm7TdROaBG9ObCuO787-2b77GeCDEIwObVVkeJzS1g2aVKx4pHKKnLE4K7hbIsYTPppmn2ZsdiOK3_NDdBtuZBluvCYDv9L2ZE0aKrTjDSL6F1aUW_Aw43FBej24WBNIET53bHspi0qeFSvaxjg52ay_OS3dwZqb0NXNPcNdEKtWe5eTn8eLVh6r37cIHf_nt57CkyUwDftek57BA1M_h8c36Ar3YNpf_KKYx3BsKF6YxIvJViDo9Xoctk14Vn8nRQq_kme8v5oibGxIp9-oIBSoRWnxo3Ylmuv5C5gOz76djqLltQyRosVLlDNbqp5KDTM6SbNSMsURZJY5ytf04lIbZhNuuDRWqDzhpUaImMmCKZNKzlX6ErbrpjavIJRa4_ImtbFmZaYlFwg-clzB2ULaRGoZQLSSSqWWnOXUxMvKsy0nFXVX1XVXAEdd-SvP1vHXkgcrIVdLq5273BwHuDQL4LDLRnujQxRRm2Yxr8jhkfSq6AWw75Wj-xS2vkAd5AEkTsT3tKHqD8b97un1v1R6D4_OB8Pqy8fJ5zewg68L7x93ANvt9cK8RcDUynfOJv4Ad0sKZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auxetic+Mechanical+Metamaterials+to+Enhance+Sensitivity+of+Stretchable+Strain+Sensors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Ying&rft.au=Liu%2C+Zhiyuan&rft.au=Matsuhisa%2C+Naoji&rft.au=Dianpeng+Qi&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=12&rft_id=info:doi/10.1002%2Fadma.201706589&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |