Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent
Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conju...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 25; pp. e2008158 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics.
An efficient polythiophene‐based organic solar cell (OSC) is demonstrated based on a fluorinated polythiophene donor with deep highest occupied molecular orbital (HOMO) level and appropriate miscibility with the acceptor. With further interfacial modification by a fullerene self‐assembled monolayer, a record power conversion efficiency (PCE) of 13.65% for polythiophene‐based OSCs is achieved with the device processed from nonhalogenated solvent. |
---|---|
AbstractList | Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2
Z
,2′
Z
)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐
e
]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐
b
]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1
H
‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics. Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics. Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics. An efficient polythiophene‐based organic solar cell (OSC) is demonstrated based on a fluorinated polythiophene donor with deep highest occupied molecular orbital (HOMO) level and appropriate miscibility with the acceptor. With further interfacial modification by a fullerene self‐assembled monolayer, a record power conversion efficiency (PCE) of 13.65% for polythiophene‐based OSCs is achieved with the device processed from nonhalogenated solvent. Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene-based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor-acceptor (D-A)-type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F-HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)-active layer, leading to a significant improvement of the OSC performance. The Flory-Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F-HD shows moderate miscibility with the popular nonfullerene acceptor Y6-BO (2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2',3':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile), while poly(3-hexylthiophene) (P3HT) is very miscible with Y6-BO. As a result, the P4T2F-HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing-incidence wide-angle X-ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F-HD:Y6-BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene-based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost-effective organic photovoltaics.Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene-based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor-acceptor (D-A)-type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F-HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)-active layer, leading to a significant improvement of the OSC performance. The Flory-Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F-HD shows moderate miscibility with the popular nonfullerene acceptor Y6-BO (2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2',3':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile), while poly(3-hexylthiophene) (P3HT) is very miscible with Y6-BO. As a result, the P4T2F-HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing-incidence wide-angle X-ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F-HD:Y6-BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene-based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost-effective organic photovoltaics. |
Author | Xiao, Jingyang Huang, Fei Cao, Yong Yip, Hin‐Lap Jia, Xiao'e Duan, Chunhui |
Author_xml | – sequence: 1 givenname: Jingyang surname: Xiao fullname: Xiao, Jingyang organization: South China University of Technology – sequence: 2 givenname: Xiao'e surname: Jia fullname: Jia, Xiao'e organization: Dali University – sequence: 3 givenname: Chunhui surname: Duan fullname: Duan, Chunhui organization: South China University of Technology – sequence: 4 givenname: Fei surname: Huang fullname: Huang, Fei organization: South China University of Technology – sequence: 5 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: City University of Hong Kong – sequence: 6 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33969562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7LZ666UERPBm1ky-dnK5rPUDqi1Ur4dM5pzdlJlkTWaU_fembK1QEK8C4XmS95z3jJyEGICQlzVb1ozxd7Yf7ZIzzlhTq-YJWdSK15VkRp2QBTNCVUbL5pSc5XzLGDOa6WfkVAijjdJ8QeBmTnubsw9bWos39ALROw_BHSjGRK_jcJh2Pu53EIBepa0N3tGbONhENzAMmV6n6CBn6CmmONKvMezsELcQ7FTuCvkTwvScPEU7ZHhxf56T7x8uvm0-VZdXHz9v1peVk8I0FSq7QrlSHUojEbB2ZaxOg2XOaoOy67CTiJJzFMKKnoOWpgeLCjujUIpz8vb47j7FHzPkqR19diWnDRDn3HLFZaONqXVBXz9Cb-OcQklXKCm0kGJlCvXqnpq7Efp2n_xo06H9s8ACLI-ASzHnBPiA1Ky9a6i9a6h9aKgI8pHg_GQnH8OUrB_-rZmj9ssPcPjPJ-36_Zf1X_c3R0-mJw |
CitedBy_id | crossref_primary_10_1007_s11426_022_1449_4 crossref_primary_10_1007_s11426_023_1695_x crossref_primary_10_1016_j_polymer_2024_126926 crossref_primary_10_1007_s12039_023_02226_6 crossref_primary_10_1038_s41563_023_01579_0 crossref_primary_10_1007_s11426_022_1385_8 crossref_primary_10_1021_acs_orglett_5c00133 crossref_primary_10_1038_s41428_022_00713_0 crossref_primary_10_1039_D3TA06624J crossref_primary_10_1002_aenm_202201603 crossref_primary_10_1016_j_dyepig_2023_111415 crossref_primary_10_1021_acsami_3c13007 crossref_primary_10_1002_pol_20210745 crossref_primary_10_1016_j_chempr_2024_06_005 crossref_primary_10_1016_j_trechm_2021_09_008 crossref_primary_10_1021_acs_macromol_1c02187 crossref_primary_10_1002_aenm_202304455 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1002_adma_202110147 crossref_primary_10_1002_agt2_466 crossref_primary_10_1007_s10853_023_09029_7 crossref_primary_10_1016_j_solener_2022_04_019 crossref_primary_10_1038_s41528_021_00128_6 crossref_primary_10_1016_j_polymer_2021_124193 crossref_primary_10_3390_en16186639 crossref_primary_10_1016_j_polymer_2022_125267 crossref_primary_10_1002_aenm_202201614 crossref_primary_10_1002_ange_202208845 crossref_primary_10_1039_D1TC01746B crossref_primary_10_1002_solr_202200605 crossref_primary_10_1007_s11426_021_1087_8 crossref_primary_10_1021_acsami_1c20542 crossref_primary_10_1002_agt2_190 crossref_primary_10_1021_acssensors_1c02476 crossref_primary_10_1002_aenm_202301110 crossref_primary_10_1002_agt2_111 crossref_primary_10_1021_acs_jpcc_1c09734 crossref_primary_10_1021_acsenergylett_4c01284 crossref_primary_10_1002_aenm_202104050 crossref_primary_10_3390_nanoenergyadv2010001 crossref_primary_10_1039_D2TA07249A crossref_primary_10_1016_j_polymer_2023_125890 crossref_primary_10_1007_s00339_023_07011_3 crossref_primary_10_1016_j_dyepig_2024_112319 crossref_primary_10_1039_D3CC04412B crossref_primary_10_1002_adfm_202408993 crossref_primary_10_1016_j_nanoen_2022_107802 crossref_primary_10_1016_j_nanoen_2023_108618 crossref_primary_10_1016_j_jiec_2021_06_020 crossref_primary_10_1016_j_cej_2023_143062 crossref_primary_10_1002_adma_202403476 crossref_primary_10_3390_polym14081554 crossref_primary_10_1002_cssc_202101345 crossref_primary_10_1039_D3EE04300B crossref_primary_10_1007_s11426_024_2243_8 crossref_primary_10_1039_D1TA07046K crossref_primary_10_1039_D1TA10161G crossref_primary_10_1039_D1PY01051D crossref_primary_10_1021_acsmaterialslett_4c01252 crossref_primary_10_1002_anie_202420121 crossref_primary_10_1021_acsami_3c05411 crossref_primary_10_1039_D5TC00664C crossref_primary_10_1007_s11426_023_1564_8 crossref_primary_10_1039_D2TA07239D crossref_primary_10_1016_j_cej_2024_156887 crossref_primary_10_1016_j_joule_2022_02_006 crossref_primary_10_1002_adma_202403961 crossref_primary_10_1002_pol_20230279 crossref_primary_10_1021_acsami_3c14494 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1007_s12209_022_00329_8 crossref_primary_10_1021_acsami_1c18673 crossref_primary_10_1016_j_cej_2022_134862 crossref_primary_10_2139_ssrn_3981652 crossref_primary_10_1002_adma_202314169 crossref_primary_10_1016_j_joule_2022_04_006 crossref_primary_10_1039_D1TC04097A crossref_primary_10_1002_smll_202104623 crossref_primary_10_1002_adfm_202201142 crossref_primary_10_1002_batt_202200221 crossref_primary_10_1039_D4TA00932K crossref_primary_10_1002_aenm_202303976 crossref_primary_10_1002_ange_202503721 crossref_primary_10_1002_aenm_202103684 crossref_primary_10_1002_qua_27254 crossref_primary_10_1002_anie_202208845 crossref_primary_10_1002_cjoc_202300547 crossref_primary_10_1039_D3TA08020J crossref_primary_10_1002_inf2_12271 crossref_primary_10_1021_acsami_4c03795 crossref_primary_10_1039_D1TC05111C crossref_primary_10_1007_s00339_021_04735_y crossref_primary_10_1039_D2TA07463J crossref_primary_10_1016_j_chempr_2021_10_009 crossref_primary_10_1002_adma_202309672 crossref_primary_10_1039_D4TA03254C crossref_primary_10_1002_chem_202303155 crossref_primary_10_1055_a_1833_8668 crossref_primary_10_1016_j_orgel_2023_106913 crossref_primary_10_1039_D5EE00294J crossref_primary_10_1002_adfm_202300202 crossref_primary_10_1002_anie_202503721 crossref_primary_10_1002_smll_202311648 crossref_primary_10_1039_D2TA04501J crossref_primary_10_1002_macp_202200399 crossref_primary_10_1002_ange_202420121 crossref_primary_10_1002_adfm_202305851 crossref_primary_10_1002_marc_202200229 crossref_primary_10_1002_advs_202303842 crossref_primary_10_1002_solr_202101024 |
Cites_doi | 10.1039/C8EE00151K 10.1039/C8TA00764K 10.1039/c3ee24138f 10.1016/j.joule.2020.11.006 10.1039/c2ee21481d 10.1016/j.joule.2019.01.004 10.1038/nmat1500 10.1039/C8TC04746D 10.1002/adma.201800868 10.1039/C3TA14236A 10.1021/acsenergylett.0c00939 10.1021/ma070712a 10.1002/adma.201401494 10.1007/s11426-017-9199-1 10.1002/adma.201903441 10.1039/c2ee02806a 10.1016/j.scib.2019.10.019 10.1002/aenm.202001864 10.1021/acs.macromol.9b00793 10.1038/natrevmats.2018.3 10.1002/aenm.201501580 10.1038/s41566-019-0573-5 10.1038/s41467-018-03207-x 10.1002/adma.201601803 10.1002/solr.201700020 10.1002/solr.201800053 10.1016/j.orgel.2012.08.026 10.1016/j.joule.2019.09.010 10.1002/adfm.201203014 10.1016/j.scib.2020.01.001 10.1002/adma.201203246 10.1021/ma501894w 10.1039/D0EE01763A 10.1038/s41560-020-00684-7 10.1039/C5EE02510A 10.1038/nmat4797 10.1021/acsenergylett.0c02230 10.1002/adma.201905480 10.1038/ncomms13651 10.1038/ncomms11585 10.1021/nn401267s 10.1007/s11426-019-9669-3 10.1038/s41467-019-10351-5 10.1016/j.joule.2020.07.028 10.1038/nmat5063 10.1002/adma.201100792 10.1002/adma.201908205 10.1002/aenm.201602269 10.1038/s41467-020-17867-1 10.1002/solr.202000062 10.1002/adma.201906045 10.1063/1.3028094 10.1002/aenm.201700465 10.1039/c3ee43460e 10.1002/solr.202000538 10.1002/adma.201906763 10.1039/C7TA05108E |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202008158 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33969562 10_1002_adma_202008158 ADMA202008158 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 – fundername: Ministry of Science and Technology of the People's Republic of the China funderid: 2019YFA0705900; 2017YF0206600 – fundername: Ministry of Science and Technology of the People's Republic of the China grantid: 2017YF0206600 – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2019B030302007 – fundername: Ministry of Science and Technology of the People's Republic of the China grantid: 2019YFA0705900 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-f5a7f475bf494fef1c008b6ea0ca69f4bbfb4ff422f33a3d2e649deaf5fb95f43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:04:15 EDT 2025 Sat Jul 26 01:11:38 EDT 2025 Thu Apr 03 06:55:21 EDT 2025 Tue Jul 01 02:33:02 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Wed Jan 22 16:29:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | nonhalogenated solvents nonfullerene organic solar cells polythiophene derivatives morphology control interfacial modification |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-f5a7f475bf494fef1c008b6ea0ca69f4bbfb4ff422f33a3d2e649deaf5fb95f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5750-9751 |
PMID | 33969562 |
PQID | 2543634379 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2524869916 proquest_journals_2543634379 pubmed_primary_33969562 crossref_primary_10_1002_adma_202008158 crossref_citationtrail_10_1002_adma_202008158 wiley_primary_10_1002_adma_202008158_ADMA202008158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2017; 7 2017; 1 2021; 5 2019; 3 2019; 31 2020; 63 2019; 52 2013; 23 2019; 10 2014; 26 2020; 14 2020; 13 2020; 11 2018; 61 2020; 32 2020; 10 2013; 7 2012; 13 2015; 8 2013; 6 2008; 93 2018; 6 2018; 9 2016; 6 2015; 48 2020; 6 2018; 17 2020; 5 2016; 7 2018; 3 2020; 4 2018; 2 2014; 2 2017; 16 2005; 4 2018; 30 2011; 23 2007; 40 2020; 65 2018; 11 2012; 24 2016; 28 2014; 7 2012; 5 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 start-page: 4569 year: 2013 publication-title: ACS Nano – volume: 5 start-page: 197 year: 2021 publication-title: Joule – volume: 11 start-page: 1355 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 start-page: 314 year: 2019 publication-title: J. Mater. Chem. C – volume: 13 start-page: 2864 year: 2020 publication-title: Energy Environ. Sci. – volume: 63 start-page: 325 year: 2020 publication-title: Sci. China: Chem. – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 5880 year: 2014 publication-title: Adv. Mater. – volume: 48 start-page: 453 year: 2015 publication-title: Macromolecules – volume: 8 start-page: 3442 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2004 year: 2020 publication-title: Joule – volume: 16 start-page: 363 year: 2017 publication-title: Nat. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 13 start-page: 2870 year: 2012 publication-title: Org. Electron. – volume: 5 start-page: 7943 year: 2012 publication-title: Energy Environ. Sci. – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 11 start-page: 3943 year: 2020 publication-title: Nat. Commun. – volume: 23 start-page: 2123 year: 2013 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3020 year: 2019 publication-title: Joule – volume: 9 start-page: 743 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 52 start-page: 4464 year: 2019 publication-title: Macromolecules – volume: 5 start-page: 5994 year: 2012 publication-title: Energy Environ. Sci. – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 5 start-page: 2087 year: 2020 publication-title: ACS Energy Lett. – volume: 28 start-page: 9416 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 61 start-page: 531 year: 2018 publication-title: Sci. China: Chem. – volume: 23 start-page: 3597 year: 2011 publication-title: Adv. Mater. – volume: 6 start-page: 711 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 5 start-page: 711 year: 2020 publication-title: Nat. Energy – volume: 24 start-page: 6356 year: 2012 publication-title: Adv. Mater. – volume: 2 start-page: 1201 year: 2014 publication-title: J. Mater. Chem. A – volume: 65 start-page: 208 year: 2020 publication-title: Sci. Bull. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 925 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 start-page: 864 year: 2005 publication-title: Nat. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 start-page: 9 year: 2020 publication-title: ACS Energy Lett. – volume: 6 start-page: 8586 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 2515 year: 2019 publication-title: Nat. Commun. – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 40 start-page: 8291 year: 2007 publication-title: Macromolecules – volume: 14 start-page: 300 year: 2020 publication-title: Nat. Photonics – ident: e_1_2_7_1_1 doi: 10.1039/C8EE00151K – ident: e_1_2_7_36_1 doi: 10.1039/C8TA00764K – ident: e_1_2_7_21_1 doi: 10.1039/c3ee24138f – ident: e_1_2_7_57_1 doi: 10.1016/j.joule.2020.11.006 – ident: e_1_2_7_28_1 doi: 10.1039/c2ee21481d – ident: e_1_2_7_7_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_7_29_1 doi: 10.1038/nmat1500 – ident: e_1_2_7_42_1 doi: 10.1039/C8TC04746D – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800868 – ident: e_1_2_7_3_1 doi: 10.1039/C3TA14236A – ident: e_1_2_7_15_1 doi: 10.1021/acsenergylett.0c00939 – ident: e_1_2_7_43_1 doi: 10.1021/ma070712a – ident: e_1_2_7_35_1 doi: 10.1002/adma.201401494 – ident: e_1_2_7_56_1 doi: 10.1007/s11426-017-9199-1 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201903441 – ident: e_1_2_7_46_1 doi: 10.1039/c2ee02806a – ident: e_1_2_7_49_1 doi: 10.1016/j.scib.2019.10.019 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202001864 – ident: e_1_2_7_39_1 doi: 10.1021/acs.macromol.9b00793 – ident: e_1_2_7_5_1 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201501580 – ident: e_1_2_7_41_1 doi: 10.1038/s41566-019-0573-5 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-018-03207-x – ident: e_1_2_7_38_1 doi: 10.1002/adma.201601803 – ident: e_1_2_7_18_1 doi: 10.1002/solr.201700020 – ident: e_1_2_7_37_1 doi: 10.1002/solr.201800053 – ident: e_1_2_7_2_1 doi: 10.1016/j.orgel.2012.08.026 – ident: e_1_2_7_12_1 doi: 10.1016/j.joule.2019.09.010 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201203014 – ident: e_1_2_7_13_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201203246 – ident: e_1_2_7_51_1 doi: 10.1021/ma501894w – ident: e_1_2_7_34_1 doi: 10.1039/D0EE01763A – ident: e_1_2_7_8_1 doi: 10.1038/s41560-020-00684-7 – ident: e_1_2_7_47_1 doi: 10.1039/C5EE02510A – ident: e_1_2_7_30_1 doi: 10.1038/nmat4797 – ident: e_1_2_7_55_1 doi: 10.1021/acsenergylett.0c02230 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201905480 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms13651 – ident: e_1_2_7_31_1 doi: 10.1038/ncomms11585 – ident: e_1_2_7_50_1 doi: 10.1021/nn401267s – ident: e_1_2_7_20_1 doi: 10.1007/s11426-019-9669-3 – ident: e_1_2_7_54_1 doi: 10.1038/s41467-019-10351-5 – ident: e_1_2_7_11_1 doi: 10.1016/j.joule.2020.07.028 – ident: e_1_2_7_4_1 doi: 10.1038/nmat5063 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201100792 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201908205 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.201602269 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-020-17867-1 – ident: e_1_2_7_24_1 doi: 10.1002/solr.202000062 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201906045 – ident: e_1_2_7_48_1 doi: 10.1063/1.3028094 – ident: e_1_2_7_52_1 doi: 10.1002/aenm.201700465 – ident: e_1_2_7_26_1 doi: 10.1039/c3ee43460e – ident: e_1_2_7_53_1 doi: 10.1002/solr.202000538 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201906763 – ident: e_1_2_7_32_1 doi: 10.1039/C7TA05108E |
SSID | ssj0009606 |
Score | 2.6317623 |
Snippet | Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs).... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2008158 |
SubjectTerms | Donor materials Energy conversion efficiency Heterojunctions Indene Interaction parameters interfacial modification Materials science Mathematical analysis Miscibility Morphology morphology control nonfullerene organic solar cells nonhalogenated solvents Phase separation Photovoltaic cells Polythiophene polythiophene derivatives Solar cells Solvents Surface energy |
Title | Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008158 https://www.ncbi.nlm.nih.gov/pubmed/33969562 https://www.proquest.com/docview/2543634379 https://www.proquest.com/docview/2524869916 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1KTu2hH-mXm7So0NKTk1gayfZxSRNCIaE0DeRmJEtDShZv6e4e2l8fjex1si0lkNwsPMKyRmM_SfOeAD7UZUte6yoPnmSORYghpSrMJZZeW-mNT6Sw4xNzdIZfzvX5DRZ_rw8xLrhxZKTvNQe4dfPda9FQ65NuEO_fF5rZvpywxajo27V-FMPzJLandF4brFaqjXtyd736-l_pH6i5jlzTr-fwCdhVo_uMk8ud5cLttH_-0nO8z1s9hccDLhWTfiA9gweh24RHN9QKn0M4jU6JWDsWRKE-ioOkPsHUTRGRr_g6m_5eXPxgnYIuiJ7j2YpTnjqL_TCdzsVASgheMKlFnMy6C146Cl3Eu54tOffyBZwdHnzfP8qHUxryNoKZKidtS8JSO8IaKVDRxrY7E-xea01N6Bw5JEIpSSmrvAwGax8saXK1JlQvYaObdeE1iBK1xcJHhIQKIzRzlSVlSy0p1HyRQb7yUtMOEuZ8ksa06cWXZcPd14zdl8Gn0f5nL97xX8vtldObIYjnDesEGMWCjRm8H2_H8OM9FduF2ZJtJFaGQXYGr_rBMj5KqdrE6afMQCaX39KGZvL5eDKW3tyl0hY8lJxzk1aJtmFj8WsZ3kbQtHDvUmBcAVl2DfQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeyrsEChiJilPaxq8kBw6rbqst7a4QbaXegh3batVVFnV3hcq_4q_wi_A4j7IghITUA7dYcRLHnrG_Gc98BniTp6UzQmSxNY7GPLFepVjGY8pTIxQ10oSksOFIDk74-1NxugTf2lyYmh-ic7ihZoT5GhUcHdJb16yhygTiINzAT0TWxFUe2Ksv3mqbvtvv-yHeoHRv93hnEDcHC8SlX3-z2AmVOp4K7XjOnXVJ6d-hpVXbpZK541o7zZ3jlDrGFDPUSp4bq5xwOheOM__eW3AbjxFHuv7-x2vGKjQIAr0fE3EuedbyRG7TrcX2Lq6Dv4HbRawcFru9e_C97aY6xuVicz7Tm-XXXxgk_6t-vA-rDfQmvVpXHsCSrR7Cyk-EjI_AHnm58-aEL5CEbZDdQLCB2anEg3vyYTK-mp2dIxVDZUmdxlqSI_QOkB07Hk9Jk3dhDcG8HTKaVGfoHbOVh_QGa2J46WM4uZH_fALL1aSyT4GkXCieGA8COeMefepMOaZSQZ3N8SKCuBWLomxY2vGwkHFR80vTAoer6IYrgrdd_c81P8kfa663UlY089S0QCoEyZCTMoLX3W0_w-C2karsZI51KM8k2hERrNXS2X2KsVx6C5tGQIOM_aUNRa8_7HWlZ__y0Cu4MzgeHhaH-6OD53CXYohRcIqtw_Lscm5feIw40y-DVhL4dNPi-wPShm_t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KP8lUMBIVJzSbuyxkxw4rLpdtZSuKkql3oIT22rVVbZid1WVp-JVeCM8-SsLQkhIPXCLFSdx7Bn7m_HMZ4A3aVw4I2USWuN4iJH1KiUSDDnGRmpulKmSwg5GavcY35_IkyX41ubC1PwQncONNKOar0nBL4zbuiYN1abiDaL9-0gmTVjlvr269Ebb9N3ewI_wBufDnU_bu2FzrkBY-OU3CZ3UscNY5g5TdNZFhX9HrqzuFVqlDvPc5egccu6E0MJwqzA1Vjvp8lQ6FP69t-A2ql5Kh0UMPl4TVpE9ULH7CRmmCpOWJrLHtxbbu7gM_oZtF6FytdYN78H3tpfqEJfzzfks3yy-_kIg-T91431YbYA369ea8gCWbPkQVn6iY3wE9shLnTcmfIFFYoPtVPQalJvKPLRnh5Px1ez0jIgYSsvqJNaCHZFvgG3b8XjKmqwLaxhl7bDRpDwl35gtPaA3VJOCSx_D8Y385xNYLielfQosRqkxMh4CokCPPfNEO6FjyZ1N6SKAsJWKrGg42umokHFWs0vzjIYr64YrgLdd_YuaneSPNddbIcuaWWqaERGCEsRIGcDr7rafX2jTSJd2Mqc6HBNFVkQAa7Vwdp8SIlXevuYB8ErE_tKGrD846HelZ__y0Cu4czgYZh_2RvvP4S6n-KLKI7YOy7Mvc_vCA8RZ_rLSSQafb1p6fwAAEm6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surpassing+13%25+Efficiency+for+Polythiophene+Organic+Solar+Cells+Processed+from+Nonhalogenated+Solvent&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiao%2C+Jingyang&rft.au=Jia%2C+Xiao%27e&rft.au=Duan%2C+Chunhui&rft.au=Huang%2C+Fei&rft.date=2021-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=25&rft.spage=e2008158&rft_id=info:doi/10.1002%2Fadma.202008158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |