Mechanochromic, Shape‐Programmable and Self‐Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds
Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 9; pp. e202116219 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.02.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines.
Cholesteric liquid crystal elastomers (CLCEs) exhibiting mechanochromic, shape‐programmable and self‐healable properties were synthesized by introducing dynamic covalent boronic ester bonds into the main‐chain CLCE polymer networks. This research shines new light onto the development of dynamic covalent polymers for emerging applications in areas of bioinspired camouflage, adaptive optics and smart soft robotics. |
---|---|
AbstractList | Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines.
Cholesteric liquid crystal elastomers (CLCEs) exhibiting mechanochromic, shape‐programmable and self‐healable properties were synthesized by introducing dynamic covalent boronic ester bonds into the main‐chain CLCE polymer networks. This research shines new light onto the development of dynamic covalent polymers for emerging applications in areas of bioinspired camouflage, adaptive optics and smart soft robotics. Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape‐programmable and self‐healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main‐chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self‐healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next‐generation intelligent machines. Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines.Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines. |
Author | Ma, Jiazhe Valenzuela, Cristian Yang, Yanzhao Zhang, Xuan Feng, Wei Wang, Ling |
Author_xml | – sequence: 1 givenname: Jiazhe surname: Ma fullname: Ma, Jiazhe organization: Tianjin University – sequence: 2 givenname: Yanzhao surname: Yang fullname: Yang, Yanzhao organization: Tianjin University – sequence: 3 givenname: Cristian surname: Valenzuela fullname: Valenzuela, Cristian organization: Tianjin University – sequence: 4 givenname: Xuan surname: Zhang fullname: Zhang, Xuan organization: Tianjin University – sequence: 5 givenname: Ling orcidid: 0000-0003-1035-5633 surname: Wang fullname: Wang, Ling email: lwang17@tju.edu.cn organization: Tianjin University – sequence: 6 givenname: Wei orcidid: 0000-0002-5816-7343 surname: Feng fullname: Feng, Wei email: weifeng@tju.edu.cn organization: Tianjin Key Laboratory of Composite and Functional Materials |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34962037$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URNuBLUtkiQ2LzuBLLvayDYFWGi5SYR39cRzGlWNP7QSUXZ8A8Yw8CZ5OC1IlxMr20XeO_fscowPnnUboOSUrSgh7Dc7oFSOM0oJR-Qgd0ZzRJS9LfpD2GefLUuT0EB3HeJV4IUjxBB3yTBaM8PII_Xiv1QacV5vgB6NO8OUGtvrXzc9PwX8NMAzQWo3BdfhS2z7p5xrsrVZtvNVx1MEovDbXk-lwFeY4gsW1hTj6QYeIa7eDO9zO-M3sIF2BK_8NrHYjPvPBuyTUu5R0cl18ih73YKN-drcu0Je39efqfLn--O6iOl0vVcalXOZCiTxvQfWsJ7JngkAJsuhp2bVcEMGAMF1IkYbUqu-0VBllvGVlC3nb8owv0Kt97jb46ymN0QwmKm0tOO2n2LCC5pSI8hZ9-QC98lNw6XWJYkIylqfsBXpxR03toLtmG8wAYW7ufzoB2R5QwccYdN8oM8JovBsDGNtQ0uwKbXaFNn8KTbbVA9t98j8Ncm_4bqye_0M3px8u6r_e36jEtbk |
CitedBy_id | crossref_primary_10_1002_adma_202206580 crossref_primary_10_1002_advs_202205325 crossref_primary_10_1002_chem_202301027 crossref_primary_10_1002_adfm_202308677 crossref_primary_10_1002_ange_202300699 crossref_primary_10_1002_adma_202403766 crossref_primary_10_1002_chem_202301030 crossref_primary_10_1007_s40820_022_01005_1 crossref_primary_10_1021_acs_macromol_2c01912 crossref_primary_10_1039_D3TC01777J crossref_primary_10_1016_j_cej_2023_145491 crossref_primary_10_1002_adfm_202421280 crossref_primary_10_1002_nadc_20234135542 crossref_primary_10_1002_smll_202207073 crossref_primary_10_1016_j_cej_2023_147550 crossref_primary_10_1002_adfm_202402403 crossref_primary_10_1002_macp_202400496 crossref_primary_10_1039_D4MH01646G crossref_primary_10_1002_adma_202413665 crossref_primary_10_1007_s40843_023_2474_8 crossref_primary_10_1002_sus2_248 crossref_primary_10_1002_ange_202422636 crossref_primary_10_1002_rpm_20230008 crossref_primary_10_1002_admt_202301322 crossref_primary_10_1016_j_cej_2022_138356 crossref_primary_10_1021_acsami_2c17494 crossref_primary_10_1002_marc_202300011 crossref_primary_10_1080_02678292_2023_2208548 crossref_primary_10_1002_adom_202400266 crossref_primary_10_1080_02678292_2023_2200266 crossref_primary_10_1360_nso_20240013 crossref_primary_10_1002_ange_202211959 crossref_primary_10_3390_polym15010168 crossref_primary_10_1039_D4TA07959K crossref_primary_10_1002_adom_202202531 crossref_primary_10_1002_advs_202204003 crossref_primary_10_1039_D3MH01239E crossref_primary_10_1021_acsami_2c21879 crossref_primary_10_1039_D4CS01182A crossref_primary_10_1002_marc_202300354 crossref_primary_10_1007_s11426_024_2031_0 crossref_primary_10_1021_acsami_2c21888 crossref_primary_10_1002_ange_202211030 crossref_primary_10_1007_s40820_022_00977_4 crossref_primary_10_1126_sciadv_abo6021 crossref_primary_10_1016_j_matt_2023_02_003 crossref_primary_10_1021_acsami_3c03817 crossref_primary_10_1021_acsami_2c03392 crossref_primary_10_1021_jacs_2c08505 crossref_primary_10_1002_adma_202419747 crossref_primary_10_1002_anie_202420003 crossref_primary_10_1021_acsami_2c20959 crossref_primary_10_1039_D2TA06884B crossref_primary_10_1002_anie_202500527 crossref_primary_10_1002_rpm_20230026 crossref_primary_10_1002_adma_202310130 crossref_primary_10_1038_s42004_024_01141_2 crossref_primary_10_1007_s11426_023_1779_3 crossref_primary_10_1002_adma_202312313 crossref_primary_10_1002_asia_202201082 crossref_primary_10_1039_D3CS01017A crossref_primary_10_1002_rpm_20230030 crossref_primary_10_1002_ange_202313728 crossref_primary_10_1021_acsami_4c10826 crossref_primary_10_1021_acs_macromol_3c00138 crossref_primary_10_1002_adfm_202215055 crossref_primary_10_1002_adma_202303969 crossref_primary_10_1038_s41377_024_01470_w crossref_primary_10_1002_adfm_202412298 crossref_primary_10_1002_adma_202401315 crossref_primary_10_1021_acsnano_3c04199 crossref_primary_10_1039_D4TA02010C crossref_primary_10_1002_anie_202300699 crossref_primary_10_1007_s40843_021_2014_0 crossref_primary_10_1126_sciadv_adt0825 crossref_primary_10_1002_admi_202202124 crossref_primary_10_1002_anie_202313728 crossref_primary_10_1016_j_cej_2022_138390 crossref_primary_10_1002_adfm_202422772 crossref_primary_10_1021_acsanm_4c04211 crossref_primary_10_1021_acs_macromol_3c01371 crossref_primary_10_1002_smll_202311656 crossref_primary_10_1039_D3QM00856H crossref_primary_10_1002_adfm_202411670 crossref_primary_10_1002_ange_202404202 crossref_primary_10_1002_adpr_202200091 crossref_primary_10_1007_s12274_022_4394_3 crossref_primary_10_1080_02678292_2023_2241139 crossref_primary_10_1002_ange_202420003 crossref_primary_10_1038_s41377_022_00937_y crossref_primary_10_1080_02678292_2023_2182925 crossref_primary_10_1021_acsami_3c03183 crossref_primary_10_1002_aesr_202300289 crossref_primary_10_1002_anie_202404202 crossref_primary_10_1021_acsapm_2c00173 crossref_primary_10_1016_j_cej_2022_141215 crossref_primary_10_1002_adfm_202211914 crossref_primary_10_1002_adom_202102475 crossref_primary_10_1002_adfm_202413965 crossref_primary_10_3390_molecules29174276 crossref_primary_10_1038_s41377_022_00913_6 crossref_primary_10_1002_marc_202400239 crossref_primary_10_1039_D2SM01117D crossref_primary_10_1007_s40843_023_2662_y crossref_primary_10_1016_j_cej_2023_143368 crossref_primary_10_1002_anie_202211959 crossref_primary_10_1002_aisy_202200269 crossref_primary_10_1021_acsami_2c19492 crossref_primary_10_1021_acsnano_4c08338 crossref_primary_10_1021_acsmacrolett_4c00233 crossref_primary_10_1002_adom_202302573 crossref_primary_10_1002_anie_202211030 crossref_primary_10_1002_chem_202402912 crossref_primary_10_1039_D2QM01128J crossref_primary_10_1039_D3MH01386C crossref_primary_10_1002_advs_202301414 crossref_primary_10_1002_smsc_202300052 crossref_primary_10_1021_jacs_3c06262 crossref_primary_10_1002_adfm_202204744 crossref_primary_10_1002_pol_20220131 crossref_primary_10_1002_adfm_202401005 crossref_primary_10_1016_j_cej_2023_146861 crossref_primary_10_1002_anie_202422636 crossref_primary_10_1002_admt_202302009 crossref_primary_10_1017_pma_2023_8 crossref_primary_10_1002_adma_202209566 crossref_primary_10_1039_D2TC03072A crossref_primary_10_1002_ange_202500527 crossref_primary_10_1002_smll_202303728 crossref_primary_10_1002_adom_202402177 crossref_primary_10_1021_acsami_3c18367 crossref_primary_10_1080_02678292_2024_2363392 crossref_primary_10_3390_molecules28010428 crossref_primary_10_1002_adfm_202402124 crossref_primary_10_1002_smll_202400520 crossref_primary_10_1039_D2TC04444G crossref_primary_10_1007_s10118_023_3031_2 crossref_primary_10_1021_acsnano_3c05078 crossref_primary_10_1039_D2TC01886A crossref_primary_10_1002_adom_202302234 crossref_primary_10_1002_pol_20230411 crossref_primary_10_1021_acsami_2c16209 crossref_primary_10_1002_anie_202411280 crossref_primary_10_1557_s43577_024_00801_x crossref_primary_10_1016_j_cej_2023_141282 crossref_primary_10_1039_D4SC05007J crossref_primary_10_1002_adfm_202212005 crossref_primary_10_1016_j_cej_2023_142000 crossref_primary_10_1007_s40843_023_2694_0 crossref_primary_10_1002_smll_202405426 crossref_primary_10_1016_j_cej_2023_144429 crossref_primary_10_1002_adfm_202306079 crossref_primary_10_1002_cssc_202301017 crossref_primary_10_1002_adom_202300046 crossref_primary_10_1016_j_cej_2024_149053 crossref_primary_10_1016_j_matt_2023_07_029 crossref_primary_10_1002_adfm_202502613 crossref_primary_10_1360_TB_2024_0338 crossref_primary_10_1002_ange_202411280 crossref_primary_10_1002_adma_202500857 crossref_primary_10_1039_D3MH00184A crossref_primary_10_1021_acsapm_3c02629 crossref_primary_10_1039_D4MH01604A crossref_primary_10_1002_adom_202300503 crossref_primary_10_1038_s41467_024_51544_x crossref_primary_10_1002_adma_202406714 crossref_primary_10_1021_acsami_3c10210 crossref_primary_10_1007_s40820_024_01367_8 crossref_primary_10_1002_adfm_202414086 crossref_primary_10_1002_adfm_202421516 crossref_primary_10_1002_adfm_202300184 crossref_primary_10_1002_adom_202400192 crossref_primary_10_1002_adma_202207985 crossref_primary_10_1021_acsami_3c14488 crossref_primary_10_3390_pharmaceutics15122743 crossref_primary_10_1080_02678292_2023_2227956 crossref_primary_10_1002_adfm_202413306 crossref_primary_10_1039_D3TC01991H crossref_primary_10_26599_FRICT_2025_9440925 crossref_primary_10_1007_s10118_025_3279_9 crossref_primary_10_1007_s10118_024_3192_7 crossref_primary_10_1002_smll_202204630 crossref_primary_10_1021_acsami_2c03241 crossref_primary_10_1002_adfm_202300731 crossref_primary_10_1038_s41467_024_54881_z crossref_primary_10_1039_D3MH00271C crossref_primary_10_1002_adfm_202310658 crossref_primary_10_1002_marc_202300445 crossref_primary_10_3390_ma17163980 crossref_primary_10_1002_smll_202410933 crossref_primary_10_1021_acsami_3c13140 crossref_primary_10_3390_mi15060808 crossref_primary_10_1002_adom_202401934 crossref_primary_10_1021_acsami_4c00741 crossref_primary_10_1002_advs_202309020 crossref_primary_10_1002_advs_202400557 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1002_adma_202400286 crossref_primary_10_1039_D3MH00336A crossref_primary_10_1002_adma_202416621 crossref_primary_10_1002_adfm_202304769 crossref_primary_10_1002_adma_202401931 crossref_primary_10_1002_pat_5868 |
Cites_doi | 10.1002/ange.202014533 10.1109/JOE.2004.833135 10.1039/D0MH01406K 10.1002/adma.201405690 10.1002/adfm.202104702 10.1038/nature17141 10.1021/ja500933h 10.1126/sciadv.aat4634 10.1002/adma.201801103 10.1002/adma.201906319 10.1002/ange.201911612 10.1002/adma.201905151 10.1002/adom.201801683 10.1021/jacs.9b06757 10.1002/adfm.201906458 10.1002/adfm.201906833 10.1038/nmat3812 10.1021/acsami.8b09863 10.1039/D0TB00754D 10.1039/D1MH00623A 10.1021/jacs.0c10244 10.1126/science.aah5281 10.1002/adma.202004754 10.1021/acs.chemrev.0c01057 10.1002/adma.201905682 10.1002/adfm.202104991 10.1016/j.pmatsci.2020.100702 10.1002/adfm.202003150 10.1021/jacs.1c03661 10.1038/s41598-020-63508-4 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6 10.1002/ange.202000181 10.1038/nature19344 10.1002/ange.202105278 10.1002/adfm.202104641 10.1038/nature22987 10.1002/ange.201915694 10.1002/adma.201703554 10.1002/adma.201904224 10.1038/nchem.1859 10.1021/acsami.7b09246 10.1021/acsami.0c10021 10.1039/D1TA02308J 10.1039/C9MH01223K 10.1039/D0MH01142H 10.1002/anie.202105278 10.1016/j.polymer.2020.122962 10.1002/adma.201801335 10.1016/j.mattod.2017.04.028 10.1021/jacs.5b03551 10.1002/anie.202014533 10.1038/s41563-021-01075-3 10.1002/anie.201915694 10.1038/s41578-021-00359-z 10.1002/anie.202000181 10.1038/nmat3993 10.1002/adma.202103309 10.1002/anie.201911612 10.1039/C7MH00644F 10.1021/acs.chemrev.0c00938 10.1002/adma.201100131 10.1002/adfm.201909537 10.1038/nmat4433 10.1002/adom.202000984 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202116219 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34962037 10_1002_anie_202116219 ANIE202116219 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Key Programme funderid: 52130303 – fundername: National Natural Science Foundation of China funderid: 51973155; 52173181 – fundername: Natural Science Foundation of Tianjin City funderid: 20JCYBJC00810 – fundername: National Natural Science Foundation of China grantid: 51973155 – fundername: Natural Science Foundation of Tianjin City grantid: 20JCYBJC00810 – fundername: National Natural Science Foundation of China grantid: 52173181 – fundername: Key Programme grantid: 52130303 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4399-58c855bacf2f09f280a7a96f17db38082a02e698620ecfde9c4123b27ba5bb343 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:46:03 EDT 2025 Fri Jul 25 10:22:59 EDT 2025 Wed Feb 19 02:27:46 EST 2025 Tue Jul 01 01:18:14 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Jan 22 16:27:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Mechanochromism Dynamic Covalent Bond Self-Healing Cholesteric Liquid Crystal Elastomer Reprogrammable |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4399-58c855bacf2f09f280a7a96f17db38082a02e698620ecfde9c4123b27ba5bb343 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5816-7343 0000-0003-1035-5633 |
PMID | 34962037 |
PQID | 2628922512 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2615108734 proquest_journals_2628922512 pubmed_primary_34962037 crossref_citationtrail_10_1002_anie_202116219 crossref_primary_10_1002_anie_202116219 wiley_primary_10_1002_anie_202116219_ANIE202116219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 21, 2022 |
PublicationDateYYYYMMDD | 2022-02-21 |
PublicationDate_xml | – month: 02 year: 2022 text: February 21, 2022 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 8 2019; 7 2017; 20 2015; 14 2017; 4 2019; 31 2004; 29 2020; 142 2020 2020; 59 132 2020; 12 2022; 21 2020; 32 2021; 121 2021; 143 2020; 10 2019; 141 2017; 356 2014; 136 2017; 9 2020; 208 2019 2019; 58 131 2020; 8 2020; 7 2015; 27 2021; 31 2021; 33 2018; 4 2015; 137 2020; 30 2022 2021 2016; 537 2021; 115 2016; 531 2021 2021; 60 133 2014; 13 2018; 30 2011; 23 2001; 13 2018; 10 2014; 6 2017; 546 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_66_2 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_60_2 e_1_2_8_17_2 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_38_1 e_1_2_8_55_3 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_57_2 Zhang P. (e_1_2_8_34_2) 2020; 30 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_51_2 e_1_2_8_72_2 e_1_2_8_29_2 e_1_2_8_46_2 e_1_2_8_44_3 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_27_1 e_1_2_8_69_1 Liu Z. (e_1_2_8_68_2) 2021 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_23_1 e_1_2_8_61_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_58_1 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_54_1 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_71_1 |
References_xml | – volume: 60 133 start-page: 3390 3432 year: 2021 2021 end-page: 3396 3438 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 706 year: 2004 publication-title: IEEE J. Oceanic Eng. – volume: 12 start-page: 35464 year: 2020 end-page: 35474 publication-title: ACS Appl. Mater. Interfaces – year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 60 133 start-page: 16394 16530 year: 2021 2021 end-page: 16398 16534 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 14630 year: 2021 end-page: 14655 publication-title: J. Mater. Chem. A – volume: 143 start-page: 12543 year: 2021 end-page: 12551 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 728 year: 2021 end-page: 757 publication-title: Mater. Horiz. – volume: 13 start-page: 1069 year: 2001 end-page: 1072 publication-title: Adv. Mater. – volume: 21 start-page: 41 year: 2022 end-page: 46 publication-title: Nat. Mater. – volume: 8 start-page: 6610 year: 2020 end-page: 6623 publication-title: J. Mater. Chem. B – volume: 9 start-page: 33119 year: 2017 end-page: 33128 publication-title: ACS Appl. Mater. Interfaces – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 230 year: 2017 publication-title: Mater. Today – volume: 14 start-page: 1087 year: 2015 end-page: 1098 publication-title: Nat. Mater. – volume: 4 start-page: 1190 year: 2017 end-page: 1195 publication-title: Mater. Horiz. – volume: 546 start-page: 632 year: 2017 end-page: 636 publication-title: Nature – volume: 59 132 start-page: 4925 4955 year: 2020 2020 end-page: 4931 4961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2021 publication-title: Nat. Rev. Mater. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 531 start-page: 352 year: 2016 end-page: 356 publication-title: Nature – volume: 10 start-page: 24224 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 208 year: 2020 publication-title: Polymer – volume: 8 start-page: 2475 year: 2021 end-page: 2484 publication-title: Mater. Horiz. – volume: 59 132 start-page: 4778 4808 year: 2020 2020 end-page: 4784 4814 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 216 year: 2021 end-page: 223 publication-title: Mater. Horiz. – volume: 23 start-page: 2149 year: 2011 end-page: 2180 publication-title: Adv. Mater. – volume: 136 start-page: 4480 year: 2014 end-page: 4483 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 17474 17635 year: 2019 2019 end-page: 17479 17640 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 2065 year: 2015 end-page: 2069 publication-title: Adv. Mater. – volume: 141 start-page: 14364 year: 2019 end-page: 14369 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6609 year: 2020 publication-title: Sci. Rep. – volume: 115 year: 2021 publication-title: Prog. Mater. Sci. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 121 start-page: 1716 year: 2021 end-page: 1745 publication-title: Chem. Rev. – volume: 537 start-page: 179 year: 2016 end-page: 184 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 13 start-page: 817 year: 2014 end-page: 821 publication-title: Nat. Mater. – volume: 137 start-page: 6492 year: 2015 end-page: 6495 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 694 year: 2020 end-page: 714 publication-title: Mater. Horiz. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 142 start-page: 21852 year: 2020 end-page: 21860 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 36 year: 2014 end-page: 41 publication-title: Nat. Mater. – volume: 356 start-page: 62 year: 2017 end-page: 65 publication-title: Science – year: 2022 publication-title: Chem. Rev. – volume: 6 start-page: 229 year: 2014 end-page: 235 publication-title: Nat. Chem. – ident: e_1_2_8_11_3 doi: 10.1002/ange.202014533 – ident: e_1_2_8_72_2 doi: 10.1109/JOE.2004.833135 – ident: e_1_2_8_45_1 – ident: e_1_2_8_10_2 doi: 10.1039/D0MH01406K – ident: e_1_2_8_18_2 doi: 10.1002/adma.201405690 – ident: e_1_2_8_26_2 doi: 10.1002/adfm.202104702 – ident: e_1_2_8_16_2 doi: 10.1038/nature17141 – ident: e_1_2_8_19_2 doi: 10.1021/ja500933h – ident: e_1_2_8_46_2 doi: 10.1126/sciadv.aat4634 – ident: e_1_2_8_47_2 doi: 10.1002/adma.201801103 – ident: e_1_2_8_14_1 – ident: e_1_2_8_8_2 doi: 10.1002/adma.201906319 – ident: e_1_2_8_44_3 doi: 10.1002/ange.201911612 – ident: e_1_2_8_70_1 doi: 10.1002/adma.201905151 – ident: e_1_2_8_30_2 doi: 10.1002/adom.201801683 – ident: e_1_2_8_73_2 doi: 10.1021/jacs.9b06757 – ident: e_1_2_8_54_1 – ident: e_1_2_8_59_1 – ident: e_1_2_8_65_2 doi: 10.1002/adfm.201906458 – ident: e_1_2_8_32_1 – ident: e_1_2_8_35_2 doi: 10.1002/adfm.201906833 – ident: e_1_2_8_43_2 doi: 10.1038/nmat3812 – volume: 30 start-page: 2007887 year: 2020 ident: e_1_2_8_34_2 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_69_1 doi: 10.1021/acsami.8b09863 – ident: e_1_2_8_41_2 doi: 10.1039/D0TB00754D – ident: e_1_2_8_9_2 doi: 10.1039/D1MH00623A – ident: e_1_2_8_71_1 – ident: e_1_2_8_61_2 doi: 10.1021/jacs.0c10244 – ident: e_1_2_8_60_2 doi: 10.1126/science.aah5281 – ident: e_1_2_8_13_2 doi: 10.1002/adma.202004754 – ident: e_1_2_8_40_2 doi: 10.1021/acs.chemrev.0c01057 – ident: e_1_2_8_48_2 doi: 10.1002/adma.201905682 – ident: e_1_2_8_22_2 doi: 10.1002/adfm.202104991 – ident: e_1_2_8_12_2 doi: 10.1016/j.pmatsci.2020.100702 – ident: e_1_2_8_58_1 doi: 10.1002/adfm.202003150 – ident: e_1_2_8_50_2 doi: 10.1021/jacs.1c03661 – ident: e_1_2_8_56_2 doi: 10.1038/s41598-020-63508-4 – ident: e_1_2_8_24_2 doi: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6 – ident: e_1_2_8_57_2 doi: 10.1002/ange.202000181 – ident: e_1_2_8_7_2 doi: 10.1038/nature19344 – ident: e_1_2_8_23_1 – ident: e_1_2_8_53_2 doi: 10.1002/ange.202105278 – ident: e_1_2_8_42_1 – ident: e_1_2_8_33_2 doi: 10.1002/adfm.202104641 – ident: e_1_2_8_6_2 doi: 10.1038/nature22987 – ident: e_1_2_8_55_3 doi: 10.1002/ange.201915694 – ident: e_1_2_8_2_2 doi: 10.1002/adma.201703554 – start-page: e202115755 year: 2021 ident: e_1_2_8_68_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_5_2 doi: 10.1002/adma.201904224 – ident: e_1_2_8_17_2 doi: 10.1038/nchem.1859 – ident: e_1_2_8_51_2 doi: 10.1021/acsami.7b09246 – ident: e_1_2_8_52_2 doi: 10.1021/acsami.0c10021 – ident: e_1_2_8_39_1 – ident: e_1_2_8_64_2 doi: 10.1039/D1TA02308J – ident: e_1_2_8_63_2 doi: 10.1039/C9MH01223K – ident: e_1_2_8_66_2 doi: 10.1039/D0MH01142H – ident: e_1_2_8_53_1 doi: 10.1002/anie.202105278 – ident: e_1_2_8_67_2 doi: 10.1016/j.polymer.2020.122962 – ident: e_1_2_8_1_1 – ident: e_1_2_8_15_2 doi: 10.1002/adma.201801335 – ident: e_1_2_8_21_2 doi: 10.1016/j.mattod.2017.04.028 – ident: e_1_2_8_62_2 doi: 10.1021/jacs.5b03551 – ident: e_1_2_8_11_2 doi: 10.1002/anie.202014533 – ident: e_1_2_8_27_1 – ident: e_1_2_8_28_2 doi: 10.1038/s41563-021-01075-3 – ident: e_1_2_8_55_2 doi: 10.1002/anie.201915694 – ident: e_1_2_8_3_2 doi: 10.1038/s41578-021-00359-z – ident: e_1_2_8_57_1 doi: 10.1002/anie.202000181 – ident: e_1_2_8_25_2 doi: 10.1038/nmat3993 – ident: e_1_2_8_36_2 doi: 10.1002/adma.202103309 – ident: e_1_2_8_44_2 doi: 10.1002/anie.201911612 – ident: e_1_2_8_20_2 doi: 10.1039/C7MH00644F – ident: e_1_2_8_38_1 doi: 10.1021/acs.chemrev.0c00938 – ident: e_1_2_8_49_1 – ident: e_1_2_8_4_2 doi: 10.1002/adma.201100131 – ident: e_1_2_8_37_2 doi: 10.1002/adfm.201909537 – ident: e_1_2_8_29_2 doi: 10.1038/nmat4433 – ident: e_1_2_8_31_2 doi: 10.1002/adom.202000984 |
SSID | ssj0028806 |
Score | 2.7051737 |
Snippet | Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202116219 |
SubjectTerms | Actuators Adaptive optics Adaptive systems Bonding Camouflage Cholesteric Liquid Crystal Elastomer Cholesteric liquid crystals Circular polarization Dynamic Covalent Bond Elastomers Mechanochromism Optics Polymers Reprogrammable Robotics Self-Healing Visible spectrum |
Title | Mechanochromic, Shape‐Programmable and Self‐Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202116219 https://www.ncbi.nlm.nih.gov/pubmed/34962037 https://www.proquest.com/docview/2628922512 https://www.proquest.com/docview/2615108734 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELVQN7Dh_QgUZCQkNrh17TiOlyWkKohWiFKpu8h2bPWKS1LuY3FZ8QWIb-RLmEluAheEkGCZxHacZCZzJvE5Q8iTNJiQ5ipjgXPHwCg8MzoKFqT2QirHY4bc4aPj7PA0fXWmzn5i8ff6EOMHN_SM7n2NDm7dfPeHaCgysCG_gwQmE53uJy7YQlT0dtSPEmCcPb1ISoZV6AfVRi52N7tvRqXfoOYmcu1Cz8E1YodJ9ytO3u8sF27Hf_pFz_F_ruo6ubrGpXS_N6Qb5FJobpLLxVAO7hb5chSQJNz68xkSmZ_Rk3N7Eb59_vqmX-H1ATlY1DY1PQnTCPuR4NTtK7AEL-oxTDx9Pfm4nNS0mK0AlU5pCdh90eKnc1p2JK6auhV9sWosnIIWLbgBBEX6vO0UfGmJo1CshDy_TU4PynfFIVsXc2AeUx6mcp8r5ayPInITRc6ttiaLe7p2MgcgYrkImYEEiwcf62B8CkHVCe2sck6m8g7Zatom3CNUmVTmWW40T8HOZDS-djAcQDmreNRZQtjwMCu_VjrHghvTqtdoFhXe5Wq8ywl5Ora_6DU-_thye7CNau3r80pkkLQKxIkJeTwehqeDv15sE9oltgFkxXMt04Tc7W1qPBVK9gsudUJEZxl_mUO1f_yyHLfu_0unB-SKQBYHMvP3tsnWYrYMDwFbLdyjzn--A74wHI0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOZQL39BAASMhcSGta8dOciwh1RZ2V4i2ErfIdmx1xZKU7e5he-ovQPzG_pLOJJugBSEkOCaxncSeid84fm8IeRW51EWJVKFjzIRgFDZMY89DJ2LLhTTMK-QOj8ZqcBK9_yy73YTIhWn1IfoFN_SM5nuNDo4L0rs_VUORgg0BHkQwiqPw501M691EVZ96BSkO5tkSjIQIMQ99p9vI-O56_fV56TewuY5dm8nn4A4x3WO3e06-7CzmZsde_KLo-F_vdZfcXkFTut_a0j1yw1X3yWbWZYR7QL6PHPKEa3s6Qy7zG3p0qs_c1eWPj-0mr69Iw6K6KumRm3o4jxyn5lyGWXhRkmFi6XDybTEpaTZbAjCd0hzg-7zG1XOaNzyukpolfbesNNyCZjV4AsyL9G3diPjSHFuhmAz5_CE5OciPs0G4yucQWox6QpnYREqjreeepZ4nTMc6VX4vLo1IAItoxp1KIcZizvrSpTaCedXw2GhpjIjEI7JR1ZXbIlSmkUhUksYsAlMTPrWlgeYAzWnJfKwCEnajWdiV2Dnm3JgWrUwzL7CXi76XA_K6L3_Wynz8seR2ZxzFyt3PC64gbuUIFQPysr8Mo4N_X3Tl6gWWAXDFklhEAXncGlV_K1Tt50zEAeGNafzlGYr98WHeHz35l0ovyObgeDQshofjD0_JLY6kDiTq722Tjfls4Z4B1Jqb540zXQN3YyCo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQkYAL3x-BAkZC4kJa106c-FiyWbXQripKpd4i27HVFdtku909LCd-AeI38kuYSTaBBSEkOCaxEyeeybxx8t4Q8jJyykVpLEPHmAnBKGyoEs9DJxLLRWyYl8gdPhzJvZPo7Wl8-hOLv9WH6Bfc0DOa9zU6-LT02z9EQ5GBDfkdJDCSo-7n1UiyFO168L4XkOJgnS2_SIgQy9B3so2Mb6_3Xw9Lv2HNdejaxJ7hLaK7Ube_nHzcWszNlv30i6Dj_9zWbXJzBUzpbmtJd8gVV90l17OuHtw98uXQIUu4tmczZDK_psdneuq-ff561P7idY4kLKqrkh67iYf9yHBq9mVYgxcFGcaWHowvFuOSZrMlwNIJzQG8z2tcO6d5w-IqqVnSwbLScAma1eAHEBXpm7qR8KU5noViKeTL--RkmH_I9sJVNYfQYs4TxqlN49ho67lnyvOU6UQr6XeS0ogUkIhm3EkFGRZz1pdO2QiiquGJ0bExIhIPyEZVV-4RobGKRCpTlbAIDE14ZUsDpwMsp2PmExmQsJvMwq6kzrHixqRoRZp5gU-56J9yQF717aetyMcfW252tlGsnP2y4BKyVo5AMSAv-sMwO_jtRVeuXmAbgFYsTUQUkIetTfWXQs1-zkQSEN5Yxl_GUOyO9vN-6_G_dHpOrh0NhsXB_ujdE3KDI6MDWfo7m2RjPlu4p4Cz5uZZ40rfARbxH2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanochromic%2C+Shape%E2%80%90Programmable+and+Self%E2%80%90Healable+Cholesteric+Liquid+Crystal+Elastomers+Enabled+by+Dynamic+Covalent+Boronic+Ester+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+Jiazhe&rft.au=Yang%2C+Yanzhao&rft.au=Valenzuela%2C+Cristian&rft.au=Zhang%2C+Xuan&rft.date=2022-02-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=9&rft_id=info:doi/10.1002%2Fanie.202116219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202116219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |