Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent

Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conju...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 25; pp. e2008158 - n/a
Main Authors Xiao, Jingyang, Jia, Xiao'e, Duan, Chunhui, Huang, Fei, Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics. An efficient polythiophene‐based organic solar cell (OSC) is demonstrated based on a fluorinated polythiophene donor with deep highest occupied molecular orbital (HOMO) level and appropriate miscibility with the acceptor. With further interfacial modification by a fullerene self‐assembled monolayer, a record power conversion efficiency (PCE) of 13.65% for polythiophene‐based OSCs is achieved with the device processed from nonhalogenated solvent.
AbstractList Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2 Z ,2′ Z )‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐ e ]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐ b ]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1 H ‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics.
Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics.
Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene‐based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor–acceptor (D–A)‐type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F‐HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)‐active layer, leading to a significant improvement of the OSC performance. The Flory–Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F‐HD shows moderate miscibility with the popular nonfullerene acceptor Y6‐BO (2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile), while poly(3‐hexylthiophene) (P3HT) is very miscible with Y6‐BO. As a result, the P4T2F‐HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F‐HD:Y6‐BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene‐based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost‐effective organic photovoltaics. An efficient polythiophene‐based organic solar cell (OSC) is demonstrated based on a fluorinated polythiophene donor with deep highest occupied molecular orbital (HOMO) level and appropriate miscibility with the acceptor. With further interfacial modification by a fullerene self‐assembled monolayer, a record power conversion efficiency (PCE) of 13.65% for polythiophene‐based OSCs is achieved with the device processed from nonhalogenated solvent.
Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene-based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor-acceptor (D-A)-type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F-HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)-active layer, leading to a significant improvement of the OSC performance. The Flory-Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F-HD shows moderate miscibility with the popular nonfullerene acceptor Y6-BO (2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2',3':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile), while poly(3-hexylthiophene) (P3HT) is very miscible with Y6-BO. As a result, the P4T2F-HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing-incidence wide-angle X-ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F-HD:Y6-BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene-based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost-effective organic photovoltaics.Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs). However, polythiophene-based OSCs still suffer from inferior power conversion efficiency (PCE) than those based on donor-acceptor (D-A)-type conjugated polymers. Herein, a fluorinated polythiophene derivative, namely P4T2F-HD, is introduced to modulate the miscibility and morphology of the bulk heterojunction (BHJ)-active layer, leading to a significant improvement of the OSC performance. The Flory-Huggins interaction parameters calculated from the surface energy and differential scanning calorimetry results suggest that P4T2F-HD shows moderate miscibility with the popular nonfullerene acceptor Y6-BO (2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2',3':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile), while poly(3-hexylthiophene) (P3HT) is very miscible with Y6-BO. As a result, the P4T2F-HD case forms desired nanoscale phase separation in the BHJ film while the P3HT case forms a completely mixed BHJ film, as revealed by transmission electron microscopy (TEM) and grazing-incidence wide-angle X-ray scattering (GIWAXS). By optimizing the cathode interface and the morphology of the P4T2F-HD:Y6-BO films processed from nonhalogenated solvents, a new record PCE of 13.65% for polythiophene-based OSCs is demonstrated. This work highlights the importance of controlling D/A interactions for achieving desired morphology and also demonstrates a promising OSC system for potential cost-effective organic photovoltaics.
Author Xiao, Jingyang
Huang, Fei
Cao, Yong
Yip, Hin‐Lap
Jia, Xiao'e
Duan, Chunhui
Author_xml – sequence: 1
  givenname: Jingyang
  surname: Xiao
  fullname: Xiao, Jingyang
  organization: South China University of Technology
– sequence: 2
  givenname: Xiao'e
  surname: Jia
  fullname: Jia, Xiao'e
  organization: Dali University
– sequence: 3
  givenname: Chunhui
  surname: Duan
  fullname: Duan, Chunhui
  organization: South China University of Technology
– sequence: 4
  givenname: Fei
  surname: Huang
  fullname: Huang, Fei
  organization: South China University of Technology
– sequence: 5
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: City University of Hong Kong
– sequence: 6
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33969562$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7LZ666UERPBm1ky-dnK5rPUDqi1Ur4dM5pzdlJlkTWaU_fembK1QEK8C4XmS95z3jJyEGICQlzVb1ozxd7Yf7ZIzzlhTq-YJWdSK15VkRp2QBTNCVUbL5pSc5XzLGDOa6WfkVAijjdJ8QeBmTnubsw9bWos39ALROw_BHSjGRK_jcJh2Pu53EIBepa0N3tGbONhENzAMmV6n6CBn6CmmONKvMezsELcQ7FTuCvkTwvScPEU7ZHhxf56T7x8uvm0-VZdXHz9v1peVk8I0FSq7QrlSHUojEbB2ZaxOg2XOaoOy67CTiJJzFMKKnoOWpgeLCjujUIpz8vb47j7FHzPkqR19diWnDRDn3HLFZaONqXVBXz9Cb-OcQklXKCm0kGJlCvXqnpq7Efp2n_xo06H9s8ACLI-ASzHnBPiA1Ky9a6i9a6h9aKgI8pHg_GQnH8OUrB_-rZmj9ssPcPjPJ-36_Zf1X_c3R0-mJw
CitedBy_id crossref_primary_10_1007_s11426_022_1449_4
crossref_primary_10_1007_s11426_023_1695_x
crossref_primary_10_1016_j_polymer_2024_126926
crossref_primary_10_1007_s12039_023_02226_6
crossref_primary_10_1038_s41563_023_01579_0
crossref_primary_10_1007_s11426_022_1385_8
crossref_primary_10_1021_acs_orglett_5c00133
crossref_primary_10_1038_s41428_022_00713_0
crossref_primary_10_1039_D3TA06624J
crossref_primary_10_1002_aenm_202201603
crossref_primary_10_1016_j_dyepig_2023_111415
crossref_primary_10_1021_acsami_3c13007
crossref_primary_10_1002_pol_20210745
crossref_primary_10_1016_j_chempr_2024_06_005
crossref_primary_10_1016_j_trechm_2021_09_008
crossref_primary_10_1021_acs_macromol_1c02187
crossref_primary_10_1002_aenm_202304455
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1002_adma_202110147
crossref_primary_10_1002_agt2_466
crossref_primary_10_1007_s10853_023_09029_7
crossref_primary_10_1016_j_solener_2022_04_019
crossref_primary_10_1038_s41528_021_00128_6
crossref_primary_10_1016_j_polymer_2021_124193
crossref_primary_10_3390_en16186639
crossref_primary_10_1016_j_polymer_2022_125267
crossref_primary_10_1002_aenm_202201614
crossref_primary_10_1002_ange_202208845
crossref_primary_10_1039_D1TC01746B
crossref_primary_10_1002_solr_202200605
crossref_primary_10_1007_s11426_021_1087_8
crossref_primary_10_1021_acsami_1c20542
crossref_primary_10_1002_agt2_190
crossref_primary_10_1021_acssensors_1c02476
crossref_primary_10_1002_aenm_202301110
crossref_primary_10_1002_agt2_111
crossref_primary_10_1021_acs_jpcc_1c09734
crossref_primary_10_1021_acsenergylett_4c01284
crossref_primary_10_1002_aenm_202104050
crossref_primary_10_3390_nanoenergyadv2010001
crossref_primary_10_1039_D2TA07249A
crossref_primary_10_1016_j_polymer_2023_125890
crossref_primary_10_1007_s00339_023_07011_3
crossref_primary_10_1016_j_dyepig_2024_112319
crossref_primary_10_1039_D3CC04412B
crossref_primary_10_1002_adfm_202408993
crossref_primary_10_1016_j_nanoen_2022_107802
crossref_primary_10_1016_j_nanoen_2023_108618
crossref_primary_10_1016_j_jiec_2021_06_020
crossref_primary_10_1016_j_cej_2023_143062
crossref_primary_10_1002_adma_202403476
crossref_primary_10_3390_polym14081554
crossref_primary_10_1002_cssc_202101345
crossref_primary_10_1039_D3EE04300B
crossref_primary_10_1007_s11426_024_2243_8
crossref_primary_10_1039_D1TA07046K
crossref_primary_10_1039_D1TA10161G
crossref_primary_10_1039_D1PY01051D
crossref_primary_10_1021_acsmaterialslett_4c01252
crossref_primary_10_1002_anie_202420121
crossref_primary_10_1021_acsami_3c05411
crossref_primary_10_1039_D5TC00664C
crossref_primary_10_1007_s11426_023_1564_8
crossref_primary_10_1039_D2TA07239D
crossref_primary_10_1016_j_cej_2024_156887
crossref_primary_10_1016_j_joule_2022_02_006
crossref_primary_10_1002_adma_202403961
crossref_primary_10_1002_pol_20230279
crossref_primary_10_1021_acsami_3c14494
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1007_s12209_022_00329_8
crossref_primary_10_1021_acsami_1c18673
crossref_primary_10_1016_j_cej_2022_134862
crossref_primary_10_2139_ssrn_3981652
crossref_primary_10_1002_adma_202314169
crossref_primary_10_1016_j_joule_2022_04_006
crossref_primary_10_1039_D1TC04097A
crossref_primary_10_1002_smll_202104623
crossref_primary_10_1002_adfm_202201142
crossref_primary_10_1002_batt_202200221
crossref_primary_10_1039_D4TA00932K
crossref_primary_10_1002_aenm_202303976
crossref_primary_10_1002_ange_202503721
crossref_primary_10_1002_aenm_202103684
crossref_primary_10_1002_qua_27254
crossref_primary_10_1002_anie_202208845
crossref_primary_10_1002_cjoc_202300547
crossref_primary_10_1039_D3TA08020J
crossref_primary_10_1002_inf2_12271
crossref_primary_10_1021_acsami_4c03795
crossref_primary_10_1039_D1TC05111C
crossref_primary_10_1007_s00339_021_04735_y
crossref_primary_10_1039_D2TA07463J
crossref_primary_10_1016_j_chempr_2021_10_009
crossref_primary_10_1002_adma_202309672
crossref_primary_10_1039_D4TA03254C
crossref_primary_10_1002_chem_202303155
crossref_primary_10_1055_a_1833_8668
crossref_primary_10_1016_j_orgel_2023_106913
crossref_primary_10_1039_D5EE00294J
crossref_primary_10_1002_adfm_202300202
crossref_primary_10_1002_anie_202503721
crossref_primary_10_1002_smll_202311648
crossref_primary_10_1039_D2TA04501J
crossref_primary_10_1002_macp_202200399
crossref_primary_10_1002_ange_202420121
crossref_primary_10_1002_adfm_202305851
crossref_primary_10_1002_marc_202200229
crossref_primary_10_1002_advs_202303842
crossref_primary_10_1002_solr_202101024
Cites_doi 10.1039/C8EE00151K
10.1039/C8TA00764K
10.1039/c3ee24138f
10.1016/j.joule.2020.11.006
10.1039/c2ee21481d
10.1016/j.joule.2019.01.004
10.1038/nmat1500
10.1039/C8TC04746D
10.1002/adma.201800868
10.1039/C3TA14236A
10.1021/acsenergylett.0c00939
10.1021/ma070712a
10.1002/adma.201401494
10.1007/s11426-017-9199-1
10.1002/adma.201903441
10.1039/c2ee02806a
10.1016/j.scib.2019.10.019
10.1002/aenm.202001864
10.1021/acs.macromol.9b00793
10.1038/natrevmats.2018.3
10.1002/aenm.201501580
10.1038/s41566-019-0573-5
10.1038/s41467-018-03207-x
10.1002/adma.201601803
10.1002/solr.201700020
10.1002/solr.201800053
10.1016/j.orgel.2012.08.026
10.1016/j.joule.2019.09.010
10.1002/adfm.201203014
10.1016/j.scib.2020.01.001
10.1002/adma.201203246
10.1021/ma501894w
10.1039/D0EE01763A
10.1038/s41560-020-00684-7
10.1039/C5EE02510A
10.1038/nmat4797
10.1021/acsenergylett.0c02230
10.1002/adma.201905480
10.1038/ncomms13651
10.1038/ncomms11585
10.1021/nn401267s
10.1007/s11426-019-9669-3
10.1038/s41467-019-10351-5
10.1016/j.joule.2020.07.028
10.1038/nmat5063
10.1002/adma.201100792
10.1002/adma.201908205
10.1002/aenm.201602269
10.1038/s41467-020-17867-1
10.1002/solr.202000062
10.1002/adma.201906045
10.1063/1.3028094
10.1002/aenm.201700465
10.1039/c3ee43460e
10.1002/solr.202000538
10.1002/adma.201906763
10.1039/C7TA05108E
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202008158
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33969562
10_1002_adma_202008158
ADMA202008158
Genre article
Journal Article
GrantInformation_xml – fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
– fundername: Ministry of Science and Technology of the People's Republic of the China
  funderid: 2019YFA0705900; 2017YF0206600
– fundername: Ministry of Science and Technology of the People's Republic of the China
  grantid: 2017YF0206600
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302007
– fundername: Ministry of Science and Technology of the People's Republic of the China
  grantid: 2019YFA0705900
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-f5a7f475bf494fef1c008b6ea0ca69f4bbfb4ff422f33a3d2e649deaf5fb95f43
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:04:15 EDT 2025
Sat Jul 26 01:11:38 EDT 2025
Thu Apr 03 06:55:21 EDT 2025
Tue Jul 01 02:33:02 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Wed Jan 22 16:29:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords nonhalogenated solvents
nonfullerene organic solar cells
polythiophene derivatives
morphology control
interfacial modification
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-f5a7f475bf494fef1c008b6ea0ca69f4bbfb4ff422f33a3d2e649deaf5fb95f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5750-9751
PMID 33969562
PQID 2543634379
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2524869916
proquest_journals_2543634379
pubmed_primary_33969562
crossref_primary_10_1002_adma_202008158
crossref_citationtrail_10_1002_adma_202008158
wiley_primary_10_1002_adma_202008158_ADMA202008158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 7
2017; 1
2021; 5
2019; 3
2019; 31
2020; 63
2019; 52
2013; 23
2019; 10
2014; 26
2020; 14
2020; 13
2020; 11
2018; 61
2020; 32
2020; 10
2013; 7
2012; 13
2015; 8
2013; 6
2008; 93
2018; 6
2018; 9
2016; 6
2015; 48
2020; 6
2018; 17
2020; 5
2016; 7
2018; 3
2020; 4
2018; 2
2014; 2
2017; 16
2005; 4
2018; 30
2011; 23
2007; 40
2020; 65
2018; 11
2012; 24
2016; 28
2014; 7
2012; 5
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 197
  year: 2021
  publication-title: Joule
– volume: 11
  start-page: 1355
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 314
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 13
  start-page: 2864
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 63
  start-page: 325
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 5880
  year: 2014
  publication-title: Adv. Mater.
– volume: 48
  start-page: 453
  year: 2015
  publication-title: Macromolecules
– volume: 8
  start-page: 3442
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2004
  year: 2020
  publication-title: Joule
– volume: 16
  start-page: 363
  year: 2017
  publication-title: Nat. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2870
  year: 2012
  publication-title: Org. Electron.
– volume: 5
  start-page: 7943
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 11
  start-page: 3943
  year: 2020
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2123
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3020
  year: 2019
  publication-title: Joule
– volume: 9
  start-page: 743
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 4464
  year: 2019
  publication-title: Macromolecules
– volume: 5
  start-page: 5994
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 5
  start-page: 2087
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 9416
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 61
  start-page: 531
  year: 2018
  publication-title: Sci. China: Chem.
– volume: 23
  start-page: 3597
  year: 2011
  publication-title: Adv. Mater.
– volume: 6
  start-page: 711
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 5
  start-page: 711
  year: 2020
  publication-title: Nat. Energy
– volume: 24
  start-page: 6356
  year: 2012
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1201
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 65
  start-page: 208
  year: 2020
  publication-title: Sci. Bull.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 925
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 864
  year: 2005
  publication-title: Nat. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 8586
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2515
  year: 2019
  publication-title: Nat. Commun.
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 40
  start-page: 8291
  year: 2007
  publication-title: Macromolecules
– volume: 14
  start-page: 300
  year: 2020
  publication-title: Nat. Photonics
– ident: e_1_2_7_1_1
  doi: 10.1039/C8EE00151K
– ident: e_1_2_7_36_1
  doi: 10.1039/C8TA00764K
– ident: e_1_2_7_21_1
  doi: 10.1039/c3ee24138f
– ident: e_1_2_7_57_1
  doi: 10.1016/j.joule.2020.11.006
– ident: e_1_2_7_28_1
  doi: 10.1039/c2ee21481d
– ident: e_1_2_7_7_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_7_29_1
  doi: 10.1038/nmat1500
– ident: e_1_2_7_42_1
  doi: 10.1039/C8TC04746D
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800868
– ident: e_1_2_7_3_1
  doi: 10.1039/C3TA14236A
– ident: e_1_2_7_15_1
  doi: 10.1021/acsenergylett.0c00939
– ident: e_1_2_7_43_1
  doi: 10.1021/ma070712a
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201401494
– ident: e_1_2_7_56_1
  doi: 10.1007/s11426-017-9199-1
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201903441
– ident: e_1_2_7_46_1
  doi: 10.1039/c2ee02806a
– ident: e_1_2_7_49_1
  doi: 10.1016/j.scib.2019.10.019
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202001864
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.macromol.9b00793
– ident: e_1_2_7_5_1
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201501580
– ident: e_1_2_7_41_1
  doi: 10.1038/s41566-019-0573-5
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-018-03207-x
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201601803
– ident: e_1_2_7_18_1
  doi: 10.1002/solr.201700020
– ident: e_1_2_7_37_1
  doi: 10.1002/solr.201800053
– ident: e_1_2_7_2_1
  doi: 10.1016/j.orgel.2012.08.026
– ident: e_1_2_7_12_1
  doi: 10.1016/j.joule.2019.09.010
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201203014
– ident: e_1_2_7_13_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201203246
– ident: e_1_2_7_51_1
  doi: 10.1021/ma501894w
– ident: e_1_2_7_34_1
  doi: 10.1039/D0EE01763A
– ident: e_1_2_7_8_1
  doi: 10.1038/s41560-020-00684-7
– ident: e_1_2_7_47_1
  doi: 10.1039/C5EE02510A
– ident: e_1_2_7_30_1
  doi: 10.1038/nmat4797
– ident: e_1_2_7_55_1
  doi: 10.1021/acsenergylett.0c02230
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201905480
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_7_31_1
  doi: 10.1038/ncomms11585
– ident: e_1_2_7_50_1
  doi: 10.1021/nn401267s
– ident: e_1_2_7_20_1
  doi: 10.1007/s11426-019-9669-3
– ident: e_1_2_7_54_1
  doi: 10.1038/s41467-019-10351-5
– ident: e_1_2_7_11_1
  doi: 10.1016/j.joule.2020.07.028
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat5063
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201100792
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.201602269
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-020-17867-1
– ident: e_1_2_7_24_1
  doi: 10.1002/solr.202000062
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201906045
– ident: e_1_2_7_48_1
  doi: 10.1063/1.3028094
– ident: e_1_2_7_52_1
  doi: 10.1002/aenm.201700465
– ident: e_1_2_7_26_1
  doi: 10.1039/c3ee43460e
– ident: e_1_2_7_53_1
  doi: 10.1002/solr.202000538
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201906763
– ident: e_1_2_7_32_1
  doi: 10.1039/C7TA05108E
SSID ssj0009606
Score 2.6317623
Snippet Benefiting from low cost and simple synthesis, polythiophene (PT) derivatives are one of the most popular donor materials for organic solar cells (OSCs)....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2008158
SubjectTerms Donor materials
Energy conversion efficiency
Heterojunctions
Indene
Interaction parameters
interfacial modification
Materials science
Mathematical analysis
Miscibility
Morphology
morphology control
nonfullerene organic solar cells
nonhalogenated solvents
Phase separation
Photovoltaic cells
Polythiophene
polythiophene derivatives
Solar cells
Solvents
Surface energy
Title Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008158
https://www.ncbi.nlm.nih.gov/pubmed/33969562
https://www.proquest.com/docview/2543634379
https://www.proquest.com/docview/2524869916
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1KTu2hH-mXm7So0NKTk1gayfZxSRNCIaE0DeRmJEtDShZv6e4e2l8fjex1si0lkNwsPMKyRmM_SfOeAD7UZUte6yoPnmSORYghpSrMJZZeW-mNT6Sw4xNzdIZfzvX5DRZ_rw8xLrhxZKTvNQe4dfPda9FQ65NuEO_fF5rZvpywxajo27V-FMPzJLandF4brFaqjXtyd736-l_pH6i5jlzTr-fwCdhVo_uMk8ud5cLttH_-0nO8z1s9hccDLhWTfiA9gweh24RHN9QKn0M4jU6JWDsWRKE-ioOkPsHUTRGRr_g6m_5eXPxgnYIuiJ7j2YpTnjqL_TCdzsVASgheMKlFnMy6C146Cl3Eu54tOffyBZwdHnzfP8qHUxryNoKZKidtS8JSO8IaKVDRxrY7E-xea01N6Bw5JEIpSSmrvAwGax8saXK1JlQvYaObdeE1iBK1xcJHhIQKIzRzlSVlSy0p1HyRQb7yUtMOEuZ8ksa06cWXZcPd14zdl8Gn0f5nL97xX8vtldObIYjnDesEGMWCjRm8H2_H8OM9FduF2ZJtJFaGQXYGr_rBMj5KqdrE6afMQCaX39KGZvL5eDKW3tyl0hY8lJxzk1aJtmFj8WsZ3kbQtHDvUmBcAVl2DfQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeyrsEChiJilPaxq8kBw6rbqst7a4QbaXegh3batVVFnV3hcq_4q_wi_A4j7IghITUA7dYcRLHnrG_Gc98BniTp6UzQmSxNY7GPLFepVjGY8pTIxQ10oSksOFIDk74-1NxugTf2lyYmh-ic7ihZoT5GhUcHdJb16yhygTiINzAT0TWxFUe2Ksv3mqbvtvv-yHeoHRv93hnEDcHC8SlX3-z2AmVOp4K7XjOnXVJ6d-hpVXbpZK541o7zZ3jlDrGFDPUSp4bq5xwOheOM__eW3AbjxFHuv7-x2vGKjQIAr0fE3EuedbyRG7TrcX2Lq6Dv4HbRawcFru9e_C97aY6xuVicz7Tm-XXXxgk_6t-vA-rDfQmvVpXHsCSrR7Cyk-EjI_AHnm58-aEL5CEbZDdQLCB2anEg3vyYTK-mp2dIxVDZUmdxlqSI_QOkB07Hk9Jk3dhDcG8HTKaVGfoHbOVh_QGa2J46WM4uZH_fALL1aSyT4GkXCieGA8COeMefepMOaZSQZ3N8SKCuBWLomxY2vGwkHFR80vTAoer6IYrgrdd_c81P8kfa663UlY089S0QCoEyZCTMoLX3W0_w-C2karsZI51KM8k2hERrNXS2X2KsVx6C5tGQIOM_aUNRa8_7HWlZ__y0Cu4MzgeHhaH-6OD53CXYohRcIqtw_Lscm5feIw40y-DVhL4dNPi-wPShm_t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KP8lUMBIVJzSbuyxkxw4rLpdtZSuKkql3oIT22rVVbZid1WVp-JVeCM8-SsLQkhIPXCLFSdx7Bn7m_HMZ4A3aVw4I2USWuN4iJH1KiUSDDnGRmpulKmSwg5GavcY35_IkyX41ubC1PwQncONNKOar0nBL4zbuiYN1abiDaL9-0gmTVjlvr269Ebb9N3ewI_wBufDnU_bu2FzrkBY-OU3CZ3UscNY5g5TdNZFhX9HrqzuFVqlDvPc5egccu6E0MJwqzA1Vjvp8lQ6FP69t-A2ql5Kh0UMPl4TVpE9ULH7CRmmCpOWJrLHtxbbu7gM_oZtF6FytdYN78H3tpfqEJfzzfks3yy-_kIg-T91431YbYA369ea8gCWbPkQVn6iY3wE9shLnTcmfIFFYoPtVPQalJvKPLRnh5Px1ez0jIgYSsvqJNaCHZFvgG3b8XjKmqwLaxhl7bDRpDwl35gtPaA3VJOCSx_D8Y385xNYLielfQosRqkxMh4CokCPPfNEO6FjyZ1N6SKAsJWKrGg42umokHFWs0vzjIYr64YrgLdd_YuaneSPNddbIcuaWWqaERGCEsRIGcDr7rafX2jTSJd2Mqc6HBNFVkQAa7Vwdp8SIlXevuYB8ErE_tKGrD846HelZ__y0Cu4czgYZh_2RvvP4S6n-KLKI7YOy7Mvc_vCA8RZ_rLSSQafb1p6fwAAEm6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surpassing+13%25+Efficiency+for+Polythiophene+Organic+Solar+Cells+Processed+from+Nonhalogenated+Solvent&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiao%2C+Jingyang&rft.au=Jia%2C+Xiao%27e&rft.au=Duan%2C+Chunhui&rft.au=Huang%2C+Fei&rft.date=2021-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=25&rft.spage=e2008158&rft_id=info:doi/10.1002%2Fadma.202008158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon