Mechanochromic, Shape‐Programmable and Self‐Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds

Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 9; pp. e202116219 - n/a
Main Authors Ma, Jiazhe, Yang, Yanzhao, Valenzuela, Cristian, Zhang, Xuan, Wang, Ling, Feng, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.02.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines. Cholesteric liquid crystal elastomers (CLCEs) exhibiting mechanochromic, shape‐programmable and self‐healable properties were synthesized by introducing dynamic covalent boronic ester bonds into the main‐chain CLCE polymer networks. This research shines new light onto the development of dynamic covalent polymers for emerging applications in areas of bioinspired camouflage, adaptive optics and smart soft robotics.
AbstractList Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines. Cholesteric liquid crystal elastomers (CLCEs) exhibiting mechanochromic, shape‐programmable and self‐healable properties were synthesized by introducing dynamic covalent boronic ester bonds into the main‐chain CLCE polymer networks. This research shines new light onto the development of dynamic covalent polymers for emerging applications in areas of bioinspired camouflage, adaptive optics and smart soft robotics.
Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines.
Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines.Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines.
Author Ma, Jiazhe
Valenzuela, Cristian
Yang, Yanzhao
Zhang, Xuan
Feng, Wei
Wang, Ling
Author_xml – sequence: 1
  givenname: Jiazhe
  surname: Ma
  fullname: Ma, Jiazhe
  organization: Tianjin University
– sequence: 2
  givenname: Yanzhao
  surname: Yang
  fullname: Yang, Yanzhao
  organization: Tianjin University
– sequence: 3
  givenname: Cristian
  surname: Valenzuela
  fullname: Valenzuela, Cristian
  organization: Tianjin University
– sequence: 4
  givenname: Xuan
  surname: Zhang
  fullname: Zhang, Xuan
  organization: Tianjin University
– sequence: 5
  givenname: Ling
  orcidid: 0000-0003-1035-5633
  surname: Wang
  fullname: Wang, Ling
  email: lwang17@tju.edu.cn
  organization: Tianjin University
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-5816-7343
  surname: Feng
  fullname: Feng, Wei
  email: weifeng@tju.edu.cn
  organization: Tianjin Key Laboratory of Composite and Functional Materials
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34962037$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS1URNuBLUtkiQ2LzuBLLvayDYFWGi5SYR39cRzGlWNP7QSUXZ8A8Yw8CZ5OC1IlxMr20XeO_fscowPnnUboOSUrSgh7Dc7oFSOM0oJR-Qgd0ZzRJS9LfpD2GefLUuT0EB3HeJV4IUjxBB3yTBaM8PII_Xiv1QacV5vgB6NO8OUGtvrXzc9PwX8NMAzQWo3BdfhS2z7p5xrsrVZtvNVx1MEovDbXk-lwFeY4gsW1hTj6QYeIa7eDO9zO-M3sIF2BK_8NrHYjPvPBuyTUu5R0cl18ih73YKN-drcu0Je39efqfLn--O6iOl0vVcalXOZCiTxvQfWsJ7JngkAJsuhp2bVcEMGAMF1IkYbUqu-0VBllvGVlC3nb8owv0Kt97jb46ymN0QwmKm0tOO2n2LCC5pSI8hZ9-QC98lNw6XWJYkIylqfsBXpxR03toLtmG8wAYW7ufzoB2R5QwccYdN8oM8JovBsDGNtQ0uwKbXaFNn8KTbbVA9t98j8Ncm_4bqye_0M3px8u6r_e36jEtbk
CitedBy_id crossref_primary_10_1002_adma_202206580
crossref_primary_10_1002_advs_202205325
crossref_primary_10_1002_chem_202301027
crossref_primary_10_1002_adfm_202308677
crossref_primary_10_1002_ange_202300699
crossref_primary_10_1002_adma_202403766
crossref_primary_10_1002_chem_202301030
crossref_primary_10_1007_s40820_022_01005_1
crossref_primary_10_1021_acs_macromol_2c01912
crossref_primary_10_1039_D3TC01777J
crossref_primary_10_1016_j_cej_2023_145491
crossref_primary_10_1002_adfm_202421280
crossref_primary_10_1002_nadc_20234135542
crossref_primary_10_1002_smll_202207073
crossref_primary_10_1016_j_cej_2023_147550
crossref_primary_10_1002_adfm_202402403
crossref_primary_10_1002_macp_202400496
crossref_primary_10_1039_D4MH01646G
crossref_primary_10_1002_adma_202413665
crossref_primary_10_1007_s40843_023_2474_8
crossref_primary_10_1002_sus2_248
crossref_primary_10_1002_ange_202422636
crossref_primary_10_1002_rpm_20230008
crossref_primary_10_1002_admt_202301322
crossref_primary_10_1016_j_cej_2022_138356
crossref_primary_10_1021_acsami_2c17494
crossref_primary_10_1002_marc_202300011
crossref_primary_10_1080_02678292_2023_2208548
crossref_primary_10_1002_adom_202400266
crossref_primary_10_1080_02678292_2023_2200266
crossref_primary_10_1360_nso_20240013
crossref_primary_10_1002_ange_202211959
crossref_primary_10_3390_polym15010168
crossref_primary_10_1039_D4TA07959K
crossref_primary_10_1002_adom_202202531
crossref_primary_10_1002_advs_202204003
crossref_primary_10_1039_D3MH01239E
crossref_primary_10_1021_acsami_2c21879
crossref_primary_10_1039_D4CS01182A
crossref_primary_10_1002_marc_202300354
crossref_primary_10_1007_s11426_024_2031_0
crossref_primary_10_1021_acsami_2c21888
crossref_primary_10_1002_ange_202211030
crossref_primary_10_1007_s40820_022_00977_4
crossref_primary_10_1126_sciadv_abo6021
crossref_primary_10_1016_j_matt_2023_02_003
crossref_primary_10_1021_acsami_3c03817
crossref_primary_10_1021_acsami_2c03392
crossref_primary_10_1021_jacs_2c08505
crossref_primary_10_1002_adma_202419747
crossref_primary_10_1002_anie_202420003
crossref_primary_10_1021_acsami_2c20959
crossref_primary_10_1039_D2TA06884B
crossref_primary_10_1002_anie_202500527
crossref_primary_10_1002_rpm_20230026
crossref_primary_10_1002_adma_202310130
crossref_primary_10_1038_s42004_024_01141_2
crossref_primary_10_1007_s11426_023_1779_3
crossref_primary_10_1002_adma_202312313
crossref_primary_10_1002_asia_202201082
crossref_primary_10_1039_D3CS01017A
crossref_primary_10_1002_rpm_20230030
crossref_primary_10_1002_ange_202313728
crossref_primary_10_1021_acsami_4c10826
crossref_primary_10_1021_acs_macromol_3c00138
crossref_primary_10_1002_adfm_202215055
crossref_primary_10_1002_adma_202303969
crossref_primary_10_1038_s41377_024_01470_w
crossref_primary_10_1002_adfm_202412298
crossref_primary_10_1002_adma_202401315
crossref_primary_10_1021_acsnano_3c04199
crossref_primary_10_1039_D4TA02010C
crossref_primary_10_1002_anie_202300699
crossref_primary_10_1007_s40843_021_2014_0
crossref_primary_10_1126_sciadv_adt0825
crossref_primary_10_1002_admi_202202124
crossref_primary_10_1002_anie_202313728
crossref_primary_10_1016_j_cej_2022_138390
crossref_primary_10_1002_adfm_202422772
crossref_primary_10_1021_acsanm_4c04211
crossref_primary_10_1021_acs_macromol_3c01371
crossref_primary_10_1002_smll_202311656
crossref_primary_10_1039_D3QM00856H
crossref_primary_10_1002_adfm_202411670
crossref_primary_10_1002_ange_202404202
crossref_primary_10_1002_adpr_202200091
crossref_primary_10_1007_s12274_022_4394_3
crossref_primary_10_1080_02678292_2023_2241139
crossref_primary_10_1002_ange_202420003
crossref_primary_10_1038_s41377_022_00937_y
crossref_primary_10_1080_02678292_2023_2182925
crossref_primary_10_1021_acsami_3c03183
crossref_primary_10_1002_aesr_202300289
crossref_primary_10_1002_anie_202404202
crossref_primary_10_1021_acsapm_2c00173
crossref_primary_10_1016_j_cej_2022_141215
crossref_primary_10_1002_adfm_202211914
crossref_primary_10_1002_adom_202102475
crossref_primary_10_1002_adfm_202413965
crossref_primary_10_3390_molecules29174276
crossref_primary_10_1038_s41377_022_00913_6
crossref_primary_10_1002_marc_202400239
crossref_primary_10_1039_D2SM01117D
crossref_primary_10_1007_s40843_023_2662_y
crossref_primary_10_1016_j_cej_2023_143368
crossref_primary_10_1002_anie_202211959
crossref_primary_10_1002_aisy_202200269
crossref_primary_10_1021_acsami_2c19492
crossref_primary_10_1021_acsnano_4c08338
crossref_primary_10_1021_acsmacrolett_4c00233
crossref_primary_10_1002_adom_202302573
crossref_primary_10_1002_anie_202211030
crossref_primary_10_1002_chem_202402912
crossref_primary_10_1039_D2QM01128J
crossref_primary_10_1039_D3MH01386C
crossref_primary_10_1002_advs_202301414
crossref_primary_10_1002_smsc_202300052
crossref_primary_10_1021_jacs_3c06262
crossref_primary_10_1002_adfm_202204744
crossref_primary_10_1002_pol_20220131
crossref_primary_10_1002_adfm_202401005
crossref_primary_10_1016_j_cej_2023_146861
crossref_primary_10_1002_anie_202422636
crossref_primary_10_1002_admt_202302009
crossref_primary_10_1017_pma_2023_8
crossref_primary_10_1002_adma_202209566
crossref_primary_10_1039_D2TC03072A
crossref_primary_10_1002_ange_202500527
crossref_primary_10_1002_smll_202303728
crossref_primary_10_1002_adom_202402177
crossref_primary_10_1021_acsami_3c18367
crossref_primary_10_1080_02678292_2024_2363392
crossref_primary_10_3390_molecules28010428
crossref_primary_10_1002_adfm_202402124
crossref_primary_10_1002_smll_202400520
crossref_primary_10_1039_D2TC04444G
crossref_primary_10_1007_s10118_023_3031_2
crossref_primary_10_1021_acsnano_3c05078
crossref_primary_10_1039_D2TC01886A
crossref_primary_10_1002_adom_202302234
crossref_primary_10_1002_pol_20230411
crossref_primary_10_1021_acsami_2c16209
crossref_primary_10_1002_anie_202411280
crossref_primary_10_1557_s43577_024_00801_x
crossref_primary_10_1016_j_cej_2023_141282
crossref_primary_10_1039_D4SC05007J
crossref_primary_10_1002_adfm_202212005
crossref_primary_10_1016_j_cej_2023_142000
crossref_primary_10_1007_s40843_023_2694_0
crossref_primary_10_1002_smll_202405426
crossref_primary_10_1016_j_cej_2023_144429
crossref_primary_10_1002_adfm_202306079
crossref_primary_10_1002_cssc_202301017
crossref_primary_10_1002_adom_202300046
crossref_primary_10_1016_j_cej_2024_149053
crossref_primary_10_1016_j_matt_2023_07_029
crossref_primary_10_1002_adfm_202502613
crossref_primary_10_1360_TB_2024_0338
crossref_primary_10_1002_ange_202411280
crossref_primary_10_1002_adma_202500857
crossref_primary_10_1039_D3MH00184A
crossref_primary_10_1021_acsapm_3c02629
crossref_primary_10_1039_D4MH01604A
crossref_primary_10_1002_adom_202300503
crossref_primary_10_1038_s41467_024_51544_x
crossref_primary_10_1002_adma_202406714
crossref_primary_10_1021_acsami_3c10210
crossref_primary_10_1007_s40820_024_01367_8
crossref_primary_10_1002_adfm_202414086
crossref_primary_10_1002_adfm_202421516
crossref_primary_10_1002_adfm_202300184
crossref_primary_10_1002_adom_202400192
crossref_primary_10_1002_adma_202207985
crossref_primary_10_1021_acsami_3c14488
crossref_primary_10_3390_pharmaceutics15122743
crossref_primary_10_1080_02678292_2023_2227956
crossref_primary_10_1002_adfm_202413306
crossref_primary_10_1039_D3TC01991H
crossref_primary_10_26599_FRICT_2025_9440925
crossref_primary_10_1007_s10118_025_3279_9
crossref_primary_10_1007_s10118_024_3192_7
crossref_primary_10_1002_smll_202204630
crossref_primary_10_1021_acsami_2c03241
crossref_primary_10_1002_adfm_202300731
crossref_primary_10_1038_s41467_024_54881_z
crossref_primary_10_1039_D3MH00271C
crossref_primary_10_1002_adfm_202310658
crossref_primary_10_1002_marc_202300445
crossref_primary_10_3390_ma17163980
crossref_primary_10_1002_smll_202410933
crossref_primary_10_1021_acsami_3c13140
crossref_primary_10_3390_mi15060808
crossref_primary_10_1002_adom_202401934
crossref_primary_10_1021_acsami_4c00741
crossref_primary_10_1002_advs_202309020
crossref_primary_10_1002_advs_202400557
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1002_adma_202400286
crossref_primary_10_1039_D3MH00336A
crossref_primary_10_1002_adma_202416621
crossref_primary_10_1002_adfm_202304769
crossref_primary_10_1002_adma_202401931
crossref_primary_10_1002_pat_5868
Cites_doi 10.1002/ange.202014533
10.1109/JOE.2004.833135
10.1039/D0MH01406K
10.1002/adma.201405690
10.1002/adfm.202104702
10.1038/nature17141
10.1021/ja500933h
10.1126/sciadv.aat4634
10.1002/adma.201801103
10.1002/adma.201906319
10.1002/ange.201911612
10.1002/adma.201905151
10.1002/adom.201801683
10.1021/jacs.9b06757
10.1002/adfm.201906458
10.1002/adfm.201906833
10.1038/nmat3812
10.1021/acsami.8b09863
10.1039/D0TB00754D
10.1039/D1MH00623A
10.1021/jacs.0c10244
10.1126/science.aah5281
10.1002/adma.202004754
10.1021/acs.chemrev.0c01057
10.1002/adma.201905682
10.1002/adfm.202104991
10.1016/j.pmatsci.2020.100702
10.1002/adfm.202003150
10.1021/jacs.1c03661
10.1038/s41598-020-63508-4
10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
10.1002/ange.202000181
10.1038/nature19344
10.1002/ange.202105278
10.1002/adfm.202104641
10.1038/nature22987
10.1002/ange.201915694
10.1002/adma.201703554
10.1002/adma.201904224
10.1038/nchem.1859
10.1021/acsami.7b09246
10.1021/acsami.0c10021
10.1039/D1TA02308J
10.1039/C9MH01223K
10.1039/D0MH01142H
10.1002/anie.202105278
10.1016/j.polymer.2020.122962
10.1002/adma.201801335
10.1016/j.mattod.2017.04.028
10.1021/jacs.5b03551
10.1002/anie.202014533
10.1038/s41563-021-01075-3
10.1002/anie.201915694
10.1038/s41578-021-00359-z
10.1002/anie.202000181
10.1038/nmat3993
10.1002/adma.202103309
10.1002/anie.201911612
10.1039/C7MH00644F
10.1021/acs.chemrev.0c00938
10.1002/adma.201100131
10.1002/adfm.201909537
10.1038/nmat4433
10.1002/adom.202000984
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202116219
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34962037
10_1002_anie_202116219
ANIE202116219
Genre article
Journal Article
GrantInformation_xml – fundername: Key Programme
  funderid: 52130303
– fundername: National Natural Science Foundation of China
  funderid: 51973155; 52173181
– fundername: Natural Science Foundation of Tianjin City
  funderid: 20JCYBJC00810
– fundername: National Natural Science Foundation of China
  grantid: 51973155
– fundername: Natural Science Foundation of Tianjin City
  grantid: 20JCYBJC00810
– fundername: National Natural Science Foundation of China
  grantid: 52173181
– fundername: Key Programme
  grantid: 52130303
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4399-58c855bacf2f09f280a7a96f17db38082a02e698620ecfde9c4123b27ba5bb343
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:46:03 EDT 2025
Fri Jul 25 10:22:59 EDT 2025
Wed Feb 19 02:27:46 EST 2025
Tue Jul 01 01:18:14 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Wed Jan 22 16:27:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Mechanochromism
Dynamic Covalent Bond
Self-Healing
Cholesteric Liquid Crystal Elastomer
Reprogrammable
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-58c855bacf2f09f280a7a96f17db38082a02e698620ecfde9c4123b27ba5bb343
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5816-7343
0000-0003-1035-5633
PMID 34962037
PQID 2628922512
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2615108734
proquest_journals_2628922512
pubmed_primary_34962037
crossref_citationtrail_10_1002_anie_202116219
crossref_primary_10_1002_anie_202116219
wiley_primary_10_1002_anie_202116219_ANIE202116219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 21, 2022
PublicationDateYYYYMMDD 2022-02-21
PublicationDate_xml – month: 02
  year: 2022
  text: February 21, 2022
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2019; 7
2017; 20
2015; 14
2017; 4
2019; 31
2004; 29
2020; 142
2020 2020; 59 132
2020; 12
2022; 21
2020; 32
2021; 121
2021; 143
2020; 10
2019; 141
2017; 356
2014; 136
2017; 9
2020; 208
2019 2019; 58 131
2020; 8
2020; 7
2015; 27
2021; 31
2021; 33
2018; 4
2015; 137
2020; 30
2022
2021
2016; 537
2021; 115
2016; 531
2021 2021; 60 133
2014; 13
2018; 30
2011; 23
2001; 13
2018; 10
2014; 6
2017; 546
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_66_2
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_38_1
e_1_2_8_55_3
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
Zhang P. (e_1_2_8_34_2) 2020; 30
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_51_2
e_1_2_8_72_2
e_1_2_8_29_2
e_1_2_8_46_2
e_1_2_8_44_3
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_27_1
e_1_2_8_69_1
Liu Z. (e_1_2_8_68_2) 2021
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_65_2
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_23_1
e_1_2_8_61_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_58_1
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_54_1
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_71_1
References_xml – volume: 60 133
  start-page: 3390 3432
  year: 2021 2021
  end-page: 3396 3438
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 706
  year: 2004
  publication-title: IEEE J. Oceanic Eng.
– volume: 12
  start-page: 35464
  year: 2020
  end-page: 35474
  publication-title: ACS Appl. Mater. Interfaces
– year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 60 133
  start-page: 16394 16530
  year: 2021 2021
  end-page: 16398 16534
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 9
  start-page: 14630
  year: 2021
  end-page: 14655
  publication-title: J. Mater. Chem. A
– volume: 143
  start-page: 12543
  year: 2021
  end-page: 12551
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 728
  year: 2021
  end-page: 757
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 1069
  year: 2001
  end-page: 1072
  publication-title: Adv. Mater.
– volume: 21
  start-page: 41
  year: 2022
  end-page: 46
  publication-title: Nat. Mater.
– volume: 8
  start-page: 6610
  year: 2020
  end-page: 6623
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 33119
  year: 2017
  end-page: 33128
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 230
  year: 2017
  publication-title: Mater. Today
– volume: 14
  start-page: 1087
  year: 2015
  end-page: 1098
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1190
  year: 2017
  end-page: 1195
  publication-title: Mater. Horiz.
– volume: 546
  start-page: 632
  year: 2017
  end-page: 636
  publication-title: Nature
– volume: 59 132
  start-page: 4925 4955
  year: 2020 2020
  end-page: 4931 4961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 531
  start-page: 352
  year: 2016
  end-page: 356
  publication-title: Nature
– volume: 10
  start-page: 24224
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 208
  year: 2020
  publication-title: Polymer
– volume: 8
  start-page: 2475
  year: 2021
  end-page: 2484
  publication-title: Mater. Horiz.
– volume: 59 132
  start-page: 4778 4808
  year: 2020 2020
  end-page: 4784 4814
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 216
  year: 2021
  end-page: 223
  publication-title: Mater. Horiz.
– volume: 23
  start-page: 2149
  year: 2011
  end-page: 2180
  publication-title: Adv. Mater.
– volume: 136
  start-page: 4480
  year: 2014
  end-page: 4483
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 17474 17635
  year: 2019 2019
  end-page: 17479 17640
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 2065
  year: 2015
  end-page: 2069
  publication-title: Adv. Mater.
– volume: 141
  start-page: 14364
  year: 2019
  end-page: 14369
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6609
  year: 2020
  publication-title: Sci. Rep.
– volume: 115
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 121
  start-page: 1716
  year: 2021
  end-page: 1745
  publication-title: Chem. Rev.
– volume: 537
  start-page: 179
  year: 2016
  end-page: 184
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 13
  start-page: 817
  year: 2014
  end-page: 821
  publication-title: Nat. Mater.
– volume: 137
  start-page: 6492
  year: 2015
  end-page: 6495
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 694
  year: 2020
  end-page: 714
  publication-title: Mater. Horiz.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 142
  start-page: 21852
  year: 2020
  end-page: 21860
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 36
  year: 2014
  end-page: 41
  publication-title: Nat. Mater.
– volume: 356
  start-page: 62
  year: 2017
  end-page: 65
  publication-title: Science
– year: 2022
  publication-title: Chem. Rev.
– volume: 6
  start-page: 229
  year: 2014
  end-page: 235
  publication-title: Nat. Chem.
– ident: e_1_2_8_11_3
  doi: 10.1002/ange.202014533
– ident: e_1_2_8_72_2
  doi: 10.1109/JOE.2004.833135
– ident: e_1_2_8_45_1
– ident: e_1_2_8_10_2
  doi: 10.1039/D0MH01406K
– ident: e_1_2_8_18_2
  doi: 10.1002/adma.201405690
– ident: e_1_2_8_26_2
  doi: 10.1002/adfm.202104702
– ident: e_1_2_8_16_2
  doi: 10.1038/nature17141
– ident: e_1_2_8_19_2
  doi: 10.1021/ja500933h
– ident: e_1_2_8_46_2
  doi: 10.1126/sciadv.aat4634
– ident: e_1_2_8_47_2
  doi: 10.1002/adma.201801103
– ident: e_1_2_8_14_1
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.201906319
– ident: e_1_2_8_44_3
  doi: 10.1002/ange.201911612
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201905151
– ident: e_1_2_8_30_2
  doi: 10.1002/adom.201801683
– ident: e_1_2_8_73_2
  doi: 10.1021/jacs.9b06757
– ident: e_1_2_8_54_1
– ident: e_1_2_8_59_1
– ident: e_1_2_8_65_2
  doi: 10.1002/adfm.201906458
– ident: e_1_2_8_32_1
– ident: e_1_2_8_35_2
  doi: 10.1002/adfm.201906833
– ident: e_1_2_8_43_2
  doi: 10.1038/nmat3812
– volume: 30
  start-page: 2007887
  year: 2020
  ident: e_1_2_8_34_2
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.8b09863
– ident: e_1_2_8_41_2
  doi: 10.1039/D0TB00754D
– ident: e_1_2_8_9_2
  doi: 10.1039/D1MH00623A
– ident: e_1_2_8_71_1
– ident: e_1_2_8_61_2
  doi: 10.1021/jacs.0c10244
– ident: e_1_2_8_60_2
  doi: 10.1126/science.aah5281
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.202004754
– ident: e_1_2_8_40_2
  doi: 10.1021/acs.chemrev.0c01057
– ident: e_1_2_8_48_2
  doi: 10.1002/adma.201905682
– ident: e_1_2_8_22_2
  doi: 10.1002/adfm.202104991
– ident: e_1_2_8_12_2
  doi: 10.1016/j.pmatsci.2020.100702
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.202003150
– ident: e_1_2_8_50_2
  doi: 10.1021/jacs.1c03661
– ident: e_1_2_8_56_2
  doi: 10.1038/s41598-020-63508-4
– ident: e_1_2_8_24_2
  doi: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
– ident: e_1_2_8_57_2
  doi: 10.1002/ange.202000181
– ident: e_1_2_8_7_2
  doi: 10.1038/nature19344
– ident: e_1_2_8_23_1
– ident: e_1_2_8_53_2
  doi: 10.1002/ange.202105278
– ident: e_1_2_8_42_1
– ident: e_1_2_8_33_2
  doi: 10.1002/adfm.202104641
– ident: e_1_2_8_6_2
  doi: 10.1038/nature22987
– ident: e_1_2_8_55_3
  doi: 10.1002/ange.201915694
– ident: e_1_2_8_2_2
  doi: 10.1002/adma.201703554
– start-page: e202115755
  year: 2021
  ident: e_1_2_8_68_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_5_2
  doi: 10.1002/adma.201904224
– ident: e_1_2_8_17_2
  doi: 10.1038/nchem.1859
– ident: e_1_2_8_51_2
  doi: 10.1021/acsami.7b09246
– ident: e_1_2_8_52_2
  doi: 10.1021/acsami.0c10021
– ident: e_1_2_8_39_1
– ident: e_1_2_8_64_2
  doi: 10.1039/D1TA02308J
– ident: e_1_2_8_63_2
  doi: 10.1039/C9MH01223K
– ident: e_1_2_8_66_2
  doi: 10.1039/D0MH01142H
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202105278
– ident: e_1_2_8_67_2
  doi: 10.1016/j.polymer.2020.122962
– ident: e_1_2_8_1_1
– ident: e_1_2_8_15_2
  doi: 10.1002/adma.201801335
– ident: e_1_2_8_21_2
  doi: 10.1016/j.mattod.2017.04.028
– ident: e_1_2_8_62_2
  doi: 10.1021/jacs.5b03551
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.202014533
– ident: e_1_2_8_27_1
– ident: e_1_2_8_28_2
  doi: 10.1038/s41563-021-01075-3
– ident: e_1_2_8_55_2
  doi: 10.1002/anie.201915694
– ident: e_1_2_8_3_2
  doi: 10.1038/s41578-021-00359-z
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.202000181
– ident: e_1_2_8_25_2
  doi: 10.1038/nmat3993
– ident: e_1_2_8_36_2
  doi: 10.1002/adma.202103309
– ident: e_1_2_8_44_2
  doi: 10.1002/anie.201911612
– ident: e_1_2_8_20_2
  doi: 10.1039/C7MH00644F
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.chemrev.0c00938
– ident: e_1_2_8_49_1
– ident: e_1_2_8_4_2
  doi: 10.1002/adma.201100131
– ident: e_1_2_8_37_2
  doi: 10.1002/adfm.201909537
– ident: e_1_2_8_29_2
  doi: 10.1038/nmat4433
– ident: e_1_2_8_31_2
  doi: 10.1002/adom.202000984
SSID ssj0028806
Score 2.7051737
Snippet Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202116219
SubjectTerms Actuators
Adaptive optics
Adaptive systems
Bonding
Camouflage
Cholesteric Liquid Crystal Elastomer
Cholesteric liquid crystals
Circular polarization
Dynamic Covalent Bond
Elastomers
Mechanochromism
Optics
Polymers
Reprogrammable
Robotics
Self-Healing
Visible spectrum
Title Mechanochromic, Shape‐Programmable and Self‐Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202116219
https://www.ncbi.nlm.nih.gov/pubmed/34962037
https://www.proquest.com/docview/2628922512
https://www.proquest.com/docview/2615108734
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELVQN7Dh_QgUZCQkNrh17TiOlyWkKohWiFKpu8h2bPWKS1LuY3FZ8QWIb-RLmEluAheEkGCZxHacZCZzJvE5Q8iTNJiQ5ipjgXPHwCg8MzoKFqT2QirHY4bc4aPj7PA0fXWmzn5i8ff6EOMHN_SM7n2NDm7dfPeHaCgysCG_gwQmE53uJy7YQlT0dtSPEmCcPb1ISoZV6AfVRi52N7tvRqXfoOYmcu1Cz8E1YodJ9ytO3u8sF27Hf_pFz_F_ruo6ubrGpXS_N6Qb5FJobpLLxVAO7hb5chSQJNz68xkSmZ_Rk3N7Eb59_vqmX-H1ATlY1DY1PQnTCPuR4NTtK7AEL-oxTDx9Pfm4nNS0mK0AlU5pCdh90eKnc1p2JK6auhV9sWosnIIWLbgBBEX6vO0UfGmJo1CshDy_TU4PynfFIVsXc2AeUx6mcp8r5ayPInITRc6ttiaLe7p2MgcgYrkImYEEiwcf62B8CkHVCe2sck6m8g7Zatom3CNUmVTmWW40T8HOZDS-djAcQDmreNRZQtjwMCu_VjrHghvTqtdoFhXe5Wq8ywl5Ora_6DU-_thye7CNau3r80pkkLQKxIkJeTwehqeDv15sE9oltgFkxXMt04Tc7W1qPBVK9gsudUJEZxl_mUO1f_yyHLfu_0unB-SKQBYHMvP3tsnWYrYMDwFbLdyjzn--A74wHI0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOZQL39BAASMhcSGta8dOciwh1RZ2V4i2ErfIdmx1xZKU7e5he-ovQPzG_pLOJJugBSEkOCaxncSeid84fm8IeRW51EWJVKFjzIRgFDZMY89DJ2LLhTTMK-QOj8ZqcBK9_yy73YTIhWn1IfoFN_SM5nuNDo4L0rs_VUORgg0BHkQwiqPw501M691EVZ96BSkO5tkSjIQIMQ99p9vI-O56_fV56TewuY5dm8nn4A4x3WO3e06-7CzmZsde_KLo-F_vdZfcXkFTut_a0j1yw1X3yWbWZYR7QL6PHPKEa3s6Qy7zG3p0qs_c1eWPj-0mr69Iw6K6KumRm3o4jxyn5lyGWXhRkmFi6XDybTEpaTZbAjCd0hzg-7zG1XOaNzyukpolfbesNNyCZjV4AsyL9G3diPjSHFuhmAz5_CE5OciPs0G4yucQWox6QpnYREqjreeepZ4nTMc6VX4vLo1IAItoxp1KIcZizvrSpTaCedXw2GhpjIjEI7JR1ZXbIlSmkUhUksYsAlMTPrWlgeYAzWnJfKwCEnajWdiV2Dnm3JgWrUwzL7CXi76XA_K6L3_Wynz8seR2ZxzFyt3PC64gbuUIFQPysr8Mo4N_X3Tl6gWWAXDFklhEAXncGlV_K1Tt50zEAeGNafzlGYr98WHeHz35l0ovyObgeDQshofjD0_JLY6kDiTq722Tjfls4Z4B1Jqb540zXQN3YyCo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQkYAL3x-BAkZC4kJa106c-FiyWbXQripKpd4i27HVFdtku909LCd-AeI38kuYSTaBBSEkOCaxEyeeybxx8t4Q8jJyykVpLEPHmAnBKGyoEs9DJxLLRWyYl8gdPhzJvZPo7Wl8-hOLv9WH6Bfc0DOa9zU6-LT02z9EQ5GBDfkdJDCSo-7n1UiyFO168L4XkOJgnS2_SIgQy9B3so2Mb6_3Xw9Lv2HNdejaxJ7hLaK7Ube_nHzcWszNlv30i6Dj_9zWbXJzBUzpbmtJd8gVV90l17OuHtw98uXQIUu4tmczZDK_psdneuq-ff561P7idY4kLKqrkh67iYf9yHBq9mVYgxcFGcaWHowvFuOSZrMlwNIJzQG8z2tcO6d5w-IqqVnSwbLScAma1eAHEBXpm7qR8KU5noViKeTL--RkmH_I9sJVNYfQYs4TxqlN49ho67lnyvOU6UQr6XeS0ogUkIhm3EkFGRZz1pdO2QiiquGJ0bExIhIPyEZVV-4RobGKRCpTlbAIDE14ZUsDpwMsp2PmExmQsJvMwq6kzrHixqRoRZp5gU-56J9yQF717aetyMcfW252tlGsnP2y4BKyVo5AMSAv-sMwO_jtRVeuXmAbgFYsTUQUkIetTfWXQs1-zkQSEN5Yxl_GUOyO9vN-6_G_dHpOrh0NhsXB_ujdE3KDI6MDWfo7m2RjPlu4p4Cz5uZZ40rfARbxH2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanochromic%2C+Shape%E2%80%90Programmable+and+Self%E2%80%90Healable+Cholesteric+Liquid+Crystal+Elastomers+Enabled+by+Dynamic+Covalent+Boronic+Ester+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+Jiazhe&rft.au=Yang%2C+Yanzhao&rft.au=Valenzuela%2C+Cristian&rft.au=Zhang%2C+Xuan&rft.date=2022-02-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=9&rft_id=info:doi/10.1002%2Fanie.202116219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202116219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon